

TEXAS INSTRUMENTS TI -99 / 4A COMPUTER

User's
Reference
Guide
A complete, deta iled guide to using and enjoying
your Texas Instruments TI-99 / 4A Computer.

LC B·449 1

Texas Instruments in vented the integrated ci rcu it. microprocessor .
a nd microcomputer - technological milestones tha t made loday's
sma ll computers a reality. TI is a world leader in prod ucing reliable.
a fTord able a d vanced electron ics.

See important warranty in formation at back of book .

This book was developed by:
The Staff of the Texas Instruments Learning Center
and
The Staff of the Texas Instruments Personal
Computer Division

Artwork and layout were coordinated and executed by:
Schenck Design Associates, Inc.

Federal Communications Commission Requirements Concerning Radio Frequency Interference

The Texas Instruments TI-99/ 4A Computer generates and uses radio frequency (RF) energy. Ifnot
installed and used properly (as outlined in the instructions provided by Texas Instruments), the
computer may cause interference to radio and telev is ion reception.

The computer has been type-tested and found to comply with the limits for a Class B computing
device in accordance with the specifica tions in Sub-part J of Part 15 of FCC Rules. These rules
are designed to provide reasonable protection against radio and televis ion interference in a
residential ins tallation. However, there is no guarantee that inte rference will not occur in a
particular installation.

If this equipment does cause interference to radio or television r eception (which you can
determine by turning the equipment off and on) , try to correct the interference by one or more of
the fo llowing measures:
• Reorient the receiving antenna (that is. the antenna for the radio or telev ision that is

"receiving" the interference).

• Change the posi tion of the computer with respect to the radio or television equipment tha t is
receiving interference.

• Move the computer away from the equipment that is receiving interference.

• Plug the computer into a different wall outlet so that the computer and the equipment receiving
interference are on different branch circuits.

If these measures do not eli mina te the interference, please consult your dealer or an experienced
radio/ televis ion tech nician for addit ional suggestions. Also. the Federal Communications
Commiss ion has prepared a helpful booklet , "How to Identify and Resolve Radio-TV
Interference Problems." This booklet is available from

The US Government Printing Office
Washington. D .C. 20402

Please specify Stock Number 004-000-00345-4 when ordering copies.

WARNING: This equipment has been certified to comply with the limits for a Class B
computing device , persuant to Subpart J of Part 15 of FCC Rules. Only periphera ls (computer
input/output devices, termina ls. printers, etc.) certified to comply with the Class 8 limits may be
attached to this computer. Operation with non-certified peripherals is likely to result in
interference to radio and TV reception.

ISBN#O·895 12-048·8
Library of Congress Catalog #81·51829

Copyrigh t Cl 1979. 1980. 1981. Texas Instruments Incorporated

Users Reference Gu ide
n

Table of Contents
I. GENERAL INFORMATION 1·1

Introduction 1,1
Powerful TI BASIC•......... 1·1
Convenient Module S ystem • ••.••..•.• • 1·1
Tape and Diskette Programs I· t

Using This Book 1·1
Placement a nd Care•.......... J-l
Monitor·Console Connection 1·2

If You Are Using the TJ Color Monitor 1·2
If You Are Using Your Television S et and the TI·900 Video Modula tor 1·2
Connect Power Cords 1-3
Check the Connections 1-3

A Tour of Your Computer .. 1-4
Getting Started • 1-4
A Tour o f the Keyboard _ 1-5

Automatic Repeat _ _ _ _ 1·5
Alphabet Keys _ .. _ . . . _ 1-5
Alpha Lock • I·S
Number Keys _ • . .. _ 1·5
Punctuation and Symbol Keys .. , .••.... _ _ 1·5
Special Function Keys _ 1·5
Special Control Keys _ _ 1-6

Keyboard Overlay _ 1-6
Ma th or Operation Keys _ 1-6
Space Bar _ _ _ 1-7

Correcting Errors _ .. _ 1·7
Accessories _ . _ _ 1-7

T I D isk Memory System 1·7
TI Solid State Speech""S ynthesizer • _ 1·7
T l S olid Sta te Thermal P r inter 1-8
TI Wired Remote Controll ers _ 1·8
T I RS232 Interface ••.•. 1·8
T l Telephone Coupler (Modem) • . _ 1-8
TI Audio Adapter • .. _ 1-8
TI Memory Expansion Unit J-8
Cassette Interface Cable _ 1-8

Connecting the Recorder 1·9
To Save/ Load D ata _ • 1·9

To Save/ Load Data in TI BAS IC 1·10
To Save Data When Us ing a Module 1-10
To Load Data When Using a Module _ .. _ ... _ _ . . . 1·12

User 's Reference Guide

'"

Table of Contents

II. BASIC REFERENCE SECTION

,y

Introduction 11 ·2
How This Section Is Organized •......... 11-3
Notational Conventions II-3
Examples 11-3

General Information •.• •. 11 ·4
Introduction 1I·4
Special K eys 11-5
Blank Spaces , . . , . ' II·7

Line Numbers , ".,."" , . . . , ... , . , , . , , . ' ... , ' . . , . , II·S
Numeric Constants .. , . , . .. , . , . , ' , , , . , , . II·9
Scientific Notation . , , .. ' . ' . ' . , . , ' ' , ' . , . , . , . II -9
String Constants _ . _ , .. , . ' ' ... , I1 ·10
Variables . . , . , , . , . , ... ' , .. , ' 11 ·11
Numeric Expressions , . , I 1·12
Relational Expressions _ _ , . ' . . ' Il·14
String Express ions _ . _ , IJ.15
Reserved Words .,., , , , ... ········· 11 ·16
Statements Used as Commands , , ' ... , . , 11·17
Commands Used as Statements • ' , , . 11-1 8

Commands , . , . , . , , , , .. _ . _ , .. II-1 9
Introduction ,.,., - .. ,., _ 11-1 9
NEW•...•.. .. .• .•....•........••.... 11·20
LIST••.•• •........•.......... 11·21
RUN•• 11·23
BYE••............. 11·24
NUMBER • • •• 11·25

Editing in Number Mode . . , "., ., , , .. . _ 1l·26
RESQUENCE• •..•.... 11·28
BREAK • 11-30
UNBREAK• • 11-33
CONTINUE ••..•..... 11·35
TRACE • .•. •. • , 11·36
UNTRACE• • •. •• . • 11·37
EDIT •••. •.. 11·38
SAVE• •...... ..•.•... . . 11·40
OLD• • 11·42
DELETE• ,• •• 11,43

General Program Statements , . , , _ . _ II ·44
Introduction . . , .. , . , . , 11-44
LET •.. •. • •.............. 11·45
REM •.....•.....•........•........... 11·46
END•.... . . . •• •. •..•..• 11-47
STOP •.•.••..... 11·48
GOTO•. •.... 11·49
ON.GOTO •• • •.. •..•......... 11·50
IF .THEN .ELSE •..... . . .•. • 11·51
FOR.TO.STEP •. ••..... .. • 11·53
NEXT • •.... . .• •.. 11 ·56

User's Reference Guide

Table of Contents

Input-Output Statements II -S7
Introduction 11·57
INPUT 11·58
READ • •. 11·61
DATA • • 11 ·63
RESTORE •. • 11·64
PRINT 11 ·65
DISPLAY • .•. 11 ·70

Co lor Graphics and Sound II-? l
Introduction , II ·?1
CALL CL EAR• 11·72
CALL COLOR • • • 11 ·73
CALL SCREEN IPS
CALL CHAR 11·76
CALL HCHAR 11 ·80
CALL VCHAR. •• 11·83
CALL SOUND • ..• • • 11·84
CALL GCHAR . • •• • 11·86
CALL KEY • •. 11·87
CALL JOYST•. • .• 11·90

Built ·In Numeric Funct ions _ 1l ·91
Introduction , Il -91
ABS •.. . . . ••. 11·92
ATN ••. 11·92
COS ••• • 11·93
EXP • 11·93
INT 11 ·94
LOG •• • 11·94
RANDOMIZE •. 11·95
RND • •... 11·96
SGN 11-97
~N II~
SQR 11·98
TAN. • •• 11-98

Built- In String Functions. 1I ·99
Introduction II ·99
ASC 11-100
CHR$ 11·1 00
LEN 11-101
POS 11-101
SEG$ 11·1 02
STR$ 11 ,103
VAL. • •. 11·103

User-Defined Functions _ _ _ II -I 04
Introduction 11 ·104
DEF 11·105

Arrays _ 11 -108
Introduction 11 -108
DIM... 11-11 0
OPTION BASE 11·11 2

U ser's R eference Guide v

Table of Contents

Subroutines .. ,... 11 ·113
Introduction 11-11 3
GOSUs. 11·114
RETURN • 11·11 6
ON·GOSUB 11·11 7

File Processing 11-11 8
Introduction II -lI S
OPEN •.. • 11 ·119
C LOS E • • 11 ·123
INPUT 11 ·125
EOF• • 11·130
PRINT 11 ·131
RESTORE 11·136

III. APPENDIX TO BASIC REFERENCE SECTION•. . . . 11 1·1

ASCII Character Codes
Function and Control Keys -
Keyboard Mapping. -
Character Codes for Split Keyboard
Pattern-Identifier Conversion Table
Color Codes • • . •••....

111·1
111·2
11 J.3
111·4
111·5
111·5

High·Resolut ion Color Combinations IIl -6
Musical Tone Frequencies 1lI ·7
Error Messages . 111 -8
Accuracy Information. 111·13
Applications Programs. , . IlI -14

IV. GLOSSARY IV· 1

V. MAINTENANCE AND SERVICE INFORMATION • V· l

VI. INDEX VI· 1

WARRANTY

V I User's Reference Guide

General Information
INTRODUCTION
You are about to be introduced to the exciting
new world of the personal computer. Until jus t a
few years ago, the s ize, price. and complexity of
computers put them beyond the reach of the
individual purchaser. Today, Texas Instruments
Persona l Computers bring you remarkable
computing power in afforda ble, compact units
that can be easily set up in your home, office, or
school.

Whether you have years of computer experience
or have never worked with computers before,
the innovat ive and flexible features of your
computer offer you a wide variety of
app lications. Within minutes. you can begin
using your computer to
• manage your personal resources
• develop projects for home and business
• bring new dimensions to education - for you

and your children
• provide engaging new types of entertainment

for the entire family
• and much more.
Powerful TI BASIC
TI BASIC. a s imple but very powerful computer
language. is built right into your Texas
Instruments Computer. With TI BASIC. you
can develop and use your own computer
programs for applications ranging from color
graphics to s tatistica l a nalysis and more. This
language makes your TI computer a "true"
computer - not a video game or electronic toy.

Convenient Module System
The unique system of easy-to-use. snap-in Solid
State Software™Command Modules· assures
the con tinued versati lity and usefulness of your
computer. These rugged. all solid-s tate modules
are completely preprogrammed for you. You just
snap them in. and they "prompt" you through
activities. app lications. games, a nd
entertainment. With a module plugged into the
computer console. you can s tart using your
computer immediately. You can choose from a
wide selection of Command Module titles. Ask
you r dealer to see all of them!

Tape and Diskette Programs
In addition to Command Modules. Texas
Instruments offers a variety of convenient
softwa re on tape or diskette . ranging in
User's Reference Guide

complexi ty from s imple games applications to
high-level business and professional programs.
Like Command Modules, these a pplications are
ready for you to use. without any programming
on your part. Programs on cassette tape require
the Cassette Interface Cable· to connect the
computer and your cassette recorder . and
diskette programs require the TI Disk Memory
System.· Ask you dea ler to show you a lis t of
the many tape and diskette packages avai lable
from TI a nd other software developers.

USING THIS BOOK
The User 's Reference Guide is organized in the
following step-by-step fashion:
• a brief discussion of the care of your new

computer.
• an explanation of how to connect the

computer to the monitor.
• a tour of your computer. s tarti ng with the

connector out lets and including the computer
keyboard.

• the accessories ava ilable for the computer.
• a BASIC reference section.

No special expertise or experience is necessary
to fully enjoy and util ize your TI computer. The
s imple instructions we provide here a nd in the
books enclosed with each software package, as
well as the prompting you receive from the
computer. are all you need to get "up a nd
running" quickly.

PLACEMENT AND CARE
First . find the right location for your computer
system. Select a p lace where sunlight or bright
light doesn't fa ll directly on the screen. Also. it's
best to place the system on a hard-topped non
metallic surface. such as a table. DO NOT SET
THE COMPUTER CONSOLE ON TOP OF A
TELEVISION SET.

Correct ventilation is necessary for the
continued proper operation of your computer
system, Be sure air can flow freely through a ll
the ventilation s lots on the bottoms. backs, and
tops of the console and monitor (or TV set , if
you're using the TI-900 Video Modulator and a
TV set). Do not obstruct the ventilation or
enclose the system in any way,

·sold separately

General Information

From time to time you may want to clean the
surfaces of your computer. Firs t. turn the
computer OFF. Then gently wipe the surface
using a damp. li m·free cloth . Do not use
solvents or other cleansers to clean the
computer console.

CAUTION: Electronic equipment can be
damaged by static electricity discharges. Static
electricity bui ld-ups can be caused by walking
across a carpet. If you bui ld up a s tatic charge
and then touch the computer. a Command
Module. or any accessory device. you can
permanently damage the internal circuits.
Always touch a metal object (a door knob, a
desk lamp. etc.) before working with your
computer. connecting accessory devices. or
handling or inserting a Command Module. You
may wa nt to purchase a special a nti-s tatic spray
for the carpeting in the room where your
computer is located. This commercial
preparation is usua lly avai lable from loca l
carpet . hardwa re. and office s upply s tores .

MONITOR-CONSOLE CONNECTION
When you have c hosen the right location for
your computer, you are ready to set up the
system. The hook-up instructions to fo llow
depend on whether you are using the TI Color
Monitor or your own television set as a video
display.

It You Are UsIng the TI Color Monitor
Connecting your computer to the TI Color
Monitor requi res only two simple s teps. using
the cable packed with the monitor.
1. Connect the s-pin plug (called a "DIN " plug)

to your computer console a t the point shown.

Back of
Main Console

1'2

Connect
5 pin "DIN"
plug here.

2_ The other end of the cable (with two plugs)
connects to you r monitor. Connect the larger
plug to the outlet labeled 'VIDEO" on the
bac k of your monitor and the sma ller plug to
the out let labeled "AUDIO" on the back of
your monitor as shown below.

Note: Do not a ttach the
console directly to a
telev is ion set using this
cable. Connection of the
console to a television
receiver must be made using
the T I·900 Video Modulator.

If You Are Using Your Television Set and the
TI-900 Video Modulator

CAUTION: Federa l Radiation Emission
Standards set forth in Regulation 21 CFR 1020
do not apply to color television receivers
manufactured before January 15 . 1970. T o
avoid possible exposure to radiation emissions
in excess of the s tandards. Texas Instruments
recommends the use of the Video Modulator
only with TV receivers manufactured after that
date.
Connecting the computer to your television set
requires the use of the TI-900 Video Modulator .
To install the modulator. fo llow these s teps.
1. Turn the telev ision set and the computer

OFF.
2. Remove the VHF a ntenna cable from your

te levision set . (If your set does not have a
s tandard antenna hookup similar to the one
shown below. please consult the Video
Modulator manual for more details.)

3. Connect the telev ision interconnect cable.
marked HTV VHF" on the TI -900 Video
Modulator, to the VHF antenna terminals on
your te levision set.

User's Reference Guide

General Information

4 . Connect the VHF antenna cable that you just
removed from your televis ion set to the Video
Modulator terminals. marked "ANT."

5 . Remove the paper backing from the double
s ided tape on the modulator and press the
unit aga inst a flat surface on yo ur telev ision
se t.

6. Connec t the S-pin "DIN" plug of the computer
interface cable into the S-pin socket on the
back of the console.

Back of
Main Console

Connect
5 pin "DIN'"
plug here.

Once the modula tor is instal1ed. set the NC H.
SELECT" switch on your Video Modulator a nd
the channel selector on your televs ion set to the
same channel. either cha nnel 3 or 4 . If there is a
television s tation operating on one of these
c hannels in your area. set the "CH. SELECT"
swi tch and the television to the other c ha nnel.

T hen. to use yo ur television set as a computer
di splay. set the 'TV ICOMP:' switc h to "CaMP:'
(When you are ready to watch televis ion again ,
set the 'TV I COMP," switc h to "TV:)

Connect Power Cords
Next. connect the power cord (with transformer)
to the computer. Connect the small 4-pin plug
end into the out let on the back of the computer
as ind icated below_ Notice that the pins only line
up one way,

User 's Reference Guide

Power Cord
ConnecLS Here

The n. plug the power transformer in to a regu lar
wall outl et . It is best to plug the tra nsformer
into a wall outlet that is conti nuous ly "Iive:' not
one controlled by a wall switch. You may want
to secure the power transformer to the wall
outlet as in the sketch above. (Note: Some wall
plates may not have a screw location that
matches the transformer.)

Finally, plug e ither the monitor or television
power cord into a conti nuous ly "'live" wall ou tlet.
(The co lor monitor is des igned to operate on
120 volt 60 Hz AC . DO NOT ATTEMPT TO
OPERATE THE UNIT ON DCI The power
supply cord has a plug with two blades a nd one
grounding pin as a safety feature . DO NOT
ATTEMPT TO PLUG T HE POWER CORD
INTO A 2·HOLE WALL OUTLET. I f the plug
does not fi t your wa ll outlet. contact a n
electr ician.

Check the Connections
Before you turn on yo ur compu ter. follow these
steps:
• Check to see tha t a ll connec tions are secure.
• Make sure both the computer and the mo nitor

or your telev ision set are plugged in to a live
wall outlet.

• If you are using yo ur own te levision set and a
Tl ·900 Video Modulator. set the "TV!
CaMp." swi tc h on the modula tor to "CaM P:'
and be sure that the "CH . SELECT" switch
on the modu lator and the channel seleclOr on
yo ur telev ision a re set lO the same channe l
(e ither 3 or 4, whichever is not a broadcasting
channel in your area).

1-3

General Information

A TOUR OF YOUR COMPUTER

Your computer console is the cent ral part of
your computer system. It 's des igned so that all
of the other uni ts of th t sys tem easily connect to

this console. No tools are required .

Getting Started

Let's look a t the front and right s ide of yo ur
computer .

1

1 This is the ON / OFF switc h. The small li ght
next to the switch indicates when the
computer is ON.

2 Command Module software· snaps into this
out le t.

3 This k eyboard is used to type information
into the computer .

4 This outl et is for optional periphera l
accessories . Details are included wi th the
appropria te peri phera l.

1-4

This is the back a nd left side of the console:

7

5 The Cassette Interface Cable'" connects to
the console at this 9-pin "0" outlet.

6 The Power Cord attaches to the console at
th is 4-pin outlet.

7 This S-pin connector (also ca lled a DIN
connector) is for audio-out and video-ou t.
This connector wi ll insert easi ly when
proper ly a ligned.

8 The Wired Remote Controllers connect to
this 9-pin out let. Detai ls are included with
the accessory .

(Note: Do not confuse this Q·pin outlet with
the 9"pin out let on the back of the console.
They are not interchangeable.)

·sold separately

User"s Reference Guide

General Information

A Tour of the Keyboard
Let's take a close look at the keyboard.

I · I : I; I: 1,1 ; I ~ I ; I ~ I : I : I

0 w ,
" • . " • 0 " ,

,
• • 0 • 0 " , • • , I ~"Q

-1 < -. • , • • • " --.-.oc_ ... - ."
The keyboard is like a standard typewriter ,
with keys o f several types. Press ing any key
ca uses its lower-case (s mall capital) character to
di splay o n the screen. and holding down the
SHIFT key while pressing any other key returns
the upper-case (large capital) character for that
key. Except for the alphabetical keys . ea ch
key's upper-case character is printed at the top
of the key face, whi le the lower-case character
is printed at the bottom.

Some of the keys also have special functions. as
explained in the following sections .

AUTOMATIC REPEAT
T I BASIC is designed with an automatic repeat
function. If you hold down the SPACI BAR or
any character key for more than one second.
that character is repeated unti l you release the
key.

ALPHABET KEYS
All a lphabetica l symbols are typed into the
computer us ing the alphabet keys. To capitalize
le tters. hold down the SHIFT k ey and press the
letter key. jus t as you would on a standard
typewriter keyboard .

ALPHA LOCK
Pressing ALPHA LOCK locks all the alphabeti ca l
keys into their upper·case mode . The number
and punctua tion keys are not affec ted. When
you press ALPHA LOCK again. the keyboard
returns to normal operati on.

Note: When you are using the Wired Remote
Controll ers . ALPHA LOCK must be in the off (up)
position.

User's Reference Guide

NUMBER KEYS
The number keys are located on the top row of
your computer keyboard . If you have previous
typing experience. you need to be aware of two
differences between this keyboard and some
typewriter keyboards. With the computer. you
cannot type the letter "L" as the number "I ."
Also. never substitute the letter "0" for a zero.
The computer screen displays the le tter NO"
with squared corners and displays a zero with
rounded corners. so you'll be able to dis tinguis h
them .

PUNCTUATION AND SYMBOL KEYS
The computer keyboard has the punctua tion
and symbol keys which appea r on a s ta ndard
typewriter. as well as severa l others used in
computer applications . To type any symbol
which appears on the bottom of a key face.
s imply press the key. To type the upper symbol.
hold down the SHIFT key and press the symbo l
key. Notice that punctua tion marks and
symbols also appea r on the fronts of some keys.
To type these symbo ls . hold down the FCTII key
and press the key.

SPECIAL FUNCTION KEYS
S evera l keys have varying functions in T I
BASIC. some C ommand Module software. a nd
other a pplications. The use of the keys is
desc ribed in detai l in the appropria te sections of
this Guide or in the manua ls that accompany the
various modu les.

To acti vate any specia l function . except I!IITI R.

hold down the FeTIl key and press the letter or
number key.

FCTN = (QUIT)
Pressing QUIT (at a ny time) returns the
computer to the mas ter titl e screen . Note: When
you press QUIT . a ll data or program materi al
yo u have entered will be erased .

I!IITI!R

In mos t cases. pressing the IIiTIR key tells the
computer to accept the information you have
jus t finished typing. Additiona l functions will be
explained in the appropriate ma nua ls.

I·S

General Information

FCTN - (LEFT)
Pressing the left-arrow key (backspace) moves
the cursor to the left . The cursor does not erase
or c hange the characters on the screen as it
passes over them.

FCTN - (RIGHT)
Pressing the right'arrow key (forwardspace)
moves the cursor to the right. As the c ursor
passes over the characters printed on the
screen, it does not alter them in any way.

FCTN I (UP)
FCTN I (DOWN)
These keys have various functions according to
the specific application where they are used .
S ee the TI BASIC section in this book and the
appropriate software manuals for a complete
explanation of their use.

FCTN • (DEL)
The D.Lete key is used to delete a letter,
number , or other character from the lines you
type.

FCTN 2 (INS)
The 'Nsert key is used to insert a letter.
number . or other character into the lines you
type .

FCTN 3 (ERASE)
Pressing the aRAsa key befo re pressing aNTaR

erases the line you are presently typi ng.

FCTN • (CLEAR)
This key is normally used to clear from the
screen any information you have typed (before
pressing aNTaR). It also has addi tional functions
in TI BASIC . See "Specia l Keys" in the BASIC
Reference S ection of this book for detai ls of its
use in TI BASIC.

Other keys have special functions in software
applications . Some of these are:
FCT" 5 (BaGIN)

FCTN e (PROC 'D)
FCTN 7 (AID)

FCTN 8 (RaDO)
"CTN • (BACK)

1·6

SPECIAL CONTROL KEYS
The T I computer also has control characters
which are used primarily for
telecommunicat ions. For a list of the s tanda rd
ASCI I control characters included in your
computer. see "Control Key Codes" in the
Appendix. To enter a control character. hold
down the CTRL key and press the appropriate
letter or number key.

Keyboard Overlay
A two' level s tr ip overlay is included with your
computer. You can use this overlay to help you
more easily identify certain keys that are used in
combination with the FCTN and CTRL keys.

The top level of functions, identified by the red
dot. a re called control keys. To access these
keys. hold down the CTRL key, marked with a
red dot. while pressing the appropriate num ber
or alphabet key. The second level of functions,
identified by the light gray dot. are accessed by
holding down the FCTN key. a lso marked with a
light gray dot. while pressi ng the appropriate
number or letter key.

MATH OR OPERATION KEYS

The Math keys (or operation keys) are the keys
used to instruct the computer to add . subtract.
multiply. di vide. a nd raise a number to a power.

The symbols for addition. subtraction . and
equa ls are the usua l ones you're familiar with.
but the multiplication and division symbols may
be new to you.

+ Addition
Subtraction

* Multipl icat ion
/ Division
= Equa ls

The "caret" key (A) is a lso used for
mathe ma tica l operations:

IHIFT A
This symbol tells the computer to perform
exponentiation (raiSing a number to a power) .
Since SJ cannot be eas ily printed on your
screen. the computer interprets 5 A 3 to mean
that three is a n exponent.

User's Reference Guide

General Information

The following keys are used to indicate
mathematical relationships in Tl BASIC:

SHIFT <

SPACE BAR

"Greater than": thi s symbol is
used to compare two quantities.

"Less than"; this symbol is also
used to compare two quantities.

The SPACE BAR is the long bar at the bottom
of the keyboard. It operates just like the
space bar on a regular typewr iter. When you
press the SPACE BAA, the computer leaves a
blank space between words. letters or numbers.

The SPACE BAR can also be used to erase
characters a lready on the screen. (See the
section titled "Correcting Errors.")

Correcting Errors
To correct a typing error before you press
.1iIT.R, move the cursor back to the character
you want to change (using the left· arrow key).
Retype the correct character (or characters);
then move the curso r back to the end of the
word or phrase you were typing (using the right·
arrow key).

You can erase errors by us ing the SPAC. BAR.
Backspace (using the left'arrow k ey) to a point
where you want to begin erasing. The n press
the SPAC. BAR to move the cursor over the
characters on the screen. The characters are
erased.

In certain applications. you can also make
corrections using the D_Lete key and the INSert
key.

User's Reference Guide

ACCESSORIES
A wide variety of accessories is available for use
with the computer. These accessories expand
the capabi lities of yo ur basic unit. lett ing you
build your system as you need it.

TI Disk Memory System·
The TI Disk Memory System is a mass storage
system, consisting of a TI Disk Drive Controller
and one to three Disk Memory Drives. With the
system, you can save your computer programs
for use at a later time. as well as enjoy
preprogrammed applications available on
diskette. In addition. some of the Command
Modules are designed to let you store data and
results from your computations.

The Disk Manager Command Module is
packaged with each Disk Drive Controller.
With the module, you can cataJog a diskette,
name diskettes or fi les. delete files. copy
diskettes or files. protect your fi les. and test the
operation of your disk system.

TI Solid State Speech™ Synthesizer·

The Solid State SpeecH" Synthesizer gives your
T I computer a voice of its own and adds new
excitement and enjoyment to computer
applications through spoken words. phrases.
and sentences. To activate the Speech
Synthesizer. you must also have a special ized
Command Module* plugged into your computer
console. You can use the Speech Editor
Command Module. the Terminal Emulator II
Command Module, or any other module which
is programmed for speech.

*sold separately

1-7

General Information

TI Solid Slate Thermal Printer'
When the TI Solid State Thermal Printer is
connected to your computer, you can obtain a
printed copy of your program and data to aid
you in revising long programs or maintaining
fi les of programs a nd results. In addition. the
Thermal Printer can be used with some
software applications to print screen disp lays or
generate printed lists a nd reports.

The printer prints up to 32 characters on a li ne
and prints either characters from its resident
c haracter set or special characters that you
define. Special features included in the printer
a lso let you control the amount of paper that is
ejected and the spacing between lines.

TI Wired Remote Controllers·
The lightwe ight . compact Wired Remote
Controll ers add greater freedom and versatility
to games. graphics. and sound applications on
your computer. without the need for keyboard
interaction. You can use the Remote Controllers
with certain software applications or with your
own TI BASIC programs.

Note: When you are using the Wired Remote
Controllers. ALPHA LOCK must be in the off (up)
position.

TI RS232 Interlace·
The Texas Instruments RS232 Interface a llows
you to connect a wide range of ETA RS232C,
compatible accessory devices to your computer.
With the RS232 Interface attached to your
computer . you can list programs on a printer,
util ize a modem for telecommunications. print
graphs on a plotter . and much more.

TI Telephone Coupler (Modem)·
Added to the RS232 Interface. the Telephone
Coupler (Modem) enables your computer to
communicate over telephone lines with a nother
s imilarly equipped computer. If you also have a
TI Command Module* designed for
te lecommunica tions. you can access
subscription data base services.

TI Audio Adapter·
The Audio Adapter provides a handy connector
for use with JA "'plug headphones.

1·8

TI Memory Expansion Unit ·
The Memory Expansion unit adds 32K bytes of
Ra ndom Access Memory to the computer's
built·in memory. In addition , the unit increases
the number of accessories which can be
connected to the computer. (Note: The Memory
Expansion unit requires the use of a Command
Module or a n accessory designed to utilize the
unit. The TI BASIC programming language
built into the computer cannot make use of the
Memory Expansion unit.)

Cassette Interlace Cable

You can further expand your computer system
by using audio cassett e tape recorders. Tl
BASIC allows you to s tore and retrieve data you
enter in the computer (programs. numerical
data. etc.). By record ing data on a tape. you can
save it as a perma nent record. Later you can
load the data from the cassette tape into the
computer's memory if you want to use that
information again . Several of the command
modules a lso use this feature to save a nd load
data yo u've used in the module.

You can use either one or two recorders for this
purpose. Using two cassette recorders is
especially helpful for advanced programming
applications.

·sold separately

User's Reference Guide

General Information

Many s ta ndard cassette recorders can be used
with th e computer. F or best operation. however.
they should have such features as:

• Volume control
• Tone control
• Microphone jack
• Remote jack
• E a rphone or external speaker jack
• Digital tape counter (This will enable you to

eas ily locate the correct tape position in case
you want to store more than one program or
da ta set on the same tape.)

Since motor contro l des ign varies from
manufacturer to ma nufacturer , we have tested
several different cassette recorders to determine
whether they can be used with the computer . A
lis t of recorders that appear to work well with
this computer is included separately. We've also
indicated the volume setting and tone control
setting for each unit that give the bes t operating
results.

Texas Instruments can assume no responsibi lity
for any design changes made by the cassette
recorder manufacturers that might affect the use
of a specific recorder with the TT computer.

Carefully follow the directions for setting up and
us ing your recorder. as described in the
remainder of this section . If your casselte
recorder does not appear to be compatible with
the computer. try disconnecting the black wire
from the remote jack on the recorder and
operating the recorder manually. If you can save
or load da ta while operating the recorder
manually. but cannot do so when the black wire
is connected . you may continue to operate the
recorder manually or change to one of the
recommended cassette units.

Note: The cassette interface cable uses the
triple-plug end for cassette number t "CSt." and
the double- plug end for casse tte num ber 2
"CS2." Cassette unit 1 may be used for both
record ing (writing) a nd reading: casselte unit 2
may be used for writing onl y.

User's Reference Guide

CONNECTING THE RECORDER

To connect yo ur casselte player{s) to the
computer. use the cassette interface cable. and
follow these s imple s teps:

1. Insert the s ingle p lug end of the cable with
the 9-pin "D" connector into the g ·pin outlet
on the back of the conso le (la beled "A'l

2. Attach the triple plug ends into the cassette
recorder{s) as follows:

• Insert the plug with the red wire into the
microphone jack

• Insert the plug with the black wire into the
remote jack (note tha t this plug is smaller
than the other two plugs)

• Insert the plug with the white wire into the
earphone jack (or externa l speaker jack) -
CSt only.

3 , Make sure you notice how the casse ttes are
connected whe n you selec t either CS 1 or CS 2
when sa ving data. When load ing data. only
CS t can be used . See T O S AVE/ LOAD
DATA sec tion for more in formation.

(Note: You will usually elect to connect only one
cassette recorder. The o ther plug end will
s imply be inac tive when only one recorder is
used with the computer .)

1'9

General lniormation

After all cables are connected . turn the tone
control on your cassette player to full TREBLE
or to the point indicated on the table on the
separate cassette sheet. Set the volume at about
half scale (if the volume contro l has ten
positions. set it at five or at the position
indicated in the table) . If your cassette player
does not have a tone control. you may have to
set the volume control higher for best results .

Note: The Memory Expansion unit adds 32K bytes
of Random Access Memory (RAM) to the built-in
memory of the computer. However. even with
the Memory Expansion unit available. the
largest program that can be stored on a casse tte
tape is 12K bytes in size. Note that , although
the length of the actual program is limited by
the a mount of available built-in memory.
utilizing the Memory Expansion unit provides
other advantages. For example. with the unit
attached and turned on. your program can be up
to 12K bytes in length , while any data generated
by the program can be s tored in the Memory
Expansion unit. Without the unit . the program
must be shorter so that both it and the
generated data can be stored in the computer's
built-in memory.

TO SAVE/ LOAD DATA

If you have your cassette mac hine(s) connected
to the console as instructed. you are ready to
save/load data.

Before you attempt to save / toad your data,
make sure that :
• You are using high quality audio tape . Poor

quality tape yields poor performance.
• The tape is not longer than C-60. Longer

tapes a re thinner and provide tess fidelity .
• The cassette machine is no t located within

two feet of the monitor or a television set to
minimize magnetic field interference.

• The tape is never placed wi th in two feet of the
monitor . a television set. an e lectric motor, or
any other s trong source of magnetic fields to
avoid accidental erasure of your data .

• The system (computer console, cassette
machine , and Color Monitor) is no t located on
a continuous metallic su rface to minimize
conducted noise.

1·10

• You are using only CSt for LOAD . CSI or
CS2 can be used for SAVE .

To Save/ Load Data in T I BASIC

For complete instructions on how to save and
load data when you are programming in TI
BASIC , see the section on the SAVE command.

To Save Data When Using a Module

After you have entered your data into the
computer and connected the recorder to the
computer (with a good quality tape cassette in
place) . you are ready to begin recording. S elect
the "SAVE" option offered by the module you're
using. The computer then offers you a list of
options for saving data . (Note: You'll get an error
message if you select an option for a device that
isn't connected to the console and turned ON .)
Suppose. for example. that you want to save
your data on a cassette recorder that's attached
to the triple-plug end of the cassette interface
cable. Select CSt (cassette unit 1) from the
options lis t.

From this point on, the computer guides you
through the SAVE routine with on-screen
instructions. (Note that the same instructions
appear whether you select CSt or CS2 .) The
computer controls the recorder motor power , so
the tape does not start to move unti l you press
.NT. R at the points indicated.

S creen Instructions

• REWIND CASSETTE TAPE CS1
THEN PRESS ENTER

Procedure

Rewind the tape before you press ENTER. If your
recorder does not have a tape·position counter,
rewind the tape altthe way to the beginning. If
your recorder does have a posi tion counter,
position the tape at the spot where you want to
begin recording. a nd press the "stop" button on
the recorder. (Write down the position for later
reference.) Then press ENTER to continue.

User's Reference Guide

General Information

• PRESS CASSETTE RECORD CSI
THEN PRESS ENTER

Press the "record" button on the recorder. and
then press ENTER on the computer. As soon as
you do , your data will begin recording on the
tape. and the screen wi ll show th is message:

• RECORDIN G

You may hear the sound o f the encoded
information as it is being s tored or read from the
tape unit . Several seconds of b lank tape will be
recorded to a llow for the leader on the tape.

• PRESS CASSETTE STOP CS I
THEN PRESS ENTER

When a ll the data has been recorded . press the
"stop" button on the recorder . and then press the
computer's ENTER key.

Once you've done this. you'll be asked:

• CHECK TAPE IV OR N)?

Note: The single-letter responses (Y. N. R. etc.)
you give when saving or loading data on a
cassette tape mus t be upper-case characters.
Hold down the SHIFT key . and press the
appropriate letter key.

At this po int you may choose to let the computer
check your tape to make sure everything was
recorded properly. We strongly recommend that
yo u do so to ensure the accuracy of your tape for
futu re use. Note: CSt only.

If you decide not to check the tape. press N for
no. Remove your tape. and label it for later
reference.
If you wa nt to check the tape. press Y for yes.
Again. the computer guides you wi th the
fol lowing messages:

• REW IND CASSETTE TAPE CS t
THEN PRESS EN TER

Rewind the tape (be fore pressing ENTER) to the
point where you began recording your data. If
you s tored your data at the beginning of the
tape , s imply rewind the tape to the beginning. If,
however. you began at a point other than the
beginning of the tape, rewind the tape to that
pos ition. a nd press the "stop" button on the
recorder. Then press ENTER.

User's Reference G uide

• PRESS CASSETTE PLAV CSI
THEN PRESS ENTER

Press the "play" button on the recorder. and
then press ENTER. The computer wi ll compare
the data in its memory to the data on the tape.
While your tape is being checked by the
computer, you'll see this message:

• CHECKING

If there are no errors. the fo llowing messages
are displayed on the screen:
• DATAOK

PRESS CASSETTE STOP CSI
T HEN PRESS ENTER

You can now remove your data tape and label it
for future use.

If. however . the data were not recorded properly.
you'lI receive one of two error messages:

Error Message

• ERROR - NO DATA FOUND

Meaning

Your data was not recorded. or it did not play
back.

PRESS R TO RECORD CSI
PRESS C TO CHECK
PRESS E TO EXIT

Error Message

• ERROR IN DATA DETECTED

Meaning

Some part of your data did not record properly.

PRESS R TO RECORD CSI
PRESS C TO CHECK
PRESS E TO EXIT

Before you go further. you may want to recheck
these items:

• Is the recorder at a proper distance from
your te levision set (two feet or more)? Is the
recorder attached properly to the computer?
• Is the cassette tape in good condition? (If in
doubt, try another tape .) • Are the cassette
recorder volume a nd tone adjusted correctly?
Was the volume too high or too low? Does the
cassette tape head need cleaning? • Is the
system located on a metal surface?

I-II

General Information

When you have checked these. you can choose
one of these three options:

• Press R to record yo ur data again , us ing the
same instructions for RECORD that are
discussed above.

• Press c to instruct the computer to c heck
yOUf da ta again.

• Press E to "exit" and the following message
appears:

• PRESS CASSETTE STOP CSI
THEN PRESS ENTER

The "exit" key takes you back to the beginning
of the "Save" option of the module. Thus. when
you press ENTER, you see the "Save Data"
screen and can try to store your da ta aga in. Just
follow the instructions as they appear on the
screen.

To Load Data When Using a Module

The next time you want to use the information
stored on the tape. you'll need to "load" your
data - that is. read the data you saved on tape
into the memory system of the computer." First.
connect your cassette recorder(s) to your
computer. Then insert into the computer the
module from which you saved the information.
When you're ready to "load," select the "LOAD
DATA" option of the module. When the
computer asks, press the 1 key to indicate the
information is being read from a cassette. Then
press the 1 key again to select cassette unit
CS 1. Remember CS 1 is used for loading data .

From this point. the computer prints
instructions on the screen for you to fo llow.

S creen Instructions

• REW IND CASSETTE TAPE CSI
THEN PRESS ENTER

Procedures

Rewind the tape before you press ENTER.

Position your tape at the point from which you
want to read the data into the computer (at the
beginning if your recorder does not have a
position counter). Then press ENTER.

*Due to differences in tape cassette design, a tape
recorded by one model of recorder may not be
readable by another model of recorder.

1·12

Screen Instructions

• PRESS CASSETTE PLAY CSI
THEN PRESS EN TER

Procedures

Press the "play" button on the recorder and the
ENTER key on the computer. The information is
read from the tape and entered into the
computer's memory. While the computer is
reading the tape, the following message appea rs
on the screen:

• READING

It takes some time to read in the data ,
depending on the amount of information s tored.
When the computer finishes reading the data, it
tells you whether or not it read the data
properly. If the data was read correctly, you'll
see the fo llowing messages on the screen:

• DATAOK
• PRESS CASSETTE STOP CSI

THEN PRESS ENTER

You're now ready to begin working with the
modu le.

If, however, the da ta has not been entered
properly into the computer 's memory, you'll see
one of several "error" messages. Follow the
directions on the screen to try to load your data
agam.

If you sti ll have difficulty . you'lI want to make
sure:
• you a re loading the correct tape
• the tape is positioned a t the correct s tarting

place for the data you a re loading
• the tape has no t been damaged

or accidentally erased
• the recorder is a proper distance from your

television set (two feet or more)
• the recorder is attached properly to the

computer
• the cassette recorder volume is adjusted

correctly
• the system is not located on a metal surface
• the tape was recorded with your cassette unit or

an identical mode l
• the cassette lape head is clean
• you are using cassette unit 1

User's Reference Guide

User's Reference Guide

BASIC
Reference
Section

11-1

BASIC Reference Section
Introduction

This section of your User 's Reference Guide provides a complete
explanation of all of the commands and statements that are a
part of the TI BASIC language built right into your computer .
As mentioned earl ier. BASIC is a computer la nguage
designed to be easy for beginners to use . yet powerful enough to
a llow you to use your computer for a whole host of applications.
There are three different paths ava ilable to help you learn
Tl BASIC.

/fyou 're a beginner - and have never had any experience with
programming - the best place to begin is with the Beginner's
BASIC book included with your computer. The book is
intended to be an enjoyable. quick , self-paced firs t experience with
programming in TI BASIC. Once you've become familiar with
BASIC. this reference guide wi ll provide the in-depth. ready
reference to terms and information you'll want at your fingertips as
you enjoy the experience of programming,

If you've had some programming experience - and just want to get
familia r with TI BASIC a nd how it works on your computer
we've provided a series of app lications programs at the end of
this manual. These programs start out a t a very s imple level and
progressively become more complex. Exploring these programs will
illustrate for yo u the use of many of the statements in TI BASIC .
This reference manual provides in-depth information when you
need it.

For those of you with some programming experience who may not
have programmed in BASIC or who want to "brush up" as you
begin using your computer, we recommend that you begin
with Herbert Peckham's exce llent book . Programming BASIC with
the TI Home Computer, which provides a rapid, higher-level
learning experience in BASIC . It is avai lable at most popular
bookstores.

For the knowledgeable - once you've ga ined proficiency in
programming - this guide will serve as your primary reference on
TI BASIC statements and commands, providing those details that
need refreshing from time to time. TI BASIC conforms to {he
American National Standard for Minimal BASIC , Additional
features in TI BASIC, such as color graphics. sound. and many
others. are also descr ibed in this manual. If you are an
experienced BASIC programmer, you should have little trouble
jumping right into TI BASIC and using it.

11 ·2 User's Reference Guide

BASIC Reference Section

How This Section Is Organized

This reference guide is organized with usability as the key goal. a nd
is divided into the following functional groups .

1. General Information 7. Built-In String Func tions
2. Commands 8. User-Defined Functions
3. General Program Statements 9. Arrays
4. Input -Output Statements 10. Subroutines
5 . Color Graphi cs and Sound 11 . Fi le Process ing
6. Built -In Numeri c Functions

A glossary of often-used terms is found in the back of this manual.

Notational Conventions

At the beginning of the discussion for each T I BASIC command or
s tatement, a line appears whic h shows the general format for
entering the command or statement. Certain notational conventions
ha ve been used in these format lines. These conventions are
discussed here to help you unders tand how they are used.

{ } - The braces indicate that you have a choice of what to use. You
may use only one of the items given within the braces.

[] - The brackets indicate that the item within is optional. You may
use it if you wish. but it is not required .

. . . - The ellips is indicates tha t the preceding item may be
repeated as many times as you desire.

italics - Words appearing in italics are a general description of the
item or items that need to appear there. When words are printed in
ita lics. you need to enter your own choice in place of the ita li cized
words when you enter the s tatement or comma nd .

Examples

For each s tatement or comma nd in this manual. program
examples are shown a t the right. Each line you must enter is
indicated by the prompt character (» to the left of the line. jus t
as it a ppears on the screen . Lines which the computer places on
the screen do not s how the prompt character .

The examples shown in this book are printed in upper-case
(large capital) le tters. If you wa nt to reproduce the examples
exactl y as you see them here. press down the ALPHA LOCK key.
In most cases the computer accepts either upper·case or lower·
case letters. However . when you LIST a program, the screen
displays a ll reserved words . variable names. and subprogram
na mes as large capita ls.

User's Reference Guide 11-3

General Information
Introduction

Once your computer is set up . it is a simple process to begin using
TI BASIC. When yOll turn on your computer. the master computer
title screen appears . Press a ny key on the keyboard to get the
master selection lis t to be displayed . When the master se lection lis t
appears. press the 1 key to select TI BASIC . The screen is now
blank except for the words "TI BASIC READY" and a prompt
character (» fo llowed by a Hashing cursor (_). Whenever the
cursor is on the screen, the computer is waiting for you to enter
something. The prompt character marks the beginning of each l ine
you type.

Each line of the screen can display up to 28 characters. Each
statement or comma nd may be up to four screen lines in length .
When you ha ve completely filled one screen line . the cursor
automatica lly moves down to the next line as you continue typing.
When you have completely fill ed four lines. the computer will
accept more c haracters. but the cursor will remain in the same
position. Each cha racter you enter will replace the last character of
the line .

All of the keys d iscussed in the SpeCial Keys section may be used in
editing program lines before you press the ENTER key. To cha nge
anything in a program line after you have pressed ENTER . you can
retype the entire program line making the desired corrections as
you type in the line aga in or you can enter Edit Mode. Note tha t
whenever you do any ed iting on a program. all open files are
closed (see OPEN state ment). and a ll variables become
undefined .

The remainder of this section gives information which a pplies to
ma ny comma nds a nd statements in TI BASIC .

1).4

Examples:

TI BA SIC READY

>.

>NEW

>10 A= 2
>RUN

Illl DONE Il.

>PRINT A
2

>2 0 B= 3
>PRINT A

o

User 's Reference Guide

Special Keys
S everal keys have specia l functions in TI BASIC . These keys are
discussed here.

ENTER - When you press the ENTER k ey. the computer accepts the
program line you have just finished typing. Remember that you may
use up to four screen lines (or each program line before you press
ENTER.

FeTN • (QUIT) - When you press QUIT, the computer leaves TI
BASIC a nd returns to the master computer tit le screen . When
the computer leaves T I BASIC, the program and all data s tored
in memory is erased. Note that this key does not close open files
(see OPEN statement). Thus. it is preferable to use the BYE
command to leave BASIC.

FeTN I (UP) - The Up-Arrow key works exactly like the ENTER key.
except in Edit M ode.

FeTN I (DOWN) - T he Down-Arrow key works exactly like the
ENTER key. except in Edit Mode.

,"CTM - (LEFT) - The Left-Arrow (backspace) key moves the
cursor one pos ition to the left every time it is pressed. When the
cursor moves over a character it does not delete or change it in any
way. If the cursor reaches the beginning of the line. pressing the
Left-Arrow key has no effec t.

,"CTM - (RIGHT) - The Right-Arrow (forwardspace) key moves
the cursor one position to the right each time it is pressed . Using
this key allows you to move the cursor over a c haracter without
deleting or changing it in any way. If the cursor reaches the end of
the line (4 sc reen lines). pressing the Right-Arrow key has no effect .

,"CTM 2 (INS) - The Insert key is used to insert c haracters in the
middle of a program line. To insert c haracters. position the cursor
(using FCTN - or FC," -) over the character immediate ly to
the right of the place where you wish to insert characters. then
press the Insert key. After you have pressed the Insert key. each
time you press a c haracter. the cursor a nd every charac ter of the
program line that is not to the left of the cursor is moved one
pos ition to the right. The character corresponding to the key you
pressed is then inserted in the bla nk position left by the shifting of
the cursor and other characters. Note that characters s hifted off the
end of the program line are deleted from the line. When you have
finished inserting characters. press any other special k ey lis ted
above. except QUIT.

User's Reference Guide II ·S

Special Keys

FeTN 1 (DEL) - The Delete key is used to delete characters from
the program line . To de lete characters. posi tion the cursor (using
FeTN - or FeTN -) over the character you wish to delete, then
press the Delete key . When you press the Delete key, the character
under the cursor is de leted and a ll characters of the program li ne to
the righ t of the cursor are moved one position to the left. The
cursor does not move. A blank space is used to fi ll the position at
the right end of the program line left by the shifting of the characters.

FeTN 4 (CLEAR) - T he Clear or Break key has two functions.
depending on when you use it.

• When this key is pressed while a program is ru nning. a
breakpoint will be ta ken at the nex t program line to be
executed. This key a llows you to temporari ly stop a program
wh ile it is running. Note that yo u must continue to hold the Break
key unti l the program stops runn ing. When you stop running a
program using the Break key. the message "BREAKPOINT AT
line'number" is displayed. T he program line des ignated by the
li ne-number has not been performed. You can start the program
runn ing again where you stopped by entering the CONTINU E
command .

• When the Clear key is pressed while typing in a program line. the
li ne scro lls up on the screen a nd is not entered . This key has
additiona l functions in Edit Mode and in Number Mode.

FCTN 3 (ERASE) - The Erase key erases the entire program
line which yo u are typ ing. The line is not entered . T his key
works differently in Edit Mode and Number Mode.

SPAC_ BAR The Space Bar moves the cursor one pos ition to the
right each time it is pressed. If you move the cursor over a
character us ing the Space Bar. that character is replaced by the
space character .

11 ·6 User's Reference Guide

Blank Spaces
In general. a blank space can occur almost anywhere in a program
without affecting the execution of the program . However , any extra
blank spaces you put in that are not required will be de leted when
the program line is displayed by the EDIT, NUM, or LIST
command. There are some places where blank spaces must not
a ppear, speci fically:

(1) wi thin a line number
(2) within a reserved word
(3) within a numeric constant
(4) within a var iable name

The fo llowing are some examples of incorrect use of blan k spaces.
The correct line ap pears in the column at the r igh t.

(1) 1 00 PRINT "HELLO"
(2) 11 0 PR INT "HOW ARE YOU?"
(3) 120 LET A ~ 1 00
(4) 130 LET CO ST ~ 24 .95

All reserved words in a program should be immediately preceded
and followed by one of the fo llowing:

• a blank space
• a n ar ithmetic operator (+ - *11\)
• the s tring operator (&)
• a specia l character used in a particular s tatement format
«~ > 0.::#)

• end of line (ENTER key)

User's Reference Guide

Examples:

>100 PRINT "HELLO"
>110 PR IN T NHOW ARE YOU?"
> 1 20 LET A=100
>130 LET COST=24.95

11 ·7

Line Numbers
Each program is compr ised of a sequence of BASIC language
progra m lines ordered by line num ber. The line num ber serves as a
label for the program line. Each line in the program begins with a
line num ber which must be a n in teger between 1 and 32767.
inclusive. Leading zeroes may be used but are ignored by the
computer. For example: 033 a nd 33 will be read as 33. You need
not enter lines in sequential order: they wi ll be automatically placed
that way by the computer.

When you run the program. the program lines are performed in
ascending sequentia l order until :

(1) a branc h instruction is performed (see "Genera l Program
Statements")

(2) an efror occurs which causes the program to stop running (see
"Error Messages')

(3) the user interrupts the running of the program with a BREAK
command or by using the Break key (C~AR)

(4) a STOP statement or END statement is performed
(5) the s tatement with the la rgest line number is perfo rmed

If you enter a program line with a line number less tha n 1 or
grea ter tha n 32767, the message "BAD LINE NUMBE R" will be
displayed and the line will not be entered into memory.

11 -8

Examples:

>NEW

>100 AzZ7 . 9
>11 0 s :3 1 . 8
>1 20 PR I NT A; S
> 130 ENO

> RUN
27. 9 31.8

** OONE **

* BA O L I NE NUM BE R

>3 3000 C=4

* SA D LINE NUMBER

User's Reference Guide

Numeric Constants
Numeric constants mus t be either positive or negati ve real
numbers . You may enter numer ic constants with any number of
digits . Values are maintained internally in seven rad ix- ! 00 digits.
This means that numbers will have 13 or 14 decimal digits
depending on the va lue of the number.

Scientific Notation

Very large or very small numbers are easi ly hand led using scientific
notatio n. A number in scientific notation is expressed as a base
number (mantissa) times ten raised to some power (exponent) .

Number = Mantissa x 10·:·pon.nt

To enter a number using scientific notation:

First. enter the man tissa (be sure to enter a minus sign first if it's
negative).

E nter the letter "E" (mus t be a n upper-case E).

Enter the power of 1 0 (if it is negative. enter the minus s ign before
you enter the exponent) .

The fo llowing are some examples of how numbers in scienti fic
notation are entered.

Number

3 .264 x 1 O~

-98.77 X 1021

5.691 x 10 ~~

-2.47 X 10 - 17

Entered as

3.264E4
-98.77E21 or -9.877E22
S.69I E - S
-2.47E- 17

Numeric constants are defined in the range of
-9.9999999999999E I 27 to - I E -1 28. O. a nd l E-128 to

9.9999999999999E 127.

Underflow - If an entered or computed number. when rounded. is
greater than - 1 E -1 28 and less than 1 E-128. then a n underflow
occurs . When an underflow occurs, the computer replaces the value
of the number with a zero and the program continues ru nning. No
warning or error IS given.

Overflow - If a number is entered or computed whose value when
rounded is greater than 9.9999999999999E 127 or less than
- 9. 9999999999999E 127, an overflow occurs. When an overflow
occurs. the constan t is rep laced by the computer's limit . a warn ing
is given with the message "NU MBER TOO BIG." and the program
continues running. The computer 's limit is
- 9. 9999999999999E 1 2 7 or 9 . 9999999999999E 127 as
appropr iate , Note that "**" is printed if the exponent is greater
than 99.

User's Reference Guide

Examples:

>PRIN T 1. 2
1.2

>PRlNT -3
- 3

>PRINT 0
o

>PRIN T 3_264E4
32640

>PRINT -98.77E21
-9 .877E+22

>PRINT 0
o

>PRINT - 9E - 130
o

>PRIN T 9E-142
o

>PRINT 97E136

* WARNING:
NUMBER TOO BIG

9 . 99999E+**

>PRINT -1 08E144

* WARNING :
NUMBER TOO BIG

-9.99999E+**

Il -9

String Constants
A string constant is a string of characters (including letters.
numbers . spaces, symbols. etc.) enclosed in Quotes. Spaces within
string constants are not ignored and are counted as c haracters in
the s tring. All characters on the keyboard that can be displayed
may be used in a s tring constant. A string constant is limited by the
length of the input line (112 characters or four lines on the screen).

When a PRINT or DISPLAY statement is performed. the
surrounding Quote marks are not displayed. If you wish to have
words or phrases within a string printed with surrounding Quote
marks. simply enter a pair of adjacent quote marks (double
quotes) on either side of the particular word or phrase when you
type it.

11-10

Examples:

>NEW

>100 PRINT "HI!"
>110 PRINT "THIS IS A STRING

CONSTANT . "
>120 PRINT "ALL CHARACTERS (. -*, iii,> "AY BE USED ."
>130 END
>RUN

HI!
THIS IS A STRING CONSTANT.
ALL CHARACTERS (.-*, iii ,> "'AY
BE USED .

** DONE **

>NEW

>100 PRINT "TO PRINT ""QUOTE
"ARKS"" YOU "'UST USE DOUBLE
QUOTES. "

>110 PRINT
>120 PRINT "TO'" SAID, ""HI, f'II

ARY!"""
>130 END
>RUN

TO PRINT "QUO TE "ARKS" YOU"
UST USE DOUBLE QUOTES.

TO" SAID, "HI, "ARY!"

** DONE **

User's Reference Guide

Variables
In BASIC all variables are given a name. Each variable name may
be one or more characters in length but must begin with a letter, an
at-sign (@), a left-bracket ([), a right-bracket (I), a back slash (\),
or a line (- l . The only characters a llowed in a variable name are
letters, numbers, the at-sign (@). and the line (_1. One exception
is the dollar-sign ($) . The last character in a string variable name
must be a dollar-sign ($) and this is the only place in a variable
name that it may be used. Variable names are restricted to fifteen
characters including the dollar-sign for string variable names.

Array names follow the same rules as simple variable names. (See
the section on Arrays for more information .) In a single
program, the same name cannot be used both as a simple variable
and as an array name, nor can two arrays with different dimensions
have the same name. For example . Z and Z(3) cannot both be used
as names in the same program, nor can X(3,4) and X(2,1,3) .
However, there is no relationship between a numeric variable name
and a string variable name which agree except for the dollar sign
(X and X$ may both be used in the same program).

Numeric Variable Names

Valid: X , A9, ALPHA, BASE_PAY, V(3), T(X,3),
TABLE (XXX7Y 12)

lnval;d: X$, X I S, 3Y

String Variable Names

Valid: S$, YZ2$, NAME$, Q5$(3, X)
Invalid: S$3, X9, 4Z$

If you enter a variab le name with more than fifteen characters , the
message "BAD NAME" is displayed and the line is not entered into
memory. Reserved words are not allowed as variable names, but
may be used as part of a variable name. For example. LIST is
not allowed as a variable name but LIST$ is accepted.

At any instant while a program is running, every variable has a
s ing le value. When a program begins running. the value associated
with each numeric variable is set to zero and the value associated
with each string variable is set to null (a string with a length of zero
characters). When a program is running, values are assigned to
variables when LET statements, READ statements, FOR-TO
STEP statements, or INPUT statements are performed. The
length of the character string va lue associated with a string
variable may vary from a length of zero to a limit of 255
characters while a program is running.

User's Reference Guide

Examples:

>110 ABCDEFGHIJKLMNOPQ=3

• BAD NAME

II-I I

Numeric Expressions
Numeric expressions are constructed from numeric variab les.
numeric constants. and function references using a ri thmetic
operators (+ - * / A). All functions referenced in an expression must
be either functions supplied in TI BASIC (see sections on Built·In
Functions) or defined by a DEF statement . The two kinds of
arithmetic operators (prefix and infix) are discussed below.

The prefix arithmetic operators a re plus (+) and minus (-) a nd are
used to indicate the sign (positive or negative) of constants and
variables. The plus s ign indicates the number fo llowing the prefix
operator (+) should be multiplied by + 1, and the minus sign
indicates the number following the prefix operator (-) should be
multiplied by - 1 . Note that if no prefix operator is present, the
number is treated as if the prefix operator were plus. Some
examples of prefix operators with constants and variables are:

10 - 6 +3
+A - W

The infix arithmet ic operators a re used for calculations and include:
addition (+), subtraction (-), multiplication ("'), division (I), and
exponentiation (I\). An infix operator must appear between each
numeric constant andl or variable in a numeric expression. Note
that multiplication cannot be implied by simply placing variables
side by side or by using parentheses. You must use the
multiplication operator ("') .

Infix and prefix operators may be entered side by side within a
numer ic expression. The opera tors are evaluated in the normal
way.

11 ·12

Examples:

>NEW

>100 A=-6
>1 10 B=4
>120 C=-20
>130 D=-2
>140 PRINT A*B 12
>150 PRINT C- D*3.6
>160 'NO
>RU N

12
2.

** DONE **

>PRINT 3·-1
2

>PR INT 2*-3 -.
>PRINT 6/-3
-2

User's Reference Guide

Numeric Expressions

In evalua ting numeric expressions. TI BASIC uses the s tandard
rules for mathematical hierarchy. These ru les are outlined here.

1. All express ions within parentheses are evaluated first
according to the hierarc hica l ru les.

2. Exponentia tion is performed next in order from left
to right.

3 . Prefix plus and minus are performed .
4 . Multiplica tions and di visions a re then completed.
5 . Additions and subtractions are then completed.

Note that 0 1\ 0 is defined to be 1 as in ordina ry mathematica l
usage.

In the eva luation of a numeric express ion if an underflow occurs.
the value is simply replaced by zero and the program continues
funning. If a n overflow occurs in the evalua tion of a numeri c
expression. the value is replaced by the computer 's limit , a
warn ing condition is indicated by the message "WARNING:
NUMBER TOO BIG ," and the program continues running.

When eva luation of a numeric expression results in division by zero,
the va lue is replaced by the computer's limit with the sam e sign as
the numerator, the message "WARNING : NUMBER TOO BIG " is
displayed , and the program continues running. If the eva luation of
the operation of exponentiation results in zero being raised to a
negative power, the value is replaced by the positive value of the
computer's limit. the message "WARNING: NUMBER TOO BIG··
is displayed , and the program continues running . If the evaluation
of the operation of exponenti at ion results in a negative num ber
being raised to a non-integral power, the message "BAD VALUE·' is
disp layed, a nd the program stops running.

User·s Reference Guide

Examples:

>NEW

>100 A:::2
>110 8:::3
>120 C:::4
>130 PRINT A*(8+2)
>140 PRINT 8AA-4
>150 PRINT -C "A;(- C)"A
>160 PRINT 10 - 8*C/6
>17 0 END
>RUN

10
5 .

-1 6 16
8

** DONE **

>PR INT OAO
1

>NEW

>100 PRINT lE-200
>110 PRINT 24+1E - 139
>120 PRINT lE171
>13 0 PR INT (lE60 *lE 76)/1E50
>140 END
>RUN

o
24

* WARNIN G:
NUM8ER TOO BIG IN 120

9 .99999E +**

* WARNIN G:
NU M8 ER TOO 8 I G IN 130

1_E+ 78

** DONE ••

>NEW

>100 PRINT -22/0
>11 0 PRINT OA - 2
>120 PRINT (- 3)A1.2
>13 0 END
>RUN

• WARNING:
NU MBER TOO BIG IN 100

- 9.99999E +**

* WARNING:
NUMBER TOO BIG IN 110

9_99999E+**

• BAD VALUE I N 120

11-13

Relational Expressions
Relational express ions are normally used in the IF·THEN-ELSE
statement but may be used anywhere numeric expressions are
allowed . When you use re lational express ions within a numeric
expression, a numeric value of -1 is given if the relation is true
and a numeric va lue of 0 is given if the relation is false .

Relational operations are performed from left to right befor e string
concatenation and after all ar ithmetic operations within the
expression are completed . To perform string concatenat ion before
relational operations and / or to perform relational operations before
arithmetic operations, you must use parentheses. Valid relational
operators are:

• Equal to (~) • Not equal to« »
• Less than (<) • Less than or equal to « =)
• Greater than (» • Greater than or equa l to (> =)

An explanation of how string comparisons a re performed to give
you a true or false result is d iscussed in the IF-THEN -ELSE
explanation. Remember that the result you obta in from the
evaluation of a rela tional operator is a lways a number. If you try
to use the result as a s tring, you will get an error.

1J.l4

Examples:

>NEW

>100 A=2<5
>110 a::3<::2
>120 PRI NT A;S
>130 END
>RUN

-1 0

** DONE **

>NEW

>100 AS ="HI"
>110 as=" TH ERE!"
>120 PRINT (As&aSJ ="HI !"
>130 END
>R UN

o

** DONE **

>12 0 PRINT (AS &eS» "HI "
>RUN

- 1

** DONE **

>120 PRINT (AS>sS l *4
>RUN

-4

** DONE **

>NEW

>100 A=2<4 *3
>110 S=A=O
>120 PRINT A;S
>130 END
>RUN

- 1 0

** DONE **

User's Reference Guide

String Expressions
String expressions are constructed from string variables. st ring
constants. and function references using the operation for
concatenation (&). The operation of concatenation allows you to
combine str ings together. All functions referenced in a s tring
expression must be either functions supplied in TI BASIC (see
Built·In String Functions) or defined by a DEF statement and
must have a s tring value. If eva luation of a s tring express ion
results in a va lue which exceeds the maximum string length of
255 characters. the string is truncated on the right. and the
program conti nues running. No warning is given.

Note that a ll characters included in a string expression are
always displayed on the screen exactly as you enter them .

User's Reference Guide

Examples:

>N EW

>100 AS= "HI"
>1 10 BS="HElLO THERE!"
>12 0 CS="HOW ARE YOU?"
>130 MSGS=AS&SEGS(BS,6,7)
>140 PRINT MSGS& " "&CS
>150 END
>RUN

HI THERE! HOW ARE YOU?

** OONE *.

11, 15

Reserved Words
Reserved words are words that may not be used as variable names
in TI BASIC. Note that only the exact word shown is reserved. You
may use reserved words as part of a variable name (for example,
ALEN and LENGTH are allowed). The following is a complete list
of all reserved words in TI BASIC:

ABS
APPEND
ASC
ATN
BASE
BREAK
BYE
CALL
CHR$
CLOSE
CON
CONTINU E
COS
DATA
DEF
DELETE
DIM
DISPLAY
EDIT
ELSE
END
EOF
EXP
FIXED
FOR
GO
GOSUB

11-1 6

GOTO
IF
INPUT
INT
INTERNAL
LEN
LET
LIST
LOG
NEW
NEXT
NUM
NUMBER
OLD
ON
OPEN
OPTION
OUTPUT
PERMANENT
POS
PRINT
RANDOMIZE
READ
REC
RELATIVE
REM
RES

RESEQUENCE
RESTORE
RETURN
RND
RUN
SAVE
SEG$
SEQUENTIAL
SGN
SIN
SQR
STEP
STOP
STR$
SUB
TAB
TAN
THEN
TO
TRACE
UN BREAK
UNTRACE
UPDATE
VAL
VAR IABLE

User's Reference Guide

Statements Used as Commands
Many statements in TI BASIC can be entered as commands wi th
no line number. When a statement is entered as a command. it is
executed immediately in the normal way (unless there is an error).
The followi ng statements may be entered as commands.

CALL
CLOSE
DIMension
DISPLAY
END
LET (assignment)
OPEN
PRINT
RANDOMIZE
REMark
READ
RESTORE
STOP

User's Reference Guide 11 -17

Commands Used as Statements
Some commands in TI BASIC may be entered as part of a
program. Genera lly. the commands work the same way when
they are used as a statement. The following commands may be used
in a program.

iI -18

BREAK
UNBREAK
TRACE
UNTRACE
DELETE

User"s Reference Guide

Commands
Introduction

Whenever the prompt and flashing cursor (> _) appear at the
bottom of your screen. your computer is in Command (Immediate)
Mode. When your computer is in Command Mode. you may enter
any of the commands discussed in this section. Commands may be
typed in and entered without being preceded by a line number.
When a command is entered. your computer performs the required
task immediately. Many s tatements may a lso be entered as
commands.

Some of the commands discussed here may be entered as
statements. If the command may be entered as a s tatement. it wi ll
be noted in the discussion.

User's Reference Guide 11 -19

NEW
NEW
The NEW command erases the program that is currently stored in
memory. Entering the NEW command cancels the effect of the
BREAK command and the TRACE command . The NEW
command a lso closes any open fi les (see OPEN statement) and
releases a ll space that had been allocated for specia l characters.
In addition, the NEW command erases all variable values and
the table in which variable names are s tored . After the NEW
command is performed. the screen is cleared and the message
"T I BASIC READY" is displayed on the screen. The prompt and
flas hing cursor (> II) indicate that you may enter a nother
command or a program line.

11 ·20

Examples:

Tl BASIC READY

>.

User's Reference Guide

LIST
LIST

1
11ineoliSII I
.. device- name "I: line·listl \

When the LIST command is entered. the program li nes specified by
the line-list are displayed . If a device-name is entered, then the
specified program lines are printed on the specified device. Device
names for possible future accessory devices will be given in their
respective manuals. If no device-name is entered . the specified lines
a re displayed on the screen .

If the LIST command is entered with no line-Jist, then the entire
program is displayed. The program lines are always lis ted in
ascending order. Note that a ll unnecessary blank spaces that were
present when you entered the program line were deleted when the
computer accepted the line. Notice that when you list the lines.
unnecessary blank spaces have been deleted .

If the line·Jis t is entered . it may consist of a s ingle num ber. a s ingle
number preceded by a hyphen (for example: -10), a s ingle number
followed by a hyphen (for example: 10-), or a hyphenated range of
line numbers. If the line-list is:

• A s ingle number - only the program line for the line number
spec ified is displayed on the screen.

• A single number preceded by a hyphen - a ll program lines with
line numbers less than or equal to the line number specified a re
disp layed .

• A single number followed by a hyphen - all program lines with
line numbers greater than or equal to the line number specified
are displayed .

• A hyphena ted range of line numbers - a ll program lines with li ne
numbers not less than the first line number in the range and not
greater than the second line number are d isplayed .

User's Reference Guide

Examples:

>NEW

>100 A= 279 _3
>120 PRINT A;B
>110 B=-456.8
>13 0 END
>LlST

100 A::279.3
l1D 8= - 45 6 . 8
120 PRINT A;8
130 EN D

>LI S T llD
1 1 0 8 =-4 56 . 8

>LIST -11 0
1 00 A: 279 . 3
l1D 8=-456 . 8

>LIST 120-
1 20 PRINT A;8
130 END

>LI$T 90 - 120
100 A::279 . 3
110 8::-456.8
1 20 PRINT AiB

11 -2 1

LIST

If there is a program in memory but there are no program lines
within the ra nge specified by the line-list, then a program line is
displayed according to the fo llowing ru les. If the line-list specifies

• Line numbers greater than any in the program - the highest
numbered program line is displayed.

• L ine numbers less than any in the program - the lowest
numbered program line is displayed .

• Line numbers between lines in the program - the next highe r
numbered line is d isplayed .

If you enter a LIST command and specify a line number which is
equal to zero or greater than 32767, the message "BAD LINE
NUMBER" is disp layed.

If you speci fy a line number which is not an integer, the message
··INCORRECT STATEMENT;s d;splayed.

If no program is in memory when you enter a LIST command. the
message "CAN'T DO T HAT" is displayed .

When program lines are being displayed after the LIST comma nd
has been entered . you can s top the listing by press ing the Break key
(CLEAR) .

Here is a quick summary of the lines lis ted when specified in the
line' list.

Command

LIST

LIST x

LIST x·y

LIST x

LIST .y

Lines Displayed

All program lines

Program line num ber x

Program lines between x a nd y. inclusive

Program lines greater than or equal to x

Program lines less than or equal to y

LIST may a lso be used to d irect output to an accessory dev ice.
For example.

LIST ··Tp··
causes your program to be printed. if the T I Solid S tate Thermal
Printer is a ttached . and

LIST ··RS232/ 1··: 1 00·200
outputs program lines 100 to 200 to the TI RS232 Inter face.
Note that the name of the dev ice must be enclosed in quotation
marks. For more information refer to the owner's manual tha t
comes with the accessory device.

11·22

Examples:

>LIST 150 -
1 30 ENO

>LlST - 90
100 A=279 . 3

>LlST 1 05
11 0 B= - 456.8

>L1ST 0

* BAO LINE NUMB ER

>LlST 33961

* BAO LINE NUMBER

>LIST 32.7

* INC ORRECT STATEMENT

>NEW

>LlST

* CAN 'T 00 THAT

User's Reference Guide

RUN
RUN]line-numberl

Entering the RUN command causes the program stored in memory
to begin running. Before the program s tarts funning, the va lues of
all numeric variables a re set to zero. the va lues of all s tring
variables are set to null (a string of zero characters), and any space
previous ly allocated for specia l graphics characters is released .

If no line-number is spec ified when the RUN command is entered,
then the program starts running at the lowest numbered line in the
program.

If a line-number is specified when the RUN command is entered.
then the program s tarts running at the specified program line . Note
in this example that since the program begins running at line 110.
the va lue of A remains zero .

If yo u specify a line-number w hich is not in the program. the
message "BAD LINE NUMBER" is displayed .

If you enter a RUN command when there is no program in memory.
the message "CANT DO THAT' is displayed.

User's Reference Guide

Examples:

>NEW

>100 A:-16
>110 8:::25
>120 PRINT A;8
>130 END
>RUN

- 16 25

•• DONE ••

>R UN 110
0 25

•• DON E ••

>RU N 115

• ,AD LINE NUJII8ER

>NEW

>RUN

* CAN ' T DO THAT

JI-23

BYE
BYE

When you are finished working and are ready to leave BASIC.
simply enter the BYE command . We recommend that you always
use the BYE command (instead of QUIT) when you wish to leave
BASIC . When the BYE command is entered. the first job yo ur
computer performs is closing all open fi les (see OPEN
s tatement) . Then. the program in memory and a ll variable va lues
are erased . Finally. the computer is reset so that it is ready to go
again when you want to return to BASIC . After the BYE
command is performed. the master computer title screen
reappears.

11 ·24

Examples:

>NEW

>100 LET XS%MHEllO, GENIUS!"
>11 0 PRINT n
>120 END
>RU N

HELLO , GE NIUS!

.* DONE .*
>BYE

--master compute r titLe
sc re en appears

User's Reference Guide

NUMBER

1
NUMBER I
NUM \ linitial-linell. incrementl

When the NUMBER command is entered. your computer
automatica lly generates line numbers for you. Your computer is in
Number Mode when it is generating line numbers. In Number
Mode each line entered in response to a generated line number is
added to the program .

The firs t line number displayed after entering the NUMBER
command is the specified initial-line. Succeeding line numbers are
generated using the specifi ed increment. To terminate the a utomatic
generation of line numbers and leave Number Mode. p ress ENTER
immedia tely after the generated line number is displayed. T he
empty line is not added to the program.

If no initial-line a nd no increment are specified, then 100 is used as
the initial· line and 10 is used as the increment.

Examples:

>N EW

>NUI'I BER 10,5

>10 C=38 . 2
>1 5 D:16.7
>20 PRINT C;D
>25 END
>30 ENTlER
>LIST

10 C:38 . 2
15 D= 16 . 7
20 PRINT C; B
25 END

>NEW

>NUI'I
>100 BS="HELlO!"
>1 10 PRINT BS
>120 END
> 130 ENTER

If you specify only a n initial-line, then l Ois used as the increment. >N EW

If you spec ify jus t a n increment. then 100 is used as the initial-line.
Note the comma before the five in the example. Remember, if you
wish to speci fy only an increment. the comma must be typed before
the increment.

User·s Reference Guide

>NUI'IBE R 50
>50 CS:"HI !"
>60 PRINT CS
>70 END
>80 ENTER

>NEW

>NUftl , 5
>100 Z=99 . 7
>105 PR I NT Z
>110 EN D
>11 5 ENTER

11 ·25

NUMBER

When you are in Number Mode, if a line number generated is
a lready a line in the program . then the exis ting program line is
disp layed with the line number. Note that when an existing
program line is displayed in Number Mode. the prompt character
(» is not shown to the left of the line number. T his indicates the
line is an ex isting program line and you may choose to edit the line.
For information on editing, see the section be low. If you do not
want to change the ex is ting line . s imply press ENTER when the line
is disp layed and it wi ll not be changed. After you press ENTER , the
nex t line number is genera ted.

In N umber Mode. if you enter a program line a nd an error occurs.
the appropriate error message is displayed as usual and then the
same line number is displayed aga in . Retype the line correctly and
then enter it aga in . Ifa line number would be generated in Number
Mode which is greater than 32767, the computer leaves Num ber
Mode.

Editing In Number Mode

Whether you are entering new lines or changing ex is ting program
lines while in N umber Mode, a ll of the spec ial editing keys may be
used . S ince some of the keys work different ly in Number Mode
than in Command Mode, the keys and how they work in Number
Mode are discussed here.

ENTER - This k ey has different func tions depending on the
s ituation. The functions and s ituations a re described below.

• If you press ENTER immed ia tely after a line number is genera ted,
then the computer leaves Number Mode.

• If you type in a statement after the line number is generated and
then press ENTER, the new line is added to the program. Then the
nex t line number is genera ted .

• If an exis ting program line is displayed ·and you press ENTER

immediately after it is displayed , the line remains the same in the
program . Then the next line number is generated .

• If an existing program line is displayed and you erase the entire
text of the line (leav ing only the line number on the screen) a nd
then press ENTER . the computer leaves N umber Mode. The
program line is no t removed from the program.

• If you ed it a line after it is displayed as an existing program line
and text still remains after the line number and then press ENTER,

the existing program line is replaced by the edited line. Then the
next line number is generated .

11 ·26

Examples:

>NEW

>100 A=37 . 1
>110 8=49 . 6
>NUJII8ER 110
1108=49 . 6

>120 PRIN T A;8
>130 END
>140 ENTER
>LI S 1

100 A=37 .1
11 0 8:::49 . 6
120 PRINT Ai8
130 END

User's Reference Guide

NUMBER

Fe TN , (UP) - The Up-Arrow k ey works exact ly the same as the
ENTER key in N umber Mode.

FeTN I (DOWN) - The Down-Arrow key works exact ly the
same as the ENTER key in Number Mode.

FeTN - (LEFT) - The Left-Arrow key moves the cursor one
position to the left. When the cursor moves over a character it does
not delete or change it in any way.

FeTN - (R IGHT) - The Right-Arrow key moves the cursor one
position to the right. Using this key a llows you to move the cursor
over a character without deleting or changing it in any way.

FeTN 2 (INS) The Insert key works in N umber Mode just as it does
in Command Mode. See Special Keys for informat ion.

FeTN 1 (DEL) - The Delete key works in Number Mode just as it
does in Command Mode. S ee Special Keys for information.

FCTN 4 (CLEAR) - If you press the Clear key at any time while in
Number Mode. the current line scrolls up on the screen and the
computer leaves N umber Mode. Any changes which had been made
on the line before you pressed the Clear key a re ignored . Thus. if
you were editing an existing program line. the program line does
not change. If you were typing in a line . the line is not added to the
program.

FCTN 3 (ERASE) - The E rase key erases the entire text of the
program line being displayed. The line number is s ti ll disp layed .

User's Reference G uide 11 ·27

RESEQUENCE
1

RESEQUENCE f linitial·1inell,incrementl
RES

When the RESEQUENCE command is entered , all lines in the
program are assigned new line numbers according to the specified
initial· line a nd increment.

The new line number of the first line in the program is the spec ified
iniliaJ./ine. Succeeding line numbers are assigned using the
specified increment.

If no initiaHine and no increment are spec ified. then 100 is used as
the initial-line and lOis used as the increment.

If you specify only an initial-line then 10 is used as the increment.

If you specify just an increment, then 100 is used as the initiaHine.
Note the comma before the five in the example. Remember, if you
wish to specify only an increment. the comma must be typed
before the increment.

All line number references in TI BASIC statements contained in
the program are changed to the new line numbers. Line numbers
which may be mentioned in the REM sta tement are not changed
since they are not essential to the running of the program,

11 ·28

Examples:

>NEW

>100 A=27.9
>1108=34.1
>120 PRINT A;8
>130 END

>RESEQUENCE 20,5
>Ll ST

20 A=27.9
25 8=34 . 1
30 PRINT A;8
35 END

>RES
>LIST

100 A=27.9
1108=34.1
120 PRINT A;8
130 END

>RES 50
>LI ST

50 A=27.9
60 8=34 . 1
70 PRINT A;8
80 END

>RES ,5
>LIST

100 A=27.9
1056=34.1
11 0 PRINT A;6
115 END

>NEW

>100 REM THE VALUE OF "A" WIL
L 8 E PRINTED IN LINE 120

>110 A=A+l
>120 PRINT A
>130 GO TO 110
>RESEQUE NCE 10,5
>LI ST

10 REM THE VALUE OF "A" WIL
L 8E PRINTED IN LINE 120
15 A=A+l
20 PRINT A
25 GO TO 15

User 's Reference Guide

RESEQUENCE

If a line number is used in a program line which is not a cu rrently
used line number. then the line number reference is changed to
32767. No error or warning is given.

If you enter a value for the initial-line and increment w hich would
give values greater than 32767 for some new line nurn bers, the
message "BAD LINE NUMBER" is displayed . If this e rror occurs,
no line numbers in (he program a re cha nged .

If yo u enter a RESEQUENCE command while no program is in
memory. the message "CANT DO THAT" is displayed .

Use(s Reference Guide

Examples:

>NEW

>100 l=z+2
>110 PRINT Z
>120 IF 1=50 THEN 150
>130 GO TO 1 00
>140 END
>RES 10~S
>LlST

10 Z=1+2
15 PRINT Z
20 IF Z=50 THEN 32767
25 GO TO 10
30 EN 0

>RESEQUENCE 32600,100
* BAD LINE NUMBER

>LlST
10 z=z+2
15 PRINT Z
20 IF Z=50 THEN 32767
25GOT01 0
30 ENO

>NEW

>RE$EQUENCE

* CAN ' T 00 THAT

11-29

BREAK
BREAK line-Jist

When the BREAK command is entered , breakpoints are set at the
program lines listed in the line·list. Breakpoints are usua lly set to
he lp you find errors in your program. When you set a breakpoint at
a specific line using the BREAK command. you tell the computer to
s top runn ing the program before performing the s tatement on that
line.

The line-lis t is a lis t of line numbers where you wis h to se t
breakpoints. The line numbers are separa ted by commas (for
example: BREAK 10.23.35). Of course, you may choose to have
only one line nu mber in the list.

E ach time a li ne where a breakpoint is set is reached while the
program is running. the program s tops running before the s tatement
on that line is performed. When the program s tops ru nning because
of a breakpoint. the message "BREAKPOINT AT line-number" is
displayed. a nd you a re prompted with the flashing cursor to enter a
command .

When the program s tops running because o f a breakpoint. you may
enter a ny command or any s tatement that can be used as a
comma nd . There is no change in the value of the var ia bles un less
you enter a s ta tement that will assign a new va lue. Note that in
this example C sti ll equa ls zero s ince the ass ignment in s ta tement
11 0 has not been performed .

You can s tart running the program again (beginning with the line
where the breakpoint was set) by entering the CONTINUE
command . Note the va lue of A was changed earlier in
the example. You cannot enter the CONTINUE command after you
have ed ited the program (added. deleted . or changed program
lines). This prevents errors tha t cou ld result from s tarting a rev ised
program in the midd le. If yo u enter a CONTINUE command after
you have ed ited the program. the message "CANT CONTINUE" is
displayed o n the screen.

11 ·30

Examples:

>NEW

>100 A=26 . 7
>110 (=1 9 . 3
>120 PRINT A
>130 PRINT C
>140 END

>BRE AK 11 0

>RUN

• BREAKPOINT AT 11 0

>.

>LlST 110
110 (=19.3

> PRINT A;C
26.7 0

>A=5 . 8

>PRINT A
5 .8

>CONTINUE
5 . 8
19 . 3

•• DO NE ••

>BRE AK 120

>RU N

• BREAKPOINT AT 120

>110 ENTER
>CONTINUE

• CAN 'T CON TINUE

User's Reference Guide

BREAK

When a breakpoint is taken (program stops running because of a
breakpoint) , the breakpoint at that line is removed. Another way
to remove breakpoints is to use the UNBREAK command. If a
breakpoint is set at a program line and that line is deleted. the
breakpoint is a lso removed. Breakpoints are removed from all
program lines when a SAVE command or a NEW command is
entered. Note that in the example the breakpoint at 110 was
removed when the breakpoint was taken. while the breakpoint at
130 was removed by the UNBREAK command .

Whenever a breakpoint is taken. the s tandard character set is
restored . Thus. a ny standard c haracters that had been redefined
by CALL C HAR wi ll be converted back to the standard
characters . Characters defined in the range 128-159 a re
unaffected . Note that when this example program is run. a solid
bar appears on the screen until the breakpoint is taken . When
the breakpoint is taken, the bar becomes a row of asterisks (*)
s ince character 42 is a s tandard character.

User's Reference Guide

Examples:
>110 C=19.3
>RUN

26.7
19.3

** DONE **

>BREAK 110,130

>RUN

* BREAK POINT AT 110

>UNBREAK

>CONTlNUE
26 . 7
19.3

** DONE **

>RUN
26.7
19.3

** DONE ...

>NEW

>100 CALL CLEAR
>110 CAL L CHAR(42 , " FFFFFFFFFF

FFFFfF")
>120 CAL L HCHAR(12,12,42,10)
>130 FOR 1:1 TO SOO
>140 NEXT I
>1S0 END
>BREAK 1 SO

>RUN

--screen clears

- -s olid black l ine appea r s
on screen

* BREAKPOINT AT 1S0
>.

>CON TINUE

** DONE **

1\-31

BREAK

The BREAK command may also be used as a statement in
programs. If the BREAK command is entered as a statement with a
line-list. then breakpoints a re set at the line numbers specified.
Breakpoints set in this manner may be removed as discussed
earlier. Remember, though, when the BREAK command is entered
as a statement with a line·Jist. the breakpoints are set aga in each
time the s tatement is performed.

If the BREAK command is entered as a statement and no line' Jist is
spec ified. then the s tatement itself acts like a breakpoint. Each
time the statement is performed. the program stops running. The
only way to keep the program from stopping at a BREAK
statement is to delete the line from the program. Note that a
BREAK command without a line·list may only be entered as a
program line .

If you specify a line number in the line· list which is equa l to zero or
greater than 32767. the message "BAD LINE NUMBER' is
displayed a nd the command is ignored (no breakpoints are set at
any line spec ified),

If you specify a line number in the line-lis t which is a va lid line
number but is not a line in the program , the warning "BAD LINE
NUMBER" is displayed. Breakpoints wi ll be set at the lines
specified which are program lines,

11·32

Examples:

>NEII

>100 B=29.7
>110 BREAK 12 0,140
>12 0 H:15.EI
>130 PRINT B
>140 PRINT H
>150 END
>RUN

* BREAKPOINT AT 120

>UNBREAK

>CONTIN UE
29.7
15 .8

** DONE **

>110 BREAK
>RUN

* BREAKPOINT AT 11 0

>CONTINUE
29.7
15.8

** DONE **

>1 10 ENTER

>BREAK 120,130140

* BAD LINE NUMBER

>RUN
29 . 7
15.8

** DONE **

>1 ' 0 BREAK 125 , 140
>RUN

* WARNIN G:
BAD LINE NUMBER IN 110

29.7

* BREAKPOINT AT 140

>CONTINUE
15 . 8

** DON E **

User's Reference Guide

UNBREAK
UNBREAK !line-jistl

The UNBREAK command is used to remove breakpoints from the
program lines listed in the line-list. F or a n exp lanation of
breakpoints a nd how they are set, see the BREAK command .

The line-list is a list of line numbers where you want to remove
breakpoints. The line numbers are separated by commas. (For
example: UNBREAK 10,23.) If you specify only one line number in
the line-list. no commas a re needed .

If you enter a n UNBREAK command with no line-list, then all
breakpoints which have been set by a BREAK command or
statement a re removed. Note that the UN BREAK command has no
effect on a BREAK statement with no line-list. The only way to
keep the program from s topping at a BREAK statement with no
line' Jist is to delete the line.

The UN BREAK comma nd may a lso be used as a s tatement in a
program. The UNBREAK statement is performed jus t like the
UNBREAK command. Note in the example. the UN BREAK
s tatement removed the breakpoint that was set at 130.

User's Reference Guide

Examples:

>NEW

>100 A=26.7
>110 C= 19 . 3
>12 0 PRINT A
>130 PRINT C
>140 ENO
>BREAK 110,130

>RUN

* BREAKPOINT AT "0

>UNBR EA K 130

>CONTINUE
26 . 7
19.3

** DONE **

>125 BREAK
>BREAK 100,120,130

>RUN

* BREAKPOINT AT 100
>UNBREAK

>CONTINUE
26.7

* BREAKPOINT AT 125

>CO NTINUE
19.3

** DO NE **

>BREAK 130

>125 UNBREAK 130
>RUN

26 . 7
19 . 3

** DONE **

>125 ENTEA

11·33

UNBREAK

If you specify a line number in the line-Jist which is equal to zero or
greater than 32767, the message "BAD LINE NUMBER" is
displayed and the command is ignored (no breakpoints are removed
at any line specified).

If you spec ify a li ne number in the line·lis t which is a va lid line
number but is not a line in the program . the warning "BAD LINE
NUMBER" is displayed. Breakpoints are removed a t the lines
specified which are program lines .

11-34

Examples:

>BREAK 130

>UNBREAK 130 ,11 0 1 50

.. BAO LINE N U ~BE R

>RUN
26 . 7

.. BREAKPOINT AT 130

>CO NTlNUE
19.3

** DONE

>BREAK 13 0

>UNB RE AK 130,1 05

.. WARNING:
BAD LINE NUMBER

>RUN
26 . 7
19.3

** aONE **

User's Reference Gu ide

CONTINUE

jCONTINUE \
CON

The CONTINUE command may be entered whenever the program
stops running because of a breakpoint. For an explanation of
breakpoints and how they are set. see the BREAK command.
Remember that a breakpoint is also taken when the Break key
(CLaAR) is pressed while the program is running.

You cannot enter the CONTINUE command when the program has
stopped running for a breakpoint if you have edited the program
(added. deleted, or changed program lines). This prevents errors
that could resuh from s tarting a revised program in the middle. If
you enter a CON TINUE command after you have edited the
program. the message "CAN'T CONTINUE" is displayed on the
screen.

Whenever a breakpoint is taken. the s tandard character set is
restored. Thus, a ny standard characters that had been redefined
by CALL CHAR wi ll be converted back to the s tandard
characters . C haracters defined in the range 128·159 are
unaffected. If you continue execution after a breakpoint, the
s tandard c haracter se t is used . Note in the example that
character 42 was defined in statement 110 to be a solid block :
however. when the breakpoint was taken. it was c hanged back
to its s tandard c haracter. an asterisk (*) . The triangle d efined for
c haracter code 128 is unaffected by the breakpoint.

User·s Reference Guide

Examples:

>NEW

>100 A-9 . 6

>110 PRINT A

>120 END
:>8REAK 110

>RUN

* 8REAKPOI NT AT 110

:>CONTI NUE

9.6

.* DO NE *.
>8REAK 110

>RUN

• BREAKPOINT AT 110

>100 A-IO.I

>CO NTi HUE

* CAN 'T CONTINUE

>NEW

:>100 CAll ClEAR

>110 CAll CHAR(<1 2."FFFFFFFFF FF

FFFFFF")

>120 CAll CH AR (128 .~010 3070FI F

3F7FF F")

>130 CAll HCHAR(IO , 10 .<1 2 . 5)

>1<10 CAll HCHAR(11,IO,12B,5)

>150 FOR 1·1 to 500

>160 NEXT I

>170 END

>8REAK 130

>RUN

• BREAKPOINT AT 130

>C OHTi NUE

*. DONE *.

11 -35

TRACE
TRACE

The TRACE command allows you to see the order in which the
computer performs statements as it runs a program. After the
TRACE command is entered. the line number of each program line
is displayed before the statement is perform ed. The TRACE
command is most often used to help find errors. such as unwanted
infin ite loops , in a program .

The TRACE command may be placed as a statement in a program .
The effect of the TRACE command or statement is cancelled when
the NEW command or UNTRACE command or statement is
performed.

11 ·36

Examples:

>NEW

>100 PRI NT "HI"
>110 8=27.9
>120 PRI NT :8
>130 END
>TRACE

>RUN
<10Q>Hl
(110)<120>
27.9

<130>
** DONE **

>UNTRACE

>105 TRACE
>RU N

HI
<110><120>

27 . 9
<130>
** DONE **

User's Reference Guide

UNTRACE
UNTRACE

T he UNTRACE command cancels the effect of the TRACE
command. The UNTRACE command may be used as a statement
in a program .

User's Reference Guide

Examples:

>NEW

>100 FOR 1=' TO 2
>110 PRINT I
>120 HEKT I
>130 END
>TRACE

>RUN
<100><110> 1
<120><110> 2
<120><130>
*. OONE **

>UNTRACE

>RUN
1
2

** DONE **

11-37

EDIT

{

EDIT line-number
line-number j FCTN I

1 FCTN I

Exis ting program lines may be c hanged by entering Edit Mode.
You can enter Edit Mode by entering the EDIT command followed
by a line-number or by typing in a line-number followed by FCTN ,

(Up-Arrow) or FCTN I (D own-Arrow) . Either way you choose
to e nter Ed it Mode wi ll bring the line spec ified by t he line-number
onto the screen. If you speci fy a line-number which is not in the
program . the message "BAD LINE NUMBER' is d isplayed.

When you enter Edit Mode. the program line yo u req uested is
disp layed on the screen. The prompt character (» is not disp layed
to the left of the line when you are in Edit Mode. When the
requested line is displayed. the flashing cursor is positioned in the
second character position to the righ t of the line number. Changes
may be made to any character on the line except the line number
using the special keys described below and typing over the
c haracters you wish to c hange . You cannot move the cursor back
over the line number. Thus. you cannot change the line number in
Edit Mode . T he special edit ing keys and their functions in Edit
Mode are d iscussed here.

ENTER - When you press the ENTER key. all changes you have made
to the program line become permanent a nd the computer leaves
Edit Mode. If you have erased the entire text of the program line
and then press ENTER. the program line is deleted . Note that the
cursor does not have to be at the end of the line for the entire line to
be entered .

FCTN , (UP) - When you press the Up·Arrow key. a ll c hanges
you have made to the program line are entered and become
permanent. The next lower nu mbered line in the program is then
displayed for editing. If no lower numbered program line exis ts.
then the computer leaves Edi t Mode. Note that the cursor does not
have to be at the end of the line for the entire line to be entered by
the Up·Arrow key.

FCTN 1 (DOWN) - When yo u press the Down·Arrow key. a ll
c hanges yo u have made to the program line are entered a nd become
permanent . The next higher numbered program line is then
displayed for ed iting. If no higher numbered program line ex is ts.
then the computer leaves Edit Mode. Note tha t the cursor does not
have to be a t the end of the line for the ent ire line to be entered by
the Down·Arrow key.

11 -38 User·s Reference Guide

EDIT

FeTN - (LEFT) - The Left-Arrow (backspace) key moves the
cursor one position to the left. When the cursor moves over a
character it does not delete or change it in any way.

FeTN - (RIGHT) - The Right-Arrow (forwardspace) key moves
the cursor one pos it ion to the right. Using this key allows you to
move the cursor over a character without deleting or changing it in
a ny way.

FeTN 2 (INS) - The Insert key works in Edit Mode just as it does
in Command Mode. See Special Keys for informat ion.

FeTN 1 (DEL) - The Delete key works in Edit Modejust as it does
in Command Mode. See Special Keys for information.

FeTN 4 (CLEAR) - If you press the Clear key at any time while in
Edit Mode. the current line scro lls up on the screen and the
computer leaves Edit Mode. Any changes which had been made on
the line before you pressed the C lear key are ignored. Thus. the
ex isting program line does not change.

FCTN 3 (ERASE) - The Erase key erases the entire text of the
program line currently disp layed for editing. The line number is not
erased.

User's Reference Guide 11 ·39

SAVE
SAVE file-name

The SAVE command a llows you to copy the current program in the
computer's memory onto an accessory device. By using the OLD
command. you can later put the program into memory for
running or editing.

A brief explanation of usi ng a cassen e recorder as a s torage
device is given here. (For a more deta iled discussion. see the
"Cassette Interface Cable" section of this manual.) Instructions
for using the T I Disk Memory System are given in the owner's
manual that accompanies the T l Disk Drive Controller .

You se lect which cassette recorder the computer will use by
entering the file-name CS1 or C52 following the keyword SAVE.
After you have connected yOUf recorder to the computer, type the
SAVE command . and press .NT.R. The computer then begins
printing instructions on the screen to help you understand the
SAVE procedures. Follow the directions as they appear on the
screen.
On the right are the computer-generated SAVE instructions . CSl is
used in the example. but the same procedures apply for CS2 a lso.

When you enler the SAVE command . the computer tells you how to
use the recorder. as shown on the right. After the program has been
copied. the computer asks if you want to check the tape to be sure
your program was recorded correctly . If you press N. the flashing
cursor wi ll appear a t the left of the screen. You may then type any
BASIC command you wish . If you press Y. directions fo r activating
the recorder will appear .

Note: The s ingle- letter responses (V, N, R, etc.) you give during the
SAVE routine must be upper-case characters. Hold down the SHIFT

key. and press the appropria te letter key.

11 ·40

Examples:

>SAVE CS1

• RE WIND CASSE TTE TAPE CS1
THEN PRESS ENTER

• PRESS CASSETTE RECORD CS1
THEN PRESS ENTER

• RECORDING

• PRESS CASSET TE STOP CS1
THEN PRESS ENTER

• CHECK TAPE (y OR N)? Y

• REWIND CASSE TTE TAPE CS1
THEN PRESS ENTER

* PRESS CASSETTE PLAY CS1
THEN PRESS ENTER

• CHECKING

* DATA OK

• PRESS CASSETTE STOP CS1
THEN PRESS ENTER

User 's Reference Guide

SAVE

If an error occurred . you may choose one of these three options:

• Press R to record your program again. The same
instructions listed previously will guide you .

• Press c to repeat the checking procedures. At this point
you may wish to adjust the recorder volume and / or tone
controls.

• Press E to "exit" from the recording procedure. The
computer wi ll tell you to s top the cassette and press
ENTER. You will see a n error message on the screen. This
means that the SAVE ro utine did not proper ly record your
program. After checking your recorder. you can try to
record the program again. When the Aashing cursor
reappears on the screen, enter any BASIC command you
wish .

When the SAVE comma nd is performed. whether or no t an error
occurred in recording. the program remains in memory.

User's Reference Guide

Examples:

• ERROR NO DATA FOUND
PRESS R TO RECORD
PRESS C TO CHECK
PRESS E TO EXIT

"
• ERROR IN DATA DETeCTED

PR ES S R TO RECORD
PR E SS C TO CHECK
PR E SS E TO EXIT

• 110 ERROR 66

11 -4 1

OLD
OLD file-name

The OLD command copies a previous ly SAVEd program into the
computer 's memory. You can then run. lis t. or change the program.
An explanation for us ing the audio cassette ta pe recorder (CSt)
with the OLD command is given here . Instructions concerning
the TI Disk Memory S ystem are given in the owne. 's manual
that accompa nies the TI Disk Drive Controller .

After you type the OLD command and press ENTER. the computer
wi ll begin printing instruc tions on the screen to help you through
the procedures. Follow the directions as they appear on the screen.
Be sure you have connected the recorder and inserted the proper
cassette tape.

On the right are the instructions displayed on the screen when you
enter the OLD command. You will find a detailed description
of these procedures in the "Cassette Interface Cable" section of
this book .

If the computer did nOt successfully read your program into
memory, an error occurs and you may choose either of these
options:

• Press A to repeat the reading procedu re. Before
repea ting the procedure, be sure to check the items
listed in the "Cassette Interface" section.

• Press E to "exit" from the reading procedure. An error
message indicating that the computer did not properly
read yo ur program into memory is di splayed .
Note: The single· letter responses (II! or R) you
give during the OLD routine must be upper-case
characters. Hold down the SHIFT key, and press
the appropria te letter key.

When the Hashing cursor reappears on the screen. you may enter
any BASIC command you wish.

Even though the program has not been successfully read into the
computer's memory, it may overwrite part or all of any program
tha t was previously in memory. You may want to LIST and
check the memory CO ntents before go ing on.

11 ·4 2

Examples:

>O l D CS 1

• REW IN D CASSETTE TAPE CS1
THE N PRESS ENTER

• PRESS CASSETTE PLAY CS1
THEN PRESS ENTER

• RE ADING

• DATA OK

• PRESS CASSETTE STOP CS1
THE N PR E SS ENTER

0 '

• ERROR NO DATA FOUN D
PRESS R TO READ
PR ESS E TO EXIT

• 110 ERROR 56

User's Reference Guide

DELETE
DELETE 1 file-name I

program-name ~

The DELETE command allows you to remove a program or a
data fi le from a diskette. The file-name and program-name are
s tring expressions. If a s tring constant is used . you mus t enclose
it in quotes .

You may a lso remove data fi les from the computer system by
using the keyword DELETE in the CLOSE statement. The
action performed depends upon the device used. S ee the owner's
manual enclosed with the TI Disk Drive Controller for additional
information.

If you use DELETE with cassette tape recorders. no action
occurs. The message on the right will appear on the scr een .

User's Reference Guide

Examples:

>SAV[DSK1.0ATA

>O ELETE " DSK1.OATA"

>500 CLOSE 17:DEL[TE

>DELETE "es,"

* ~RESS CASSETTE ST~P

THEN PRESS ENTER
C51

11-43

General Program Statements
Introduction

This section describes those general program sta teme nts tha t do
not serve an input-output function. They include the LET
statement , which allows you to assign values to variables, the
STOP, E ND . a nd REMark statements, and those s tatements which
contro l the path the computer tak es when it runs yOUf program .
These program control s ta tements, including the GOTO, the ON
GOTO. the IF-THEN-ELSE, the FOR-TO-STEP. and the NEXT
statements. allow you to easi ly program loops and conditional and
unconditional branches. By using the statements in this section and
in the Input-Output section, you can write enjoyable, useful
programs.

11 ·44 User's Reference Guide

LET (Assignment Statement)
I LET I variable = expression

The LET statement a llows yo u to ass ign values to variables in your
program . The computer evaluates the expression to the ri ght of the
equa ls s ign and puts its value into the variable specified to the left
of the equals sign.

The variable and the expression must correspond in type:
numeric expressions must be assigned to numeric variables:
string expressions must be assigned to string variables. The rules
governing overAow and underflow for the eva luat ion of a numeric
expression are used in the LET statement. See "Numeric
Constants" for a full explanation. If the length of an eva luated
string expression exceeds 255 characters. the string is truncated
00 the right. and the program continues. No warning is given.

You may use relational operators in numeric and s tring expressions.
The result of a relational operator is -} if the relationship is true
and is 0 if the re lationship is fa lse.

User's Reference Guide

Examples:

>NEW

>100 LET 111=1000
>110 LET c:186000
>120 E:III*C ,.. 2
>130 PRINT E
>140 END
>RUN

3 . 4596E+13

** DONE **

>NEW

>100 LET XS:"HELlO, "
>1 10 NAIIIES= " GEN I US!"
>120 PRINT XS;NAIIIES
>130 END
>RUN

HELLO, GENIUS!

** DONE **

>NEW

>100 LET A=20
>110 8=10
>1 20 LET C=A>8
>130 PRINT A;B;C
>140 C=A150 PRINT A;B;C
>160 END
>RUN

20 10-1
20 10 0

** DONE **

11-45

REMark
REM remark

The REMark statement allows you to explain and document your
program by inserting comments in the program itself. When the
computer encounters a REMark statement while running your
program, it takes no action but proceeds to the next s tatement.

You may use any printable character in a REMark statement. The
length of the REM ark statement is limited by the le ngth of the
input line (112 characters or four lines on the screen). If you do not
wish to break a word in the middle, press the space bar repeatedly
unti l the cursor returns to the left side of the screen, and then you
may begin typing again.

11-46

Examples:

>NEW

>100 REM COUN TIN G FR OM
10

>11 0 FOR X=l
>1 20 PRINT X;
>130 NEXT X
>140 END
>RUN , 2 3

'0 •• DO NE ••

>NfW

>100 A=762
>110 8=425

,

10 '0

5 6 7

, TO

8 9

>120 REM NOW PRINT THE SUM OF
A AN D S

>130 PRINT AtS
>14 0 END
>RUN

11 87

** DONE **

User"s Reference Guide

END
END

The END statement terminates your program when it is being run
and may be used interchangeably with the STOP statement in TI
BASIC . Although the END statement can appear anywhere in the
program. it is normally p laced at the last line number in the
program and thus ends the program both physically and logically.
Although you may place END statements anywhere in your
program, the STOP statement is usually used if you want to have
other termination points in your program. In TI BASIC you are
not required to place an END statement in the program .

User's Reference Guide

Examples:

>NEW

>100 A=10
>11 0 8= 20
>120 C"A'*B
>130 PRI NT C
>140 END
>RU N

20.

"'''' DONE "''''

1I-47

STOP
STOP
The STOP statement terminates your program when it is being run
and can be used interchangeably with the END statement in TI
BASIC . You can place STOP statements anywhere in your
program and use several STOP statements in the same program.
Many BASIC programmers use the END statement if there is only
one ending point in the program.

11 -48

Examples:

>NEW

>100 A:::5
>1 ' 0 BS: " TEXAS IN S TRU~ENTS "
>120 PRINT BS;A
>130 STOP
>RUN

TEXAS INSTRUMENTS 5

** DONE .*

>NEW

>100 CALL CLEAR
>1'0 fOR 1:::1 TO 15
>120 CA LL HCHAR{1,1,42,768>
>130 GOSUB 160
>140 NEXT 1
>150 STOP
>160 F=I
>170 a=I+l
>180 CALL COLOR(Z,F,B)
>190 RETURN
>200 END
>RUN

--SCREEN WILL FILL WITH
ASTERISKS AND CHANGE
COLORS 15 THIES

. DONE .

User"s Reference Guide

GOTO

1
GOTO t line-number
GO TO \

The GOTO statement allows yo u to transfer contro l backward or
forward within a program. Whenever the computer reaches a
GOTO statement. it will a lways jump to the s tatement with the
specified line-number. This is ca lled an unconditional branch .

In the program on the right. li ne 170 is an unconditional branch.
The computer always skips to line 140 at this point. Line 160 is
a conditional branch (see "IF·THEN ·ELSE"). The computer
jumps to line 180 only if COUNT and DAYS are equal

If you should tell the computer to skip to a line-number that does
not exist in yo ur program, the program will stop running and print
the message "BAD LINE NUMBER:'

Note that the space between the words GO and TO is optional.

User's Reference Guide

Examples:

>NEW

>100 REM HOW MANY GIFTS ON
THE 12 DAYS Of CHRISTMAS?

>110 GIfTS:::O
>120 DAYS::1
>1 30 COUNT::O
>140 COUN T=COUNT+1
>150 GIfTS=G IFT S+1
>160 If COUNT:::DAYS THEN 180
>170 GOTO 14 0
>180 DAYS=DAYS+1
>190 If DAYS<:::12 THEN 130
>200 PRINT "TOTAL NUMBER Of G

!FTS IS";GIFTS
>210 END
>RU N

TOTAL NUMBER OF GIFTS IS 78

** DONE **

11 ,49

ON-GOTO

ON numeric-expression j GOTO l line-numberl.line-numberi. I GO TO \

The ON -GOTO statement te lls the computer to jump to one of
several program lines. depending on the value of the numeric
expression.

The computer firs t eva luates the numeric-expression and rounds
the result to an integer. This integer then becomes a pointer for the
computer. indicating wh ich program line in the ON-GOTO
statement to perform next. If the value of the numeric-expression is
1. the computer will proceed to the s tatement with the first line
number specified in the ON -GOTO statement. If the value is 2. the
computer will branch to the s tatement with the second line-number
listed in the ON -GOTO statement. and so on.

If the rounded value of the numeric-expression is less than 1 or
greater than the number of line-numbers listed in the ON·GOTO
statement. the program will stop ru nning and print "BAD VALUE
IN xx." If the line'number you specify is outside the range of line
numbers in your program, the message "BAD LINE NUMBER' is
displayed and the program stops running.

II -50

Examples:

>NEW

>100 REM HOW DOES ON-GOTO
WORK?

>110 INP UT X
>120 ON x GOTO 130 ,1 50,170, 19
0,210

>130 PRINT "X='"
>'40 GOTO 11 0
>150 PRINT "X~2"

>160 GOTO 110
>17 0 PRINT "X=3"
>180 GOTO 110
>190 PRINT "X=4"
>200 GOTO 110
>210 END
>RUN

, 2
X=2
? 1. 2
X:1
? 3.7
X:4
, 6

• BAD VA LUE IN 120

User's Reference Guide

IF-THEN-ELSE
IF lre'atio~a'.expres~ion }THEN line- /IELSE line-21

numeric-expressIOn

T he IF·THEN·ELSE statement allows yo u to change the normal
sequence of yo ur program execution by using a conditional
branch.

The computer eva luates the expression yo u have included in the
s tatement. such as A > 50. If the expression is true, the computer
will jump to line-I , which fo llows the word T HEN . If the condition
is fa lse, the computer will jump to line-:) following the word E LSE.
If E LSE is omitted. the computer continues with the next program
line .

In an IF-THEN -ELSE statement. a va lue of 0 is treated as false .
and a ny other va lue is treated as true. Thus, you can use
multip lica tion as a JogicaJ-AND and addition as a logical-OR. For
example.

IF (A< B). (C < D) THEN 1000
will go to line 1000 if A is less than B and C is less than D .

The a llowable relational operators in TI BASIC are:

• equa l to (=)
• less than «)
• greater than (»
• not equal to « »
• less than or equal to « =)
• greater than or equal to (> =)

Here a re some valid relationship tests:

. A> 7
• A$ < "YES"
• (A+ B)/2<> AVG
• CHR$(L) = "A"
• (A$&C$) > = D$

A numeric·expression must be compared to another numeric'
expression and a string-expression to another string-expression.
Numeric-expressions are compared algebraically. S tring
expressions are compared left·ta-right. character by character,
using the ASCII character codes. A character with a lower
ASCII code wi ll be considered less than one with a higher ASC II
code . Thus, you can sort s tr ings into numeric or alphabetic
order. If one string is longer than the other , the comparison is
mad e for each c haracter in the shorter s tring. If there is no
difference, the computer cons iders the longer s tring to be greater .

User's Reference Guide

Examples:

>NEW

>100 RE~ FIN D THE LARGES T OF
A SE T OF NUMeERS

>11 0 INP UT "HOW MANY VALUES?"
, N

>120 I NPUT "VALUE?" : A
>130 l=A
>140 N=N-l
>150 IF N<=O THEN 180
>160 INPUT "VAlUE?":A
>170 IF l>A THEN 14 0 ELSE 130

>180 PR INT L;"IS THE LAR GEST"

>19 0 END
>RUN

HOW MANY VA l UES?3
VAL UE?4 56
VAlUE?321
VALUE?292

456 I S THE LARGEST

•• DONE .*

>NEW

>10 0 INPUT "AS IS ": AS
>11 0 INPUT "es I S ":es
>120 IF AS =e S THEN 160
>130 IF As<es THEN 180
>140 PRINT "eS I S LESS"
>150 GO TO 190
>160 PRINT "As=eS "
>170 GO TO 190
>180 PRINT "es IS GRE ATER"
>190 ENO
>R UN

AS IS TE XA S
BS IS TEX
BS IS l ESS

.* DO NE **

>RUN
AS I S TAXES
eS I S TE X
eS I S GREATER

. OONE .

II -5 1

IF-THEN-ELSE

An alternative format of the IF·THEN ·ELSE statement is to use a
numeric-expression with no relationship expressed. In the example
on the right , the computer will evaluate the expression A + B. I f the
result is zero. the expression is treated as false. A non-zero result is
treated as true. This is the same as:

IF expression < > 0 THEN line-/.

II -52

Examples:

>NEW

>100 INPUT "A IS " : A
>110 INPUT "B IS ":8
>120 IF A+B THEN 150
>130 PRINT "RESULT IS ZERO,EX

PRESSION f ALSE"
> 140 GOTD 100
>150 PRINT "RESULT IS NON-ZER

O,EXPRESSION TRUE"
>160 GO TO 100
>RUN

A IS 2
B 1 S 3
RESULT IS NON -Z ERO,EXPRESSIO
N TRUE
A IS 2
B IS - 2
RESULT IS ZERO,EXPRESSION FA
lSE

(Press CLEAR 10 end loop)

User's Reference Guide

FOR· TO·STEP
FOR control-variab/e= initia/'value TO limit [STEP increment!

The FOR·TO·STEP statement is used for easy programming of
repetitive (iterative) processes. Together with the NEXT
statement. the FOR·TO·STEP statement is used to construct a
FOR·NEXT loop. If the STEP clause is omitted , the computer
uses an increment of + 1.

The contro/-variable is a numeric variable which acts as a counter
for the loop. When the FORTO·STEP statement is performed. the
control-variable is set to the initial-value. The computer then
performs program statements until it encounters a NEXT
statement.

When the NEXT statement is performed , the computer increments
the control-variable by the amount specified in the STEP clause.
(When the increment is a negat ive value, the control· variable is
actuall y reduced by the STEP amount.) The computer then
compares the control· variable to the value of the limit. If the
control· variable does not yet exceed the limit, the computer repeats
the statements following the FOR·TO·STEP statement unti l the
NEXT statement is again encountered and performed . If the new
value for the control· variable is greater than the limit (i f the
increment is positive) or less than the limit (if the increment is
negative). the computer leaves the loop and continues with the
program statement fo llowing the NEXT sta tement. The value of
the control-variable is not changed when the compute r leaves the
FOR-NEXT loop_

You control the number of times the FOR·NEXT loop is performed
by the va lues you assign in the FOR·TO·STEP statement. The
limit, and , optionally. the STEP increment are numeric·expressions
that a re evaluated once during a loop performance (when the FOR·
TO·STEP statement is encountered) and remain in effect until the
loop is finished . Any change made to these values while a loop is in
progress has no effect on the number of times the loop is performed.
If the va lue of the increment is zero, the computer displays the error
message "BAD VALUE IN xx" and the program stops running.

User's Reference Guide

Examples:

>NEW

>100 REM COMPUTING SIMPLE
INTERE ST FOR 10 YEAR S

>110 INPUT "PRINCIPLE? ":P
>120 INP UT "RATE? " :R
>130 FOR YEARS =l TO 10
>140 P=P+ (P-R)
>150 NE XT YEARS
>160 P=INT(P*100+.5)/100
>170 PRINT P
>180 END
>RUN

PRINCIPLE? 100
RATE? . 0775

210 .9 5

•• DONE ••

>NEW

>100 REM EXAMPLE OF
FRACTIONAL INCREMENT

>11 0 FOR X=.1 TO 1 STEP .2
>120 PRINT X;
>130 NEXT X
>140 PRINT :X
>150 END
>RUN

.1 . 3 . 5 . 7 . 9
1. 1

_. DON E ••

>NEW

>100 L:S
>110 FOR 1=1 TO L
>120 L=20
>130 PRINT L; I
>140 NE XT I
>150 END
>RUN

20 1
20 2
20 3
20 4
20 5

.* DONE _.

II-53

FOR-TO-STEP

After you enter a RUN command . but before yo ur program is
performed . the computer checks to see that you have the same
number of FOR-TO-STEP and NEXT statements. If you do not
have the same number. the message "FOR·NEXT ERROR" is
displayed a nd the program is not run.

If you cha nge the value of the control-variable while the loop is
performed. the num ber of times the loop is repeated is affected .

In TI BASIC the expressions for initial-value. limit. and increm ent
are evaluated before the initial-value is assigned to the contro/
variable. Thus. in the program on the right. in line 110 the va lue 5
is assigned to the limit before assign ing a value to I as the control·
variable. The loop is repealed 5 times, not just once.

The sign o f the control-variable can change during the performance
of a FOR·NEXT loop.

When performing the FOR s tatement. the computer checks that the
limit exceeds the initial· value before it does the loop. The initial·
value in the FOR s tatement does not have to be 1. The computer
can begin counting with wha tever numeric value yo u wish.
However. if the initial·value is grea ter than the limit a nd the
increment is positive. the loop wi ll not be performed at a ll. The
computer will continue on to the s ta tement fo llowing the loop.
Simi larly. if the increment is negative a nd you assign a n initial
value less than the limit, the loop will not be performed .

11 '54

Examples:

>NEW

>100 FOR 1:1 TO 10
>11 0 1:1+1
>12 0 PRINT 1
>130 NEXT I
>140 PRINT 1
>150 END
>RU N

2
4
6
8
10
11

** DONE **

>NEW

> 1 00 1 <5
>1 10 FOR 1: 1 TO
>120 PR INT 1 ;
>130 NEXT 1
>140 'ND
>RU N

1 2 3 4 5

•• DONE ••

>NEW

>100 FOR 1:2 TO -3 STE P - 1
>11 0 PRINT I;
>120 NEXT 1
>130 ENO
>RUN
20 - 1 - 2 - 3

** DONE **

>NEW

>100 RE" INITIAL VALUE TOO
GREAT

>11 0 FOR 1=6 TO 5
>120 PRINT I
>130 NE XT I
>140 END
>RU N

** DONE **

User's Reference Guide

FOR-TO-STEP

FOR-NEXT loops may be "nested"; that is. one FOR-NEXT loop
may be contained wholly within another. You must use caution.
however . to observe the following conventions:

• E ach FOR·TO-STEP statement must be paired with a
N EXT statement.

• Different control-variables must be used for each nested
FOR·NEXT loop.

• If a FOR·NEXT loop contains any portion of another
FOR·NEXT loop , it must contain all of the second FOR·
NEXT loop.

Otherwise, the computer wi ll stop running your program and print
the error message "CAN'T DO THAT IN xx" if a FOR-NEXT loop
overlaps another .

You may branch out of a FOR·NEXT loop using GOTO and IF
THEN·ELSE statements. but you may not branch into a FOR·
NEXT loop using these statements. You may use GOSUB
statements to leave a FOR-NEXT loop and return . Be sure you do
not use the same control-variable for any FOR-NEXT loops you
may have in your subroutines.

User's Reference Guide

Examples:

>NEW

>100 RE~ FIND THE LOWEST
THREE DIGIT NU~BER EQUAL TO
THE SUM OF THE CUBES OF ITS
DIGIT S

>110 FOR HUND=1 TO 9
>120 FOR TENS=O TO 9
>13 0 FOR UNITS =O TO 9
>140 SU~=100 *HU NO+ 1 0 *TEN S +UNI

TS
>150 IF SUM<>HUNO~3+TENS~3+UN
ITS~3 THEN 18 0

>160 PRINT SUM
>170 GOTO 210
>180 NEXT UNITS
>190 NEXT TENS
>200 NEXT HUNO
>210 END
>RUN

'53
** OONE **

>NEW

>100 FOR 1=1 TO 3
>110 PR INT I
>120 GOSUB 140
>130 NEXT I
>140 FOR 1=1 TO 5
>150 PRINT I · ,
>160 NEXT I
>170 RETURN
>i80 EN'
>RUN , , 2 3 , 5
• CAN'T , 0 THAT IN 130

11 ·55

NEXT
NEXT control-variable

The NEXT statement is always paired with the FOR-TO-STEP
statement for construction of a loop_ The con trol-variable is the
same one that appears in the corresponding FOR· TO-STEP
statement .

The NEXT stateme nt actua lly controls whether the computer will
repea t the loop or exit to the program line fo llowing the NEXT
statement .

When the computer encounters the NEXT statement. it adds the
previously evaluated increment in the STEP clause to the control
variable. It then tests the control-variable to see if it exceeds the
previously eva luated limit specified in the FOR-TO-STEP
statement. If the contro/-variable does not exceed the limit, the loop
is repeated.

11·56

Examples:

>N EW

> 1 00 '" COUNTING FRO'" 1 TO
10

> 11 0 FOR)(:: 1 TO 10
>1 20 PRINT X· ,
>130 NEXT x
>14 0 END
>RUN

1 2 , 4 5 6 7 8
10 .. DO NE ••

>NE W

>100 RE" ROCKET COUNTDOWN
>110 CALL CLEAR
>120 FOR 1=10 TO 1 STEP -1
>130 PRINT I
>140 FOR DE LA Y:1 TO 200
> 1 50 NEXT DE LA Y
>160 CALL CLEAR
>170 NEXT 1
>180 PRINT "BLAST OFF~"

9

>1 90 REM CHA NGE SCREEN CO LOR
>200 FOR COLOR =2 TO 16 STEP 2
>210 CA LL SCR EEN(COLDR)
>220 FOR DELAY;1 TO 100
>230 NEXT DELAY
>240 NEXT COLOR
>250 EN D
>RU N

-- computer wiLL flash countdol/ I

BLAST Off!

-- screen will change color
8 times

.* DO NE **

User's Reference Guide

Input-Output Statements
Introduction

INPUT -OUTPUT statements allow you to transfer data in and out
of your program . This section describes these statements (PRINT,
DISPLAY. INPUT. READ. DATA. RESTORE) as they a re used
with yOUf TI computer keyboard and screen.

Data can be input to your program from three types of sources:

• from the keyboard - using the INPUT s tatem ent
• interna lly from the program itself - using the READ,

DATA, and RESTORE statements
• from files stored on accessory devices - using the INPUT

statement

Data can go to two types of output devices:

• the screen - using the PRINT or DISPLAY s tatements
• files stored on accessory devices - using the PRINT

statement

There are two other sect ions in this Reference Guide which
describe addit ional input-output capabi lities of the TI computer.
The "File Processing·' section helps you construct the statements
used with accessory devices . And. since your Tt computer is
enhanced by graphics . color, and sound. many built-in
subprograms also serve an input-output function . The "Color
Graphics and Sound" section shows you how to use these
fea tures .

User·s Reference Guide II -57

INPUT
INPUT linput-prompt:1 variable-list

(for information on the use of the INPUT statement with a fi le. see
the "File Processing" section.)

This form of the INPUT statement is used when entering data via
the keyboard. The INPUT statement causes the program to pause
until va lid data is entered from the keyboard . Although the
computer usually accepts up to one input line (4 lines on your
screen) for each INPUT statement. a long list of values may be
rejected by the computer. H you receive the message "LlN E TOO
LONG" after enter ing a n input line. you will need to divide the
lengthy INPUT statement into a t least two separate s tatements.

Entering the Input Statement

The input-prompt is a s tr ing expression that indicates on the screen
the va lues you should enter a t that time. Including an input·prompt
in the INPUT statement is optional. When the computer performs
an INPUT s tatement that does not have an input'prompt, it
displays a question mark (?) fo llowed by a space a nd waits for you
to enter your data .

If you use a n input'prompt, the s tring expression must be fo llowed
by a colon. When the computer performs this type of INPUT
sta tement. it will display the input·prompt message on the screen
a nd wa it for you to enter your data .

The variable·list conta ins those variables which are assigned values
when the INPUT statement is performed. Variable names in the
variable' list a re separated by commas a nd may be numeric and / or
s tring variables.

11·58

Examples:

>NEW

>100 INPUT 8
>110 PRI NT 8
>120 END
>RU N

? 25
15

** DONE **

>NEW

>100 INP UT "COST OF CAR? ": B
>110 AS::"TAX'?"
>120 INP UT AS: C
>130 IN PU T "SALES "&AS:X
>140 PRIN T B; C; X
>150 END

'U N
COST OF CAR'?5500
TAX?500
SA LES TAX'?500

5500 500 500

** DO NE **

>NE W

>100 INP UT A,BS,C,o
>11 0 PRINT A: 8S:C : o
>120 END

'U N
'? 10,H ELLO,2 5,3 . 2

10
HELLO

15
3.2

** DO NE **

User 's Reference Guide

INPUT

Responding to an Input Statement

When an INPUT statement is performed. the values corresponding
to the variables must be entered in the same order as they are listed
in the INPUT statement. When you enter the values. they must all
be entered in one input line (up to 4 screen lines) with the values
separated by commas. When inputting string values. you may
enclose the string in Quotes. However . if the string you wish to
input contains a comma, a leading quote mark. leading spaces. or
trailing spaces, it must be enclosed in quotes.

Variables are assigned values from left to right in the variable·list.
Thus, subscript expressions in the variable·lis t are not evaluated
until variables to the left have been assigned values.

User's Reference Guide

Examples:

) NEW

>100 INPUT AS
>110 PRINT AS: :
>120 INPUT as
>130 PRINT BS: :
>140 INPUT CS
> 15 0 PRINT CS : :
>160 INPUT os
>170 X;SOO
>180 PRINT OS; X : :
>190 INPUT " >200 PRINT " >2 10 END

RUN
? "JONES, MARY"
JONES, MARY

? """HELLO THERE"""
"HELLO THERE"

? "JAMES B. SMITH, JR."
JAMES B. SMITH; JR .

? "$ELLING PRICE IS "
SELLI NG PR ICE IS 500

? TEXAS
TEXAS

** OONE **

>NEW

>100 INPUT I;A(l)
>110 PRINT I:A(3)
>120 END

RUN
? 3; 7 ,

7

** DONE **

I I-59

INPUT

When input information is entered. it is validated by the computer.
If the input data is inva lid. the message "WARNING: INPUT
ERROR, TRY AGAIN" appears on the screen and you must
reenter the line. Here are some causes of this message:

• if you try to enter input data that contains more or fewer
va lues than requested by the INPUT statement.

• if you try to enter a s tring cons tant when a number is
requi red. (Remember. a number is a valid s tring. so you
may enter a number when a s tring constant is required .)

If a number is input that causes an overflow. the
message "WARNING: NUMBER TOO BIG. TRY AGAIN "
appears on the screen and you must reenter the line. If a number is
input that causes a n underflow. the va lue is replaced
by zero. No warning message is given.

11 '60

Examples:

>NEW

>100 INPUT A,BS
>110 PRINT A;BS
>120 END
>RUN

? 12,HI,3

.. WARNING :
INPUT ERROR IN 100

TRY AGAIN: HI,3

.. WARNIN G:
INPUT ERROR IN 100

TRY AGAIN: 23 ,HI
23 HI

.... DONE

>N EW

>, 00 INPUT ,
>110 PRINT ,
>120 ENO
>RUN , 23E139

.. WARNIN G:
NU"BER TOO BIG IN 100

TRY AGAIN : 23E - 139
o

.... OONE ...

User's Reference Guide

READ
READ variable-list

The READ statement allows you to read data s tored inside your
program in DATA statements. The variable-list specifies those
variables that are to have values assigned . Variable names in the
variable-list are separated by commas. The variable-list may
include numeri c variables andlor string variables.

The computer reads each DATA statement sequentially from left to
righ t and assigns va lues to the variables in the variable-list from left
to right. Subscript expressions in the variable-list are not evaluated
until variables to the left have been assigned.

DATA statements are normally read in line-number order. Each
time a READ statement is performed, values for the variables in
the variable-list are assigned sequentia lly. using all the items in the
data-list of the current DATA statement before moving to the next
DATA statement. You can override this sequencing, however. by
using the RESTORE statement .

By following the program on the ri ght. you can see how the READ.
DATA. a nd RESTORE sta tements interact . In line 120 the
computer begins assigning values to A and B from the DATA
sta tement with the lowest line number. line 180. The firs t READ .
therefore. assigns A = 2 and B= 4. The next performance of the
READ statement still takes data from line 180 and assigns A = 6.
B= 8. The third READ ass igns the last item in line 180 to the
variable A a nd the first item in line 190 to the variable B. so
A = 10. 8 = 12 . The fourth READ . the last in theJ-loop. continues
to get da ta from line 190. so A = 14. B= 16. Before go ing through
the I -loop again. however, note that the computer encounters a
RESTORE statement in line 160 which directs it to get da ta from
the beginning of line 190 for the next READ statement. The
computer then completes the program by reading the data from line
190 a nd then from line 200.

User·s R eference Guide

Examples:

>100 FOR }:1 TO 3
>1 10 READ X, V
>120 PRINT X;V
>130 NEXT I
>1 40 DATA 22,15,36,52 ,48 , 96 . 5

>150 END
> RU N

22 15
36 52
48 96.5

** DONE **

>NEW

>100 READ I,A CI)
>11 0 DATA 2,3 5
>12 0 PRINT A(2)
>130 END
>RUN

35

** DONE **

>NEW

>100 , 0. 1=1 TO
>110 FO. J = 1 TO
>120 READ A, ,
>13 0 PRINT A; B;
>140 NEXT J
>150 PRINT
>160 RESTORE 190
>170 NEXT 1

2
4

>180 DATA 2,4,6,8,10
>190 DATA 12,14,16 , 18
>200 DATA 20 , 22 , 24,26
>210 END
>RU N

2 4 6 • 10 12
12 " 16 i. 2D
26

•• DONE ••

" 16
22 24

11 -61

READ

When da ta is read from a DATA sta tement , the type of data in the
data-lis t and the type of variables to which the values are assigned
must correspond. If you try to assign a s tring value to a numeric
variable. the message "DATA ERROR IN xx" (xx is the line
number of the READ sta tement where the error occurs) a ppears on
the screen and the program SlOPS running. Remember tha t a
number is a valid s tring so num bers may be ass igned to either
s tring or numeric variables.

When a READ statement is performed . if there are more names in
the variable· Jist than va lues remaining in DATA statements, a
"DATA ERROR" message is displayed on the screen a nd the
program stops funning. If a numeric constant is read which causes
an underAow , its value is replaced by zero - no warning is given
- and the program continues running normally. If a numeric
constant is read which causes an overflow. its value is replaced
by the appropriate computer limit. the message "WARNING :
NUMBER TOO BIG" is displayed on the screen. and the
program continues. For information on underfiow. overflow. and
numeric limits, see "Numeric Consta nts."

11 ·62

Examples:

>NEW

>100 RE AD A, S
>1 10 DATA 12, HELLD
>120 PRI NT A; S
>130 EN D
>R UN

* DATA ERROR IN 100

>.

>NEW

>100 READ A, S
>1 10 DATA 12 E- 135
>1 20 DA TA 36E14 2
>130 PRINT :A:S
>14 0 REA D C
>15 0 END
>RUN

* WUNIN G:
NU"S ER r OO BIG IN 100

o
9. 99 9 99E +**

* DATA ERR OR IN 140

>.

User's Reference Guide

DATA
DATA data-lis t

The DATA statement allows you to store da ta inside your program.
Data in the da ta-lists are obta ined via READ statements when the
program is run . The da ta-list conta ins the values to be ass igned to
the variables specified in the variable-list of a READ s ta tement .
Items in the data -Jis t are sepa rated by commas . When a program
reaches a DATA statement , it proceeds to the next s tatement
with no other effect.

DATA statements may a ppear anywhere in a program. but the
order in which they appear is important. Data from the data-lists
are read sequentia lly, beginning with the firs t item in the firs t DATA
statement. If your program includes more than one DATA
statement. the DATA statements are read in ascending line-number
order unless otherwise specified by a RESTORE sta te ment.
Thus. the order in which the data appears within the data-lis t and
the order of the DATA statements within the progra m norma lly
determine in which order the data is read.

Data in the da ta' list must correspond to the type of the variable to
which it is ass igned . Thus. if a numeric variable is spec ified in the
READ sta tement , a numeric constant must be in the corresponding
place in the DATA statement . Similarly. if a s tring variable is
specified. a s tring consta nt must be in the corresponding place in
the DATA statement. Remember that a number is a valid s tring. so
you may have a number in the corresponding place in the DATA
statement when a s tring constant is required .

When us ing string constants in a DATA statement , you may enclose
the s tr ing in quotes . However, if the s tring you include conta ins a
comma. a leading quote mark . leading spaces, or trailing spaces. it
must be enclosed in quotes .

If the lis t of s tring constants in the DATA statement contains
adjacent commas, the computer assumes you wa nt to e nter a null
s tr ing (a str ing with no characters) . In the example on the right. the
DATA sta tement in line 11 0 contains two adjacent commas . Thus,
a null s tring is assigned to B$. as you can see when the program is
run .

User's Reference Guide

Examples:

>NEW

>100 FOR 1= 1 TO 5
> 11 0 REA D A, B
>120 PRINT A; 8
>130 NEXT 1
>14 0 DATA 2 , 4 ,6, 7 , 8
>150 DATA 1, 2 , 3,4 , 5
>160 END
>RUN

2 4
6 7
8 ,
2 3
4 5 .. DO N E ••

>NEW

>100 RE AD AS ,BS, C, D
>11 0 PRIN T AS;BS;C; D
>1 20 DAT A HE LLO," JO NE S, /li AR' "

, 28 ,3 .1 41 6
>130 END
>RUN

HELLO
JO NES, /liAR'

28
3. 14 16

** DO NE **

>NEW

>100 READ AS, as , C
>110 DATA HI ,, 2
>120 PR I NT " AS IS ";A S
>130 PRIN T " 8S IS "; 8S
>1 40 PRI NT "c IS "; C
>1 50 END

RUN
AS I S HI
8S IS
CIS 2

* * DONE * *

11 ·63

RESTORE
RESTORE I/ine-number!

(See the "File Processing" section for information about using
RESTORE in file processing.)

This form of the RESTORE statement tells your program which
DATA statement to use with the next READ sta tement.

When RESTORE is used with no line-number and the next READ
statement is performed . values will be assigned beginning with the
firs t DATA statement in the program.

When RESTORE is fo llowed by the line-number of a DATA
statement and the next READ statement is performed, values will
be assigned beginning with the first data-item in the DATA
statement spec ified by the line-number.

If the line-number speci fied in a RESTORE statement is not a
DATA statement or is not a program line number , then the next
READ statement performed will s tart at the firs t DATA statement
whose line num ber is greater than the one specified. If there is no
DATA sta tement with a line number greater than or equa l to the
one specified, then the next READ statement performed will cause
an out·of·data condition and a "DATA ERROR" message will be
displayed. If the line'number specified is greater than the highest
line num ber in the program. the program will s top running a nd the
message "DATA ERROR IN xx" will be displayed.

11 ·64

Examples:

>NEW

>100 FOR 1=1 TO 2
>110 FOR J = 1 TO 4
>120 READ ,
>130 PRINT A;
>140 NEXT J
>150 RES TORE 180
>160 NEXT 1
>170 I>A T A 12,33,41,26,42,5 0
>180 DATA 10,20,30,40,50
> 190 END
>RUN

12 " 41 2.
40 .. DONE ••

>NE W

> 1 00 FOR 1=1 TO 5
>110 RE AD X
>120 RESTORE
>130 PRINT x -•
>140 NEXT 1
>150 DATA 10 , 20,30
>16 0 END
>RUN

10 10 10 10
•• DONE ••

>NE W

>100 READ A, B
>11 0 RE STORE 130
>120 PRINT A;B
>130 READ C"D
>14 0 PRINT C;I>

10

10

>150 DATA 26 . 9,,34 . 67
>160 END
>RU N

26.9 34 . 67
26 . 9 34 . 67

** DONE **

>11 0 RESTORE 14 5
>RU N

26 . 9 34.67
26.9 34 . 67

** DONE **

>110 RESTORE 155
>RU N

26.9 34 . 67

* DATA ERR OR IN 130

>.

20 30

User's Reference Guide

PRINT
PRINT Iprint-listl

(For information on using the PRINT statement with files. see
the "File Processing" section.)

The PRINT statement lets you print numbers and strings on the
screen. The print-list consists of

• print-items - numeric expressions and string expressions
which print on the screen and tab· functions which control
print positioning (similar to the TAB key on the typewriter) .

• print-separators - the punctuation between print-items
(commas. colons, and semicolons) which serves as
indicators for positioning data on the print-line.

When the computer performs a PRINT statement, the values of the
expressions in the print-list are displayed on the screen in order
from left to right. as specified by the print-separators and
tab·functions.

Printing Strings

String expressions in the print· list are evaluated to produce a string
result. There are no blank spaces inserted before or after a string.
If you wish to print a blank space before or after a string. you can
include it in the s tring or insert it separately with quotes .

Printing Number.

Numeric expressions in the print'list are evaluated to produce a
numeric result to be printed. Positive numbers are printed with a
leading space (instead of a plus sign) and negative numbers are
printed with a leading minus sign. All numbers are printed with a
trailing space.

User's Rderence Guide

Examples:

>HEW

>100 A"10
>110 B"20
>120 STRINGS:"TI COMPUTER"
>130 PRINT A; B:STRINGS
>140 PRINT "HEllO, FRIEND"
>150 END
> RUN

10 20
Tl CO MPUTER
HEllO, FRIEND

"'''' DONE "''''

>NE W

>100 NS:"JOAN"
>110 MS :::"HI"
>120 PRINT MS;NS
>130 PRINT MS& " "&NS
>140 PRIHT "HEl lO ";HS
>150 END
>RUN

HlJOAN
HI JOAN
HellO JOAN

"'IE DONE ••

>NEW

>100 lET A:10.2
>11 0 B:::-30.5
>120 C:16.7
>130 PRINT A;B;C
>140 PRINT A+B
>150 END
>RUN

10.2 -30 . 5 16.7
-20 . 3

"'''' DONE ••

11 -65

PRINT

The PRINT statement displays numbers in either normal decimal
form or scientific notation. accord ing to these rules:

1. All numbers with 10 or fewer digits a re printed in normal
decimal form.

2. Integer numbers with more than 10 digits are printed in scientific
notation.

3. N on·integer numbers with more than 10 digits are printed in
scientific notation only if they can be presented wit h more
significant digits in scientific notation than in normal decimal
form. If printed in normal decimal form, a ll digits beyond the
tenth digit are omitted .

If numbers are printed in normal decimal form, the following
conventions are observed:

• Integers are printed with no decimal point.

• Non·integers have the decimal point printed in its proper
place . Trailing zeros in the fractional part are omitted. If
the number has more than ten digits. the tenth digit is
rounded.

• Numbers with a va lue less than one are printed with no
digits to the left of the decimal point.

If numbers are printed in scientific notation, the formal is:

mantissa E exponent
and the fo llowing rules app ly :

11 -66

• The mantissa is printed with 6 or fewer digits and is
always displayed with one digit to the left of the decimal
point.

• Trailing zeros are omitted in the fractional part of the
mantissa.

• If there are more than five digits in the fractional part of
the mantissa. the fifth digit is rounded .

• The exponent is displayed with a plus or minus sign
followed by a two-d igit number.

. If you a tt empt to print a number with an exponent va lue
larger than +99 or smaller than -99. the computer will
print '" fo llowing the proper sign of the exponent.

• "E " must be a n upper-case character.

Examples:

>PRINT -10;7 . 1
-1 0 7.1

>PRI NT 93427685127
9.34277E+10

>PRINT 1E-10
.000000000 1

>PRINT 1.2E-10
1 . 2E - 10

>PRINT . 000000000246
2.46E - 10

>PRINT 15;-3
15 -3

>PRINT 3.350; - 46.1
3.35 -46.1

>PRJNT 791 . 123456789
791.1234 568

>PRINT -12. 7E - 3;0 . 64
- . 012 7 . 64

>PRI NT . 000000000197853 1
1 . 97853E-1 0

>PR INT -98 . 77E2 1
- 9.877E+22

>PRINT 736.400E10
7 . 364E+12

>PRINT 12.36587E - 15
1.23659E-14

>PRINT 1 . 25E-9;-43.6E12
1.25E- 09 -4.36E+ 13

>PRINT . 76E126;81E -1 15
7.6E+ *. 8.1E-**

User's Reference Guide

PRINT

Prlnt·Separators

Each screen line used with the PRINT statement has 28 character
positions numbered from left to right (1·28) . Each line is divided
into two 14 -character print zones . By using the print-separators and
the tab.function, you can control the position of the print-items
displayed on the screen.

There are three types of print-separators: semicolons. colons. and
commas. At least one print-separator must be placed between
adjacent print· items in the print-Jist. Multiple print-separators may
be used side by s ide and are evaluated from left to right.

The semicolon print-separator causes adjacent print-items to print
side by s ide wi th no extra spaces between the values. In the
program on the right. the spaces after the num bers appear only
because all numbers are printed with a trai ling space regardless of
the type of print-separator used _

The colon print-separator causes the next print-item to print at the
beginning of the next line.

Print lines are divided into two zones. The first zo ne begins in
column 1 and the second begins in column 15 . When the computer
eva luates a comma print-separator, the next print· item is printed at
the beginning of the next zone. If it is already in the second print
zone when a comma print'separator is evaluated. the next print'item
is begun on the nex t line.

User ·s Reference Guide

Examples:

>PRINT "A": :"8" ,
,

>NEW

>100 A:-26
>1'0 8: - 33
>120 CS;"HELLO"
>130 DS;"HOW ARE YOU?"
>140 PRINT A;8 ; CS;DS
>150 END
>RUN
-26 - 33 HELLOHOW ARE YOU?

** DONE **

>NEW

>100 A; - 26
>110 8S;"HELLO"
>120 CS;"HOW ARE YOU?"
>130 PRINT A:8S : CS
>140 END
> RUN
-26
HELLO
HOW ARE YOU?

*. DO NE **

>NEW

>100 AS;"ZONE '"
>1'0 8S;"ZONE 2"
>120 PRINT AS , 8S
>130 PRINT AS : ,8S,AS
>140 END
>RUN

ZONE ZONE 2
ZONE

ZONE 2
ZONE

** DONE **

11·67

PRINT

Tab-Function

The cab-functionspecifies the s tarting position on the print·line [or
the next print-item. The format of the tab-function is:

TAB (numeric·expression)

The numeric-expression is evaluated and rou nded to the nearest
integer n. If n is less than one. then its value is replaced by one. If
n is greater than 28. then n is repeatedly reduced by 28 until
1 < n ~ 28. If the number of cha racters already printed on the
current line is less than or equal to n, the next print-item is printed
beginning in position n. If the number of cha racters already printed
on the current line is greater than n, then the next item is printed on
the next line beginning in posit ion n. Note that the tab· function is a
print· item a nd thus must be preceded by a print'separator, except
when it is the firs t item in the print· list. The tab-function must a lso
be followed by a prinHeparator, except when it is the last item in
the print-list. The print·separator before a tab-function is eva luated
before the tab-function. and the print·separator following the tab
function is eva luated after the tab·function. Thus. you should use a
semicolon print·separator before and after the tab·function for best
results .

In the program on the right . the computer does the following:

_ line 120 - prints A. moves to position 15. prints B

11 -68

_ line 130 - prints A. moves to the next print zone (in this
case. pos ition 15 of the current screen line), prints 8

_ line 140 - prints A, moves to position 15 as specified in
the tab-function, moves to the next print zone because of
the comma (in this case position 1 of the next screen li ne).
prints B

_ line 150 - moves to posit ion 5 , prints A. moves to posit ion
6 of the next line (since pos ition 6 of the current line was
already past when A was printed), prints B

_ line 160 - prints A. subtracts 28 from 4 3 to begin the tab·
function within the a llowable character positions. moves to
position 15 (43 - 28 = 15). prints B

Examples:

>NEW

>100 A:23.S
>1 10 8:48 . 6
>120 MSGS~"HELLO"
>130 REI'! N>28
>1 40 PRINT TA8(5);MSGS;TA8(33

) ; I'!SGS
>150 REI'! CHARACTERS ALREAOY

PRINTEO<;N
>160 PRINT A;TA8(10);8
>170 REI'! CHARA CTERS ALREAOY

PRINTEO>N
>180 PRIN T TA8(3);A;TA8 (3);8
>190 END
>RU N

HELLO
HEL LO

23 . 5 48.6
23 . 5
48.6

•• DONE .*

>NEW

>100 A:326
> 11 0 8:79
>120 PRINT A;TA8(15);8
>130 PRINT A,B
>140 PRIN T A; TA8 (15),8
>150 PRINT TAB (5l;A;TA8(6l;8
>160 PRI NT A;TA8(43l;8
>170 END

RUN
32' 79

32' 79

'26 7.
32' 7.

'26 7.
•• OONE ••

User's Reference Guide

PRINT

A print-item will not be split between two screen lines unless the
print-item is a string with more than twenty-eight characters. In
that case the string is always begun on a new line and is printed
with twenty-eight characters per line until the entire s tring is
printed. If a numeric print-item is such that the only character not
able to fit on the current line is a trail ing space, then the number
will be printed on the current line. If the number itself will not fit on
the current line. it is printed on the next line.

The print-list may end with a print-separator. If the print-lis t is not
termina ted by a print-separator(line 130). the compute r considers
the current line completed when all the characters produced from
the print-lis t are printed . In this case the first print-item in the next
PRINT sta tement (line 140) always begins on a new line.

If the print· list ends with a print· separator (line 140). then the prin t
separator is evaluated and the first print·item in the next PRINT
statement (line 160) will start in the position indicated by the print·
separator.

You may use a PRINT statement with no print· list. When such a
PRINT sta tement is performed. the computer advances to the first
character position of the next screen line. This has the effect of
ski pping a line if the preceding PRINT statement has no print·
separator a t the end.

User·s Reference Guide

Examples:

>NEW

>100 A=23767
>11 0 8:79856
>120 (=A+B
>130 0:8-A
>14 0 PRINT A; 8 ; (;0
>150 PRINT "A=";A;"B:";B;"(::"

; C;" O:";O
>160 END
>RU N

23767 79856 103623 56089
A: 23767 B: 79856 C: 103623
0= 56089

" DO NE ..
>NEW

>100 A:23
>110 8: 597
>120 PR J NT A-
>130 PRINT ,
>140 PRINT A;8;
>1 50 (:468
>160 PRINT C
>170 EN D
>RU N

" 597

" 597 468 .. DO N E ..
>NEW

>100 A=20
>11 0 PRINT A
>120 PRINT
>130 8:15
>14 0 PRINT ,
>150 END
>RU N

20

15

.. DONE ..
>NEW

>100 fOR J =1 TO 2
> 11 0 f OR 1=1 TO ,
> 120 PIiINT I . ->130 NEXT I
>140 PRINT
>150 NEXT J
>160 END
>IIUN

1 2 ,
1 2 ,

.. DONE ..

11 ·69

DISPLAY
DISPLAY Iprint-lis tl

The DISPLAY s tatement is identical to the PRINT statement when
you use it to print items on the screen. The DISPLAY statement
may not be used to write on a ny device except t he screen. For a
complete discuss ion of how to use th is statement. follow the
ins truct ions for the PRINT s tatement.

11 -70

Examples:

>N EW

>100 A:: 3S . 6
> 11 0 BS ="Hl!!"
>120 C=49 . 7
>130 PRINT BS:A ; C
>14 0 DISPLAY BS : A; C
>150 END
>RU N

HI! !
35.6 49 . 7

HI! !
35.649 . 7

** DO NE **

User 's Reference Guide

Color Graphics and Sound
Introduction

A special set of subprograms has been built into the T I computer
to provide color grap hics. sound . a nd other capabi lities not
usually found in BASIC .

Whenever you want to use one of these spec ia l subprograms. you
call for it by name and supply a few specifica tions. The subprogram
then takes over. performs its task . a nd prov ides you with such
things as musica l tones. screen co lors. a nd special graphics
characters . These features a re particularly useful when you are
programming simulations. graphs. patterns on the screen. or yOUf

own "computer music." All of the subprograms may be used in
C ommand Mode as well as in programs.

The built ·in subprograms can be grouped according to their
function:

• INPUT subprograms - GCHAR. JOYST. KEY
• OUTPUT subprograms - CLEAR . HCHAR . VCHAR.

SOUND. SCREEN
• INTERNAL subprograms - CHAR. COLOR (the results

of these subprograms aren't evident until you use an
OUTPUT operation to see the results on the screen).

The graphics subprograms feature a 24-row by 32-column screen
disp lay . The 28 print positions normally used in TI BASIC
correspond to co lumns 3 through 30. inclus ive. in the graphics
subprograms. Because some display screens may not show the two
leftmos t and two rightmost characters. your grap hics may be more
satisfactory if you use co lumns 3 through 30 and ignore co lumns 1
and 2 on the left a nd 3 1 and 32 on the right. Experiment wi th
different line lengths to determine how many pos itions show on
your screen.

User's Rderence Guide

CLEAR subprogram
CALL CLEAR

The CLEAR subprogram is used to clear (erase) the entire screen.
When the CLEAR subprogram is ca lled. the space character (code
32) is placed in a ll positions on the screen.

When the program on the right is fun. the screen is cleared before
the PRI NT statements are performed .

If the space c haracter (code 32) has been redefined by the CALL
CHAR s ubprogram. the screen will be filled with the new
character, ra ther than with spaces. when CALL CLEAR is
perfo rmed .

11 ·72

Examples:

>PRINT "HELL O THERE!"
HELLO THERE!

>CAl l CL EAR

- - sc ree n clea r s

>NEW

>100 CALL CLEAR
"'0 PRINT "HELLO THE RE !"
"20 PRINT "HOW ARE YOU?"
> 130 END
>RU N

-- sc ree n clea r s

HELL O THERE!
HOW ARE YOU?

. " DONE .*

>NEW

>100 CALL CHAR(32,"0103070F1F
3F 7fF F")

>110 CA L L CLEAR
> 12 0 GO l O 120
>RU N

-- screen will b e filled
with A

(Pres.<; CLEAR 10 stop

the program)

User's Reference Guide

COLOR subprogram
CALL CO LOR (character-set- number. foreground-color- code, background'color-cooe)

The COLOR subprogram provides a powerful design capability by
allowing you to specify screen character colors. (To change the
screen color itself. see the SCREEN subprogram.) The
character-set-number. foreground-color-code. and background-
color-code are numeric expressions .

Each character displayed on your computer screen has two colors.
The co lor of the do ts that make up the character itself is call ed the
foreground color. The color that occupies the rest of the character
posit ion on the screen is call ed the background color. Sixteen colors
are avai lable on the TI computer. so your entries for foreground
and background color must have a va lue of 1 through 16. The
co lor codes are given in the table below:

Color Cade Color

1 Transpa re nt
2 Black
3 Medium Green
4 Light Green
5 Dark Blue
6 Light Blue
7 Dark Red
8 Cyan
9 Medium Red

10 Light Red
1 1 Dark Yellow
12 Light Yellow
13 Dark G reen
14 Magenta
15 Gray
16 White

If transparent (code 1) is specified. the present screen co lor
shows through when a character is disp layed . Until a CALL
COLOR is performed. the s tandard foreground-color is black
(code 2) and the s tandard background·color is transparent (code 1)
for all characters. When a breakpoint occurs. all characters
are reset to the s tandard colors .

User·s Reference Guide

Examples:

>NEW

>100 (ALL CLEAR
>1 10 IN PUT "FOREGROUND?" :F
>120 INPUT "BACKGROUND?":B
>13 0 CALL CLEAR
>140 CALL COLOR(2 ,F, B)
>150 CALL HCHAR(12,3,4 2 , 28)
>160 GO TO 110
>RUN

-- screen clears

FOREGROUND?2
SACKGROUNO?14

-- screen clears

(28 black asterisks with
a magenta background)

••••••••••••••••••••••••••••

FOREGROUND?

(press CLEAR to stop
the program)

>NEW

>100 CALL (LEAR
>11 0 CALL SCREEN(1Z)
>120 CALL COLOR(Z,1 , 7)
>130 CALL HCHAR(12,3,42,28)
>140 GOTO 140
> RU N

-- sc ree n clears

(transparent asterisks with
a dark -r ed background on a
light - yellow screen)

(pre!;S CLEAR to stop
the progTam)

11 ·73

COLOR subprogram

To use CAL L COLOR you must a lso specify to which of s ixteen
c ha racter sets the character you are printing be longs. The lis t of
ASC II character codes for the standard characters is given in the
Appendix. The character is d isp layed in the color specified when
you use CALL HCHAR or CALL VCHAR . The character·set ·
numbers are given below.

Set Number Character Codes

I 32·39
2 40·47
3 48·55
4 56·63
5 64 ·71
6 72·79
7 80·87
8 88·95
9 96·1 03

10 104· 111
II 11 2·\19
12 120,127
13 128· 135
14 136·143
IS 144 ·15 1
16 152'159

Note that all 24 rows and 32 columns are filled with the space
charac ter until you place o ther characters in some of these
positions. If you use character set 1 in the CALL COLOR
sta tement. a ll space characters on the sc reen are changed to the
background-color specified s ince the space character is contained in
set 1. This change is demonstrated by the program on the r igh t.

11 ·74

Examples:

>NEW

>100 CALL CLEAR
>110 CAL L COLOR(1,1 6 ,14)
>120 CA LL SCREEN(13)
>130 CALL VCHARC1 , 15,35,24)
>14 0 GOTO 140
>RU N

-- sc r een cLears

-- 24 white ~ I S with
a ~agenta background on a
dark - green sc reen

, , , , , , , ,
• • • ,

--Note that the screen colo r
appears only at th e top and
bottom of the screen

(Pre$.'> CLEAR to stop

the program)

User"s Reference Guide

SCREEN subprogram
CALL SCREEN (color-code)

The SCREEN subprogram enhances the graphic capabi lit ies of the
TI computer by allowing you to change the screen color. The
standard screen co lor whi le a program is runni ng is light green
(color-code = 4).

The color-code is a numeric expression which, when evaluated . has
a va lue of 1 through 16. The table of the sixteen avai lable colors
and their codes is given below.

Color-code Color

1 Tra nsparent
2 Black
3 Medium G reen
4 Light Green
5 Dark Blue
6 Light Blue
7 Dark Red
8 Cyan
9 Medium Red

10 Light Red
11 Dark Yellow
12 Light Yellow
13 Dark G reen
14 Magenta
15 Gray
16 White

When the CALL SCREEN is performed . the entire screen
background changes to the color specified by the color"code. All
characters on the screen remain the same unless you have specifi ed
a transparent foreground or background color for them. In that
case , the screen color "shows through" the transparent foreground
or background.

The screen is set to cyan (code 8) when a program stops for a
breakpoint or terminates. If you CONTINUE a program after a
breakpoint. the screen is reset to the standard color (light green).

User 's Reference Guide

Examples:

>NEW

>100 CALL CLEAR
>110 INPUT "SCREEN COLOR? ": S
>120 INPUT "F OREGROUND?" :F
>130 INPUT " BACKGROUND? ": B
>140 CALL CLEA R
>150 CALL SCREEN{S)
>160 CALL COLOR(2 , F,B)
>170 CALL HCHAR(12,3 ,4 2,28)
>180 GOTO 110
>RUN

- - screen clears

SCREEN COLOR?7
FOREGROUND?'3
BACICGROUND?16

--screen clears

-- 28 dark - g r een aste r isks
with a white backg r ound on
a da r k- red screen

•••••••••••••••••• •••• ••••• •

SCREE N COLOR?

(press CLEAR to stop
the program)

11 ·75

CHAR subprogram
(Character definition)

CALL CHAR(char-code. "pattern-identifier ',)

The CHAR subprogram allows you to define your own special
graphics characters. You can redefine the s tandard set of characters
(ASCII codes 32-127) a nd establish additiona l cha racters with
codes 128-159 .

The char-code specifies the code of the character you wish to define
and must be a numeric expression with a value between 32 and
159, inclusive . If the character you are defining is in the range 128-
159 and there is insuffi cient free memory to define the character,
the program will terminate with a "MEMORY FULL" error.

The pattern-identifier is a 16-cha racter s tring expression which
specifies the pattern of the character you want to use in your
program . This string expression is a coded representation of the 64
dots which make up a character pos ition on the screen. These 64
dots comprise an B·by·S grid as shown below, greatly enlarged .

ROW I
ROW 2
ROW 3
ROW.
ROW 5
ROW 6
ROW 7
ROW S

LEFT RIGHT
BLOCKS BLOCKS

Each row is partitioned into two blocks of four dots each:

ANY ROW

11 ·76

LEFT
BLOCK

RIGHT
BLOCK

Examples:

>NEW

>100 CALL CL EAR
>11 0 CALL CHAR (3 3,"fFFFFFFFFF

FfFFFF ")
>12 0 CALL COLOR(1 , 9,6l
>1 30 CALL VCHAR <12 , 16,33l
> 14 0 GOT D 140
>RU N

--s crttn CltiHS

(Press CLEAR to Stop
the program)

•

User·s Reference Guide

CHAR subprogram

- Eac h character in the string expression describes the pattern of
dots in one block of a row. The rows are described from left to right
and from top to bottom. That is. the firs t two characters in the
string describe the pa ltern for row one of the dot-grid , the next two
describe row two, and so on .

Characters are created by turning some dots "on" and leaving
others ··off." The space character (code 32) is a character with all
the dots turned ~off . " Turning all the dots "on" produces a solid
block (.).

All the sta ndard characters are automatica lly set so that they turn
"on" the a ppropriate dots . To crea te a new character. you must tell
the computer what dots to turn on or leave off in each of the 16
blocks that con tain the character. In the computer a binary code is
used to specify what dots are on or off within a particular block .
However. a "shorthand" method called hexadecimal. made up of
num bers and letters. is used to control the on/ off condition. The
table that fo llows contains all the possible on/ off conditions for the
do ts within a given block and the hexadecimal notation for each
condition.

Binary Code Hexadecimal
Blocks (0 ; Off; I ; On) Code

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
01 10 6
0111 7
1000 8
1001 9
1010 A
1011 B
11 00 C
1101 D
1110 E
1111 F

N ote: The hexadecimal codes A. B. C. D. E and F mus t be
entered from the keyboard as upper·case characters ,

User's Rererence Guide 11 ·77

CHAR subprogram

To describe the dot pattern pictured below you would code this
string for CALL CHAR:

"1898FF3D3C3CE404"

ROW 1
ROW 2
ROW 3
ROW4
ROWS
ROW6
ROW 7
ROW8

LEFT
BLOCKS

RIGHT
BLOCKS

BLOCK
CODES

18
98
FF
3D
3C
3C
E4
04

If the s tring expression is less than 16 characters. the computer will
assume that the remaining characters are zero. If the s tring is
longer than 16 characters. the computer will ignore the excess.

Remember that CALL CHAR only defines a character. To display
the character on the screen you will need to use CALL HCHAR.
CALL VCHAR, PRINT, or DISPLAY. When CALL CHAR is
performed. any character already on the screen with the same
char'code is changed to the new c haracter.

11 ·78

Examples:

> NEW

> 100 CALL CLEAR
> 110 A~ · ~1898FF 3D3C3CE~04M

> 120 8$-M1819FFBC3C3C2720 M

> 130 CALL CHAR{ 128 , A$)

> 140 CAll CHAR (129.U)

> 150 CAll COLOR (9.7.I Z)

> 160 CAL L VCHAR{12 . 16 .1 28)

> 170 FOR DELAY - I TO 500

> 180 NEXT OELAY

> 190 CALL VCHAR (12 . 16.129)

> 200 FOR DELAY - I TO 500

> 210 NEXT OELAY

> 220 GOTO 140

> 230 ENO

> RUN

--s creen clears

-- character moves bdC~ and
f orth

(Press CLEAR 10 Sl Op

Ihe program)

> NEW

> 100 CALL CLEAR

> 110 CALL CHAR(128,M0103070Fl

F3F7FFF")

> 120 PR IN T CHR$ (128)

> 130 ENO

> RU N

- -screen c lears

** DO NE **

User's Reference Guide

CHAR subprogram

If a program stops for a breakpoint , those c haracters redefining
codes 32·127 are reset to their normal representation. Those
with codes 128·159 are unchanged. When the program ends
either normally or because of an error, all redefined characters
are reset a nd any c haracters assigned to codes 128·159 are reset
to be undefined .

User's Reference Guide

Examples:

> NEw

,. 100 CAl l CLEAR

> 110 CALL CHAR(128 . -FfFFFFFfF

FFFffFF-)

,. 120 CALL CHAR (42,*OFOfOFOFOF
Of OFOF M)

> 130 CA L L HCHAR (12 , 17 , 42)

> 140 CAL L HCHAR(14,17,128)

> 150 FOR DElA Y ~l to 350

,. 160 NEXT DELAY

,. 170 END

,. RUN

·- screen clea r s

** DONE *.

• •

• •

> CAl l HCHAR (24 , 5 . 42)

•

11 ·79

HCHAR subprogram
(Horizontal character repetition)

CALL HCHAR (row-number, column-number, char-code I,number-ofrepetitionsl)

The HCHAR subprogram places a character anywhere on the
screen and, opt ionally. repeats it horizonta lly. The row-number and
column-number locate the starting position on the screen. T he row
number, column-number. char'rode, and number-of-repetitions are
numeric expressions .

If the eva luation of any of the numeric expressions results in a non·
integer va lue, the resu lt is rounded to obtain an integer . The valid
ranges are given below:

Value

R ow-number
Column-number
Char-code
Number-of-repetitions

11 ·80

Range

1·24, inclusive
1·32. inclusive
0-32 767. inclusive
0·32767. inclusive

Examples:

>CALL CLEAR

-- screen clears

>CALl HCHAR(10,1,72,SO>

HHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHH HHHHH

>CAll HCHAR<10,1 , 72,SO>

>NEW

>100 CAl l CLEAR
>110 FOR Sz2 TO 16
>120 CALL COlOR(S,S,S>
>130 HE KT S
>14 0 CHR=40
>1S0 FOR X=8 TO 22
>160 CAll VCHAR(4,X,CHR,1S>
>170 CAll HCHAR(X -4, 8,CHR,1S>

>180 CHR:C HR+8
>190 NEKT X
>200 GOTO 14 0
> RUN

-- sc r een cLea r s

- - makes a pattern on the
sc reen using va r ious CO LORS

{Press CLEAR 10 SlOp

(he program)

User·s Reference Guide

HCHAR subprogram

A value of 1 for row-number indicates the top of the screen. A va lue
of 1 for colum n-number indicates the left side of the screen. The
screen can be thought of as a "grid" as shown here.

COLUMNS

2 4 () II 1U 12 \ 4 10 18 20 22 24 26 28 JO J2
I I J I 5 I 7 I <I I II I 13 115117 I \<1 I 21 12J I 251 27 I 2<1 I J I I

,-
J ,-
5

0 - ,
,-,

R ,"-

0 " w ,,-
S " ,, -

" ,,-
" ,,-
" ,"-

" 22 -
V ,,-

Because columns 1, 2, 31. and 32 may not show on your screen,
you may wa nt to use only colum n-numbers 3 through 30.

Although yo u may specify a va lue as la rge as 32767 for char-code.
the computer wi ll convert the va lue specified to a range of 0
through 255 . Character codes 32 through 127 are defined as the
s ta ndard ASCII character codes. Character codes 128 through
159 may be defined us ing the CHAR subp rogram . If you specify
an undefined character for char·code, you get whatever is in
memory at the time the HCHAR subprogram is called.

User·s Reference Guide

>C ALL HCHAR(24 . 14 . 29752)

8
>CAlL HCHAR(2 4, 14 , 35) ,
>C ALL HCHAR(24,14 , 132)

-- displayed ch a racte r depends

on what is in memory no w

11 ·81

HCHAR subprogram

To repeat the specified character. enter a value for the number-of
repetitions. The computer will display the character beginning a t
the specified sta rting position and continue on the left side of the
next line. If the bottom of the screen is reached. the display will
continue on the top line of the screen. You should use 768 for
number·of.repetitions to fill all 24 rows and 32 columns. Us ing a
num ber larger than 768 w ill unnecessarily extend the time required
to perform this s tatement.

11 ·82

Examples:

>NEW

> 100 (ALL CL EAR
> '1 0 FOR 1:9 TO 15
>120 CAL L HCH AR{ I,1 3, 36 , 6)
>13 0 NEX T 1
> 14 0 GO TD 14 0
>RUN

-- sc r een c l ear s

usus
sssns
USUS
susss
$SUSS
$Snss
usss s

(Press CLEAR 10 Sl OP

the progTam)

User"s Reference Guide

VCHAR subprogram
(Vertical character repetition)

CALL VCHAR (row-number. column-number. char-code I ,number-of-repetitionsl)

The VCHAR subprogram performs very much like the HCHAR Examples:
subprogram except that it repea ts characters vert ica lly ra ther than >CAlL CL EA R

horizonta lly. The computer wi ll display the character beginning a t
the specified position a nd continuing down the screen. If the bottom
of the screen is reached , the display will cont inue a t the top of the
next column to the r ight. If the right edge of the screen is reached.
tbe d isplay will continue a t the left edge. S ee the HCHAR
subprogram for more detai ls.

User's Reference Guide

-- $c r ~en cl ear s

>C ALL VCHAR(Z,1 0 , 86 ,1 3)

v
v
v
v
v
v
v
v
v
V

>C AlL VC HAR(Z,10 , 86 ,1 3)

>NEW

>100 CALL CLEAR
>11 0 FOR I;13 TO 18
>120 CALL VCHAR (9 , I,36,6)
>130 NEXT I
>140 GOT D 14 0
> RUN

-- sc reen cl ea rs

sssssss
SSSSSSS
SSSSSSS
sssnss
sssssss
SSSSSSS

(Press CLEAR to stop
the program)

11 ·83

SOUND subprogram
CALL SOUN D(duration. frequencyl , vo/umeJI ,frequency2. voJume2~, frequency3, vo}ume3U .frequency4, vo lume41)

The SOUN D subprogram tells the computer to produce tones of Examples:
di ffe rent frequencies. The values you include control three aspects >CAlL SOUND (100 , 294 , 2)

of the tone:

• duration - how long the tone lasts.
• freq uency - what tone actua lly plays.
• volume - how loud the tone is .

The duration, frequency. and volume are numeric expressions. If the
evalua tion of any of the numeric expressions results in a non·integer
value. the result is ro unded to obtai n an intege r. The valid ra nges
for each of these are given in the table and d iscussed fu r ther be low.

Value Range

duration

frequency

volume

Duration

1 to 4250, inclusive
- 1 to -4250. inclusive
(Tone) 11 0 to 44733. inclusive
(Noise) - I to - 8. inclusive
o (loudest) to 30 (quietest). inclusive

The duration you specify is measured in milli seconds . One second is
equal to 1000 mi lliseconds. T hus. the duration ranges from .001 to
4 .25 seconds . (T he actual du ration may vary as much as 1 160th of
a second.) The duration you specify applies to each sound generated
by a parti cular CAL~ SOUN D statement .

In a program. the computer continues performing program
sta tements while a sound is being played . When you call the
SOUND subprogram. the computer will wait until the previous
sound has been completed before performing the new CALL
SOUND s ta tement unless a nega tive duration is spec ified . If you
specify a nega tive du ration in the new CALL SOUND statement.
the previous sound is slopped and the new one is begun
immediate ly.

11·84

- - plays a single tone

>N EW

>100 TONE: 11 0
>110 FOR COU NT =' TO 10
>120 CAL L SOU ND(- 500 , TON E, 1)
>130 TONE =TO NE+ll0
>14 0 NEXT COU NT
>1 50 END
>IIU N

plays ten tones quick l y

•• DONE ••

>120 CALL SOUND(+500 , TONE,1'
>RU N

- - plays ten tones slowly

•• DO NE **

User's Reference Guide

SOUND subprogram

Frequency

The frequency you specify may be either a tone or a noise. The
tones. measured in Hertz (one cycle per second . IHzl). can be
speci fied from a low-pitch of 110 Hz to a high pitch o f 44733 Hz.
well above human hearing limits. (The actual frequency produced
may vary from zero to ten percent depending on the
frequency.} The freque ncies for some commo n musica l notes are
given in the Appendix.

If a negative va lue for frequency is specified. a noise. ra ther than a
tone. is produced . The noise is either "white noise" or "periodic
noise ," The noise assoc iated with each value is given in the table
be low. S ince it is difficult to describe the difference between noises.
you can tryout the different noises yourse lf to become familiar with
each one.

F requency
Value

- \

- 2
-3
-4

- 5
- -6
-7
-8

Noise Characteristics

Characteristi c

"Periodic Noise" Type 1
"Periodic Noise" Type 2
"Periodic Noise" Type 3
"Periodic Noise" that varies w ith the

frequency of the third tone specified
"White Noise" Type 1
"White Noise" Type 2
"White Noise" Type 3
"White Noise" that varies with the

frequency of the third tone spec ified

A maximum of three tones and one noise can be ac ti vated
simulta neously. For each tone or noise specified . its volume must
be indica ted immediately following the tone or noise.

User's Reference Guide

Examples:

>tA LL SOUHD(1 000 ,4 40 , Z)

- - p lays a single t one

>tALl SOU HD(SOO, - 1, 2)

--pl a ys a single noise

>HEW

>10 0 FOR HOISE: - l TO - 8 STEP
-1

>11 0 t ALL SOUND (1000 ,N OISE, 2)

>120 NEX T NOI SE
>130 END
>RUN

--a ll 8 d i ff ere n t noises
are ge ne r a t ed

.... DONE ""'"

>tAL L SOUHD (2000 ,-3, 5)

--pl a ys a s ingle no i se

>C ALL SOU ND(2500 ,4 40,2 , 65 9 ,S ,
8 80 , 10 ,- 6 , 15)

--plays 3 tones and 1 noise

>DUR=2S00
>VOl:2
>(:262
>E=330
>G =392
>(Al L SOU NDCDUR , (, VOl , E, VOl,G

• vOL>

--p r od u c e s a (- major chord

11 -85

GCHAR subprogram
(Get character)

CALL GCHAR (ro w-number,co!umn-number,numeric-variable)

The GCHAR subprogram a llows yo u to read a character from
anywhere on the display screen. The position of the character you
want is described by row-number a nd column-number. The
computer puts the ASCII numeric code of the requested
character into the numeric-variable you specify in the CALL
GCHAR statement.

The row-number and column-number are numeric express ions. If
the evaluation of the numeric expressions results in a non-integer
va lue. the result is rounded to obtain an integer. A value of 1 for
row-number indicates the top of the screen. A value of 1 for column
number specifies the left side of the screen. The screen can be
thought of as a "grid" as shown here.

COLUMNS

2 4 /) t'I IU 12 14 16 18 20 12 24 20 28 30 32
I I J I s I 7 I Q 111 I \J 115117 I IQ I 2111) I 25 127 1 1Q 1 31 I

,
2-

J .-,
,-,
8-

0

R w-
0 "
W ,,-
5 " ,,-

" >0-

" ,,-
'" ,"-

" >2-
2J

2' -

11 ·86

Examples:

)NE W

> 100 CALL CLEAR
>11 0 CALL HCHAR(1 , 1,36 ,7 68)
>120 CALL GCHAR(5,10,Xl
>130 CALL CLEAR
>140 PRINT X
>1 50 END
>RUN

--screen cl ears

--screen fills with $SS
(code 36)

-- screen clea r s

"
*. DONE *.

Users Reference Guide

KEY subprogram
CALL KEY (key-unit. return-variable, status-variable)

The KEY subprogram a llows you to transfer one character from
the keyboard directly to yOUf program. This e liminates the need for
an INPUT statement and saves time in getting data from a single
key into memory. Because the character represented by the key
pressed is not displayed on the screen, the information already on
the sc reen is not distu rbed by performing the CALL KEY
statement . The key-unit, which indicates which keyboard is the
input dev ice. is a numeric expression which. when eva luated , has a
va lue 0 through 5, as shown below:

. 0 ::::: console keyboard. in mode previous ly specified by
CALL KE Y

• 1 ::::: left s ide of console keyboard or remote control 1
• 2 ::::: righ t s ide of console keyboard or remote control 2
. 3. 4 ,5 = spec ific modes for console keyboard

A key· unit of 0 remaps the keyboard in whatever mode was
specified in the previous CALL KEY program line.

Keyunits of 1 a nd 2 are used for a split-keyboard scan. when you
want to separate the console keyboard into two smaller duplicate
keyboards or when you are using the remote controller
fi rebuttons as input devices.

Speci fyi ng 3. 4. or 5 as key-unit maps the k eyboard to a
particular mode of operation. The k eyboard mode you specify
determines the character codes returned by certai n keys.

A key unit of 3 places the computer in the s tandard TI -99/ 4
keyboard mode. (Most Command Module software uses th is
mode .) In th is mode. both upper- and lower·case alpha betical
characters are returned by the computer as upper-case only. and
the function keys (BACK,BROIN,CLRAR, etc .) return codes 1
through 15 . No control characters are active .

A k eyunit of 4 remaps the keyboard in the Pascal mode. Here.
both upper- and lower-case alphabetica l character codes are
returned by the computer. a nd the funct ion keys return codes
ranging from 129 through 143 . The control character codes are 1
through 31.

A key·unit of 5 places the keyboard in the BASIC mode. Both
upper- and lower-case a lpha betical character codes are returned
by the computer. The function key codes are 1 through 15 . and
the contro l key codes are 128 through 159 (and 187).

User's Reference Guide

Examples:

I1 -S?

KEY subprogram

The return-variable must be a numeric variab le . The computer will
place in return' variable the numeric character code represented by
the key pressed. If the unit used is the console keyboard (unit 0).
the character codes are the norma l ASCII codes a nd may range
from 0-127. If you are using the spl it keyboard (unit 1 a nd/ or
unit 2), the c haracter codes will be 0 through 19.

The sta tus-variable is a numeric variable which serves as an
indicator to le t you know what happened at the keyboard . The
computer will re turn one of the following codes to the status'
variable after perform ing the CALL KEY rou tine:

• + 1 = a new key was pressed since the las t performance
of the CALL KEY rou tine

• - 1 = the same k ey was pressed during the perfo rmance
of CALL KEY as was pressed during the previous
performance

• 0 = no key was pressed

You can then check th is status indica tor in your program to
determine what action to take next. as shown in li ne 11 0 of the
program on the right. Line t l O is a test that gives you time to
find and press a different key before the computer continues on to
the next s ta tement.

The fo llowing diagrams illus trate the control and function key
codes returned in the various k eyboard modes .

, w

" •
• s , •

SI-Iln , •
" •

"-~.
coc, "'"

11·88

,
•

SPACE

FiAure 1. Split Keyboard Scan,
Codes returned = 0 through 19,

,
"

;

"

"

-
I

"
HUEI'!

'""'
FCl N

>NEW

>100 CAL L KEY(O , KEY , STATUS)
>110 IF STATUS=O THEN 100
>120 NOTE= KEY - 64
>130 ON Ha TE GOTO 250,270,150

, 170,190,210,230
>140 GOTO 100
>150 NOTE=262
>160 GOTO 280
>170 NOTE=294
>180 GOTO 280
>190 NOTE : 330
>200 GO TO 280
>2 10 NOTE ::E 349
>220 GO TO 280
>230 ND TE ::392
>240 GOTD 280
>250 NOTE z 44 0
>260 GO TD 280
>270 NOTE: 494
>280 CAL L SOuNO{100 ,N DTE,2)
>290 GO TO 100
>RU N

--plays a different no te on
tne scale as you press
tne c o rrespo nd i ng key (A - G)

(Press CUAR to StOP
thc program)

User's Reference Guide

KEY subprogram

--. , • , ,
" "

, • "
, , , , • , , , , , a -

" a w • , , ,
"

, 0 , /

• , " , , 0 , , H "
, C , ENTER

'" I I I I I SHIFT l , , , , N M SH iFf

ALPHA

coc' CTRl SPACE FeTN

FiAur e 2. Standard Tl·99/ 4 Keyboard Scan.
Kerunit = 3 . Both upper- and lower-case

alphabetical characters returned as upper-case.
Function codes = 1 through 15 .

No control characters active.

'" '" '" '" , .. ". '" '" '" '" , , , , , , , , , a -,. " ..
'" a w • , , ,

"
, 0 , /

" " • " •• n " • " "
'" '" '" , s a , , H "

, C , €N1HI -- ,
"

, • , • '" " " ..
SHIFT , '!. I , I , I , I N I M I I SHIFT -.. .. , .. • " "

.,
ALPHA
coc, CTRl SPACE FeTN

Figure 3. Pascal Keyboard Scan.
KeY'unit = 4. Upper- and lower-case characters active.

Function codes = 129 through 143.
Control character codes = 1 through 3 1.

, • , • " "
, • "

, , , , • , , , , , a -
'" '" '"

" 0 w • , , ,
"

, 0 , /

'" '" '" ". ". '" '" '" , .. ". ",
• , " • s a , , H "

, C ENTER

'" '" '" '" '" '" '" '" ". '"
" SHIFT l , , , ,

N M ~IFT

'" '" '" ' " no , .. '" '" '"
ALPHA
coc, cr" SPACE FCTN

Figure 4. BASIC Keyboard Scan.
Keyunit = 5 . Upper- and lower-case charac ters act ive.

Function codes = I through 15 .
Control c haracter codes = 128 through 159, 187.

User's Reference Guide 11 ·89

JOYST Subprogram
CALL JOYST (key- unit.x-return,y-return)

The JOYST s ubprogram a llows you to input information to the
computer based on the position of the lever on the Wired Remote
Controllers accessory (available separately).

The key-unit is a numeric expression which. when evaluated. has a
va lue of 1 through 4.

• 1 -controller 1
• 2 =controller 2
• 3. 4 . a nd 5 - specifi c modes for console keyboard

Specifying a key-unit of 3. 4. or 5 maps the console keyboard to a
particular mode of operation, as explained in the "KEY
subprogram" section . If k ey- unit has a value of 3, 4, or 5, the
computer will not properly detect input from the remote
controll ers .

Numeric variables must be used for x -return and y-return. The
subprogram assigns an integer value of - 4 , +4 . or 0 to each of
these variables. based on the posit ion of the joystick at that ti me. as
shown below. The first value in parentheses is x-return and the
second value is y return.

(-4.4)

(-4.0)

(- 4. - 4)

(0.4)

y

(0.0)

•

(0. -4)

(4.4)

(4.0)

(4 . -4)

You may then use these va lues in your program by referring to the
va riable names.

You will find more detailed instructions in the manual enclosed with
the optional remote controls.

11 ·90

>NE W

>100 CALL CLEAR
>11 0 CA LL CHAR(42,"FFFFFFFFFF

FFFFfF")
>12 0 INPUT "SCREEN COLOR?":S
>13 0 INPUT "BLOCK COLOR?":f
>140 CAlL CLEAR
>150 CALL SCREE N(S)
>160 CAL L COLOR(2 , F,1)
>170 CALL JOYST(Z , X,Y)
>180 A%x*2 . Z+1 6 . 6
>190 B:Y *1 . 6 +1 2 . Z
>200 CALL HCHAR(B,A,42)
>2 10 GOTO 170
>RU N

--screen cLears

SCREEN COLOR? 14
BLOCK COLOR?9

--screen cLears

--c olor block will ~ove
around screen as joystick
controLler ;s Moved

(pre;ss CLUA 10 S lOp

the program)

User's Reference Guide

Built-In Numeric Functions
Introduction

Many specia l.purpose functions a re built into TI BASIC. The
functions described in this section perform some of the frequently
used arithmetic operations. Obtaining the equiva lent results for
these functions requires a lot of programming in BASIC . Thus, they
have been built in to TI BASIC and made easy for you to use. Built
in functions which a re used with strings are discussed in the ··Built
In String Functions" section . In addition to the built-in functions .
you can also define yo ur own functions (see ··User-Defined
F unctions.'l

User's Reference Guide 11-91

ABS - Absolute Value
ABS(numeric·expression)

The a bsolute va lue function gives you the absolute va lue of the
argument. The argument is the value obtained when the numeric'
expression is eva lua ted . The normal rules for evaluating numeric
expressions (see "Numeric Expressions') a re used here. If the
argument is pos itive. then the absolute value function gives you
the argument itself. If the argument is negative. the absolute
va lue function gives yo u the negative of the argument. Thus. fo r
an argument . X:

• II X 2: 0. ABS(X) -X
• IIX < O. ABS(X) --X

(e.g .. ABS(-3) - -(-3) - 3)

ATN - Arctangent
ATN(numeric'expression)

The arcta ngent function gives you the arctangent of the argume nt .
The a rgument is the va lue obtained when the numeric-expression is
evaluated . The norma l rules for evaluating numeric expressions
are used here. Thus . ATN(x) gives you the angle (in radians)
whose tangent is x. If you wa nt to get the equiva lent angle in
degrees. you need to multiply the answer you get by (1801
4· ATN(1))) or 57 .29577951 3079 which is 180 /-,;'. The value
given for the arc ta ngent function is a lways in the ra nge - 'fT1
2<ATN(x) < ~/2 .

11 ·92

Examples:

>NEW

>100 A;-27.36
>110 8;9.7
>120 PRINT A8S (A) ;A8S (8)
>130 PRINT A8 S (3 . 8);A8 S (-4 . 5)

>14 0 PRINT A8S (-3-2)
>150 PRINT A8 S(A-(8 - 3.2 »
>160 END
>R UN

2 7 . 36 9. 7
3.8 4. 5
6
177 • 84

-- DONE --

>N EW

>100 PRINT ATN(.44)
>110 PRINT ATN (1 E127)
>120 PRINT ATN(1E-12 9) ;ATN (0)

>130 PRINT ATN(. 3)-57.2957795
13079

>140 PRINT AT N(. 3) -(18 0f(4- AT
NO»)

>150 END
>RUN

.414 50 6874 6
1.57 07 96 32 7
o 0
16 . 699244 23
16.699 2442 3

*. DONE --

User's Reference Guide

cos - Cosine
COS(numeric'expression)

The cos ine function gives yo u the cosine of the argument. x, where
x is an angle in radians. The argument is the value obtained when
the numeric-expression is eva luated. The normal rules for
evaluating numeric expressions are used here. If the angle
is in degrees, multip ly the degrees by 71"/ 180 to get the
equivalent angle in radians . You may use (4 *ATN(1)) / 180 or
0.01745329251994 for '1T/ 180. Note that if you enter a value of x
where \ x I ;?: 1.5707963266375.10 10

, the message "BAD
ARGUMENT' is displayed and the program stops running.

EXP - Exponential
EXP(numeric-expression)

The exponential function gives you the value of e' , where
e =2 .718281828. The argument. x, is the value obtained when the
numeric-expression is evaluated. The normal rules for the
evaluation of numeric expressions are used here. The
exponent ia l function is the inverse of the natural logarithm function
(LOG) . Thus. X ~ EXP (LOG(X» .

User·s Reference Guide

Examples:

>N EW

>100 A=1.047197551196
>110 S=60
>120 (=.01745329251994
>130 PRINT COS(A) ;C OS(S-C)
>140 PRINT COS(S-(4-ATN(1»/1
8"

>150 END
>RUN

. 5 .5

. 5

__ DONE --

>PRINT COS(2 . 2E11)

* SAD ARGUI1ENT

>NEW

>100 A:3.79
>110 PRINT EXP(A);EXP(9)
>120 PRINT EXP(A*2)
>130 PRINT EXP(LOG(2»
>140 END
>RUN

44.25640028 8103 . 083928
1958.628965 ,

__ DONE ••

11'93

INT - Integer
INT(numer;c·express;on)

The integer function gives you the largest integer that is not greater
than the argument. The argument is the va lue obtained when the
numeric·expression is eva luated . The normal rules for evaluati ng
numeric expressions are used here. The integer function
a lways gives you the closest integer wh ich is to the left of the
number specified on the number line. Thus. for positive numbers.
the decimal portion is dropped: for nega tive numbers. the next
smallest integer va lue is used (i .e .. INT(- 2.3)= -3). If you specify
an integer. then the same integer is given .

Examples:

>N EW

>100 8: . 678
>110 A:INT<8*100+ . S)/ 100
>120 PRINT A;INT(S)
>130 PRINT I HT (-2.3);lNT CZ . Z)

>140 STOP
>RUN

. 68 0
- , 2

•• OONE **

LOG - Natural Logarithm
LOG (numeric-expression)

The natura l logarithm function gives you the natural logarithm of
the number spec ified by the argument. The argument is the value
obtained when the numeric-express ion is evaluated . The normal
rules for the eva luation of numeric express ions are used here.
The natural logarithm of x is us ually shown as: logl~x). The
logarithm function is the inverse of the exponentia l function
(EXP) . Thus. X ~ LOG(EXP(X)).

The argument of the natural logarithm funct ion must be grea ter
than zero. If you specify a value for the argument which is less than
or equal to zero, the message "BAD ARGUMEN T' is displayed,
and the program stops running.

If yOll want to fi nd the logarithm of a number in another base. B.
use this formu la.

log,(X) ~ log.(X)/ log.(B)

F or example. log,J3) ~ log.(3)/ log.(1 0)

>NEW

>100 A=3. 5
>110 PRINT LOGCA);LOGCA*Z)
>1 20 PRINT LOGCEXP(Z»
>130 STOP
>RUN

1.2 52762968 1.94591 0149
2.

•• DONE .*

>PR INT LOG(-3)

.. BAD ARGUMENT

>P RJNT LOG(3)/LOG(10)
. 4 77 1 21 2547

User's Reference Guide

RANDOMIZE Statement
RANDOMIZE Iseedl

The RANDOMIZE statement is used in conjunction with the
random number function (RND). When the RANDOMIZE
statement is not used. the random number function will generate
the same sequence of pseudo-random numbers each time the
program is run . When the RANDOMIZE sta tement is used without
a seed, a different and unpredictab le sequence of ra ndom numbers
is genera ted by the random number function each time the program
is run . If you use the RANDOMIZE statement with a seed
specified. then the sequence of random numbers genera ted by the
random number function depends upon the va lue of the seed. If the
same seed is used each time the program is run. then the same
sequence of numbers is generated. If a d ifferent seed is used each
time the program is run , then a different sequence of numbers is
generated . The seed may be any numeric expression. The number
actua lly used for the seed is the fi rs t two bytes of the internal
representation of the number . (See "Accuracy Information" in the
Appendix for a complete explanation.) Thus. it is possible tha t
the same sequence of numbers may be generated even if you
specify different seeds. For example, RANDOM IZE 1000 a nd
RANDOMIZE 1099 produce the same first two bytes internally
and thus the same sequence of numbers. If the seed yo u specify is
no t an integer. then the va lue used is INT (seed) (see " I NT
Integer").

User's Reference Guide

Examples:

>NEW

>100 RAN OO"lZE 23
>110 FOR 1=1 TO 5
>120 PRIN T INT(10*RNO) t l
>130 NEXT I
>14 0 STOP
>RU N

6
4
3
8
8

** OONE ••

11 -95

RND - Random Number
RND

The random number function gives you the next pseudo-random
num ber in the current sequence of pseudo-random numbers . The
random number generated wi ll be greater than or equal to zero and
less than one. The sequence of random numbers generated by the
random number function is the same every time the program is ru n
unless the RANDOMIZE statement appears in the program .

If you wish to obtain random integers between two va lues A and B
(A < B). inclusive. use this formula:

INT((B -A + \)*RND) +A

11 ·96

Examples:

>NEW

>100 FOR 1:1 TO 5
>1' 0 PRINT INT(lO*RND)+'
>120 NEXT I
>130 END
>RUN

6
4
6
4
3

•• DONE ••

>NE W

>100 REM RANDOM INTEGERS
BETWEEN 1 AND 20,INCLUSIVE

>1 10 FOR 1: 1 TO 5
>120 C:INT(20*RND)+'
>130 PRINT C
>140 NEXT 1
>150 END
>RU N

" 8

" 8
6

** DONE ••

User's Reference Guide

SGN - Signum (Sign)
SGN(numeric·expression)

The signum function gives yOll the algebraic sign of the va lue
spec ified by the argument. The argument is the value obtained
when the numeric-expression is eva luated. The normal ru les for the
evaluat ion of numeric expressions are used here. The signum
function gives different va lues depending on the va lue of the
argument. These val ues are given here. For a rgument. X:

. X < O, SGN(X)--1
• X -0, SGN(X)-O
• X > 0, SGN(X)-1

SIN - Sine
SIN (numeric-expression)

The sine function gives you the s ine of the argument. x. where x is
an angle in radians. The argument is the value obta ined when the
numeric-expression is eva luated. The norma l rules for evalua ting
numeric expressions are used here. If the angle is in
degrees. simply multip ly the degrees by '1T/ 180 to get the equivalent
angle in rad ians. You may use (4 ·ATN(1)) / 180 or
0 .01745329251944 for '1T1180. Note tha t if you enter a va lue of x
where I x I > 1.5707963266375· 10 lo

, the message ""BAD
ARGUMENT' is displayed a nd the program stops running.

User's Reference Guide

Examples:

>N EW

>100 A=-23.7
>1 10 8 =6
>120 PRINT SGN{A);SGN{O);SGN(

" >130 PRINT SGN(- 3*3);SGN(B * 2)

>140 EN D
>RUN

-1 0
-1 1

>NEW

>100 A=.5235987755982
>1 TO 8=30
>120 C= . 01745329251994
>130 PRINT SIN{A);SIN(8 * C)
>140 PRINT SIN(8*(4*ATN{1l)/1
80)

>150 END
>RUN

. 5 .5
, 5

** DONE **

>PRINT SIN<1.9E12>

* BAD ARGUMENT

11 ·97

SQR - Square Root Function
SQR(numeric-expression)

The square roo t function gives you the posit ive square root of the
value specified by the argument. The argument is the value
obtained when the numeric-expression is evaluated . The normal
ru les for the eva luation of numeric expressions are used
here. SQR(x) is equiva lent to x A(I I2). The va lue spec ified by the
a rgument may not be negative . I f you specify a va lue for the
argument which is less than zero. then the message "BAD
ARGUMENT' is d isp layed and the program stops funning.

TAN - Tangent
TAN(numeric·expression)

The tangent function gives you the tangent of the argument. x.
where x is an a ngle in radians. The argument is the va lue obtained
when the numeric-expression is evaluated. The normal ru les for
eva luating numeric expressions are used here. If the a ngle
is in degrees, multiply the degrees by 'IT/ I SO to get the
equivalent angle in radia ns. You may use (4 *ATN (I)) / I SO or
0.01745329251994 for 'lTI I SO. Note that if you enter a va lue of x
where I x I > 1.5707963266375 *10'°, the message "BAD
ARGUMENT' is displayed a nd the program stops running,

11·98

Examples:

>NEW

>100 PRINT SQR(4);4 A(1/2)
>110 PRINT SQR(10)
>120 END
>RU N , ,

3 . 16227766

** DONE **

>PRIN T SQR(- 5)

* BAD ARGUMENT

>NEW

>100 A: . 785398 1633973
>110 B=45
>120 (: . 0 174 5329251994
>130 PRI NT TAN(A);TAN(B*C)
>14 0 PRINT TA NCB * C4 *ATN (1»/ 1
8.)

>150 END
>RUN

1. 1.
1

** DOHE **

>P RINT TAH(1. 76 El0)

* BAD ARGUMENT

User's Reference Guide

Built-In String Functions
Introduction

In addit ion to the built-in numeric functions. many other functions
are built into TI BASIC . The functions discussed in this section are
ca lled string functions . String functions either use a string in some
way to produce a numeric result. or the resu lt of the evaluat ion of
the function is a string. As you use your computer. you will find
many ways to use the s tring functions described here. You can also
define your own string functions (see "User-Defined Functions").
Note that any string function with a name that ends with a dollar
sign (e .g. CHR$) always gives a string result and cannot be used
In numeric expresSIOns.

User's Reference Guide 11-99

ASC - ASCII Value
ASC(string-expression)

The ASCII va lue funct ion will give you the ASCII character code
which corresponds to the first character of the string specified by
the string-expression. A list of the ASCII character codes for
each c haracter in the standard character set is given in the
Appendix .

CHR$ - Character
CHR$(numeric-expression)

The character function gives you the character corresponding to the
ASCII character code specified in the argument. The argument is
the value obtained when the numeric-expression is eva luated. The
normal rules for the evaluation of numeric expressions are used
here. If the argument spec ified is not an integer. it is rounded to
obtain an integer. A list of the ASe II character codes for each
character in the s tandard character set is given in the Appendix .
If the argument specified is a va lue between 32 and 127.
inclus ive . a s tandard character is given. If the argument specified
is between 128 and 159. inclusive. and a spec ia l graphics
character has been defined for that value . the graphics character
is given. If you speci fy an argu ment which designates an
undefined c harac ter (i.e .. no t a standard c haracter or a defined
graphics character). then the c haracter given is whatever is in
memo ry at that time.

If you specify a va lue for the argument which is less than zero or
greater than 32767. the message "BAD VALUE" is displayed . and
the program stops running.

11-1 00

Examples:

>NEW

>100 A$="HELLO"
>110 (S:"JACK SPIIAT"
>120 C=ASC(CS)
>130 8S="THE ASC J 1 VALUE OF "

>140 PII I NT 8$;"H I S";ASC (AS)
>150 PIiINT B$; "J 1 S"; (
>160 PIiINT BS;"N IS";AS("N AI1

E")
>170 PII I NT BS; "1 IS";ASC("l")

>180 PIiINT CHRS(ASC(AS1)
>190 END
>RUN

THE AS C 11 VALUE OF N IS 72
THE ASC 11 VALUE OF J IS 74
THE AS (II VALUE OF N I S 78
THE ASC 11 VALUE OF 1 IS 49
N

•• DONE ••

>NEW

>100 AS=CHIIS (7Z) &CHRS (73)&C HII
S (3)

>110 PIiINT AS
>120 (ALL CHAII(97,"0103070F1F

3F7FFF")
>130 PRINT (HIIS(321;CHRS(971
>140 PRINT (HIIS(3*14)
>1 50 PRINT (HIIS (ASC("."))
>160 END
>IIU N

HI !

•
•
•• DONE ••

>PIII NT CHR S (330 101

• BAD VALUE

User's Reference Guide

LEN - Length
LEN (string-expression)

The length function gives you the number of characters in the s tring
specified by the argument. The argument is the string value
obtained when the string-expression is eva luated. The normal rules
for the eva luat ion of string expressions are used here. The length
of a null s tring is zero. Remember that a space is a character and
counts as part of the length .

POS - Position
POS(string-' ,string-2,numeric-expression)

The position function finds the first occurrence of string-) within
string-I. Both s tring-] and string-) are string expressions. The
numeric-expression is evaluated and rounded. if necessary. to
obtain an integer. n. The normal rules for the evaluation of string
expressions and numeric expressions are used here. The search
fo r string'2 begins at the nth character of string·l. If string'2 is
found , the character position within string·l of the first character
of string-2 is given. If string·2 is not found , a value of zero is
given. The position of the first character in s tring·l is posit ion
one. If you specify a va lue for n which is greater than the number
of chMacters in string· I, a value of zero is given. If the value
specified for n is less than zero, the message "BAD VALUE" is
displayed and the program stops running .

User's Reference Guide

Examples:

>NEW

>100 NAMES-"CATHY"
>110 CI TYS-"NEW YORK"
>120 MSGS-"HELLO "&"THERE!"
>130 PRINT NAMES;LEN(NAMES)
>140 PRINT CITYS;LEN(CITYS)
>150 PRINT MSGS;LEN(MSGS)
>160 PRINT LEN(NAMES& CITYS)
>170 PRINT LEN("HI !")
>180 STOP
>RUN

CATHY 5
NEW YORK 8
HELLO THERE! 12

13 ,
** DONE **

>NEW

>100 MSGS-"HELLO THERE! HOW A
RE YOU'?"

>110 PRINT "H";POS(MSGS,"H",1
)

>120 CS::"RE"
>130 PRINT CS;POS(MSGS,CS,l);

POS(MSGS,CS,12)
>140 PRINT "HI";POS(MSGS,"HI"

,1)
>150 END
>RUN

H 1
RE 10 19
HI 0

** DONE **

lI -tOI

SEG$ - String Segment
SEG $(s tring-cxpression, numeric-expression) ,numeric-expression2)

The string segment function gives you a portion (substring) of the
string designated by the string-expression. Numeric-expression}
identifies the position of the character in the original string which is
the fi rst character of the substring. The position of the first
character in the string specified is position one. The length of the
substring is specified by numeric-expression). The normal rules for
the evaluation of numeric expressions a nd s tring expressions are
used here.

For this discussion. A$ is used for string-expression, X is used for
numeric-expression! and Y is used for numeric·expression2. If yo u
specify a value for X which is greater than the length of AS (l ine
11 0) or a va lue of zero for Y (line 120). then you are given the null
s tring. If you specify a va lue for Y which is greater than the
remaining length in A$ starting at the position specified by X (line
130), then you are given the rest of AS sta rting at the position
specified by X .

If you specify a value for X which is less than or equa l to zero and/
or specify a va lue for Y which is less than zero, then the message
"BAD VALUE" is displayed and the program stops running.

11-1 02

Examples:

>NEW

>100 MSGS:"HEL lO THE RE! HO W A
RE YOU? "

>11 0 REM SU BSTRIN G BE GIN S IN
POS ITION 14 AND HA S A LEN GTH

OF 12 .
>120 PRINT SEG S (MSG S,14,1 2)
>130 END
> RUN

HOW ARE YOU?

•• OONE ••

>NEW

>100 MSGS:"I AM A CO MPU TER . "
>11 0 PR IN T SEGS(MSGS, 20 ,1)
>120 PR I NT SEGS (MSG S,1 0 , 0)
>130 PR INT SEG S (MS GS, 8, 20)
>14 0 EN D
>RU N

COMPUTER •

•• DO NE ••

>PRINT SEG S(MSGS , -1,1 0>

• BAD VALU E

User's Reference Guide

STR$ - String-Number
STR$(numeric-express ion)

The string- number function converts the number speci fied by the
argument into a string. The argument is the value obtained when
the numeric-expression is eva luated . The norma l rules for the
evaluation of numeric expressions are used here. When
the num ber is converted into a s tring. the string is a va lid
represen tat ion of a numeric constant with no leading or trailing
spaces. For example. if B =69.5 . then STR$ (8) is the s tring "69.5,"
Only string operat ions may be performed on the s trings crea ted
using the s tring·number function . The str ing·number function is the
inverse of the va lue funct ion (VAL): see below. In the example.
note that leading and trailing spaces a re not present on the numbers
converted to strings.

VAL - Value
VAL(string·expression)

T he va lue function is the inverse of the s tring·number function
(STR$): see above. If the string specified by the string·
expression is a valid representation of a numeric constant, then the
value function converts the string to a numeric constant. For
example, if A$ =" 1234", then VAL(A$) = 1234 . The normal rul es
for the evaluation of s tring expressions are used here. If the
s tring spec ified is not a valid representation of a number or if
the s tring is of zero length , the message "BAD ARGUMENT"
is disp layed and the program stops running. If you speci fy a s tring
which is longer than 254 cha racters, the message "BAD
ARGUMENT " is disp layed and the program stops running.

User's Reference Guide

Examples:

>NEW

>100 A= - 26 .3
>11 0 PRINT STRS(A);" ";A
>120 PRINT 15 . 7;STRS(15.7)
>130 PRINT STR S(VAl ("34 . 8"»
>140 END
>RU N

- 26 . 3 - 26 . 3
15.7 15.7

34. 8

** DONE **

>NEW

>100 PS="23.6 "
>1 10 NS="-4 . 7"
>120 PRINT VAl(PS);VAL(NS)
>130 PRINT VAL(" 52"&" . 5")
>14 0 PRINT VAL(NS&"E"g " 12 ")
>150 PRINT STRS(VAL(PS»
>160 END
>RUN

23.6 -4 . 7
52 . 5

-4.7E+12
23 . 6

** DO NE **

11-1 03

User-Defined Functions
Introduction

In addition to the built-in functions described in the two previous
sections. TI BASIC provides user -defined functions. User-defined
functions can simplify programming by avoiding repeated use of
complicated expressions . Once a function has been defined using
the DEF statement. it may be used anywhere in the program by
referenc ing the name you gave to the function.

11 -104 User's Reference Guide

DEFine
{

numeric-function-name [(parameter)1 = numeric-expression }
DEF . ,. I')1 · . sirIng'JunctlOn-name lparameter = sfnng-expresslon

The DEFine s tatement a llows you to define your own functions to
use wi thin a program. The {unction-name you specify may be any
va lid variable name. If you specify a parameter following the
function-name. the parameter must be enclosed in pare ntheses
and may be any va lid va riable na me. Note that if the expression
you specify evaluates to a str ing result. the (unction-name you use
must be string variable name (i .e .. the last character mllst be a
dollar s ign. $).

The DEFine statement specifies the function to be used based upon
the parameter (if specified), variab les. constan ts, and other built-in
functions. Once a function has been defined , you may use the
function in any string or numeric expression by entering the
function-name. The function-name must be followed by an argument
enclosed in parentheses if a parameter was specified in the DEF
sta tement. If a function has no parameter specified. when a
reference to the function is encountered in an express ion. the
function is eva lua ted using the current values of the variables which
a ppea r in the DEF statement .

If you specify a parameter for a funct ion , when a reference to the
function is encountered in an expression. the argument is evaluated
a nd its value is assigned to the parameter. The expression in the
DEF statement is then eva luated using the newly assigned value of
the parameter and the current va lues of the other variables in the
DEF statement .

User·s Reference Guide

Examples:

>HEW

>100 DEF Pl=4*A TN(1l
>110 PRINT COS(60*Pl/180l
>120 END
> RUN

.5

** DONE **

>NEW

> 1 00 RE" EVAlUA TE y=x*(x - 3>
>110 '" Y=X*CX-3l
>120 PRINT .,

X y"
>130 ,0. x= - 2 TO 5
> 140 PRINT X;Y
>150 NEXT X
>160 'NO
>RU N

x y -, 10 -, 4
0 , , -, , -, , 0
4 4
5 10 .. DO NE ••

>NEW

>100 REM TAKE A NAME AND
PRINT IT BACKWARDS

>110 DEF BACKS(Xl=SEGS(NAMES ,
x, 1)

>120 INPUT "NAME? ":NAMES
>130 fOR I=lEN(NAMES) TO 1 ST

EP -1
>140 BNAMES=BNAMES&BACKS(I)
>150 NExt I
>160 PRINT NAMES: BNAMES
>170 END
>RUN

NAME? ROBOT
ROBOT
TOBOR

** DONE * *

IH 05

DEF

The parameter used in the DEF statement is local to the OEF
s ta tement in which it is used. This means that it is distinct from any
variable wi th the same name which is used in other statements in
the program. T hus. evaluating the function does not affect the value
of a variable which has the same name as the parameter.

A DEF sta tement is only performed when the function it defines is
referenced in an expression. When the computer encounters a DEF
statement while runn ing a program. it takes no action but proceeds
to the next statement. A DEF sta tement may appear anywhere in a
program and need not logically precede a reference to the func tion,
but the function definit ion must have a lower line num ber than any
sta tement which references the function. A DEF sta tement can
reference other defined functions (line 170).

In a DEF statement, the function you specify may not reference
itself either di rectly (e.g. DEF 8 - 8*2) or indirect ly (e.g. DEF
F =G : DEF G - F). The parameter you specify may not be used as
an array . You can use an array element in a func tion definition as
long as the array does not have the same name as the parameter.

11 ,106

Examples:

>NEW

>1 00 OE f FU NC(A) :A* (A+B - 5)
>1 10 A:6 . 9
>1 20 B~ 13
>1 30 PRINT " B: " ;B :"F UNC(3):

" ; FU NC(3):" A: " ; A
>14 0 ENO
>RU N

B" 1 3
FUNC(3): 33
A= 6 . 9

* * DO NE **

>NEW

>100 REM FI ND F' (X) US I NG
NUMER I CAL APPROX I " ATION

>1 10 INP UT " X: ? " :X
>120 I F ABS(X» . 01 THEN 1 50
>130 H: . OOOOl
>140 GOTO 180
>1 50 H:.001 * ABS(X)
>160 DEF F(I):3 * IA3 - 2*1+1
>170 DEF OE R(X' = (F(X+H) - f(X - H

)l/(2 *H)
>180 PRI NT "F ' (";S TRS (X) ; "):

" ;D ERCXl
>190 END
>RUN

X"'? .1
F ' C.1)= -1. 90999997

** DO NE **

>N EW

>1 00 DEf GX(X) =GX(2l .x
>11 0 PRINT GX(3)
>1 20 END
>RU N

>100 OE f GX(A) =A(3)A2
>RUN

* NAM E CON FLI CT I N 100

User's Reference Guide

DEF

If you specify a parameter when defining a function. you must
specify an a rgument when you reference the function . Similarly, if
you do not specify a parameter when defin ing a function, you cannot
specify an argument in the function reference.

User's Reference Guide

Examples:

>N EW

>1 00 PEF SQ UARE(X):X - x
>1 10 PR IN T SQUARE
>1 20 END
>RU N

* NAME CO NFL I CT IN 110

>100 PEF Pl =3 . 1 4 16
>1 ' 0 PRIN T P l (Z)
>RU N

* NAME CO NFLI CT I N " 0

11-1 07

Arrays
Introduction

An array is a collection of variab les arranged in a way that a llows
you to use them easi ly in a computer program . The most common
way of grouping varia bles is in a lis t. which is ca lled a one
dimensional array. Each va riable in the lis t is called an element of
the array . The length of the list is limited only by the amount of
memory available.

By us ing the a rray capability of TI BAS IC you can do many things
with a lis t - you can print the elements forward or backward.
rearrange them. add them together. multiply them. or select certain
ones for processing.

In TI BASIC an array may begin with e lement 0 or e lement 1. By
using the OPTION BASE statement. yo u contro l which beginning
element the computer establishes. For consis te ncy in describing
arrays. we are assumi ng that the first element in each a rray is
element 1.

Let"s say you wan t to use the computer to ta ke two lis ts of four
numbers and print a ll possible combina tions of the numbers in both
lists. Vou might call the first array X a nd the second one Y. Since X
and V name a collection of numbers. rather than a single variable.
the computer needs a way to refer to the individual e lements in
each a rray. You must supply a pointer. call ed a subscript. to the
particular element in the array yo u want the computer to use. This
subscript is enclosed in parentheses a nd a lways immediately
follows the name of the a rray. The subscript may be explicit. such
as X(3). which refers to the th ird element in lis t X . or it may be a
var iable. as in X(T). where the value of T points to the proper
element. In any case. the subscript is a lways either a positive
integer or zero.

T he program on the right pairs the num bers in array X and array
Y. Notice that by using the array technique only a few program lines
are needed for this rela tively complex procedure.

Multl·Dimensional Arrays

With TI BAS IC you can extend you r use of arrays to include
tabular information. arranged in rows and columns. ca ll ed two
dimensional a rrays. You can think of the TIC-TAC-TO E game as
an example of a two· dimensional array.

XIOIX OXX
XOO

11 ·108

Examples:

>NEW

>100 RE M THIS PROGRAM PAIRS
TWO LIS TS

>110 RE M LINES 120 TO 150
ASSIGN VALUES TO LIST X

>120 FOR T=1 TO 4
>130 READ X(T)
>140 NEXT T
>150 DATA 1, 3, 5, 7
>160 REM LINES 170 TO 200

AS SI GN VALUES TO LIST Y
>17 0 fOR S=1 TO 4
>180 READ Y(S)
>190 NEXT S
>200 DATA 2,4 , 6 , 8
>210 REM LINES 220 TO 270

PAIR THE LISTS AND PRINT
THE COMBINATIONS

>220 FOR T=1 TO 4
>230 FOR S=1 TO 4
>240 PRINT X(T);Y(S);" " ;
>250 NEXT S
>260 PRINT
>270 NEXT T
>280 END
>RUN , 2 , 4 , 6 ,

3 2 3 4 3 6 3
5 2 5 4 5 6 5
7 , 7 4 7 6 7

•• DONE ••

8
8
8
8

User ·s Reference Guide

Arrays

You can represent the game board with this array:

T(l.1) T(1.2) T(1.3)

T(2.1) T(2.2) T(2.3)
T(3 .1) T(3.2) T(3.3)

As in the one-dimensional arrays described earlier. you refer to a
two-dimensional element with a subscript. in this case a doubl e
subscript to refer to the row and column location. Often yo u will
use a variable as a subscript. rather than an explicit subscript; for
example T(R.C).

When you use a two-dimensional array. you will often use nested
FOR·NEXT loops. One loop will take the computer through the
rows and the other will take it through the columns. The program
on the right creates a two·dimensional array - a multip lication
table - with five rows and five columns. using nested FOR·NEXT
loops.

You can work with arrays of one. two. or three dimensions on the
Tl computer. Elements in three-dimensional arrays are
referenced with three subscript values: X(22.14.7) or M(IJ .K) .

User's Reference Guide

Examples:

>NEW

>100 REM MULTIPLICATION TABLE

>110 CALL CLEAR
>120 CALL CHAR(96,"Ff")
>130 CALL CHAR(97 , "8080808080

808080")
>140 CALL CHAR(98,"Ff80808080

808080")
>150 FOR A=l TO 5
>160 fOR B=1 TO 5
>170 M(A,B)=A*B
>180 NEXT 8
>190 NEXT A
>200 fOR A=l TO 5
>210 FOR 8=1 TO 5
>220 PRINT M(A,B) ;
>230 IF s<>1 THEN 250
>240 PRINT CHR$(97);" ";
>250 NEXT S
>260 PRINT
>270 REM THE fOLLOWING

STATEMENTS PRINT THE LINES
DEFINING THE TABLE

>280 IF A<>l THEN 330
>290 PRINT
>300 CALL HCHAR(23,3,96,3)
>310 CALL HCHAR(23,6,98)
>320 CALL HCHAR(23,7,96,16)
>3]0 NEXT A
>3 40 END
>RUN

s(ree n clears

2 3 4 5

2 4 6 8 10
3 6 9 12 15
4 8 12 16 2.
5 ,. 15 2. 2S

•• DONE ••

11 -109

DIMension
DIM larray·name (in tegerll,integer211. integer31) }

The DIM ens ion s tatement reserves space for both numer ic and
string arrays. You can explicitly dimension an array only once in
your program. If you dimension an array. the DIM statement must
appear in the program before any other reference to the array. If
you dimension more than one array in a single DIM statement. the
array names must be separated by commas. The array-name may
be a ny va lid variab le na me.

You may use one· two. or three·dimensional arrays in T I BASIC .
The number of va lues in parentheses fo llowing the array name
tells the computer how many dimensions the array has.

One·dimensional arrays have only one integer value fo llowing the ir
name. Two-dimensiona l arrays are described with two integer
va lues which define the number of rows and columns. Three
dimensiona l a rrays have three integer va lues defining their
characteristics .

• DIM A(6) - describes a one-dimensional array.
• DIM A(12.3) - describes a two-dimensional array .
• DIM A(S,2. 11) - describes a three-dimensional array .

If an arra y is not dimensioned in a DIM statement. the computer
wi ll automa tically assign a va lue of 10 for integerl (and a va lue of
10 for integer1 a nd integer3 if needed) for each array used .

Space is a lloca ted. for your array a fter yo u enter the RUN command
but before the program is actua lly run . Each element in a string
array. however, is a null string until you actually place values in
each element. If your computer memory cannot handle an array
with the dimensions yo u specified. you wi ll get a "MEMORY
FULL" message and yo ur program will not run .

11 ,110

Examples:

>DIM A<12>,8(5)

>NEW

>100 DIM X<lS>
>110 f OR 1=1 TO 15
>120 READ XU)
>130 NEXT 1
>140 REM PRINT LOOP
>150 fOR 1=15 TO 1 STEP - 1
>160 PRI NT X(I);
>170 NEXT I
>180 DATA 1,2,3 , 4,5,6,7 , 8 , 9,1

0 ,1 1 , 12,13,14,15
>190 END
>RUN

15 14 13 12 11 10 9
87654321

•• DONE ••

User's Reference Guide

DIM

Subscripting An Array

Anytime you want to reference an array in your program, you must
be spec ifi c about which e lement in the array you want the computer
to use . To do this. you point to the element with a subscript.
Subscripts are enclosed in parentheses immediately following the
name of the array. A subscript can be any valid numeric expression
which eva luates to a non-negative result . This result will be
rounded to the nearest integer. if necessary.

The number of elements reserved for an array determines the
maximum va lue of each subscript for that array. I f you are using an
array not defined in a DIM ension statement. the maximum va lue of
each s ubscript is 10 . The minimum value is zero. unless an
OPTION BASE sta tement sets the min imum subscript value at
1. Thus an array defined as DIM A(6) actua lly has seven
access ible eleme nts in T I BASIC. un less the zero subsc ript is
eliminated by the OPTION BASE 1 statement.

The example on the right assumes that the array begins with
element 1 (OPTION BASE 1 on line 120):

.Iine 130 - This line defines T as a one-dimensional a rray
with 25 elements .

• line 160 - The numeric variable I here subscripts T.
Whatever value I contains at this time will be used to point
to an e lement of T. If I =3 . the third e lement of T wi ll be
added .

.Iine 200 - The subscript 14 tells the compute r to print the
fourteen th e lement of T.

.Iine 220 - The computer will evaluate the numeric
expression N +2 . IfN = 15 a t this time. the seve nteen th
element of T wi ll be pr inted.

If you access an array with a subscript greater than the maximum
num ber of elements de fined for that array, o r if your subscript has a
zero value and you used an OPTION BASE 1 s tateme nt. a "BAD
SUBSCRIPT' message will print and the program will e nd .

User's Reference Guide

Examples:

>NEW

>100 RE" OE"O or 01" AND
SUBSCR IPT S

>110 S=100
>120 OPTI ON BASE
>130 01" T(25)
>140 FOR 1=1 TO 25
>150 READ HI)
>160 A:S+T(l)
>170 PRINT A;
>180 NEXT 1
>190 PRINT::
>200 PRINT T(14)
>210 INPUT "ENTER A NU"BER BE

TWEEN 1 AND 23: ":N
>220 PRINT T(N+2)
>230 DA TA 12,13,43,45, 65 ,76, 7
8,98,56,34,23,21,100,333,222
,111,444,666,543,234,89,765,
90,101,345

>240 END
>RUN

112 113 143 145 165
176 '" '" 156 '" '" ", 20. 443 322

", 544 766 643 334

'" 865 19. 2.' 445

333
ENTER A NU"BER BETWEEN 1 AND

23: 14

",
** OONE **

11 ·111

OPTION BASE
OPTION BASE I ~ I
The OPTION BASE statement allows you to set the lower lim it of
array subscripts at one instead of zero . You can omit the OPTION
BASE statem ent if you want the lower limit of the subscripts to be
zero.

If you include an OPTION BASE statement in your program , you
must give it a lower line num ber than any DIMension s tatement
or any reference to an element in any array. You may have
only one OPTION BASE statement in a program . and it
applies to all array subscripts in your program . Therefore. you
cannot have one array subscript beginning with 0 and another
beginning with 1 in the same program.

If you use some integer other than one or zero in the OPTION
BASE stateme nt. the computer will s to p the program and print
-INCORRECT STATEMENT:"

11 -11 2

Examples:

)NEW

>100 OPTION BASE 1
)110 OJ" X(5,5,5)
) 12 0 X<1,0,1>:z:3
) 130 PRINT X<1,0,1)
>140 END
>RUN

* BAD SUBSCRIPT IN 120

>100 ENTER
>RUN ,

** DONE **

User's Reference Guide

Subroutines
Introduction

Subroutines may be thought of as separate self-contained programs
wi th in a main program. They usually perform a certain action. s uch
as printing some information. performing a calculation . or reading
values into an array. Putting these actions into a subroutine allows
you to type that set of s tatements only once and then per form that
set of s ta tements from anywhere in the program with a GOSUB
s tatement .

The casus statement initia lly behaves like a GOTO statement. It
causes the computer to jump to the line-number listed . However.
subroutine programming gives the computer the capabi li ty to
"remember" where the branch occurred in the main program and
return to that point when it finishes the subroutine. This technique
req uires that the last s tatement in the subroutine be a RETURN
statement. The program normally has ei ther a STOP s tatement
or some o ther unconditional branching s tatement immediately
before the subroutines so that the computer doesn't accidenta lly
Mfa ll into" the subroutines. The subroutines shou ld be entered
only by a GaSU S instruction and may be entered at a ny line·
number within the subroutine.

The example on the right illustrates how the GOSUB a nd
RETURN sta tements might be arranged in your program. The
program begins runni ng at line 100. At line 300 it skips to the firs t
subroutine. performs lines 700 through 780. and returns to line 310.
Whe n it reaches line 400. it goes to the second subroutine, performs
lines 900 th rough 980. returns to line 410. and continues running.
A t line 450 it again goes to subroutine 1. this time ente ring a t line
750 a nd continuing to the RETURN . Then it goes bac k to the
ma in program a t line 460 and continues runn ing. At line 480 it
again jumps to the fi rs t subroutine . runs lines 700 through 780.
re turns to line 490. then s tops runni ng a t line 600. The STOP
statement in line 600 keeps the computer from performing the
s ubroutines unless you speci fically direct it there with a GOSUB.

User's Reference Guide

Examples:

>NEW

>100 REM MAI N PROGRAM

>300 GOSUB 700
>310

>400 GOSUB 900
>410

>4 50 GOSUB 75 0
>46 0

>480 GOSUB 700
>490

>600 STOP
>700 RE M SUBROUTINEl

>750

>780 RET URN
>900 REM SUBROUTINE2

>9 80 RET UR N
>99 0 END

11 ·113

GOSUB
(

GOSUB) line-number
GOSUB

The GOSUB statement is used with the RETURN statement to
a llow you to transfer the program to a subroutine. complete the
s teps in the subrouti ne. and return to the nex t program line
followi ng the GaSUB statement. When the computer performs
the GOSUB statement. it saves the next line number of the malo
program so that it can return to that point when it encounters a
RETURN statement in the subroutine.

(The space between GO and SUB is optiona l.)

11-114

Examples:

>NEW

>100 REM BUILD AN ARRAY,
MULTIPLY EACH ELEMENT 8Y 3,
PRINT 80TH ARRAYS

>110 FOR X=l TO 4
>120 FOR Y= 1 TO 7
>130 1 (X , Y)=INT(30*RND) t ,
>140 NEXT Y
>150 NEXT X
>160 PR INT "FIR ST ARRAY" :
>170 GO SUB 260
>180 FOR x=l TO 4
> 190 FOR Y=1 TO 7
>200 I O ,Y> =3 *I (X , n
>2 10 NEXT Y
>220 NEXT X
>2 30 PRINT "3 TIMES VALUES IN

fIRST ARRAY" ::
>2 40 GOSUB 260
>250 STOP
>260 REM SUBROUTINE TO PRINT

ARRAY
>270 FOR X:1 TO 4
>280 fOR Y:l TO 7
>290 PRINT I(X,Yl;
>300 NEXT Y
>310 PRINT
>320 NEXT X
>330 PR INT
>3 40 RET URN
>RUN

Fl R ST ARR A Y

16 12 17 12 8
18 22 1 29 16
5 25 22 4 24
26 21 18 , 12

17
14

11 ,.
3 TIMES VALUES IN FIRST
Y

48 36 51 36 24 51
54 66 3 87 48 42
15 75 66 12 72 33
78 63 54 6 36 6.

• • OO NE ••

8
11

24
15

ARRA

24
33

72
45

User's Reference Guide

GOSUB

Within a subrou tine. you may want the computer to jump to another
subroutine. complete it. come back to the first subroutine. complete
its steps. then return to the main program at the point where the
original branch occurred. You can do this easi ly with the proper
pairing of GOSUB and RETURN statements. However. be sure
you exercise care in designing subroutines so that the computer will
not "lose its place,"

In the example on the right. the main program jumps to subrou tine
1 when it reaches line 500. In subrout ine 1, when the program
reaches line 730. it goes to subroutine 2. When the RETURN in
subroutine 2 is encountered (line 850). the computer returns to
subroutine 1 a t li ne 740. finishes the subroutine. returns to the mai n
program and completes it through line 600.

If the casus sta tement transfers the program to a line·number not
in the program. the program will end and the message "BA D LIN E
NUMBER" wi ll print . If the casus transfers the program to its
own line' number. the program will stop and the message
"MEMORY FULL" wi ll print.

User's Reference Guide

Examples:

>NE W

>100 RE~ NESTED SUBROUTIN ES
>110 RE~ ~AIN PROGRA"

>500 GOSUB 700
> 5 1 0

>600 STOP
>700 REM SUBROUTINE1

>730 GOSUB 800
>740

>790 RETURN
>800 RE" SUBROUTINEZ

>850 RETURN

>NEW

>100 X=12
>11 0 y=Z3
>120 GOSUB 1Z0
>130 PRINT Z
>140 STOP
>150 REM SUBROUTI NE
>160 I=X+Y.1Z0/S
>170 RETURN
>RUN

• "E~ORY fUll IN 120

>1Z0 GOSUB 150
> RUN

564

•• DONE ••

11 -115

RETURN
RETURN

The RETURN statement is used with the GOSUa sta tement
to provide a branch and return structure for TI BASIC.
Whenever the computer encounters a RETURN sta teme nt. it ta kes
the program back to the program line immediately following the
GOSUS sta tement that transferred the computer to that particu lar
s ubroutine in the firs t p lace . You can easily develop programs with
subroutines which jump to other subroutines and back aga in . if you
are ca reful that each GOSUa leads the computer to a RETURN
s ta tement .

If. when running a program. the computer encounters a RETURN
statement before performing a GOSUB instruction. the program
will termina te wi th the message "CANT DO THAT."

11"11 6

Examples:

>NEW

>100 FOR 1: 1 TO 3
>1 10 GOSUB 1 50
>120 PRINT "I =M ;l
>130 NEXT I
>1 40 STOP
>150 RE~ SUB ROU TINE
>160 FOR X=1 TO 2
>170 PRINT MX=M;X
>180 NEXT X
>190 RETURN
> RU N

X = 1
X= 2
1= 1
X= 1
X'" 2
1= 2
X= 1
, . 2
I: 3

•• OONE ••

User"s Reference Guide

ON-GOSUB
ON numeric-expression I casus) line-numberl.line-numberi ...

\ GO SUB

The ON ·GOSUB statement is used with the RETURN statement
to tell the computer to perform one of several s ubroutmes,
depend ing on the va lue of a numeric-expression, and then go
back to the main program sequence .

The computer fi rst evaluates the numeric-expression and converts
the result to a n integer, rounding if necessary. This integer tells the
program which subroutine line-number in the ON-GOSUB
statement to perform next. If the value of the numeric-expression
is I . the computer will proceed to the first hne-number lis ted in the
ON ·GOSUS statement . If the value is 2, the computer will branc h
to the second line-number given. and so on.

Additiona lly the computer wi ll save the next line number following
the ON -GOSUB statement and return to this point after performing
the subroutine_ The subroutine must contain a RETURN
sta tement to s igna l the computer to go back to the saved line
number a nd continue the program from that s tatement. Otherwise.
the program will continue until it reaches the end . as if a GOTO
was performed ins tead of a GOSUB.

If the rounded va lue of the numeric-expression is less than 1 or
greater than the number of line numbers in the ON-GOSUB
statement . the program wi ll terminate with the message "BAD
VALUE IN xx."

If the line-number lis ted is not a val id program line . the message
"BAD LINE NUMBER" will prim when you perform the
s ta tement _

User's Reference Guide

Examples:

>HEW

>1 00 INP UT "CODE:?" : CODE
>110 IF CODE:9 THEN 29 0
>120 INPUT "HOURS: ? ":HO URS
>130 ON CO DE GOSU B 170 ,200 , 23
0,260

>140 PAY:RATE*HOUR S+BA SEPAY
>150 PRINT "PAY IS S";PAY
>160 GOTO 100
>170 RATE=3 . 10
>180 BASEPAY:5
>190 RETURN
>200 RATE:4.25
>2 10 BASEPAY:25
>220 RETURN
>230 RATE:l0
>240 BASEPAY:5 0
>250 RETURN
>26 0 RATE=25
>2 70 BASEPAY: 100
>280 RET URN
>2 90 END
>RUN

CODE:?4
HOU RS= ? 40
PAY I S S 11 00
CO DE: ?2
HOURS: ? 3 7
PAY I S S 182,2 5
CODE= ? 3
HOURS "? 35 .7 5
PAY I S S 407 . 5
CODE:?l
HOURS " ?40
PAY IS S 129
CODE:?9

** DONE **

>RUN
CO DE" ?5
HOUR S: ? 4 0

* BAD VALUE IN 130

>130 ON CODE GOS UB 170 , 200 , 2 3
0 , 600

>RUN
CO DE" ?4
HOUR S: ? 40

* BAD LINE NU"BER IN 13 0

11 ,117

File Processing
Introduction

Your TI computer has the capability to store both programs and
data on accessory devices. You can later load and use these fi les
with your computer as often as you wish, and delete them when
you no longer need them.

The file-processing capability of yOUf computer offers you a
powerful programming too l. You can eliminate retyping your
favorite programs. save important information. and create
procedures to update data important to you. TI BASIC provides an
extensive range of file-processing featu res, including sequential and
ra ndom file organization and processing. fixed and variable length
records. and display and internal formats for data . This section
describes the TI BASIC statements which use these features
OPEN . CLOSE. INPUT. PRINT. and RESTORE. As new
accessory devices become available. the file features they use wi ll
be described in the accompanying manuals .

Note: Device names in Tl BASIC are generally required to be
upper'case letters. For example,

DSK 1.filename
CSI
RS232

Audio Cassette Tape Recorders

Your TI computer can process fi les from either one or two
standard audio cassette tape recorders (see the "Cassette
Interface Cable" section of this book for instructions on attaching
the recorders). These recorde rs a re designated as CS1 and CS2.
To save and/ or load programs you need only one recorder . To
read data from a fi le. process it in yo ur program. and at the same
time create a new data file. yo u wi ll need two recorders - one to
read the stored data and one to write the processed data .

Specific requirements for using file processing features with
cassette recorders are given at the end of each statement
description.

TI Disk Memory System
A disk system, consisting of the TI Disk Drive Controller and
one to three Disk Memory Drives, is a lso avai lable for rapid.
accurate data storage and retrieval. The system uses SlJ4· inch,
single·s ided. s ingle·densi ty, soft -sectored diskettes.

A Disk Manager Command Module is enclosed with the Disk
Drive Controller . allowing you to perform easi ly certa in disk
operations. such as cataloging. renaming fi les. and protecting
fi les . For more details. see the owner's manual that accompanies
the controller.

11-11 B User's Reference Guide

OPEN
OPEN tt fl/e'number:file' name! ,file'organizationll,fiJe-fypell ,open-modell.record-typell.fi/e-life1

The OPEN statement prepares a BASIC program to use data files
slored on accessory devices. The OPEN statement does this by
providing the necessary link between a fi le' number used in your
program and the particular accessory device on which the file is
loca ted.

The OPEN statement describes a file's c haracteris tics to the
computer so that your program can process it or create it. With
some accessory dev ices the computer will check that lhe file or
device c haracteris tics matc h the information specified in the OPEN
statement for that fi le . If they don't match or the computer cannot
find or create the file. the fi le will not be opened and an 1/ 0 error
message will be printed.

The file· number and file· name must be included in the OPEN
statement. The other information can be included in any order or
can be omitted . If you leave out any specifica tion, the computer will
assume certain s ta ndard c haracteristics for the file. ca ll ed
··defaults." as descr ibed later in this section .

• file'number - All TI BASIC statements which refer to files do so
by means of a file' number between 0 and 255 inclus ive. The file '
number is assigned to a particular file by the OPEN statement.
Since file' number 0 refers to the keyboard and screen of your
computer and is always accessible. you cannot open or close file'
number 0 in your program statements. You may ass ign the other
numbers as you wish. as long as each open fi le in your program
has a different number .

The file-number is entered as the number s ign (#) fo llowed by a
numeric expression. When the computer evaluates this
expression and rounds the answer to the nearest integer. the
number must be 1 to 255 inclus ive and cannot be the same file·
number as a ny other file you are using concurrently in the
program .

• file' name - A fi/e·name refers to a device or to a fil e located on a
device. depending on the capability of the accessory. Each
accessory has a predefined name wh ich the compute r recognizes.
For example. the valid fi/e·names for the two audio cassette
recorders are ··CS t " and ·'CS2:· By includi ng this liJe-name in the
OPEN statement. yo u are tell ing the computer to access a
particular fi le or device whenever the program references the
associated file' number. The file-name can be any s tring
express ion which eva luates to a valid file-name. If you use a
string constant. you must enclose it in quotes.

User·s Reference Guide

Examples:

>100 OP EN '2; " CS 1" , SEQUENTIAL
,INTERNAL,INPUT,FIXEO 128,PE
R"'ANENT

>100 OPEN '25;"CS1",SEQUENTIA
L,INTERNAL,INPUT,FIXEO,PER"'A
NEN T

>110 X::100
>120 OPEN #x+S : "Cs2",SEQUENTI

AL,INTERNAL , OUTPUT ,FIXED,PER
"'AN EN T

>130 N:: 2
>1 40 OPEN #122:"CS"&STRS(N),S

EQUE NTIAL,INTERN AL,OU TPUT,F I
XED , PE RMAN EN T

11- 11 9

OPEN

Information abo ut tne fi l e-names associated with the TI Disk
Memory System, the RS232 Interface. and other accessories is
included in the manuals which accompany them .

• file ·organization - Files used in TI BASIC can be organized
either sequentia lly or randomly. Records on a sequentia l fi le are
read or written one after the other in sequence from beginning to
end . Random-access files (ca lled RELATIVE in TI BASIC) can
be read or written in a ny record order . They may also be
processed sequentially .

To indica te which logical structure a fil e has. enter either
SEQU ENTIAL or RELATIVE in the OPEN statement. You
may optionally specify the initial number of records on a file by
following the word SEQUENTIAL or RELATIVE with a
numeri c express ion.

If you omit the file-organization specification, the computer will
assume SEQUENTIAL organization .

• file' type - This speci fication designates the format of the data
stored on the file: DISPLAY or INTERNAL.

The DISPLAY·type format refers to printable (ASC II)
cha racters. The DISPLAY forma t is normally used when the
output will be read by people . rather than by the computer. Each
DISPLAY·type record usually corresponds to one print line.

INTERNAL·type data is recorded in interna l machine format
which has not been translated into printable characters. Data in
this form can be read eas ily by the computer but not by people.
(See "INPUT"for a full explanation of how data is stored
internally.)

You wi ll find that the INTERNAL format is more effic ient for
recording data on a s torage device such as a cassette tape. It
requires less space a nd is easier to format with a PRINT
statement (see "PRINT" for directions on formatting PRINT
statements for INTERN AL,type records a nd for
DISPLAY·type records). Because the computer uses
INTERN AL,type data internally. a program runs in less time
whe n your da ta files are in INTERNAL format . The computer
won't have to convert DISPLAY characters into INTERNAL
format a nd back aga in.

If this specification is omitted . the computer assumes DISPLAY
form at.

11·120

Examples:

>100 OPEN '4:"CS2 N,OUTPUT ,IN T
ERNAL,SEQ UENTIAL,fIXED

>120 OPEN .'2:NA"ES , RELATIVE
SO,INPU T,FIX EO, INTERNAL

>100 OPEN "0: " cs'N,OUTP UT,FI
'EO
(co _puter a s s u_es SEQUENTIAL,
OISPLAY,PER"ANENT l

User's Reference Guide

OPEN

• open-mode - This entry instructs the computer to process the fil e
;n the INPUT. OUTPUT. UPDATE or APPEND mode. If you
omit this clause. the computer will assume the UPDATE mode.

- INPUT files may be read only.

- OUTPUT files may be written only. The new file created
will have all the cha racteristics given by the OPEN
s tatement specifications and any s ta ndard defaults.

- UPDATE files may be both read and wr itten . The usual
processing is to read a record. c hange it in some way.
and the n wri te the a ltered record back out on the file.

- APPEND mode a llows data (0 be added at the end of the
existing fi le. The records a lready on the file cannot be
accessed in th is mode.

• record· type - This entry specifies whether the records on the fi le
are a ll the same length (FIX ED) or vary in length (VARiABLE).
The keyword FIXED or VARIABLE may be followed by a
numeric express ion specifying the maximum length of a record.
Each accessory device has its own maximum record length . so be
sure to check the manuals which accompany them. If you omit
the record· length specifica tion, the computer will assume a
record length depending upon the device used.

If you define a file as RELATIVE . you mus t use F IXED·length
records. If this entry is omitted for RELATIVE fi les. F IXED·
length records are assumed. with the length dependent on the
device.

SEQUEN TIAL files may have F IXED or VARIABLE length
records. If this entry is omitted for SEQUENTIAL files,
VARIABLE-length records are assumed.

If reco rds are FIXED , the computer will pad each record on the
right to ensure that it is the specified length . If the data is
recorded in DISPLAY format. the computer will pad the record
with spaces. If the INTERNAL format is used. the FIXED·
length record wi ll be padded with binary zeroes.

• file' life - Files yo u create with your TI Computer are
cons idered PE RMAN ENT, not temporary. You may omi t this
entry entirely. since the computer will assume a PERMANEN T
file· life.

User's Reference Guide

Examples:

>100 OPEN M53:NAMES;flXE O;lNT
ERNAL; RELATIVE

(co~puter assu~es UPDATE)

>100 OPEN Mll:NAMES;INPUT;lNT
ERNAL ; SEQUENTIAL;VARIABLE 10
o

>100 OPEN M75:"CS1";OUTPUT;f I
XEO

<computer assumes SEQUENT IAL;
OIS PL AY ;fI XED length of 64
positions)

11 ,12 1

OPEN

Cassette Recorder In'ormatlon

• file·number* - any number between 1 and 255 inclus ive

• file'name· - "CSt " or "C52"

• file -organization - SEQUENTIAL

• file-type - INTERNAL (preferred) or DISPLAY

• open-mode' - INPUT or OUTPUT

• record-type· - FIXED

*This specification is requ ired.

For cassette tape records. you may spec ify any length up to 192
pos itions. However. the cassette tape device uses records with 64.
128, or 192 positions and will pad the record you specify to the
appropriate length . Thus. if you specify a n 83-position cassette
record. the computer will actually write a 128-P05itioo record . If the
record length is not specified. a 64-position record length is
assumed.

For cassette devices. the computer does not compare the file
specifications in the OPEN sta tement to the characteristics of an
ex isting fi le .

Whenever the computer performs the OPEN statement for a
cassette tape device. you will rece ive instructions on your screen for
activating the recorder. as shown on the right.

Note: Only "CSt .. can be specified for an INPUT file. Both "CS t ..
a nd HCS2" can be used for OUTPUT files .

IH 22

Examples:

>NE W

>100 OPEN #2:"CS1",INTERNAL,I
NPUT, FIXED

• prog ralll lines

>290 CLOSE It2
>300 END
>RUN

• REWINO CASSETTE TAPE CS1
THEN PRESS ENTER

• PRESS CASSETTE PLAY (S1
THEN PRESS ENTER

• rest of progralll rvn

• PRESS CASSETTE STOP CS 1
THEN PRESS ENTER

•• OONE ••

User's Reference GuidI!

CLOSE
CLOSE #file-numberi :DELETEI

The CLOSE statement "closes" or discontinues the association
between a fi le and a program. After the CLOSE statement is
performed. the "closed" file is not avai lable to your program un less
you OPEN it again. Also. the computer will no longer associate the
closed file with the file-number you specified in the program . You
can then assign that particular file-number to any fi le you wish.

If you use the DELETE op tion in the CLOSE stateme nt. the
action performed depends on the dev ice used . As additiona l
accessory dev ices become available. their accompanying manuals
wi ll descr ibe the DELETE option.

If you attempt to CLOSE a fi le that you have not opened previously
in your program. the computer wi ll terminate your program with
the '- F ILE ERROR" message _

In order to safeguard your files, the computer wi ll automatica lly
close any open files should an error occur which terminates your
program. If a break occurs in your program. either by a BREAK
command or your presSing CLEAR, open fi les are automatically
closed only if one of the following occurs:

• you edit the program
• you terminate BASIC with the BYE command
• you RUN the program again
• you enter aNEW command

If you use QUIT to leave your program, the computer wi ll NOT
close any open fi les and you could lose the data on these files . If
you need to ex it from your fi le-processing program before its
normal end. follow these directions so that you won·, lose any da ta:

• Press CLEAR until the computer reacts with
'· BREAKPO INT AT xx."' This may take
severa l seconds.

• Enter BYE when the cursor reappears on the screen.

User·s Reference Guide

Examples:

>NEW

>100 OPEN #6:"CS1",SEQUENTIAL
,INTERNAL,INPUT,fIXED

>110 OPEN #25:"csZ",SEQUENTIA
L,INTERNAL,OUTPUT , FIXED

_ prog ra m Lines

>200 CLOSE #6:DELETE
>210 CLOS E 11'25
>220 END

11 ·123

CLOSE

Ca8seHe Recorder Information

Whenever the computer performs the CLOSE statement for a
cassette tape device. you will receive instructions on your screen for
operating the recorder. as shown on the right.

If you use the DELETE option wi th cassette recorders. no act ion
beyond the closing of the file ta kes place.

lI · l 24

Examples:

>N EW

>100 OPEN '24:" (S l" , INTERNAl,
INPUT, FIXED

>110 OPEN #19:" CS2 ",INTERNAl,
OUTPUT , FIllED

· progra. lint's

>200 CLOSE '24
>210 CLOSE .,9
>220 END
>RU N

• REWIND CASSET TE TAP E CS1
THEN PRESS EN T ~R

• PRESS CASSETTE PLAY CS1
THEN PRESS ENTER

• REWIND CASSE TTE TAPE (52
THEN PRESS ENTER

* PRESS CASSETTE RECORD (52
THEN PRESS ENTER

p r ogram runs

• PRESS CASSETTE STOP CS1
THEN PRE SS ENTER

* PRESS CAS SETTE STOP cs2
THEN PRESS ENTER

** DONE **

User's Reference Guide

INPUT
INPUT ltfile-number1.REC numeric-expression!! : variable-Jis tl

(See also the "Input-Output Statements" section.)

This form of the INPUT sta tement allows you to read data from an
accessory dev ice. The INPUT sta tement can be used onl y wi th files
opened in INPUT or UPDATE mode. The file-number in the
INPUT statement must be the fj/e-numberof a currently open file .
File-number O. the keyboard . may a lways be used . If you c hoose to
use file-number O. the INPUT statement is performed as described
in " Input-Output Statements:' except that you cannot specify an
input-p rompt.

The variable-list contains those variables which a re ass igned va lues
when the INPUT statement is performed . Variable names in the
variable-list a re separated by commas a nd may be numeric and / or
s tring variables.

Filling the variable-list

When the computer reads records from a file , it s tores each
complete record internally in a temporary storage a rea called an
input / output (I / O) buffer. A separate buffer is provided for each
open file·number. Values are assigned to variab les in the variable·
list from left to right. using the data in this buffer. Whe never a
variable· lis t has been filled with corresponding values. any data
items left in the buffer are di scarded un less the IN PUT statement
ends with a trai ling comma. Using a tra iling comma creates a
"pending" input condit ion (see ~ Using Pending Inputs").

If the variable·list in the INPUT statement is longer than the
number of data items in the current record being processed. the
computer wi ll get the next record from the file and use its data
items to complete the variable' lis t as shown on the right.

When performing the INPUT statement. the computer will take
different actions depending on whether the data s tored is in
DISPLAY or INTERNAL format.

User's Reference Guide

Examples:

>NEW

>100 OPEN ~13:"CS1",SEQUENTIA
L,DISPLAY,INPUT,FIXEO

>110 INPUT "3:A,B,C$,D$,X,Y,

" >120 IF A:99 THEN 150
>130 PRINT A;B:C$: D$:XiY:Z$
>140 GOTO 110
>150 CLOSE 11'13
>160 END
>RUN

--data sto red on tape will be
printed on the screen

•• DONE ••

>NEW

>100 OPEN #13: " CS1·,SEQUENTIA
L,DISPLAY,INPUT,FIXED 64

>11 0 INPUT "'3:A , B,C , D

• progra .. lines

>290 CLOSE 11'13
>]00 ENO
>RU N

--1 st INPUT RECORO:22,77,56,
92

--Results:
A:22 B:77 C:56 0:92

>NEW

>100 OPEN "3:"CS"',SEQUENTIA
L,DISPLAY,INPUT,fIXED 64

>110 INPUT '13:A,B,C,D,E,f,G

• progralll lines

>400 END

--1ST INPUT RECORD:22,33 . 5
-- 2ND INPUT RECORDz40S,92
--3RD INPUT RECORD:-22,11023
- -4TH INPUT RECORD:99,100

- -Re sults:

E:-22 F:11023 G: 99

11-1 25

INPUT

DISPLAy-type Data

DISPLAY-type data has the same form as data entered from the
keyboard. The computer knows the length of each da ta item in a
DISPLAY-type record by the comma separators placed between
items.

Each item in a DISPLAY-type record is checked to ensure that
numeric va lues are placed in numeric variables as shown o n the
right in record 1. If the data-type doesn't match the var iable-type, as
in Record 2 on the r ight UG is not a numeric va lue). an INPUT
ERROR will occur and the program wi ll term inate.

INTERNAL-type Data

INTERNAL-type data has the following form:

Numeric
items: I I I

String
items:

Y'
des ignates length

of item
(a lways 8)

Y'
designates length

of item

I I I I I I

value of item

value of item

The computer knows the length of each INTERNAL·type item by
interpreting the one· posi tion length indicator a t the beginning of
each item.

Limited validation of INTERNAL·type data·items is performed . All
numeric items must be 9 positions long (8 digits plus one position
which specifies the length) and mus t be valid representations of
floating·point numbers. Otherwise. an INPUT ERROR wi ll occur.
and the program will termi nate.

For FIXED·length INTERNAL records. read ing beyond the act ua l
data recorded in each record wi ll cause padding c haracters (binary
zeros) to be read. If you attempt to assign these characters to a
numeric variable. a n INPUT ERROR occurs. If strings a re being
read. a null s tr ing is ass igned to the s tring variable.

11,1 26

Examples:

>NE W

>100 OPEN #13:"cs1"~SEQUENTIA

L, DISPLAY ,INP UT,FIXED 64
>110 INPUT #13 : A,B , STATES ,DS,

X, Y

--INPUT RECORD 1=22,97.6,
TEXAS,"AUTO LICENSE .. ,
22000 ,-. 07

--INP UT RECORD 2=JG,22,TEKAS,
PROPERTY TAK,42~15

User's Reference Guide

INPUT

Using INPUT with RELATIVE Files

(See "OPEN" for a description of RELATIVE fi le-organiza tion.)

You may read RELATIVE files either sequentially or randomly.
The computer sets up an internal counter to point to whic h record
should be processed next. T he first record in a file is record O.
Thus. the counter begins at zero and is incremented by + I after
each access to the fi le. ei ther to read or to write a record. In the
example on the right. the s tatements direct the computer to read
the file sequentia lly.

The internal counter can be c hanged by using the REC clause. The
numeric-expression fo llowing the keyword REC wi ll be eva lua ted
to designate a specific record num ber on the file . When the
computer performs an INPUT statement with a REC clause. it
reads the speci fied record from the designated file a nd places it in
the 1/0 buffer. The REC clause can appea r only in sta tements
referencing RELATIVE fil es. The example on the right illustra tes
accessing a RELATIVE fi le randomly. us ing the REC clause.

Be sure to use the REC clause if you read and write records on the
same fi le with in a program. Since the same interna l counter is
incremented when records are either read or written fOI" the same
fi le. you may ski p some records and write over others if REC is not
used. as shown in the example on the righ t.

If the internal counter points to a record beyond the limits of the fi le
when the computer tries to access the file, the program will
terminate with an INPUT ERROR.

User's Reference Guide

Examples:

>NEW

>100 OPEN #4:NAMES,RELATIVE,I
NTERNAL,INPUT,FIXEO 64

>110 INPUT 114:A,B,CS,DS , X

• prog r am lines

>200 CLOSE 114
>210 END

>NEW

>100 OPEN 116:NAMES,RELATIVE , I
NTERNAL,UPOATE,fIXEO 72

>110 INPUT K
>120 INPUT #6,REC K:A,B , CS,DS

· program Lines

>170 PRINT 116,REC K:A,B , CS,OS

• program lines

>300 CLOSE #6
>310 END

>NEW

>100 OPEN 113:NAMES,RELA TI VE,I
NTERNAL,UPDATE,FIXED

>1 10 FOR 1=1 TO 10
>120 INPUT 113:AS,BS,CS,X , Y

• program Lines

>230 PRINT #3:AS , BS,CS , X,Y
>240 NEXT I
>250 CLOSE 113
>260 END
> RUN

-- LINE 120-Reads records
0,2,4,6 , 8 ...

-- LINE 130 - Writes records
1,3,5,7,9 .. .

11 ,127

INPUT

Using Pending Inputs

A pending input condition is established when an INPUT statement
with a trai ling comma is performed. When the next INPUT
statemen t using that fi le is encountered, one of the fo llowing actions
will occur :

• If the next INPUT statement has no REC clause - the
computer uses the data in the 110 buffer beginning where
the previous INPUT statement stopped .

• If the next INPUT statement includes a REC clause -
the computer terminates the pending input condition and
reads the specified record into the file's I / O buffer.

If a pending input condition exists a nd a PRINT statement for the
same fi le is performed, the pending input cond ition is terminated
and the PRINT statement is performed as usual.

If you use a pending input with file· number O. the error message
"INCORRECT STATEMENT" is printed and the program StOpS
runnmg.

End-ol-file

In sequential processing. to prevent an error when the computer
has no more data to read. you will need to notify the computer that
the end of the file has been reached. To make this easier fo r you. T I
BASIC includes an End-of·Fi le function ca lled EOF. Be sure to
include the EOF statement immediately before the INPUT
statement which reads a sequentia l file . In this way you can
eas ily cause the computer to stop reading the input fi le when no
more data is avai lable. The usua l procedure is to skip to a
closing routine when EOF is reached.

11 ·128

Examples:

>NEW

>100 INPUT #O:A,B ,
>110 PRINT AiB
>120 GOTD 100
> RU N

?
• INCORRECT STATEMENT

IN 100

>NEW

>100 OPEN #5:NAMES,SEQUENTIAL
,INTERNAL,INPUT,fIXED

>110 If EOF(5) THEN 150
>120 INPUT #5:A,B
>130 PRINT A; B
>140 GOTD 11 0
>150 CLOSE #5
>160 END

User's Reference Guide

INPUT

The EOF function cannot be used with RELATIVE files or with
some accessory devices . In these cases, you will need to create your
own method for determining that the end-of-fi le has been reached.

One common end-of-file technique is to create a last record on the
file that serves as an end-of-fil e indicator. It is called a "dummy"
record because the data it contains is used only to mark the end of
the file . For example. it could be filled with "9's:' Whenever the
computer inputs a record . you can check the data . If it is equa l to
"9's:' then the computer has reached end-of-fi le and can skip to the
closing routine .

The first example on the right crea tes a dummy record . In the next
example, the computer checks for the dummy record as its end-of
file technique.

Cassette Recorder Information

• RELATIVE file·organization cannot be used with
cassette devices .

• The EOF (End·of·File) function cannot be used with fil es
on cassette recorders .

• You may specify a record length up to 192 pos itions (see
"OPEN ') ,

• Only cassette unit 1 (CS 1) can be used for inputting
data .

User's Reference Guide

Examples:

>HEW

>100 OPE N #2:"CS1",SEQUENTIAL
,FIXED,OUTP UT,INTERNAL

>110 READ A"B" C
>120 IF A=99 THEN 180
>130 E=A+B+C
>140 PRINT A;B;C;E
>150 PRINT 1t2 : A"B " C,E
>160 GOTO 110
>170 DATA 5,,10,,15,,10,20,,30,10
0,,200,300,99,99,,99

>180 PRINT #2:99,99,99,,99
>190 CLOSE #2
>200 END
> RU N

• REWIND CASSETTE TAPE CSl
THEN PRESS ENTER

• PRESS CASSETTE RECORD CS 1
THEN PRESS ENTER

5 10 15 30
10 20 30 60
100 200 300 600

• PRESS CASSETTE STOP CS1
THEN PRESS ENTER

-- DONE .-

>NEW

>100 OPEN #1 : "CS 1",INTERNAL"I
NPUT,FJXED

>110 INPUT Itl :A"B"C,E
>120 IF A=99 THEN 160
>130 F=A-E
>1 40 PRINT A;B;C;E;F
>150 GOTO 110
>160 CLOSE #1
>170 END
>RU N

_ REWIND CASSETTE TAPE
THEN PRESS ENTER

C51

• PRESS CASSETTE PLAY CS1
THEN PRESS ENTER

5 10 15 30 150
10 20 30 60 600
100 200 300 600 6000

• PRESS CASSETTE STOP
THEN PRES S ENTER

•• DONE ••

cs ,

11 ,129

EOF-End-of-File Function
EOF (numeric-expression)

The end-of-file function determines if an end-oC-file has been
reacbed on a file s tored on an accessory dev ice. The argument
specifies an open fi le-number (see "OPEN '). The argument is the
value obtained when the numeric-expression is evaluated . The
normal rules for the evaluat ion of numeric expressions are used
he re.

The value the function provides depends on the position of the fi le.
The values suppl ied are:

Value Position

o Not end-or-fi le
+ 1 Logical end-oC-fi le
- 1 Phys ical end-oC·fi le

A fi le is posi tioned a t a logica l end -oC-file when all records on the
file have been processed. A file is pos itioned at a physical end-oC·file
when no more space is available for the file.

This function and the example on the right cannot be used with
cassette tape recorders , Its use with any other accessory dev ices
will be more fully expla ined in their accompanying manua ls ,

11·130

Examples:

>NE W

>100 OPEN #2 : NAMEI ;SEQ UE NTIAL
,INTERNAL, INPUT, FIXED

>110 If EOF(2) THEN 160
>120 REM IF EOF GI VES ZERO
>130 INPUT #2:A,B,C
>140 PRINT A;B;C
>150 GOTO 110
>160 CLOSE 112
>170 EN!>

User's Reference Guide

PRINT
PRINT #fi/e·number1.REC numeric-expressionU :print-listl

(For a description of the PRINT format for printing on the
computer screen. see the "Input-Output Statements" section.)

This form of the PRINT statement allows you to write data onto an
accessory device. The PRINT statement can be used to write only
on fi les opened in OUTPUT. UPDATE. or APPEND mode.
The file-number must be the fjle-numberof a currently open fi le.

When the computer performs a PRINT statement. it s tores the data
in a temporary s torage area ca lled an input/ output (I/O) buffer . A
separate buffer is provided for each open file-number. I f the PRINT
statement does not end with a print-separator (comma. semicolon.
or colon), the record is immediately written onto the fi le from the
I/O buffer. If the PRINT statement ends with a print-separator, the
data is held in the buffer and a "pending" print conditio n occurs (see
"Us ing Pending Prints" in this section.)

The information you need for creating a print-list to record data on
accessory fi le s torage devices is discussed here, The print-list
needed to display print lines (on a printer, etc,) is the same as the
print-list described in -' Input-Output Statements," You may use
either DISPLAY or INTERNAL format for data stored on
accessory devices _ However, since these fi les are read only by the
computer. by far the easiest-to- use and most efficient data-type is
INTERNAL.

Using PRINT with INTERNAL-type Data

The print-list consists of numeric and string express ions separated
by commas, co lons, or semicolons_ All print -separators in a print
list have the same effect for INTERNAL-type data - they only
separa te the items from each other and do not indicate spacing
character posit ions in a record,

User's Reference Guide

Examples:

>NEW

>100 OPEN #5:"CS1",SEQUENTIAL
, INTERNAL , OUTPUT,FIXED

_ program lines

. program lines

>200 CLOSE #5
>"210 END

>NEW

>100 OPEN #6:"CSZ",SEQUENTIAL
,DISPLAY,OUTPUT,FIXED

. program lines

>170 PRINT #6:A;",";B;",";CS;
",";DS

_ program lines

>200 CLOSE 116
>Z10 END

11 -13 1

PRINT

When items in the print· list are written on the accessory storage
device in INTERNAL format. they have the following
characteristics:

Numeric
items: I

I I
designates length value of item

of item

String
items:

(always 8)

L,-J'

designates length
of item

va lue of item

In the example on the right. the total le ngth of the data recorded in
INTERNAL format is 71 positions. Each numeric variable uses 9
positions. AS is 18 characters long (line 110) plus 1 position to
record the length of the string. BS is IS characters (line 120) plus 1.
If the values of A$ and BS change during the program. their le ngths
wi ll vary according to whatever value is present when the record is
written onto the files. In designing your record, therefore. become
familiar with the data each variable might contain and plan your
record to allow for the largest length possible.

Whenever you specify FIXED·length records. the computer will
pad each INTERNAL-type record with binary zeros. if necessary,
to bring each record to the specified length.

The computer will not a llow a record to be longer than the speci fied
or default length for the device you are using. If including a ll data in
a print·list would cause this condition to occur for an INTERNAL·
type record. the program will terminate with the message "FILE
ERROR IN xx."

11,132

Examples:

>NEW

>100 OPEN #S:"cs1",SEQUENTIAL
,1NTERNAL,OUTPUT,fIXED 128

>110 AS:"TEXAS INSTRUMENTS "
>120 BS: " COMPUTER "
>130 READ X,Y , Z
>140 If x:99 THEN 190
>150 A:X*Y*Z
>160 PRINT MS:AS,X,Y,Z,BS,A
>170 GOTO 130
>180 DATA 5, 6 , 7,1 , 2,3,10 , 20,3
0,20,40 ,6 0 ,1. 5,2 . 3,7 . 6,99,99
, 99

>190 CLOSE 115
>200 END
>RUN

* REWIND CASSETTE TAPE
THEN PRESS ENTER

* PRESS CASSETTE RECORD
THEN PRESS ENTER

--data written on tape

",
",

* PRESS CASSETTE STOP CS1
THEN PRESS ENTER

** DONE **

User's Reference Guide

PRINT

Using PRINT with DISPLAY-type Data on File Storage Devices

Although it is best to use INTERNAL format for data recorded on
file storage devices which wiU be read by the computer. you may
occasiona lly need to use DISPLAY-type records. Included here are
severa l important considerations you must observe when using
DISPLAY format.

• Records are created according to the specifications found
in the PRINT statement of the "Input-Output Statements"
section.

• If including a data-item from the print-Jist would cause
the record to be longer than the specified or defau lt length
for the device you are using. the item is not s plit but
becomes the firs t item in the next record . If any s ingle
item is longer than the record length, the item wi ll be sp lit
into as many records as required to store it. The program
continues running normally and no warning is given.

• In order to later read DISPLAY-type files created with the
PRINT statement. the data must look like it does when
you enter it from the keyboard . Therefore. you must
explicitly include the comma separators and quote marks
needed by the INPUT statement when you write the
record on the file. These punctuation marks a re not
automatically inserted when the PRINT statement is
performed . They must be included as items in the print
Jist, as shown in line 170 on the right.

• Numeric items do not have a fixed length as they do in
INTERNAL format. In DISPLAY·type fi les. the length of
a numeric item is the same as it would be if it were
displayed on the screen using the PRINT or
DISPLAY statement (i.e., includes s ign, decimal point.
exponent , trailing space, etc.). For example, the number of
positions required to print 1.35£'10 is ten.

User's Rderence Guide

Examples:

>HEW

>100 OPEN .10:"CS1",SEQUENTIA
L, DIS PLA V,OUTPUT,fIXED 128

. program li nes

>170 PRINT .10;"""";AS;""",";
X;", ";Y; " , "; I;", """;BS; ""","
; .
_ program lines

>300 CLOSE .10
>310 END

11 ·133

PRINT

Using PRINT with RELATIVE Flies

(See ~OPEN " for a description of RELATIVE file-organization.)

RELATIVE file records can be processed randomly or in sequence.
The computer sets up an internal counter to point to which record
should be processed next. The first record in a file is record O.
Thus, the counter begins at zero and is incremented by + 1 after
each file access. either to read or to write a record . 10 the example
o n the right. the PR INT statement directs the computer to write
the file sequentially. It can later be processed either random ly or in
sequence.

The interna l counter can be changed by us ing the REC clause. The
keyword REC must be fo llowed by a numeric-expression whose
va lue specifies in which position the record in the file is to be
written. When the computer performs a PRINT statement with a
REC clause. it begins building an output record in the 110 buffer.
When this record is written onto the file. it will be placed at the
location specified by the REC clause. You may use the REC clause
only with RELATIVE files. The example on the right illustrates
writing records randomly. using the REC clause.

Be su re to use the REC clause if you read and write records on the
same file within a program. Since the same internal counter is
incremented when records are either read or written for the same
fi le. you could sk ip some records and write over others if REC is
not used. as shown in the example on the right.

11-134

Examples:

>NEW

>100 OPEN N3:NAMES,RELATIVE , I
NTERNAL,OUTP UT ,fI XED 128

• program line!>

>150 PRINT '3:AS,BS,CS,X,Y,Z

· pr og ram Lines

>200 CLOSE 113
>2 10 END

>NEW

>100 OPE N '3:NAMES,RELATIVE,1
NTERNAl,UPDATE,fI XED 128

>110 INPUT I(

>120 PRINT 113,REC K:AS,BS,CS,
X,Y,Z

· progra. lines

>300 CLOSE 113
>310 END

>NEW

>100 OPEN #3:NAMES,RELATIVE,I
NTERNAL,UPDATE,fIXED

>1 10 fOR l"'1 TO 10
>120 INPUT 113:AS,BS , CS,X,Y
>130 PRINT 113:AS,BS,CS,X,Y
>14 0 NEXT I
>150 CLOSE 113
>160 END

LINE 120-reads records 0,2,4 ,
6 , 8 ...

LINE 130-write!> record!> 1,3,
5,7,
9 •••

User's Reference Guide

PRINT

Using Pending Prints

A record is a lways written onto a file whenever the computer
performs a PRINT statement which has no trailing separator. A
pending print condition is established when a PRINT s tatement
with a trailing print-separator is performed. When the next PRINT
statement using the file is encountered. one of the following actions
occurs:

• If the nex t PRINT sta tement has no REC clause - the
computer places the data in the 110 buffer immediately
followi ng the data already there.

• If the next PR INT statement has a REC clause - the
computer writes the pending print record onto the file at
the position indicated by the interna l counter and
performs the new PRINT·REC statement as usual.

If a pending print condition ex ists a nd a n INPUT statement for the
same fi le is encountered . the pending print record will be written
onto the file at the position indicated by the interna l coun ter. and
the interna l counter is incremented. Then the INPUT sta tement is
performed as usual. If a pending print condit ion ex ists and the file is
closed or restored_ the pending print record is written before the
file is closed or restored.

Cassette Recorder Information

• You may specify any record length up to 192 positions.

• You may process SEQUENTIAL fi les only (you cannot
use RELATIVE file-organi zation with cassette tapes).

User's Reference Guide 11 ·135

RESTORE
RESTORE #fi/e-numberl .REC numeric-expression I

(F or a descr ipt ion of the RESTORE statement used wi th the
READ and DATA statements, see "lnput{)utput Statements. H)

The RESTORE statement repositions an open file a t its beginning
record (see the firs t example on the right), or at a specific record if
the file is RELATIVE (see the second example on the right).

If the fi le- number specified in a RESTORE statement is not
already open, the progra m will terminate with the message "F[LE
ERROR IN xx'"

You may use the REC clause only with a RELATIVE file. The
computer evalua tes the numeric-expression fo llowing REC and
uses the value as a pointer to a spec ific record on the fi le. If you
RESTORE a RELATIVE fi le and do not use the REC clause. the
file will be set to record O.

If there is a pending PRINT record . the record will be writt en on
the file before the RESTORE is performed . If there is a pending
INPUT. the da ta in the 1/ 0 buffer is discarded .

RELATIVE fi les are no t supported by cassette recorders.

II · 136

Examples:

>NEW

>100 OP EN M2 : "CS 1" , SEQUE NTIAL
, I NT ER NAL,IN PU T, FI XEO 64

>110 IN PU T #2: A, B, CS, DS, X

• prog r am Lines

>400 RE STOR E #2
>41 0 IN PUT #2 : A,B, CS, DS, X

· p r og r am li ne s

>500 CLOSE #2
>5 10 EN D

>NEW

>100 OPEN #4 :NA"ES, REL ATIVE , I
NTERNA L, UPDAT E,FI XED 128

>11 0 I NP UT #4: A, B, C

• p r ograll'l li nes

>200 PR IN T #4 : A, B, C

• p r og r alll lines

>300 RESTO RE #4 , REC 10
>3 10 I NP UT #4 : A, B, C

• p r og r am l ines

>400 CLOSE 11 4
>41 0 END

User's Reference Guide

Appendix
ASCII CHARACTER CODES

The defined characters on the TI·99/ 4A Computer are the standard ASCII characters for codes 32
through 127. The following chart lists these characters and their codes.

ASCII ASCII ASCII
CODE CHARACTER CODE CHARACTER CODE CHARACTER

32 (space) 65 A 97 A
33 (exclamation point) 66 B 98 B
34 (quote) 67 C 99 c
35 • (number or pound sign) 68 D 100 D
36 $ (dollar) 69 E 101 E
37 % (percent) 70 F 102 F
38 & (ampersand) 71 G 103 G

39 (apostrophe) 72 H 104 H

40 I (open parenthesis) 73 I l OS I
41) (close parenthesis) 74 J 106 J
42 • (asterisk) 75 K 107 K

43 + (plus) 76 L 108 L

44 · (comma) 77 M 109 M

45 - (minus) 78 N 11 0 N

46 (period) 79 0 II I 0
47 / (slant) 80 P 112 p

48 0 81 Q 11 3 Q

, 9 I 82 R 114 R

50 2 83 S 115 5
51 3 84 T 11 6 T
52 4 85 U 117 u
53 5 86 V 11 8 v
54 6 87 W 11 9 w
55 7 88 X 120 X
56 8 89 Y 121 Y
57 9 90 Z 122 z
58 (colon) 91 I (open bracket) 123 I (left brace)
59 (semicolon) 92 \ (reverse slant) 124
60 < (less than) 93 I (close bracket) 125 (right brace)
61 - (equals) 94 1\ (exponentiation) 126 (tilde)
62 > (greater th an) 95 _ (line) 127 DEL(a ppears on
63 ? (question mark) 96 (grave) screen as a
64 @ (atsign) blank.)

These character codes are grouped into twelve sets for use in color graphics programs.

Set 1t Character Set. Character Set1t Character
Codes Codes Codes

I 32·39 5 64-71 9 96· 103
2 40·47 6 72·79 10 104· 111
3 48·55 7 80·87 II 112-11 9
4 56·63 8 88·95 12 120· 127

Two additional characters are predefined on the TI -99/ 4A Computer. The cursor is ass igned to
ASCII code 30. and the e~e charac ter is assigned to code 3 1.

User's Reference Guide IlH

Appendix

FUNCTION AND CONTROL KEY CODES
Codes are also assigned to the function and control keys. so that these can be referenced by the
CALL KEY subprogram in T I BASIC . The codes assigned depend on the key-un it value spec ifi ed in
a CALL KEY program statement .

Codes
TI·99141!J>

BA SlC Modes
I
2
3
4
5
6
7
8
9

10
II
12
13
14
15

Codes
BA S IC Pascal
Mode M ode
129 I
130 2
131 3
132 4
133 5
134 6
135 7
136 8
137 9
138 10
139 II
140 12
141 13
142 14
143 15
144 16
145 17
146 18
147 19
148 20
149 21
150 22
151 23
152 24
153 25
154 26
155 27
156 28
157 29
158 30
159 31

111 ·2

Pascal
Mode
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

Mnemonic
Code
SOH
STX
ETX
EaT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
so
SI
DLE
DC I
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

Function Key Codes

Function Function
Name Key

AID FeTN 7
CLEAR FeTN 4
DEL ete FeTN 1
INSert FeTN 2
QUIT FeTN 10:

REDO FeTN 8
ERASE FeTN 3
LEFT arrow FeTN 5
RIGHT arrow FeTN 0
DOWN arrow FeTN X
UP arrow FeTN E
PROD 'D FeTN 6
ENTER ENTER
BEGIN FeTN 5
BACK FeTN 9

Control Key Codes

Press
CONTROL A
CONTROL B
CONTROL C
CONTROLD
CONTROLE
CONTROL F
CONTROLG
CONTROLH
CONTROL I
CONTROL)
CONTROL K
CONTROL L
CONTROL M
CONTROLN
CONTROL a
CONTROL P
CONTROL Q
CONTROL R
CONTROLS
CONTROLT
CONTROLU
CONTROL V
CONTROLW
CONTROL X
CONTROLY
CONTROLZ
CONTROL .
CONTROL ;
CONTROL -
CONTROL 8
CONTROL 9

Comments
Start of heading
S tar t of text
End of text
End of transmission
E nquiry
Ac knowledge
Bell
Backspace
Horizontal tabulation
Line feed
Vert ica l tabulation
Form feed
Carriage return
Shift out
S hi ft in
Data link escape
Device control 1 (X-O N)
Device control 2
Device control 3 (X '()FF)
Device control 4
Negative acknowledge
Sync hronous idle
End of transmission block
Cancel
End of mediu m
S ubstitute
Escape
File separator
Group separator
Record separator
Unit separator

User's Reference G uide

Appendix

KEYBOARD MAPPING
The following diagrams illustrate the k ey codes returned in the four keyboard modes specified by the
key-unit value in the CALL KEY statement. The figures on the upper key face are fu nction codes,
and the lower figures are control codes.

, • , • " "
, • " • , , , • , , , , , , ·

" , w E , , ,
"

, , , I

• • " • , , , G H , , • ; ENTER

" I I I I I I SHIFT , • C , , , M SHIFT

~~.

c<.:< ell'll SP ACE FerN

Fi/iure 1. Standard T /·9914 Keyooard Scan.

Key-unit - 3. Both upper- and lower-case alphabetical characters returned as lower-case.
Function codes "" 1-15. No control characters active.

'" '" '" no ". '" '"
,,.

'" '" , , , • , , , , • , ·
" " "

'" , w , , , ,
"

, , , ,
" " • " •• .. " • " "

'" '" '" • , , , G H , , • ; ENTER ,
" • • , • " " " ..

'" SHIFT , • c • , , M SHIFT

" "
, .. • " " "

IlLPHA .oc, CT l'll SPACE FerN

Fi/iure 2. Pascal Keyooard Scan.

Kerunit = 4. Upper- and lower-case characters active.
Function codes = 129· 143. Con trol character codes'""' 1-31 .

Users Reference Guide 111·3

Appendix

111-4

, • , • " "
, • " • , , , • , , , 8 9 0 -". ". '"

" 0 w , , , , u , 0 • I ". '" '" , .. ". '" ". '" '" , .. '" • • " • , 0 , , H , , , , ENTER

'" '" '"
,,.

'" '" '" '" , .. ".
" SHIFT , , , , 8 , M SHIft , .. ,.. '" "" n. ,..

'" '" '"
AlPHA

"'" CHll SP ACE FelN

Figure 3. BASIC Keyboard Scan.

Key-unit = 5. Upper- and lower-case c haracters active.
Function codes ,., 1-15. Control cha racter codes - 128, 159, 187.

K eY-IIItII - I f(~ru"'l - 1

ALPHA
LOCI< CIRL SPAce FeTN

FiIJure 4. Split Keyboard Scan.

Codes returned "'" 0- 19.

CHARACTER CODES FOR SPLIT KEYBOARD

CODES KEYS' CODES KEYS'

0 X.M 10 5.0
1 A.H 1 1 T.P
2 S.) 12 F.L
3 D .K 13 V . . (period)
4 W.U 14 C. ,(comma)
5 E .! 15 Z.N
6 R .O 16 B. / (slash)
7 2.7 17 G. : (semicolon)
8 3.8 18 Q.Y
9 4.9 19 1.6

*Note that the first key listed is on the left s ide of the key tx>ard.
and the second key lis ted is on the right side of the k eyboard .

User's Reference Guide

Appendix

PATTERN-IDENT IFIER CONVERSION TABLE

BINARY CODE HEXADECIMAL
Blocks (0 =011;1 =on) CODE

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
101 1 B
1100 C
1101 D
1110 E
1111 F

COLOR CODES

COLOR CODE U COLOR CODEU

Transparent 1 Medium Red 9
Black 2 Light Red 10
Medium Green 3 Dark Ye llow 11
Light Green 4 Light Yellow 12
Dark Blue 5 Dark Green 13
Light Blue 6 Magenta 14
Dark Red 7 Gray 15
Cyan 8 White 16

User's Reference Guide lII -S

Appendix

HIGH-RESOLUTION COLOR COMBINATIONS

The following color combinations produce the sharpest. clearest character resolution on the TI -99/ 4A
color monitor screen. Color codes a re included in parentheses .

Black on Medium Green (2. 3)
Black on Light Green (2. 4)
Black on Light Blue (2.6)
Black on Dark Red (2, 7)
Black on Cyan (2. 8)
Black on M edium Red (2. 9)
Black on Light Red (2. 10)
Black on Dark Yellow (2. 11)
Black on Light Yellow (2. 12)
Black on Dark Green (2. 13)
Black on M agenta (2.1 4)
Black on Gray (2. 15)
Black on White (2. 16)
M edium Green on White (3, 16)
Light Green on Black (4. 2)
Light Green on White (4. 16)
Dark Blue on Ligh t Blue (5. 6)
Dark Blue on Gray (5. I S)
Dark Blue on White (5, 16)
Light Blue on Gray (6, 15)
Light Blue on White (6. 16)
Dark Red on Light Yellow (7. 12)
Dark Red on White (7, 16)
Medium Red on Light Red (9, 10)
M edium Red on Light Yellow (9. 12)
Medium Red on White (9. 16)

111 ·6

Ligh t Red on Black (10. 2)
Light Red on Dark Red (10.7)
Dark Yellow on Black (1 1.2)
Light Yellow on Black (12. 2)
Ligh t Yellow on Dark Red (12, 7)
Da rk Green on Light Green (13. 4)
Da rk Green on Light Yellow (1 3. 12)
Dark G reen on Gray (1 3. 15)
Dark Green on White (13.16)
Magenta on Gray (14 . 15)
Magenta on White (14 . 16)
Gray on Black (1 5. 2)
Gray on Dark Blue (IS, 5)
Gray on Dark Red (15 . 7)
G ray on Dark Green (15 . 13)
Gray on White (15 . 16)
White on Black (16. 2)
White on Medium Green (16. 3)
White on Light Green (16. 4)
White on D ark Blue (16. 5)
White on Light Blue (16.6)
White on Dark Red (1 6. 7)
White on Medium Red (16. 9)
White on Light Red (1 6. 10)
White on Dark Green (16. 13)
White on Magen ta (16. 14)
White on Gray (16, 15)

User's Reference Gu ide

Appendix

MUSICAL TONE FREQUENCIES

The following table gives frequencies (rounded to integers) of four octaves of the tempered scale (one
half-step between notes). Whi le this list does not represent the entire range of tones - or even of
musical tones - it can be helpful for musical programming.

Freq uency Note Frequency Note

I 10 A 44 0 A (above middle C)
117 A".S' 466 A".S'
123 S 494 S
13 1 C(low C) 523 C(high C)
139 C" .D ' 554 CP .D ~

147 D 587 D
156 D" .E' 622 D".E '
165 E 659 E
175 F 698 F
185 P.G' 740 F" .G'
196 G 784 G
208 G".A' 83 1 G".A'
220 A (below middle C) 880 A (above high C)

220 A (below middle C) 880 A (a bove high C)
233 A" .S' 932 A".S'
247 S 988 S
262 C (middle C) 1047 C
277 C" .D ' 11 09 C".D '
294 D 1175 D
311 D" .E' 1245 D".E '
330 E 1319 E
349 F 1397 F
370 F ".C' 1480 F".C '
392 C 1568 C
415 C ".A' 1661 C".A'
440 A (above midd le C) 1760 A

User's Reference Guide 111 ·7

Error Messages
I. Errors Found When Entering a Line

• BAD LINE NUMBER
1. Line number or line number referenced

equals 0 or is greater than 32767
2. RESEQUENCE specifica tions generate

a line number greater than 32767

• BAD NAME
I . The varia ble na me has more than 15

characters

• CAN'T CONTINUE
1. CONTINUE was entered with no

previous breakpoint or program was
edited s ince a breakpoint was ta ken.

• CAN'T DO THAT
1. Attempting to use the following program

statements as commands: DATA . DEF.
FOR. GOTO. GOSUB. IF. INPUT,
NEXT, ON , OPTION. RETURN

2. Attempt ing to use the following
commands as program statements
(entered with a line number): BYE ,
CONTINUE, EDIT. LIST, NEW,
NUMBER, OLD, RUN , SAVE

3. Entering LIST. RUN . or SAVE with no
program

• INCORRECT STATEMENT
1. Two variable names in a row with no

valid separator between them (ABC A or
A$A)

2. A numeric constant immediately follows
a variable with no valid separa tor
between them (N 257)

3 . A quoted str ing has no closing quote
mark

4 . Inva lid print separator between numbers
in the LIST, NUMBER. or
RESEQUENCE commands

5. Invalid c haracters following
CONTINUE, LIST. NUMBER,
RESEQU ENCE, or RUN commands

6. Command keyword is not the firs t word
in a line

7. Colon does not follow the device name in
a LIST command

• LINE TOO LONG

1II·8

1. The input line is too long for the input
buffer

• MEMORY FULL
1. Entering an edit line which exceeds

available memory
2 . Add ing a line to a program causes the

program to exceed available memory

II. Errors Found When Symbol Table Is
Generated

When RUN is entered but before a ny program
lines a re performed . the computer scans the
program in order to establish a symbol table. A
symbol table is an area of memory where the
variables. arrays, functions. etc .. for a program
are s tored . During this scanning process. the
computer recognizes certain errors in the
program, as lis ted below. The number of the
line containing the error is printed as part of the
message (for example: ,. BAD VALUE IN 100).
Errors in this section are dis tinguished from
those in section Ill. in that the screen co lor
remains cyan until the symbol table is
generated . Since no program lines have been
performed at this point. a ll the values in the
symbol table wi ll be zero (for numbers) a nd null
(for s trings).

• BAD VALUE
1 . A dimension for a n array is greater than

32767
2 . A dimension for an array is zero when

OPTION BASE - 1

• CAN'T DO THAT
1. More than one OPTION BASE

statement in your program
2 . The OPTION BASE statement has a

higher line number than an array
definition

• FOR·NEXT ERROR
1. Mismatc hed num ber of FOR and

NEXT statements

• I NCORRECT STATEMENT
DEF

1. No closing '')'' after a parameter in a
DEF statement

2, Equals s ign (=) missing in DEF
statement

3. Parameter in DEF statement is not a
valid variable na me

User's Refere nce Guide

Error Messages

DIM
4. DIM statement has no dimensions or

more than three dimensions
5. A dimension in a DIM statement is not

a number
6. A dimension in a DIM statement is not

followed by a comma or a closing ")"
7. The array-name in a DIM statement is

not a valid variable name
8. The closing ")" is missing for array

subscripts

OPTION BASE
9. OPTION not followed by BASE

1 O. OPTION BASE not followed by 0
or 1

• MEMORY FULL
1. Array size too large
2 . Not enough memory to allocate a

variable or function

• NAME CONFLICT
1. Assigning the same name to more than

one array (DIM A(S). A(2.7))
2. Assigning the same name to an array and

a simple variable
3 . Assigning the same name to a variable

and a function
4. References to an array have a different

number of dimensions for the array
(B~A(2. 7) +2. PRINT A(S))

III. Errors Found When a Program Is Running

When a program is running. the computer may
encounter statements that it cannot perform. An
error message will be printed, a nd unless the
error is only a warning the program will end. At
that point . all variables in the program will have
the values assigned when the error occurred.
The number of the line containing the error will
be printed as part of the message (for example:
CANT DO THAT IN 210) .

• BAD ARGUMENT
1. A built-in function has a bad argument
2. The string expression for the built-in

functions ASC or VAL has a zero length
(nu ll string)

3. In the VAL function, the s tring
expression is not a valid representation
of a numeric constant

User's Reference Guide

• BAD LINE NUMBER
1. Specified line number does not exist in

ON. GOTO or GOSUB statement
2. Specified line number in BREAK or

UNBREAK does not exist (warning only)

• BAD NAME
1 . Subprogram name in a CALL statement

is invalid

• BAD SUBSCRIPT
1. Subscript is not an integer
2. Subscript has a value greater than the

specified or a llowed dimensions of an
array

3. Subscript 0 used when OPTION BASE
1 specified

• BAD VALUE

CHAR
1. Character·code out of range in CHAR

statement
2. Invalid character in pattern-identifier in

CHAR statement

CHR$
3. Argument negative or larger than 32767

in CHR$

COLOR
4. Character-set-number out of range in

COLOR statement
5. Foreground or background color code out

of range in COLOR statement

EXPONENTIATION (A)
6. Attempting to raise a negative number to

a fractional power

FOR
7. Step increment is zero in FOR-TO

STEP statement

HCHAR. VCHAR. GCHAR
8. Rowor column'numberout of range in

HCHAR. VCHAR. or GCHAR
statement

jOYST, KEY
9. Key-unit out of range in JOYST or KEY

statement

ON
10. Numeric-expression indexing line

number is out of range

111·9

Error Messages

OPEN, CLOSE, INPUT. PRINT.
RESTORE
11. File-number negative or greater than

255
12 . Number-oC-records in the

SEQUENTIAL option of the OPEN
s tatement is non-numeric or greater
than 32767

13. Record-length in the FIXED option of
the OPEN statement is greater than
32767

POS
14. The numeric-expression in tbe POS

statement is negative. zero. or larger
than 32767

SCREEN
15. Screen color-code out of range

SEG$
16. The value of numeric-expression}

(c haracter position) or numeric
expression2 (l ength of substring) is
nega tive or larger than 32767

SOUND
17. Duration. frequen cy, volume or noise

specification out of range

TAB
18. The va lue of the character position is

greater than 32767 in the TAB function
specification

• CAN'T DO T HAT
1. RETURN with no prev ious GOSUB

s tatement
2. NEXT with no previous matching FOR

statement
3. The control· variable in the NEXT

statement does not match the control·
variable in the previous FOR statement

4. BREAK command with no line number

• DATA ERROR

1ll·IO

1. No comma between items in DATA
statement

2. Variable.Jist in READ statement not
filled but no more DATA statements are
avai lable

3. READ statement with no DATA
statement remaining

4. Assigning a string value to a numeric
variable in a READ statement

5. Line-number in RESTORE statement
is greater than the highest line number
in the program

• F ILE ERROR
I . Attempting to CLOSE. INPUT.

PRINT. or RESTORE a file not
currently open

2. Attempting to INPUT records from a
file opened as OUTPUT or APPEND

3. Attempting to PRINT records on a fi le
opened as IN PUT

4. Attempting to OPEN a file which is
already open

• INCORRECT STATEMENT
General

1. Opening "C. closing -)". or both missing
2. Comma missing
3. No line num ber where expected in a

BREAK . UN BREAK, or RESTORE
(BREAK I DO.)

4 ... +" or" - " not followed by a numeric
expression

5. Expressions used with ari thmetic
operators are not numeric

6. Express ions used with relational
operators are not the same type

7. Attempting to use a string expression as
a subscript

8. Attempting to assign a va lue to a
function

9. Reserved word out of order
10. Unexpected arithmetic or relational

operator is present
11. Expected arithmetic or relational

operator missing

Built·in Subprograms
12. In JOYST. the x'return and y-return are

not numeric var iables
13. In KEY, the key·status is not a numeric

va riable
14 . In GCHAR. the third specification must

be a numeric variable
15. More than three tone specifications or

more than one noise specification in
SOUND

16. CALL is not followed by a subprogram
name

User's Reference Guide

Error Messages

File Processing'input/ Output Statements
17. Number s ign (#) or colon (:) in file

number specification for OPEN,
CLOSE. INPUT. PRINT. or
RESTORE is miss ing

18. File-name in OPEN or DELETE must
be a s tring expression

19. A keyword in the OPEN statement is
invalid or appears more than once

20. The number of records in
SEQUENTIAL option is less than zero
in the OPEN s tatement

21 . The record length in the FIXED option
in the OPEN s tateme nt is less than zero
or greater than 255

22 . A colon (:) in the CLOSE statement is
not fo llowed by the keyword DELETE

23. Print-separator (comma. colon.
semicolon) missing in the PRINT
statement where required

24 . Input-prompt is not a s tr ing expression
in INPUT s tatement

25. File- name is not a valid string
expressio n in SAVE o r OLD
command

General Program Statements

FOR
26. The k eyword FOR is not fo llowed by a

numeri c variable
27. In the FOR s tatement. the control

va riable is not fo llowed by an equa ls
s ign (=)

28. The keyword TO is missing in the FOR
s tatement

29. In the FOR s tatement. the limit is not
followed by the end of line or the
keyword STEP

IF
30. The keyword THEN is missing or not

followed by a line number

LET
31. Equals s ign (=) missing in LET

s tatement

User's Reference Guide

NEXT
32 . The keyword NEXT is not followed by

control-variable

ONCOTO. ON·COSUB
33 . ON is not foll owed by a valid numeric

expression

RETURN
34 . Unex pected word or cha racter following

the word RETURN

User· Defined Functions
35. The number of function argume nts does

not match the number o f pa rameters for
a user·defined function

• INPUT ERROR
1. Input data is too long fo r Input/ Output

buffer (if data entered from keyboard.
this is o nly a warning - data can be re
entered)

2. Number of variables in the variable·Jis t
does not match number of data items
input from keyboard or data file
(warning o nly if from keyboard)

3. Non-numeri c data INPUT for a
numeric variable. This conditio n could
be caused by reading padding
characters on a fil e record . (Warnin g
only if from keyboard)

4 . Numeri c INPUT data produces an
overflow (warning onl y if fro m
keyboard)

• [/ 0 ERROR - Th is condition generates an
accompanying error code as follows:

When an I/ O error occurs. a two-digit error
code (XV) is displayed with the message:

* 1/0 ERROR XV IN line' number

The firs t digit {Xl indicates which lIO
operation caused the error .

X Value Operation

0 OPEN
CLOSE

2 INPUT
3 PRINT
4 RESTORE
5 OLD
6 SAVE
7 DELETE

III-II

Error Messages

The second digit (V) indicates wha t kind of
error occurred.

Y Value Error Type
o Device name not fou nd (Invalid

device or fi le name in DELETE .
LIST. OLD. or SAVE command)
Device write protected (Attempting
to write to a protected fi le)

2 Bad open attribute (O ne or morc
OPEN options are ill ega l or do not
match the fi le characteris tics)

3 Illegal operat ion (Input/ ou tput
command not valid)

4 Out of space (Attempting to write
when insufficient space remai ns on
the storage medium)

5 End of fi le (Attempt ing to read past
the end of a file)

6 Device error (Device not connected.
or is damaged . This error can occur
during fi le processing if an
accessory device is accidentally
disconnected whi le the program is
running.)

7 File error (The indicated file does
not exist or the file type - program
fi le or data file - does not match the
access mode.)

• MEMORY FULL
1, No t eno ugh memo ry to a llocate the

specified character in C HAR s tatement
2. GOSUB s tatement branches to its own

line' number
3. Program contains too many pending

subroutine branches with no RETURN
performed

111 ·12

4 . Program con tains too many user-defined
func tions which refer to o ther user
defined functions

5 . Relational. s tring, or numeric
expression too long

6. User-defined functio n references itself

• NUMBER TOO BIG (warni ng given - va lue
replaced by computer limit as shown below)

1. A numeric opera tion produces an
overflow (value greater tha n
9.9999999999999E 127 or less tha n
-9.9999999999999E 127)

2. READing from DATA sta temen t results
in an overflow assignment to a numeric
variable

3. INPUT results in an ove rflow
assignment to a numeric variable

• STRING· NUMBER MISMATCH
1. A non-numeric argument spec ified for a

built-in function, tab-funct ion, or
exponentiation operation

2. A non-numeric va lue found in a
specification requ iring a numer ic va lue

3. A no n-string va lue found in a
specifica ti on requiring a string value

4 . Function argument and parameter
disagree in type, or function type and
expression type disagree for a user
defined function

5. File-number not numeric in OPEN,
CLOSE. INPUT. PRINT. RESTORE

6. Attempting to assign a string to a
nu meric var iable

7. Attempting to assign a num ber to a
string va ria ble

Note: Additiona l error codes may occur when
you are using various accessories, such as the
TI Disk Memory System or Solid State
Therma l Printer. with the computer. Consult
the appropriate device owner's manual for more
information on these error codes.

IV. Error Returned When an OLD Command
Is Not Successful

'CHECK PROGRAM IN MEMORY
The OLD command does not clear program
memory unless the loading operation is
successful. If a n OLD command fai ls or is
interrupted , however. any program currently in
memory may be partially or completely
overwri tten by the program being loaded.
LIST the program in memory before
proceeding.

User's Reference Guide

Accuracy Information
Displayed Results Versus Accuracy

Computers. like a ll other dev ices . must o perate
with a fixed set of rules within preset limits. The
TI computer uses especially powerful internal
notation to represent numbers.

The mathematica l tolerance o f the computer is
contro lled by the number of digits it uses for
ca lculations . The computer appears to use 10
digits as shown by the display. but actually uses
more to perform a ll calculations. When rounded
for display purposes , these extra digits help
mai ntai n the accuracy of the values presented.
Example:

1/3 X3 =.9999999999 (inaccurate)

The example shows that VJ = .3333333333,
whe n multiplied by 3. prod uces an inaccurate
a nswer. However. a I 3·digit s tring of nines,
when rounded to 10 places. will equal
1.0000000000.

The higher order mathema tical functions use
iterative a nd po lynomia l calculations. The
cumulati ve rounding error is usually maintained
below the 10-digit display so that no effect can
be seen . The 13-digit representation of a
num ber is three orders of magn itude from the
di splayed tenth digit. In this way the di splay
assures that resu lts are rounded accurately to
ten digits.

Norma ll y there is no need to even consider the
undisplayed di gi ts. On certain calculations. as
with any computer, these digits may appear as
an answer when not ex pected . The
mathema tical limits of a finite ope ration (word
length . truncation and rounding errors) do not
allow these digits to always be completely
accurate. Therefore. when subtracting two
expressions which a re mathemat ically equal. the
computer may display a nonzero result .
Example:

X= ¥j - !fl _ I/3
PRINT X
lE-14

The fina l resu lt indicates a d iscrepancy in the
fourteent h d igit.

The above fact is especially important when
writing your own programs. When testing a

User's Reference Guide

ca lculated result to be equal to a nother value.
precautions should be taken to preven t
improper evaluation. For the above example.
the s tatement X ~ 1 E - 1 O*(INT(X *1 E 10)) will
truncate the undisplayed digits ofthe var iable X
leaving only the rounded d isplay value for
furth er use .

Technical Information on Number
Representation

Technically speak ing. your computer uses a
7·digit Radix' I OO mantissa for internal
calculations. A s ingle Radix'IOO di gi t has a
range of value from 0 to 99 in base' 1 0
arithmetic . This means that a 7·digit Radix -I 00
num ber wi ll correspond to decimal precision of
13 to 14 digits. depending on the value.

Radix' l 00 exponents range in value from -64
to +63 which yie ld dec imal val ues of 10- 128 to
10+126. The Radix·IOO manti ssa and exponent
combi ne to prov ide an equivalent dec imal range
of from -9.9999999999999EI27 through
-1 .OOOOOOOOOOOOOE - 128: zero: and then
+ 1.0000000000000E -128 on through
+9.9999999999999E 127.

The in terna l format of each numeri ca l va lue
consis ts of eigh t bytes. The firs t byte contains
the exponent and its s ign . biased by 40 hex . T he
remaining bytes contain the mantissa. with the
most s ignificant digit firs t. The num ber is
norma lized so that the decimal point is
immediately after the most s ignificant digit. If
the number is negative. then the first two bytes
are complemented .

Examples:

I. The number 12710 is rep resented as:

E XP MSD LSD
41 0 1 IB 00 00 00 00 00

2. T he fractio n 0.510 is represented as:

3F 32 00 00 00 00 00 00

3 .a) The va lue of 'tt/ 2 is represen ted as:

40 0 1 39 07 60 20 43 SF

b) The va lue of -7T12 is :

BF FF 39 07 60 20 43 SF

llH 3

Applications Programs
Introduction

The programs in this sec tion are des igned to illus tra te the use of
many of the statements in TI BASIC. If you've never had any
experience with programming, the best place to begi n learning
about TI BASIC is the Beginner 's BASIC book included with your
computer. When you've finis hed reading and working th rough the
programs in that book . these programs will provide add it ional he lp
in more complex programming. If you've had some experience in
programming, these programs will provide a demons tra tio n of many
of the T I BASIC features.

The programs included here begin at a s imple level and
progress ively become more complex. Thus. yo u can begi n at
whatever level you wan t. Most o f the progra ms employ the color
graph ics and sound capabilities of the computer . These should
provide you with a good basis for designing your own graphics a nd
adding sound to your programs.

IJJ.l 4 User·s Reference Guide

Random Color Dots
This program places random color dots in random locations on the
screen. In add ition. a random sound is generated and played when
the dot is placed on the screen.

The RANDOM IZE statement causes a di fferent sequence of
numbers to be genera ted each time the program is fun . The CALL
CLEAR s tatement clears the screen.

This loop assigns each color code (2 through 16) to a differe nt
character se t (codes 2 through 16),

These sta tements genera te a random musical frequency for the
CALL SOUND statement. Statement 170 generates notes from the
tempered (twe lve-tone) scale.

These statements generate a random character in the range of 40
through 159 and a random row and co lumn loca tion. (The color of
the dot depends on the character set of the randomly chosen
character.)

These s tatements produce the sound and place the solid co lor dot
on the screen. Then the program loops back to generate a new
sound. color dot, and locatio n.

User·s Reference Guide

Examples:

>N EW

>100 REM RANDOM COLOR DOTS
>110 RANDOMIZE
>120 CALL CLEAR

>130 FOR C=2 TO 16
>1 40 CALL COLOR(C,C,C)
>150 NEXT C

>160 N=INT(24*RND)+1
>170 y=110 *(2A(1/12»A N

>180 CHAR= INT (T20 *RND)+ 40
>190 ROW=INT(24*RND)+1
>200 CO L=INT(32 *RN D)+1

>210 CAL L SOUND(-500 ,Y, 2)
>220 CALL HCHARCROW,COl,CHAR)

>230 GO TO 160
>RUN

-- screen clears

--rand om colo r dots appear
on the screen at different
locations

(press CLEAR to slap
the program)

111·15

Inchworm
This program crea tes an inchworm that moves back and forth
across the screen. When the inchworm reaches the edge of the
screen. an "uh-oh" sounds. and the inchworm turns around to go
in the opposite direction.

These s tatements a llow you to enter a co lor for the inchworm (color
codes 2-3. 5-1 6 are recommended) . The screen is then cleared . The
CA LL COLOR s tatement assigns the color you selec ted to
character se t 2. XDIR is used to designate which direction the
inchworm moves (+ 1 indicates right a nd - } indica tes left).

This loop moves the inchworm across the screen. Line 180
computes where the next block is to be displayed and line 190
places the new block on the screen. The DELAY loop governs how
fast the inc hworm moves across the screen. Line 220 erases the o ld
co lor block (so a continuous line won't be drawn) by plac ing a bla nk
space over the block previously displayed at XOLD . Line 230
saves the current block pos ition so a new one can then be
computed . The loop is repeated until the inchworm reaches the
edge of the screen.

Line 250 reverses the direction of the inchworm. Lines 260 and
270 produce the ·· uh ·oh·' sound . Then line 280 causes the loop to be
pe rformed again .

IlI -16

Examples:

>HEW

>100 REM INCHWORM
>1 10 CALL CLEAR
>120 INPUT "COLO R? ":C
>130 CALL CLEAR
>14 0 CA LL CO LOR(2 ,C, C)
>150 XOLD"1
>160 XD IR:1

>170 f OR 1" 1 TO 31
>180 XNEW:X OL D+XOIR
>190 CAL L HCHAR(12,XNEW,42)
>200 FOR DELAY:1 TO 200
>2 10 NE XT OELA Y
>220 CA LL HCHAR(12, XO LD, 32)
>230 XOL O" XHEW
>240 NEXT 1

>25 0 XDIR;-XOIR
>260 CALL SOUND(1 00 , 392,2)
>27 0 CALL SOUND(100,33 0, 2)
>28 0 GOTO 170
>RUN

--screen clears

COLOR? 7

-- sc r een clea r s

--inchwo rm moves ba ck and
forth across the screen

(Press CLEAR 10 s top
the program)

User ·s Reference Guide

Marquee
This program puts a ma rquee on the screen. The colors are
produced randomly, and a tone sounds each time a color bar is
placed on the screen.

These statements clear the screen and assign each character set (2
through 16) to a different color. The RANDOM IZE statement
ensures that a different set of co lors wi ll be produced each time the
program IS run .

These s tatements produce a border for the marquee.

This loop places color bars on the screen moving from left to right
(columns 3 through 30). Each time a bar is placed on the screen. a
tone sounds. The negative durat ion allows the sound to be cut off
and a new sound to begin each time the CALL SOUND statement
is performed. The subroutine beginning at line 310 genera tes the
random colors and tones.

This loop is the same as the loop in li nes 200 through 240 except
that the color bars are placed on the screen moving from the right
to the left. These color bars are placed below those generated by
the previous loop . When the loop is finished. the program transfers
to line 200 to begin a t the left aga in.

This subroutine genera tes a random character (thus also generating
a random color) for the CALL VCHAR statements (lines 220.270),
The assignment s tatements in lines 320 and 330 generate a random
tone, The RETURN statement transfers the program to the
statement following the GOSUB (lines 210.260) ,

User's Reference Guide

Examples:

>NEIrl

>100 REM MARQ UEE
>110 RANOO'UZE
>12 0 CALL CLEAR
>130 FOR S=2 TO 16
>140 CALL COLORCS , S,Sl
>150 NEXT S

>160 CALL HCHARC7 ,3,64, 28l
>17 0 CALL HCHAR(16,3,64,28l
>180 CALL VCHARC7 , 2,64,1 0l
>190 CALL VCHARC7,31,64,10l

>200 FOR A:3 TO 30
>210 GOSUB 310
>2 20 CAL L VCHARC8,A,C,4l
>230 CAL L SOUNO(- 150,Y,2l
>240 NEXT A

>250 FOR A=30 TO 3 STE P - 1
>260 GOSUB 310
>270 CALL VCHA RC 12,A, C,4 l
>280 CALL SOU NOC-1 50 ,Y, 2l
>290 NEXT A
>300 GO TO 200

>310 C=INT C120 *RNO l +4 0
>320 N:INT C24 *RNO)+'
>330 Y=220*C2"(1112)l,,N
>3 40 RETURN
>RU N

-- sc re en clears

--ma rquee appears

(press CLEAR to SlOp

the program)

II J.l7

Secret Number
This program is a sec ret number game. The object is to guess the
randomly c hosen num ber between 1 and an upper limit you input.
For each guess. you enter two numbers: a low and a high guess.
The computer will tell you if the secret number is less than. greater
than . o r between the twO numbers you enter . When you think you
know the number . e nter the same value for both the low and high
guesses.

The RANDOMIZE statement ensures a different sequence of
numbers eac h time the program is run . MSGl$ and MSG2$ are
repeated ly used in PRINT statements. The CALL CLEAR
statement clears the screen.

The INPUT stateme nt s tops the program and waits for you to enter
a limit. Then the secret number is ge nerated. and the screen is
cleared . N is used to keep track of the number of guesses you
make.

This INPUT sta teme nt accepts your low and high guesses. If you
enter the same num ber for both guesses and you guess the secret
number , the program transfers to line 300. If the secret number is
less than your low number. the program transfers to line 260. If the
sec ret num ber is grea ter than yo ur high number, the program
transfers to line 280. If the secre t number is between your two
numbers or equal to one of yo ur numbers . the program continu es.

These s tatements print a message to tell you where the secret
number is in re la tion to your guesses. Then the program transfers
to line 180 to allow you to guess again. If you guessed the secret
number. the computer tells you how many guesses you took .

Ill-lB

Examples:

>NEW

>1 00 REM SECRET NUMBER
>110 RANDOMIZE
>120 MSG1S:"SECRET NUMBER ISM

>130 MSG2S:"YOUR TWO NUMBERS"

>140 CALL CLEAR

>150 INPuT "ENTER LIMIT? ":LI
"IT

>160 SECRET:INT(LIMIT.RND)+l
>170 CALL CLEAR
>180 N:N+1

>190 INPUT MLOW,HIGH GUESSES:
M:LOW,HI GH

>200 IF LOW<>HIGH THEN 220
>210 IF SECRET:LOW THEN 300
>220 IF SE CRET<LOW THEN 260
>23 0 IF SECRET>HIGH THEN 280

>240 PRINT MSG1S&M BETWEEN":M
SG 2S

>250 GOTO 180
>260 PRINT MSG1S&" LESS THAN"

:I1SG2S
>270 GOTO 180
>280 PRINT I1SG1S&" LAR GER THA

NM: MSG2S
>290 GOTO 180
>300 PRINT "YOU GUESSED THE S

ECRET M
>310 PRINT MN UI18ER IN ";N;MT R

IES M

User's Reference Gu ide

Secret Number

These statements offer you the choice of playing agai n or stopping
the program. If you enter any character other than Y. the program
ends, If you wish to play again. the counter for the number of
guesses is set to zero. and you are asked if you wa nt to sel a new
limit. If you en ter Y. the program transfers back to line 14 0. If you
enter any other character. the program transfers to line 160 to
generate a new secret number.

Here is a sample of the program run. (Of course. your secret
numbers will be different from the onc shown here.)

User's Reference Guide

Examples:

>320 PRINT "WANT TO PLAY AGAI
N? "

>330 INPUT "ENTER Y OR " , ": A

• >340 If AS<>"Y" THEN ,90
> 3S 0 N=O
>360 PRINT "WAN T 10 SEI A "E<

LIf'IIT?"
>370 INPUT "ENTER Y OR N: " : 8

• >380 IF 8S="," THEN 140 ELSE
160

>390 END

>RUN

--screen clears

ENTER LIMI T? 20

-- screen clears

LOW ,HI GH GUESSES: 1,10
SECRET NUMBER I S BETWEEN
YOUR TWO NUMBERS

LOW,HIGH GUESSES: 1 , 5
SECRET NUMBER IS LARGER THAN
YOUR TWO NUMBERS

LOW,HIGH GUESSES: 7,7
YOU GUESSED THE SECRET
NUMBER IN 3 TRIES
WAN T TO PLAY AGAIN?
ENTER Y OR N: N

•• DONE ...

111-19

Bouncing Ball
T his program moves a ba ll and bounces it off the edges of the
screen . Eac h time the ball hits a ny s ide . a tone sounds. and the ba ll
is deflected. T he fo llowing special character is used to define the
ba ll.

x X X
X X XX

X X X ix
X X X XX
X X X X X
X X X X X

X X X X
X X X

X
X X

X X
X X
X X
X X
X

X
X
X
X

Block
Codes

3C
7E
FF
FF
FF
FF
7E
3C

These s tatements clear the screen and define character 96 as the
ball .

T hese s tatements a llow you to input the co lor of the ba ll and the
screen background color. No te tha t defini ng the screen color by
us ing character set 1. which includes c harac ter 32 (the blank
space). gives definite limits fo r the screen edge. The screen is
cleared when the colors have been entered.

These statements give the s tarting positio n for the ball and set the
parameters wh ich will contro l the X a nd Y direction .

These s tate ments compute the next ba ll pos it ion. The di rection the
ba ll moves depends on the current values of XDIR (+ 1 ind ica tes
right. -1 indicates left) and VOIR (+ 1 indicates up. - 1 indicates
down).

These statements test to see if the new ba ll position is s till on the
screen. If either the row (V) or colum n (X) value is out of range.
then the program transfers to line 310 (colum n out of ra nge) or line
360 (row out of range) to cha nge the ba ll direction .

111·20

Examples:

>N EW

>100 REM BOUNCING BAL L
>110 CALL CLEAR
>120 CALL CHAR{96,"3C7EffFfFf

Ff 7E3C")

>130 INPUT "BALL COLOR! ":C
>140 I NPUT "SCREEN COLOR! ": S

>150 CAlL CLEAR
>160 CALL COLOR(9,C,S)
>17 0 CALL COLOR(l,S,S)

>180 X=16
>190 Y=12
>200 XOIR=1
>210 YOIR=1

>220 X=X+)(OJR
>230 Y:Y+YOIR

>240 IF X<1 THEN 310
>250 IF X>3 2 THEN 31 0
>260 I f Y<l THEN 360
>270 IF Y>24 THEN 360

User's Reference Guide

Bouncing Ball

If the new ball posi tion is still on the screen , then the screen is
cleared to erase the old ba ll location. The ba ll is then disp layed at
the new loca tion designated by Y and X .

These sta temen ts change the direction of the ball if X is out of
range . The CALL SOUND statement produces the "bouncing"
tone. Lines 330 a nd 340 check to see if Y is a lso ou t of range. If it
is. the program transfers to change the Y direction. If not. the
program transfers to line 220 to compute a new ball pos ition.

These statements change the direction of the ball if Y is out of
range . The CALL SOUND statement produces the "bouncing"
tone. The program then transfers to line 220 to compute the new
ba ll position.

User's Reference Guide

Examples:

>28 0 CA LL CLEAR
>290 CALL HCHAR(Y,K,96)
>300 GOTO 220

>3 10 XDIR= -X DIR
>320 CALL SOU ND (30,380,2}
>330 IF Y<1 THEN 360
>340 IF Y>24 THEN 360
>350 GOTO 220

>360 YDIR= - YDIR
>370 CALL SOUND(30,380 , 2)
>380 GOTO 220
>RU N

-- screen cLears

BALL COLOR? 5
SCREEN COLOR? 15

--baLL appears in cen ter of
screen and begins bouncing

(Press C LEAR to s top
the program)

111 ·21

Checkbook Balance
Once each month a ll of us have the opportunity to tack le
"balancing" our c heck books aga inst our bank statements.
Normally, the checkbook balance will no t agree with the balance
shown on the bank statement because there are checks and
deposits that haven't cleared yet. This program will help you
ba la nce your check book quickly and easily.

These s tatements clear the screen a nd a llow you to input the
balance shown on your bank statement .

These statements give instructions for e ntering your outstanding
check numbers a nd amounts . Note that DISPLAY and PRINT
can be used interc ha ngeably.

This loop sets up the procedure for entering each check number
and amount. These va lues are s tored in arrays . If the check number
equals zero. the program transfers out of the loop. CTOTAL is the
total amount of outstanding checks. Each time a check amount is
input. the progra m transfers to line 190 to input another check
num ber and amount .

These s tatements give instructions for entering you r outstanding
de posits.

This loop asks for and accepts each ou tstanding depos it amount. If
the deposit amount equals zero. the program transfers out of the
loop . OTOTAL is the total amount of outstanding deposits. After
each outstanding deposit is added to the total. the program
transfers to line 310 to accept another deposit amount.

111 ·22

Examples:

>NEW

>100 RE~ CHECKBOOK BALANCE
>110 CALL CLEAR
>120 INP UT "BA NK BALANCE? ":B

AlANCE

>130 DISPLAY "ENTER EACH OU TS
ANDING"

>140 DISPLAY "CHECK N U ~BER AN

• AMOUNT . "
>150 DISPLAY
>160 DISPLAY "ENTER , ZERO FO , THE"
>170 DISPLAY "CHECK NUMBER WH

EN FINISHED. "
>180 DISPLAY

>190 N:::N+1
>200 INPUT "CHECK N U ~BER ? ":C

NU,HN)
>210 IF CN U ~(N):O THEN 250
>220 INPUT "CHE CK AMO UNT ? " : C
A~T(N)

>230 CTOTALzCTOTAL +CAMT(N)
>2 40 GDTD 190

>250 DISPLAY " ENTER EACH OUTS
TANDING"

>260 DISPLAY "DEPOSIT AM OU NT.

>270 OIS PLAY
>280 DISPLAY "E NTER A ZERO A~

aU NT"
>290 DISPLA Y "WHEN fINI SHED ."

>300 DISPLAY

>310 M=",+1
>320 INPUT "DEP OS IT A", OU NT ?
:DA"'T (~)

>330 If DA~T(~)=O THEN 360
>340 DTOTAL z OTOTAL + DA~T(M)

>350 GOTD 310

User's Reference Guide

Checkbook Balance

These statements compute a nd d isplay the new balance. Then yo u
enter the current balance in your checkbook . (Be sure you have
subtracted bank service charges before you enter the current
ba lance.) The correction necessary to mak e your check book agree
wi th the bank sta tement is then computed and displayed.

Here is a sample program run.

User's Reference Guide

Examples:

>360 NBAL =BA l ANCE - CTOTAL +DT OT
AL

>370 DISP LAY "NEW BA LANC E= ";
NBAl

>380 INPUT " CHECKBOOK BALANCE
? ":CBAL

>]90 DI SPLAY "CORRECTION= " ;N
BAl - t BAl

>400 END

>RU N

-- sc ree n cl ears

BANK BALANCE? 940.26

ENT ER EACH OUTSTANDING
CHECK NUMBER AND AM OU NT.

ENTER A ZERO FOR THE
CHECK NUMBER WH EN FINISHED.

CHE CK NUMBER? 212
CHECK AMOUNT? 76 . 83
CHECK NUMB ER? 213
CHEC K AMOUNT? 122.87
CHEC K NUMBER? 216
CHECK AMOUNT ? 219 . 50
CHECK NUMBER ? 218
CHECK AMOUNT ? 397 . 31
CHECK NUMBER? 219
CHECK AMOUNT? 231.00
CHE CK NUMB ER? 220
CHEC K AMOUNT? 138 . 25
CHECK NUMBER? 0
ENTER EACH OUTSTANDING
DEPOSIT AMOUNT.

ENTER A ZERO AMOUNT
WHEN FINISHED .

DEPOSIT AMOU NT? 45 0
DEPOSIT AMOUNT? 0
NEW BALANCE= 20 4 . 5

CHEC KBOOK BALANCE? 209 .1 5
CORRECTIO N= -4.65

** DONE **

111 ·23

Codebreaker
Codebreaker is a game in which the computer generates a four·digit
code number, and you try to guess it . Zeros are not a llowed. and no
two digits may be the same. Even with these restrictions. there afe
3024 possible codes. ma king s li m your cha nces of guessing the
number on the first try . Your guess is automatically scored by the
computer. Your score fo r each guess is di splayed in the form ~N . R. ~

where N is the number of digits in your trial number that a ppear in
the secret number and afe positioned correctly and R is the number
of digits in yo ur guess w hich a lthough correct. are improperly
placed . For example, if the num ber generated by the computer is
8261 a nd you guess 6285, you receive a score of 1.2. This indica tes
that one number yo u guessed is in the right place (the 2) a nd that
two of yo ur other num bers (8 and 6) are present in the secret
number. but no t in the right place. A score of 4 .0 indicates that
yo ur guess is correc t.

The RANDOMIZE statement ensures that a different num ber will
be genera ted each time the program is run . After the screen is
cleared . the compute r genera tes the fo ur ·digit number . Note tha t
each digit is s tored separa tely in the array . N . The J·loop beginning
at line 160 ensures that no two digits in the number generated are
the same. The number of tries is se t to zero for each new four·digit
number genera ted .

The INPUT sta tement s tops the program and wai ts for yo u to enter
yo ur guess. Be sure to enter a four·digit integer number. Each ti me
you guess a num ber. the score is set to zero. and the number of tries
is increased by one .

Line 250 takes the last digit from the guess so that it may be
compared against the code number . If the digit matc hes the code
num ber in the same position. the n the score is increased by 1. If
not. then the L·loop is used to compare the digit against the other
positions in the code num ber. If it matches any other position in the
code number. then .1 is added to the score. Line 340 e liminates the
last digit from the guess. so that the next digit can be tak en fo r the
compariso n. When a ll four digits have been compared. the program
continues at line 360.

lll-24

Examples:

>NfW

>100 REM CODE BREAKER GA ME
>110 RAN I>O l''IlZE
>120 CALL CLEAR
>13 0 fOR 1:1 TO 4
>140 N(I): lNT(9*RND)+'
>150 IF 1=1 THEN 190
>160 fOR J:1 TO 1- 1
>170 If N(I)= N(J) THEN 140
>180 NEXT J
>190 NEXT I
>200 TRIES;O

>210 INPUT "ENT ER GUESS? ":GU
ESS

>220 SCO RE :O
>230 TRIE S= TRIES+'

>2 40 FOR K=4 TO 1 STEP - 1
>250 DIG IT =(GUESS/10 - INT (GUES

S/10)) *1 0
>260 If DI GIT <> N(K) THEN 290
>27 0 SCO RE =SCO RE+'
>280 GO TO 340
>290 FOR L=1 TO 4
>300 If N(L)<> I>IGIT THEN 330
>3 10 SCO RE:SCORE +. 1
>320 GOTO 340
>330 NE XT L
>3 40 GUESS= I NT(GUESS/l0)
>350 NEXT K

User's Reference Guide

Codebreaker

These s tatements print the score for each guess. Strings are used in
displaying the score to insure that the score is always displayed in
the ·'N.R .. formal. If the score is an integer number. then a ",0" (line
370) must be added after the number. If the score is less than one.
then a "0" (line 400) must be added before the number. If the score
is a no n-integer and greater than one. then jus t the score itself is
printed (line 420) . If the score is not equal to 4. the program
transfers to line 210 to accept another guess.

These statements print the number of tries you took to guess the
code number. Then the computer asks if you wan t to play again. If
you enter Y. the program trans fers to line 110 to generate a new
num ber. If you enter a nything else. the program s tops,

Here is a sample of a program run, (Of course, your code numbers
will be different.)

User 's Reference Guide

Examples:

>360 IF INT(SCOREl<>SCOR E THE
N 390

>370 PRINT STRS(SCORE)&" . O"
>380 GO TO 43 0
>390 IF SCORE>1 THEN 42 0
>400 PRINT "O"& STRS(SCORE)
>410 GO TO 43 0
>42 0 PRINT STRS(SCORE)
>430 IF SCORE<>4 THEN 210

>440 PRINT "YOU TOOK "&STRS(T
RIESl& " TRI ES TO GU ESS"

>450 PRINT "THE CODE NUMBER . "

>460 DISPLAY "WOULD YOU LIKE
TO PLA Y AGA IN"

>470 INP UT " ENTER Y OR N: ":A ,
>480 IF AS:"y" THEN 11 0
>490 END

>RUN

--s c reen clears

ENTER GUESS? 1234
0 . 1
ENTER GU ESS? 5678
2. 1
ENTER GUESS? 923 8
1. 0
EN TER GUESS? 569 4
1. 0
ENTER GUESS? 5198
2 .1
ENTER GUESS? 5718
4 . 0
YOU TOOK 6 TRIES TO GUESS
THE CODE NUMBER.
WOULD YOU LIKE TO PLAY AGAIN
ENTE R Y OR N: N

** DONE **

1II·25

Character Definition
This program allows you (0 define special graphics characters using
the computer. An 8 x 8 grid is disp layed on the screen. You then
choose which "dots" to turn on and which to leave turned off. After
the character has been designed, the program determines and
displays the HEX string to be entered in the CALL CHAR
st atement .

These sta tements define the off dot character (line 120) and the on
do t character (line 130). Black is used as the foreground co lor (on
dot) and white is used as the background co lor (off dot) . The screen
is then cleared and the labe ls needed on the screen are displayed at
the necessary loca tions. Note that the subroutine beginning at line
770 is used to print a s tr ing horizontally on the screen a nd the
subroutine beginn ing at line 820 is used to print a s tring verti ca lly
on the screen. The R·!oop is used to place the 8x8 grid (a ll dots
turned off) on the screen .

This loop a llows you to turn the "dots" either on or off. To turn a
dot on. press the 1 key. To leave a dot tu rned off. press the 0 key.
The c ursor sta rts in the upper left corner (row 1, co lumn 1) of the
grid . Each time you press a key, the dot is turned on or offand the
cu rsor moves to the nex t posi tion. When the end of a row is
reached . the cursor automat ica lly moves to the next row. When the
las t "dot" is turned on or off. the program continues to determine
the HEX string. L ine 430 performs a logica l OR. If the key you
pressed was not a zero or a one. the program trans fers back to line
3 70 to accept a new key input. Errors in the grid can be corrected
before the last dot (row 8. co lumn 8) is entered by using the LEFT
arrow a nd RIGHT arrow keys. If either of these keys is pressed,
then the program tra nsfers to the subroutine beginning a t line 870.
The subroutine moves the c ursor in the appropriate direction and to
the next row up o r down as necessary.

These statements determine the hexadecimal code for each row in
the gr id . When the code is determined . character 102 is defined to
be the cha rac ter s hown on the large grid. The newly defined
character is then displayed on the screen at row 8. column 20. The
c haracter is a lso displayed in a 3·by·3 pattern . Then the
hexadecimal code defining that cha racter is displayed . Lines 630
through 720 print instructions on the screen fo r you to define a new
cha racter . If you are fi nished defining characters, press Q a nd the
program s tops. If you press a ny other key. the program trans fers to
line 140 to clear the screen and begin again.

111 ·26

Examples:

>N EW

>10 0 REM CHARACTER DEFINITION

>110 DIM B(8,8)
>120 CALL CHAR(100 , " ")
>130 CALL CHAR(101,"FFFFFFFFF

FFFFFFF")
>140 CALL COLOR(9,2 ,1 6)
>150 CALL CLEAR
>160 MS : "AUT O CHARAC TER DEFI N

I TlON"
>170 Y:3
>180 X:4
>190 GOSUB 770
>200 MS:"12345678"
>2 10 y,.8
>220 GOsua 770
>230 GOSUB 820
>2 40 MS: " O:O FF:WHITE"
>250 Y:22
>260 X:4
>270 GOSUB 770
>280 MS : "1: 0N:BLACK"
>290 Y:23
>300 GOSUB 770
>3 10 FO R R=l TO 8
>320 CALL HCHAR(8+R,5,100,8)
>330 NEXT R
>340 FOR R:1 TO 8
>350 FOR C"1 TO 8
>3 6 0 CALL HCHAR (8 +R, 4+C,30)
>370 CA LL KEY(O,KEY , STATUS>
>380 IF STAI US:O TH EN 370
>390 IF (KE Y<>8) + (KEY<>9): - 2

THEN 420
>400 GOSU 8 870
>410 GO TO 360
>420 KEY:KEY - 48
>4 30 IF (KEY<O)+(KEY>ll<=-l T

HEN 370
>44 0 B(R,Cl:KEY
>4 50 CALL HCHAR(8+R,4+C,10 0 +K

Ell
>460 NEXT C
>470 NEXT II

>480 HEX S: "0123 4 56789ABCDEF"
>490 MI:""
>500 FOil R:1 TO 8
>5 10 LOW:B (R ,5) *8 +B (R , 6' *4+8 (

R, 7>*2+8(R,8).'
>520 HIGH:B (R,1) *8 +B (R,2, *4+B

(11 , 3)*2+8(11,4).'
>530 MS : HS&SEGI (HE XS,H IG H,1'&

SfG S (HE XS,LOW,l)
>540 NEX T II
>550 CAL L CHA R(102 ,MS '
>560 CALL HCHAR{8,20,102)
>5 70 f OR R:O TO 2
>580 CALL HCHAR (1 2 +1I,2 0 , 102 , 3

l
>590 NEXT II

User's Reference Guide

Character Definition

These subroutines print a given s tring beginning at a specified row
and column on the screen. Lines 770 th rough 810 print a string
horizontally. Lines 820 through 860 print a s tring vertica lly.

This s ubroutine is used to a llow you to c hange the dots you have
turned on or off. First. the new cursor location is check ed . If the
cursor is a t the end of the line a nd the RIG HT arrow key is
pressed. the cursor moves to the left side of the nex t l ine down. If
the cursor is a t the beginning o f the line and the LEFT arrow key
is pressed. the cursor moves to the right side of the next line up . If
the cursor is at the upper left corner and the LEFT arrow key is
pressed. the cursor moves to the lower right corner. If the c ursor is
at the lower right corner and the RIGHT arrow key is pressed, the
cursor moves to the upper left hand corner.

A sample of the screen for a program run is shown at the right.

Examples:
>600 Y:·16
>610 X::12
>620 GOSU8 770
>630 ~S::"PRESS 0 TO OUIT"
>640 Y"18
>650 X:: 1 2
>660 GOSUB 770
>670 MS :NPRESS ANY OTH ER"
>680 Y"19
>690 GOSUB 770
>700 ~S:"KEY TO CONTINUE"
>7 10 Y:20
>720 GOSUB 770
>730 CAll KEY(O,KEY, STATUS)
>740 IF STATUS"O THEN 730
>750 If KEY<>81 THEN 140
>760 STOP
>770 FOR 1:1 TO lEN(~S)
>780 COOE:ASC(SEGS(MS,I,l»
>790 CAll HCHAR(Y,X+I,COOE)
>800 NEXT 1
>8 10 RETURN
>820 FOR 1:1 TO lENCMS)
>830 CODE:ASCCSEGS(MS ,I, l»
>840 CAll HCHAR CY +I , X, COOE)
>850 NEKT I
>860 RETURN
>870 CAll HCHAR C8 +R,4+ C,1 00 +8

(R , C))
>880 IF KEy:9 THEN 960
>890 C:C - 1
>900 If C<>O THEN 1020
>910 C"'8
>920 R:R - 1
>930 IF R<>O THEN 1020
>940 R:8
>950 GOTO 10 20
>960 C::C+l
>970 IF C<>9 THEN 1020
>980 C:1
>990 R=R +l
>1000 IF R<>9 THEN 102 0
>1010 R:l
>1020 RETURN
>RUN

-- ser~~n clears

AUTO CHARACTER DEfINITION

II

UIl
OFO f Of OFOFO FO

PRESS Q TO QUIT
v"OFF: WHITE PRESS ANY OTHER
1"'ON:8lACK KEY TO CONTINUE

User's Reference Guide 111 -27

Graphics Match
This game program gives a n example of developing specia l
graphics for your own use. There are six differem graphics
cha racters defined . T hese are: heart. cherry . bell . lemon. dia mond .
and bar. To play the game you need only to run the program. The
computer genera tes th ree random numbers in the ra nge 1 through
6. Each time a number is genera ted . the pic ture corresponding to
the number is displayed on the screen. Scoring depends on how
many a nd in what way the three pictu res match. When the three
pic tures a nd the score have been displayed , you a re offered the
choice of playing again.

These statements define the co lors for each of the characters. The
colors used are:

Graphics
Character

Heart
Cherry

Bell

Lemon
Dia mond
Bar

Color

Medium Red
Medium Red with

Dark Green stem
Light Blue with

Black handle
Dark Yellow
Dark Green
Da rk Blue

A white back ground is used for a ll of the pictures.

These s ta tements define the heart.

111-28

Block
C odes

00
00
IC
3E
7F
7F
7F
7F
3F
IF
OF
07
03
01
00
00

X X
X X X

X X X X
X X X X
X X X X
X X X X

X X X
X X

X

X X X X
X X X X X X X
X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X
X X X X X X X X
X X X X X X
X X X X X X

X X X X
X X

Block
es Cod

00
00
38
7C
FE
F
F
F

E
E
E

FC
F8
FO
EO
CO
80
00
00

Examples:

>NEW

>100 REM GR APHI CS MA TC H
>1 10 CALL COLO R(9 , 7 ,1 6)
>1 20 CALL COLOR(1 0 ,1 3 ,1 6)
>1 30 CALL CO LOR(11, 2 , 16)
>140 CALL COLO R(1 2 ,6,1 6)
>1 50 CAll COLOR(' 3 ,1 ' , 16)
>160 CALL CO LORC 14, 5 , 16)

>1 70 CALL CHA R(96 , "0000 1 C3 E7F
7F7F7 F")

>18 0 CAL L CHAR (97 ,"0000 3 87CFE
FE FE FE")

>190 CALL CH AR (98 ,"3 Fl f OF0703
0 1")

>200 CALL CHA R(99 , "FC F8 FOEOCO
80 ")

User's Reference Guide

Graphics Match

Note that in lines 190 and 200. the last four zeros are omitted.
T his saves time in entering the lines since the computer
automatically fi lls the remaining length of the string with zeros.

These statements define the cherry .

Block
C odes

00
00
00
00
00
IF
3 F
7F
7F
7F
7F
7
3
3
1
o

F
F
F
F
0

X
X X
X X
X X
X X
X X

X
X

X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X

T hese statements define the bell .

Block
Cod es

00
00
01
01
01
01

1
1
3

o
o
o
o
o
o
o
o
o
o

7
7
7
7
F
7
1

Users Reference Guide

X
X
X
X
X
X

X X
X X X
X X X
X X X
IX X

X X X X
X X X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
IX
X
X
X

X X
X

X
X

X

X X
X X X
X X X
X X X
X X X
X X
X

X
X X
X X
X X

X X X
X X

Block
es Cod

00
00
06
08
10
20
40
80
E
F
F
F

o
o
o
o
o
o
o
o

F
E
C
0

Block
es Cod

00
0
8
8
8
8
8
8

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

C
E
E
E
E
E
E
8

Examples:

>2 10 (ALL CHAR(lOO,"OOOOOOOOO
0 1 F3F7F")

>220 CALL CHAR(lQ4,"000006081
020 4080")

>230 CALL CHAR(10t,"7f7f7F7F3
F3 F1 F")

>2 40 (ALL CHAR (102 , "EOFOFOFOF
CEO CO ")

>250 CAll CH AR (1 12 ," 0000010 1Q
10 10 10''')

>260 CALL CHARC113," 0000 8 080 8
080 8080")

>270 CALL CHAR C1Z0 ," 0307Q 7070
lOfOlO' '')

>280 CALL CHAR(121,"COEOEOEOE
OFO E080 ")

111 ·29

Graphics Match

These statements define th e lemon .

Block
C odes

00
00
00
03
OF
I F
3F
F F X
FF X
3F
IF
OF
03
00
00
00

X
X X
X X

X

X X X
X X X X X

X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X

X X X X X
X X X

X
X
X
X
X
X
X
X
X
X

These statements define the diamond .

111-30

Block
C odes

00
01
03
07
OF
IF
3F
7F
7F
3F
I F
OF
07
03
01
00

X
X X
X X

X

X X
X X X X

X X X X X
X X X X X X

X X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X

X X X X X X
X X X X X

X X X X
X X

X X
X XX
X X XX
X X XX X X
X X XX X X
X X XX
X XX
X X

X
X X
X X X
X X X X
X X X X X
X X X X X
X X X X
X X X
X X
X

Block
es Cod

00
00
00
CO
FO
F8
FC
F
F
F

F
F
C

F8
FO
CO
00
00
00

Block
s Code

00
80
CO
EO
FO
F8
FC
FE
FE
FC
F8
FO
EO
CO
80
00

Examples:

>2 9 0 CALL CHAR(128 , "000000030
F1F3FFf")

>300 CALL CHA RC 129 , "OOOOOOCO F
OF8FCFF")

>310 CAll CHAR(130 ,"FF 3F1FOFO
3")

>320 CAL L CHAR(131,"FFFCf8FOC
0")

>330 CAL L CH AR (105 ," 000103070
F1 F3 F7F")

>3 4 0 CALL CHAR(106,"0080COEOF
OF8FCFE")

>350 CALL CHAR(107 ," 7 F3F1F OFO
70301")

>360 CA LL CHAR(108,"FEFCF8FOE
OC080 ")

User's Reference Guide

Graphics Match

These sta tements define the bar.

Block
C odes

00
00
00
00
00
3F
3F
3F
3F
3F
3F
00
00
00
00
00

X
X
X
X
X
X

X XX XX
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X

XX XX X
XX X X X
XX X X X
XX X X X
XX X X X
XX X X X

X
X
X
X
X
X

Block
es Cod

0 o
o
o
o
o
C
C
C
C
C
C
o
o
o
o
o

0
0
0
0
F
F
F
F
F
F
0
0
0
0
0

The RANDOMIZE sta tement insures that a different sequence of
p ictu res is generated ea ch time the program is run . The variab le C
indica tes the start ing co lumn location for the next picture . The , .
loop generates a ra ndom number between I a nd 6. inclus ive. The
ON ·GOSUS Statem ent (line 460) transfers the program to the
appropriate subroutine to place the picture on the screen. The
pictures a re displayed according to the fo llowing values:

PIC(I) Picture

1 Heart
2 C herry
3 Bell
4 Lemon
5 Diamond
6 Bar

After the picture is placed on the screen. the program retu rns to the
loop to generate a new number a nd picture. When three pictures
are displayed. the program continues to scor e the results.

User ·s Reference Guide

Examples:

>370 CAll CHAR(136 . " OOOOOOOOO
03F3F3F")

>380 CALL C HAR (13 7 ~ "000000000
OFCFCFC")

>390 CAll CHAR(138 . "3F3F3F")
>4 00 CALL CHAR(139~" F CFCFC")

>410 RAND O"'lZE
>42D CAlL CLEAR
>430 C;.14
>440 FOR 1=1 TO 3
>450 PIC(I);.INT(6*RND)+1
>460 ON PIC (I) GOSU6 84 0 ~900.

960, 1020, 1080.1 14 0
>470 C=(+2
>480 NEXT I

lID }

Graphics Match

These s tatements determine the score you receive . as outlined in
the table be low. The line number indicates the line to which the
program transfers to award the points .

Match

All pictures alike
First two pictures. a

cherry. lemon. or bar
First two pictures a

heart. bell. or diamond
First and last pictures alike
No match or last two pictures a like

Points

Win 7S
Win 40

Win 10

Win 10
Lose 10

Line
Number

700
550

650

650
610

These statements add 40 points to the accumulated score. Three
tones sound a nd a message is displayed on the screen to indicate
you have won a bonus worth 40 points. The program then transfers
to line 770 to display the total points accumulated.

In line 6 10. ten points a re subtracted from the tota l score. A tone
sounds and a message is di sp layed to ind icate you have lost ten
points. The program then transfers to line 770 to display the new
score.

In these statements. ten points are added to the tota l score. To
indicate that you have won ten points. two tones sound and a
message is disp layed. Then the program transfers to line 770 to
disp lay the new score.

These statementS add 75 points to the total score. Five tones sound
and a message indicating that you have won the jackpot is
d isp layed.

The PRINT statement in line 770 pr ints your current score. The
other statements offer you the choice of playing again or stopping
the program. T he CALL KEY sta tement (line 800) accepts an
answer without your having to press ENTER. Pressing the Y key
instructs the program to transfer back to line 410 to generate three
new pictures. Pressing any other key s tops the program.

111 ·32

Examples:

>490 RE" SCORIHG
>SOO If Pl((1J<>PIC(ZJ THEN 5
2.

>510 If P I C(Z):PJC(3) THEN 70
o ELSE S40

>S20 If PlC(1)<>PIC(3) THEN 6
I .

>S30 GOTO 6S0
>S40 If PIC(1)/2<>INT(PJ(1)1

2) THEN 650

>550 TOTAl~TOTAl.40
>560 CALL SOU NO(100 ,440,Z)
>570 CAll SOUNO(100 , 660,Z)
>580 CALL SOUND(100 , 5S0 , 2)
>590 PRINT "80NUS--40 POINTS"

>600 GOTO 770

>610 TOTAl z TOTAl - 10
>6Z0 CAll SOU NO (100,110 , l)
>630 PRINT "lOSE 10 POINTS"
>6 40 GOTO 770

>650 TOTAl:TOTAl+10
>660 CAll SOUNOC100 , 660 ,Z)
>670 CAll SOUNOC 100 , 770 , Z)
>680 PRINT " WIN 10 POINTS"
>690 GOTO 770

>700 TOTAlzTOTAl+75
>710 CAll SOUNO(100,440 , 2)
>720 CAll SOUND(100,SSO,?)
>730 CALL SOU NO C100 ,44 0 , 2)
>740 CAll SOU NOC100 ,660,Z)
>7S0 CALL SOUNO(100,880,Z)
>760 PRINT "JACKPOT!--75 POIN

TS"

>770 PRINT "C URRENT TOTAL POI
NTS; ";TOTAL

>780 PRINT "WANT TO PLAY AGAI
N? "

>790 PRINT "PRESS Y fOR YE S"
>800 CAll KEYCO,KEY,STATUS)
>810 If STATUS:O THEN 800
>820 If KEY:89 THEN 410
>830 END

User's Reference Guide

--

Graphics Match

These six subroutines print each of the six pictures. The RETURN
statements are used so that only one picture will be printed for each
call to a subroutine.

User 's Reference Guide

Examples:

>840 REM PRINT HEART
>850 CALL HCHARC1Z,C,96)
>860 CALL HCHAR(12,(+1,97)
>870 CALL HCHAR(13,C,98)
>880 CALL HCHAR(13,C+l,99l
>890 RE TURN
>900 REM PRINT CHERRY
>910 CAll HCHAII(12,C,100)
>920 CA LL HCHARC1Z,C +l , 104)
>930 CALL HCHAR(13, C,101)
>940 CALL HCHARC13,C+l,102)
>950 RETURN
>960 RE M PRINT SELL
>970 CALL HCHAR(12,C,11Z)
>980 CALL HCHAII(12,C+ 1,11 3)
>990 CALL HCHARC13,C,120)
>1000 CALL HeHAII(13,C.',121)
>1010 RETURN
>1020 REM PRINT LEMON
>1030 CALL HCHAR(12,C,128)
>1040 CALL HCHAR<12,C+',lZ9)
>1050 CALL HCHAR(13,C,130)
>1060 CALL HCHAR(13,C+1,131)
>1070 RETURN
>1080 REM PRINT DIAMOND
>1090 CALL HCHAR(1Z,C,105)
>1100 CALL HCHAR(1Z,C+1 , 106)
>1"0 CALL HCHAR(13,C,107)
>11Z0 CALL HCHAR(13 , C+1,108)
>1130 RETURN
>1 140 REM PRINT BAR
>1150 CALL HCHAR(12 , C,136)
>1160 CALL HCHAR(1Z,C+l , 137)
>1170 CALL HCHAR(13,C,138)
>1180 CALL HCHAR(13,C+1,139)
>1190 RETURN

1lI-33

Graphics Match

Here is a sample program run. Note that the computer screen
remains cyan while the computer generates the symbol table and
scans the program for errors. This takes about a minute.

111 ·34

Examples:

>RU N

-- sc ree n clea rs

-- two tones so und

WIN 10 POINTS
CURREN T TOTAL POINTS: 10
WANT TO PLAY AGAIN ?
PR ESS Y FOR YE S

PRESS Y FOR YES N

** DONE **

User's Reference Guide

Glossary
Accessory devices - additional equipment
wh ich attaches to the computer and extends its
functions and capabi lities. Included are
preprogrammed Command Modules· and units
which send. receive or store computer data ,
such as printers a nd di sks. These a re often
ca ll ed peripherals.

Array - a co llecti on of numeri c or string
variables, arra nged in a lis t or matrix for
processi ng by the computer. Each element in an
array is referenced by a subscript* describing its
position in the lis t.

ASCII - the American Standard Code for
Information Interchange . the code s tructure
used internatiy in most personal computers to
represent letters, numbers. and spec ial
c haracters.

BASIC - an easy·to·use popular programming
language used in most personal computers . The
word BASIC is an acronym for "Beginners AII
purpose Symbolic Ins truction Code."

Baud - commonly used to refer to bits per
second .

Binary - a number system based on two digits.
o and 1. The internal la nguage and operations
o f the computer a re based on the binary system.

Branch - a departure from the sequential
performa nce of program s ta tements. An
unconditional branch causes the computer to
jump to a specified program line every time the
branc hing s tatement is encountered . A
conditional branch transfers program contro l
based on the result of some arithmet ic or IOglcaJ
operation.

Breakpoint - a point in the program specified
by the BREAK command where program
execution can be suspended . During a
breakpoint. you can perform opera tions in the
Command Mode· to help you locate program
errors. Program execution can be resumed with
a CON TINUE command . unless editing took
place while the program was s topped.

Buffer - a n area of computer memory for
temporary s torage of an input or output record .

·See definition in Glossary.

User's Reference Guide

Bug - a hardware defect or programming error
which causes the intended operation to be
performed incorrectly.

Byte - a s tring of binary* diglts (bits) treated as
a unit , often representing one data character* .
The computer's memory capacity is often
expressed as the number of bytes ava ilable . For
example, a computer with 16K bytes of memory
has about 16,000 bytes ava il ab le for storing
programs and da ta .

Character - a letter. number. punctuation
symbol. or specia l graphics symbol.

Command - an ins truction which the computer
performs immediately. Commands are not a
part of a program and thus are entered with no
preceding line number .

Command Mode - when no program is
running. the computer is in the Command (or
Immediate) Mode and performs each task as it
is entered .

Command Modules - preprogrammed ROM·
modules which are eas ily inserted in the TI
computer to ex tend its capabil iti es.

Concatenation - linking two or more strings·
to make a longer s tring. The '"& " is the
concatenation operator.

Constant - a spec ific numeric or string· value.
A numeric constant is a ny rea l number. such as
1.2 or - 9054. A s tr ing constant is any
combinatio n of up to 112 characters enclosed in
quotes, such as "HE LLO THERE" or "275
FIRST ST. "

Cursor - a symbol which indicates where the
next character* will appear on the screen when
you press a key.

Data - basic e lements of information which are
processed or produced by the computer.

Default - a s tandard characteristi c or value
which the computer assumes if certain
specifications are omitted within a sta tem ent· or
a program·.

Device (see A ccessory Devices)

Disk - a mass s torage device capable of
random and sequent ia l access.

IV-l

Glossary

Display - (nou n) the video screen:
(verb) to cause characters to appear on the
screen.

Edit Mode - the mode used to change existing
program lines. The EDIT mode is entered by
using t he Edit Command or by entering the line
number fo llowed by SHIFT IT] o r SHIFT OJ . The
line specifi ed is d isplayed on the screen and
changes can be made to any character* using
the editing keys.

E nd-or-file - the condition indicating that a ll
data· has been read from a n/e*.

Execute - to run a program: to perform the
task spec ifi ed by a statement· or command*.

Exponent - a number ind icati ng the power to
which a number or expression* is to be raised :
usua lly written at the right and above the
number. For example. 2~ =2x2x2x2x2x2x2x2 .

In T I BASIC the exponent is entered fo llowing
the A symbol or fo llowing the letter "E" in
scientific notation*. For example. 2" =2 1\ 8:
1.3 x 10ll = 1.3E25.

Expression - a combination of cons tants.
va riables. a nd operators wh ich can be eva luated
to a single result. Included are numeric, str ing,
a nd rela tional expressions.

File - a co llection of related data records
s tored on a device: a lso used imercha ngeably
wi th device* for input/ output equipment which
cannot use multiple fi les . suc h as a line printer.

Fixed·length records - records in a file* wh ich
are a ll the same length . If a file has fixed· length
records of 9S characters. each record will be
a llocated 9S bytes* even if the da ta* occupies
on ly 76 positions. The computer will add
padding characters on the right to ensu re that
the record has the specified length .

Function - a feat ure which a llows you to
spec ify as "s ingle" opera tions a variety of
procedures. each of which actually comains a
number of s teps: for example. a procedure to
produce the square root via a simple reference
name.

*See definition in Glossary.

IV -2

Graphics - visua l constructio ns on the screen.
such as gra phs. patterns. and drawings. both
stationary and a nimated. TI BASIC has bu ilt· in
subprograms which provide easy· to·use color
graphic capabil ities.

Graphics line - a 32·character line used by the
TI BAS IC graph ics subprograms.

Hardware - the various devices which
comprise a computer system. including memory.
the keyboard . the screen. d isk drives. line
primers. e tc.

He rtz (Hz) - a unit of frequency. One
Hertz =one cycle per second.

Hexad ecimal - a base· 16 num ber system using
16 sym bols. 0·9 and A-F. It is used as a
conveniem "shorthand" way to express binary*
code. For example. 1010 in bina ry = A in
hexadecimal. 11111111 = FE Hexadecimal is
used in cons tructing patterns for graphics
cha racters in the CALL C HAR subprogram .

Immediate mode - see Command Mode.

Increme nt - a positive or negative va lue which
cons is tent ly modifies a variable*.

Input - (noun) data* to be p laced in computer
memory: (verb) the process of transferring data
into memory.

Input line - the amou nt of data* which can be
entered a t one time. In TI BASIC. this is 1 12
cha rac ters.

Intern al data·format - data* in the form used
directly by the computer. Internal nu meric data
is 8 bytes* long plus 1 byte which specifies the
length . The length for interna l string data is one
byte per cha racter in the strin~* plus one length·
byte.

Integer - a whole number. ei ther positive.
negat ive. or zero.

I / O - In pu t/ Output: usua lly refers to a device
functi on. I/ O is used for communication
between the computer and other devices (e. ~.,

keyboard. disk) .

User's Reference Guide

Glossary

Iteration - the technique of repeating a group
of program s tatements: one repetit ion of such a
group. See Loop.

Line - see graphics line. input line. print
line. or program line .

Loop - a group of consecutive program lines
which are repeated ly performed , usually a
spec ified number of times.

Mantissa - the base number portio n of a
number expressed in scientific notation*. In
3.264E +4. the mantissa is 3.264.

Mass storage device - an accessory device*,
such as a cassette recorder or disk drive. which
stores programs andl or data· for later use by
the computer. This in format ion is usually
recorded in a forma t readable by the computer.
not people.

Memory - see RAM, and ROM. and mass
storage device.

Module - see Command Module.

Noise - various sounds which can be used to
produce interesting sound effects. A noise.
rather than a tone. is generated by the CALL
SOUND subprogram* when a negative
frequency va lue is speci fied (- 1 through - 8) .

Null string - a string* which contains no
characters and has zero length .

Number Mode - the mode assumed by the
computer when it is automatically generating
program line* numbers for entering or changing
s tatements.

Operator - a symbol used in ca lcu lations
(numeric opera tors) or in relationsh ip
comparisons (relat ional operators). The numeric
operators are +. - .• .1. /\ . The relational
operators are > , < . =. > =. < =. < > .

Overflow - the condition which occurs when a
rounded va lue greater than
9.9999999999999E127 or less than
-9.9999999999999EI27 is entered or
computed. When this happens. the va lue is
replaced by the computer"s li mit. a warning is
displayed. and the program* continues.

User 's Reference Guide

Output - (noun) informat ion supplied by the
computer: (verb) the process of transferr ing
information from the computer's memory onto a
device. such as a screen. line printer. or mass
storage device*.

Parameter - any of a set of values that
determine or affec t the ou tput of a s tatement* or
function* .

Print line - a 28·position line used by the
PRINT and DISPLAY statements.

Program - a set of s tatements which tell the
computer how to perform a complete task .

Program line - a line containing a single
statement* . The max imum length of a program
line is 112 characters*.

Prompt - a symbol (» which marks the
beginning of each command* or program line*
you enter: a symbol or phrase that requests
input from the user.

Pseudo-random number - a number produced
by a definite set of calcu lations (algori thm) but
which is suffi ciently random to be considered as
such for some particu la r purpose. A true
random number is obtained entirely by chance.

Radix ·IOO - a number system based on 100.
See "Accuracy Information" for information on
number representation.

RAM - random access memory: the main
memory where program statements and data*
a re temporarily stored dur ing program
execution*. New programs and data can be read
in. accessed. and changed in RAM. Data stored
in RAM is erased whenever the power is turned
off or BASIC is exited .

Record - (nou n) a co llection of related data
elements, such as an indi vi dual's payroll
information or a s tudent's tes t scores. A grou p of
similar records. such as a company's payroll
records. is ca ll ed a fi/e*.

*See definition in Glossary.

IV·)

Glossary

Reserved word - in programming languages. a
special word with a predefined meaning. A
reserved word must 'be spe lled co rrectly. appear
in the proper order in a statement* or
command*. and cannot be used as a variable*
name.

ROM - read-only memory: certain instruc tions
for the computer are permanently stored in
ROM and can be accessed but cannot be
changed . Turning the power off does not erase
ROM .

Run Mode - when the computer is executing* a
program. it is in Run M ode. Run Mode is
terminated when program execution ends
norma lly or abnormally. You can cause the
computer to leave Run M ode by pressing CLEAR
during program execution (see Breakpoint*) ,

Scienti fic notation - a method o f express ing
very large or very small numbers by using a
base number (man tissa*) ti mes ten raised to
some power (exponent*) . To represent scien tific
nota tion in T I BASIC. enter the s ign. then the
mantissa. the letter E. a nd the power of ten
(preceded by a minus sign if nega ti ve). For
example.3.264E4 : -2.47E- 17.

Scroll - to move the tex t on the screen so that
additio na l information can be displayed .

Software - vario us programs which are
executed by the computer. including programs
built in to the computer. Command Module*
programs . and programs entered by (he user.

Statement - an instruction preceded by a tine
nu mber in a program. IN TI BASIC. only one
s ta tement is allowed in a program line*.

String - a series of letters. numbers. a nd
symbols treated as a unit.

*See definition in Glossary.

IV-4

Subprogram - a predefined general-purpose
procedure accessible to the user th rough the
CAL L sta tement in TI BASIC . Subprograms
extend the capabil ity of BAS IC and cannot be
easily programmed in BASIC .

Subroutine - a program segment which can be
used more than once during the execution* of a
progl-am . such as a complex set of calculations
or a print routine. In TI BASIC. a subroutine is
entered by a GOSU B stat ement a nd ends wi th a
RETURN s tatement.

Subscript - a nu meric express ion which
specifies a particula r item in a n array*" . In TI
BAS IC the subscript is written in paren theses
immediately fo ll owing the array name.

Trace - lis ti ng the order in which the computer
performs program s ta tements. Traci ng the line
numbers can help you find errors in a program
flow .

Underflow - the condition which occurs when
the computer genera tes a numeric value greater
tha n - 1 E - 128. less than 1 E - 128. and not
zero. When a n underflow occurs. the va lue is
replaced by zero.

Variable - a name given to a va lue wh ich may
vary during program execution. You can think
of a variable as a memory location where values
can be replaced by new values during program
execution.

Variable-length records - records in a file*
whic h vary in length depending on the amount
of data* per record* . Using variable- length
records conserves space on a file . Variable·
length records can on ly be accessed
seque ntia lly.

User's Reference Guide

Maintenance and Service Information

IN CASE OF DIFFICULTY

In the event that you have difficulty with your computer. the fo llowing instructions may
help you to a na lyze the problem. You may be able to co rrect your computer problem
without returning it to a serv ice facility. If the suggested remed ies a re not successful. contact
the Consumer Rel ation~ Depa rtment by mai l or telephone (refer to IF YOU HAVE
QUESTIONS OR NEED ASSISTANCE later in this section). Please describe in detai l the
symptoms of yo ur computer.

If one of the following symptoms appea rs while operating with the optiona l periphera l(s) or
accessor ies. remove the dev ice. If the symptom disappears, refer to the manual for the
periphera l or accessory in question.

SYMPTOM

Console indica tor light will not come
on when swi tch is turned on.

No picture.

No sound .

Cassette recorder will not operate
when connected to conso le. but does
work properly when not connected.

Cassette recorder wi ll not Save or
Load data properly.

Remote Controls wi ll not opera te.

BASIC program is cleared by
insertion of a Command Module.

Stray charac ters appear or other
erratic operation occurs or computer
will not respond to keyboard input.

REMEDY

• C heck that transformer power cord is plugged into
the wa iL

• Ensure that power cord is connected to the rear of the
conso le.

• Check tha t power is on. and screen controls are set
for optimum picture. Ensure that cables are properly
connected as specified in the Color Monitor
Operating Guide a nd Warranty .

• S ee tha t volume control is turned to proper level.
C heck connection of cables.

• E nsure that cassette is connected to the 9'pin
connector on the rear of the unit .

• See "General Information"·

• Reme mber that the cassette motor is controlled by
the computer . Read the instructions in the "Cassette
Interface Cable" section .

• Ensure tha t unit is connected to the 9-pin connec tor
on the left side of the computer conso le, and that
ALPHA LOCK is in the off (up) pos ition.

• Remember that on ly certain software is designed for
use with the Remote Controls.

• This is a normal reset procedure des igned to protect
your co lor screen.

• Static electricity discharges from the use r to the
conso le can a lter program data s tored in the internal
memory. To correct this prob lem turn the console off
and then on.

A Command Modu le especially designed to verify proper opera tion of the major fun ctions of
your system is availab le at your retailer. You can also purchase the Diagnostic module for
use at home.

User·s Reference Guide V· I

Maintenance and Service Information

When re turning yo ur computer for repair or replacement. return the computer conso le. power
cord. and any Command Modules which were involved when the difficulty occurred. For your
protection, the computer should be sent insured: Texas Instruments cannot assume any
respons ibility for loss or damage to the computer during shipment. It is recommended that the
computer be shipped in its original container to minimize the possibi lity of shipping damage.
Otherwise. the computef should be carefully packaged and adequately protected against s hock
and rough handling. Send shipments to the appropriate Texas Instruments Service Fac ility lis ted
in the warranty . Please include information on the diffi culty experienced with the computer as
well as return address information including name. address. city, state and zip code.

If you can not determine whe ther the console or the T I Color MonitorNideo Modulator has
failed. both units must be returned .

If the computer is in warranty. it will be repaired or replaced under the terms of the Limited
Warranty. Out-of-warran ty units in need of service will be repaired or replaced with
reconditioned units (a t Tl"s option), and service rates in effect at the time o f return will be
charged . Because our Service Facility serves the entire United States. it is not feasib le to hold
units while providing service estimates. For advance information concerning service charges,
please call o ur toll· free number lis ted on the fo llowing page.

NOTE: The Color Monitor is too large to be sent via U.S . parcel post (fourth-class mail) but may
be sent via firs t·class mai l or by common carrier.

EXCHANGE CENTERS

If your computer requires service, instead of returning the unit to your dealer or to a service
facility for repair or replacement. you may elect to exc hange the unit for a factory·reconditio ned
computer of the same model (or equivalent model specified by Tl) by bringing it in person to one
of the exc hange centers which have been established across the United States. A handling fee
will be charged by the exchange center for in-warranty exchanges of the computer console and/
or Tl Color MonitorNideo Modulator . Out-of·warranty exchanges will be charged a t the rates in
effect a t the time o f exchange.

To de termine if there is an exchange center in your area , look for Texas Ins truments Exchange
Center in the white pages of your telephone directory. or look under the Calculato r and Adding
Machine heading in the ye llow pages. Please call the exchange center for avai lability and
exchange fee information. Write Consumer Re lations for further details and the location of the
nearest exchange center .

V-2 User's Reference Guide

-../

If you have questions or need assistance

FOR GENERAL INFORMATION

If you have questions concerning computer repair, or periphera l. accessory or software
purcnase. please ca ll Customer Relations at 800·858-4565 (toll free within the contiguous
United States). The operators at these numbers canno t prov ide technica l assistance.

FOR TECHNICAL ASSISTANCE

For technica l questions about programming. spec ific computer applica tions. etc .. you
can ca ll 806·741 ·2663. We regret that this is not a toll ·free number. and we ca nnot accept
collect ca lls .

As an alter native. yo u can writ e to:

Cons umer Relations
Texas Instruments Incorporated
p,o. Box 53
Lubbock . Texas 79408

Because of the number of sugges tions which come to Texas Instruments from many sources
containing both new a nd old ideas. Texas Instruments will consider such suggestions only if
they are freely given to Texas Instruments. It is the policy of Texas Instruments to refuse to
receive any suggestions in confidence. Therefore. if yo u wish to share your suggestions with
Texas Instruments. or if you wish us to review any BASIC language program which you have
deve loped . please include the fo llowing statement in your letter:

··A Il of the information forwarded herewith is presented to Texas Instruments on a
nonconfidential. nonobligatory basis: no relat ionship. confidentia l or otherwise. expressed
or implied. is establis hed with Texas Instruments by this presenta tion. Texas Instruments
may use. copyright. dis tribute. publish. reproduce. or dispose of the information in any
way withou t compensa tion to me.··

User"s Reference Guide V·3

Index
A
Absolute value func tion 11·92
Accessories 1'7-1'12
Acccessoryoutiet1·4
Accuracy information lII· l3
Addition1 ·6. 1I·13
AID k ey 1·6
Alphabet keys. J-5
Alpha lock1 ·5
APPEND mode Il ·121
Arctangent function l! ·92
Arithmetic expressions B-12
Arithmetic operators 11-1 2
Arrays11,11. Il'1 08-Il '112
ASCII character codes Ill -I
Assignment statement Il-45
Audio-out1-4
Auto repeat 1·5

B

BACK k ey 1·6
Backspace key 1·6
BASIC. Il ·2
BEGIN key.... 1·6
Binary codes • • 11 -77
Blank spaces... 11 -7
Branches. program 1l·49-11·S1
BREAK comma nd Il ·30-11·32
Break key. 11·6. 11 '22
Breakpoints 1l·3Q, 11·31. II -33
BYE comma nd 1l ·24

C
CALL C HAR statement 11·76-11·79
CALL CLEAR s tatement 11·72
CALL COLOR s tatement 11·73-11·74
CALL GCHAR sta tement 11·86
CALL HCHAR sta tement 11 ·80-11·82
CALL JOYST s tatement 11·90
CALL KEY statement 11·87-11·89
CALL SCREEN statement. , ... II· 75
CALL SOUND statement 11'84-11·85
CALL VCHAR statement 11·83
Care of console. .1-1
Caret key., 1-6
Cassette Interface Cable 1·8-1-12
Cassette Recorders 1·9-1 ' 12

CLOSE statement Il '124
INPUT sta tement. I J.I 29

VH

Loading programs from. II ·42
OPEN statement , 11-122
PRINT s tatement. 11·135
Saving programs on 11 ·40
With file processing , ... 11,11 8

CHAR subprogram .. II ·76-1I·79
Character codes 1Il'1-1J1-4
Character function 11 ,100
Character sets.. 11 ·74 , 111· 1
Characters. defining 11-76
CLEAR k ey 1·6. 11 ·6. 11·27. 11 ·39
CLEAR s ubprogram 11·72
CLOSE statementll-l23-1J-124
Colo r codes 11·73.11·75.111·5
Color combinations 1Il-6
COLOR s ubprogram 11·73-11·74
Command mode _.. 11 ·19
Command Modules 1'1
Commands11'19-11·43

..... 11 ·18 Commands used as s tatements
Computer transfer

On·GOSUB 11-1 7
On·GOTO 11·50

Computer's limit 11 ·9
Concatenation. 11-14 . 11 -15
Constants

Numeric , , 11·9
String. 11·10

CONTINUE command 11·35
Contro l keys. 1·6. 111-2
Conversion table. Ill -s
Correcting errors 1-7, 1l·4 . 1I ·26. 11-38
Cosine function. 11 -93
Cursor. 11 -4

o
Data 11·58. 11·61.11·63. 11-65. 11-125 . 11'1 3 1
DATA statement 11-63
DEFine s tatement , II ·I OS
DELETE command 11·43
DELete k ey1 ·6. 11 ,6. 11 -27. 11 ·39
DELETE option : .. 11-123
Difficulty. in case of

with cassette recorder 1-1 0. 1·12
with LOAD routine , 1-12
with SAVE routine.1-11

DIMension statement 1I·1t O-II-III
DISPLAY file·type 11-1 20
DISPLAY statement 11 ·70

User's Reference Guide

Index

DISPLAY-type data _ 11-126. 11-1 33
Division. 1-6. 11-13
DOWN arrow key 1-6. 11-5 . 11·27. 11-38
Duration Il-84

E
EDIT command 11-38- 11-39
Ed;t;ng . _ . _ _ . _ . _ ... _11·26. 11-38-11-39
End·ol-file . _ 11-128-11'129
End-of-file function. 11 ·130
END statement Il-4 7
ENTER key. _\·5. 11·5. 11·26. 11·38
ERASE key _ _ .\·6. 11·6. 11·27. 11·39
Error messages. m ·8-1Il-12
Execution. program

Beginning 11-23
Continuing 11 ·35
Interrupting. 11-6. 11-30
Terminat ing II ·4 7, II -48
Tracing 11-36

Exponent 11 ·9
Exponential funct ion 11-93
Exponentiation 1-6, 11-1 3
Expressions 11-12 . 11 -14, II-IS

F
File-life 1l·121
Fi le ·name 11 ·11 9
F;le'number 11·11 9. 11·123. 11·125.11-131. 11-1 36
File·organization II-t 20
File processing 11·11 8-11'136
FBe-type 11-120
FIXED record·type 1l ·121
FOR-NEXT loop _11-53
FOR·TO·STEP statement .II·53-11·55
Forwardspace key1·6
Frequency. 11 ·84-11-85
Function keys 1·5. 1II -2
Functions

Numeric 1I-91-1I·98
Str;ng 11-99-11-1 03
User-defined11'104-11-1 07

G
GCHAR subprogram 11 ·86
GOSUB statement 1l·114-I1-115
GOTO s tatement 1l ·49
Greater than1·7 , 11-14
Gr;d. _ 11·81. 11-86

User's Reference Guide

H
HCHAR subprogram . . .
Hexadecimal

.. _ .11-80-11·82
..... _ 11·77

Hierarchy, mathematical Il-1 3

IF·THEN -ELSE statement. .11-51-11·52
Infix operators. 11-12
INPUT mode....... _. _ . 11-121
Input-output s tatements11 ·57-11-70
INPUT statement. .. 11-58-11 '60. 11-125-11'1 29
INSert key _ _ .. _ . '\ ·6. 11 ·6. 11-27. 11 ·39
Interger function Il·94
INTERNAL file·type 11-120
INTERN AL·type data11-126. 11-131-11-132

J
JOYST subprogram - 11-90

K
Keyboard .. __ . _ 1·4-1·7
Keyboard overlay.1·6
KEY subprogram11-87-11·89

L
Leav;ng TI BASIC _ . . _ 11 -5. 11-24
LEFT arrow key . _\ ·6. 11-5 . 11-27. 11-39
Length funct ion 11 ·10 1
Less than1·7. 11 ·14
LET statement 1I-45
Limits. computer 11·9
Line numbering, automatic 11 ·25
Line numbers 11 ·7. II·8
LIST command 11-21
Load data

in Command Modules..J.t 2
;n TI BASIC __ . . 1-1 0. 11·42.1 1-1 25-11 -129

Logarithm function. 11-94
Loop. iterative II ·53

M
Mantissa 11·9
M~k. I~
Mathematical hierarchy IJ.13
Monitor-console connection 1·2
Multiplication 1·6. 11-13
Musical tone frequenc ies 1lI ·7

VI ·2

Index

N
Name (variable)
NEW command

..•. •.. II -I I

. 11 ·20
NEXT s tate ment.• 11 ·56
Noise. • •... 11·84.11-85
Normal decimal form , 11·66
Notationa l conventions , . , 11 -3
NUMBER command __ _ .. _ .U·2S-U -27
Number k eys1 ·5
Number mode 11 -25
Number representat ion IlI ·13
Numbers 11 -59. 11 '63. 11 -65
Numer ic cons tants 11-9
Numer ic expressions , II -12
Numeric functions .. , 11 ·91-11·98
Numeric operators, 11 -12
Numeric variables II -II

o
O LD command 11 ·42
ON-GOSUB statement II ·l t ?
ON-GOTO s tatement. II ·50
ON/ OFF sw itch 1-4
Open-mode. 11·121
OPEN s tatement 11 -1 19
Operat ion keys 1-6
Operators

Arithmet ic. IJ-12
Relational . __ IH 4
String II -I S

OPTION BASE s tatement II -11 2
Order of operations 11-13
Outlets 1-4
OUTPUT mode. _. _. _ . . . _ II -121
Overflow 11-9
Overlay _ ... _. 1-6

P
Parameter II -l OS
Parentheses. 11-13
Pattern-identifier conversion table IlI ·5
Pending inputs. !l -1 28
Pending prints 1l-135
Periphera l outlet _ 1-4
PERMANENT fi le-life _ . _ . _ . _ .. • II -121
Placement of conso le _ 1- 1
Position functio n 11-101
Power cord connection 1-4
Powers 1-6
Prefix operators . __ . _ _ . . . II -12

VI ·3

Prin t separators. 11-67
PRINT s tatement ... 11 -65-lJ '69 , I1-131 - I1-135
PROCD key. 1·6
Program lines. . . . 11 -4, 11-8 . 11 -26, 11-28 , 11 -38
Programs

App lications 1l 1-14
Delet ing from accessory device 11 -43
Editing 11-28
Loading from accessory device .. IJ-42
Running 11 -23
Saving on accessory device 11 ,40

Pseudo-random numbers. 11·96
Punctuation keys J-5

a
QUIT key. . _1·5. 11·5

R
Random number function 1I -96
RANDOM IZE statement 11 -95
READ statement11 -61-11-62
Reco rd data. 1-10-1-12
Record-type 11 ·121
REDO key _ . _. __ .1-6
Relationa l expressions. 11 ·14
Relationa l operators. 11-14
REL ATIVE fi le-organization . . . 11-120
RELATIVE fi les _ 11 -127. 11 -134
REMark statement 11-46
Remote controls 1-4. ' -8. 11-90
RESEQUENCE command . . .11 -28-11·29
Reserved words 11-16
RESTORE s tatemen t 11 ·64 . 11 -136
RETURN statemen t 11 ·116
RIG HT a"ow key _ .1-6. II -S . 11·27. 11-39
RUN command 11 -53
Ru nning a BASIC program U-53

S
SAVE command .
Save data

. _ _1I-40-II-4 1

in Command Modules .. 1-10-1-12
in TI BASIC . _ .. 11-40- 11·41. 11-131.11-135

Scient ific notat ion 11 -9. 11-66
SCREEN subprogram Il -75
S eed . _ . _ . _ . _ .. _ ___ . II ·9S
SEQUENTIAL file·organization II ·120
S HIFT funct ion 1-5
S HIFT keys _ . . _ ... 1-5
Sign function 11-97

User's Reference Guide

Index

Signum function 11-97
Sine function • 11·97
SOUND subprogram 11-84-11-85
Space bar 1·7
Special function keys 1-5-1-6, II -S-11-6
Split console k eyboard 111-4
Square root function 11 ·98
Statement used as comma nd . . . II-I?
STOP s ta tement IJ-48
String constants I1 · tO
String express ions II-IS
String functions II ·99-11-1 03
String-number function 11 ·103
String segment function II ·} 02
String variables 11-11
Strings .. _ . _11-10-11-11. 11-14-11-15_ 11 -63 , 11-65
Subprograms II ·71 -1I ·90
Subroutines. II-113-1I-l17
Subscript. II-Ill
Subtraction _ . . _ .. ___ ... _ . _ . _ .. 1-6, 11-13

T

TAB function • Il-68
Tangent function _ . . Il ·98
TIBASIC .. _._ .. _._ __ ... 1-1,11-2
Tones . __ . _ __ . _. _ _ 11-84- 11-85
TRAC E comma nd _ . 11·36
Trans former and power cord

connection1 -3
Trigonometric funct ions 11-92-11-94 , 11 -97-11-98

U
UN BREAK command _ . _ . ______ . _11-33- 11-34
Underflow I 1·9
UNTRACE command 11-37
UP arrow key _1-6. 11-5 , 11-27. 11-38
UPDATE mode. _ . _ .. __ _ 11-121
User-defined functions 11-104

V

Value func tion II -I 03
VARIABLE record-type. _ . . . 11-121
Variables _. _. _ _ ... 11-11 , 11-45, II-59, 11-61
VCHAR subprogra m _ . . _ . _ . 11·83
Video-out. 1-4
Volume _ . _ . _ _ 11·84

W-X-Y-Z

Wired Remote Controll ers 1-8. 1I ·90

User's Reference Guide

Three-Month Limited Warranty

THIS TEXAS INSTRUMENTS CO MPUTER CONS OLE WAR RANTY
EXTENDS TO T HE OR IGINA L CONS UMER PURC HASER OF T HE
CONSO LE .

WARRANTY DURATION
This Computer console is warra nted for a per iod of three (3) months from the
da te of the origina l purc hase by the consumer .

WARRANTY COVERAGE
This Computer console is wa rranted against defec tive ma terials or
workma nship. THIS WARRANTY IS VOID IF THE CONSOLE HAS BEEN
DAMAGED BY ACCIDENT, UNREASONABLE USE, NEGLECT, IMPROPER
SERVICE OR OTHER CAUSES NOT ARIS ING OUT OF DEFECTS IN
MATERIALS OR WORKMANSHIP.

WARRANTY DISCLAIMERS
ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING
BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTAB ILITY AND FITNESS FOR A PARTIC ULAR PURPOSE, ARE
LIMITED IN DURATION TO THE ABOVE THREE·MONTH PERIOD. TEXAS
INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE
COMPUTER CONSOLE OR OTHER INCIDENTAL OR
CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INC URRED BY THE
CONS UMER OR ANY OTHER USER.

S ome sta tes do not a llow the exclusion or limitation of implied wa rranties or
consequent ia l da mages, so the above limi ta tions or exclus ions may not apply to you .

LEGAL REMEDIES
This wa rra nty gives you specific legal rights . and you may a lso ha ve other rights that
vary from sta te to s ta te.

WARRANTY PERFORMANCE
Please firs t contac t the re ta iler from whom you purchased the console a nd determine
the excha nge policies of the reta iler.

During the a bove three·month warra nty per iod . your T I Computer console will
be repa ired or replaced with a new or recond itioned console of the same or equivalent
mode l (at T I"s opt ion) when the console is returned either in person or by prepaid
shipment to a Texas Ins truments S ervice F aci lity lis ted below.

Texas Instruments s trongly recommends that you insure the console for value. prior to
shipment.

T he repa ired or replacement console will be warra nted for three months from date of
repai r or replace ment. Other than the cos t of shipping the unit to Texas Ins truments or
postage. no charge will be made for the repair o r replacement of in-wa rranty consoles,

User's Reference Guide

