PREFACE

This book is for Atmos and Oric 1 users who want detailed information
about their computer. For machine code programmers, an account of
the various ROM calls is given with a full description of the methods of
handling the different parts of the machine.

This book was not written to teach machine code, but to provide
enough background information for existing 6502 programmers to use
an Oric/Atmos.

If you are not an experienced machine code programmer, you will
still find a great number of hints and tips in the book. Even if you do
not understand machine code at all you will still be able to use the
numerous utilities — such as Renumber, Merge and Auto.

Chapter one summarizes the hardware that makes up an Oric or
Atmos computer.

Chapter two explains how BASIC works, from the way that programs
and variables are stored, to creating different windows of scrolling text.
A list of Oric 1 and Atmos bugs concludes the chapter.

Chapter three is about how machine code programs are entered,
methods of calling your program, and how a machine code program
can use the software timers. Some machine code pitfalls and tips are
given at the end of the chapter, along with a real-time clock program.

Chapter four describes two important sections of Oric 1 or Atmos —the
keyboard and the cassette system.

This chapter describes how individual keypresses are detected —
very useful for games where several keys are used at the same time.
A complete account of the cassette system is given, and after reading
this chapter you will be able to write machine code programs that save
and load blocks of memory, or individual bytes. A verify program is
listed for Oric 1 owners.

Chapter five gives an account of how BASIC uses RAM and ROM. All
important ROM and RAM addresses are printed, plus details of how
the stack area is used.

Chapter six explores three important subjects — maths, HIRES and
music. On the maths side, a machine code programmer will now be
able to use the ROM'’s floating point routines. On the HIRES side, you
will find out how the high-resolution graphics can be used with

different mixtures of text, and a complete account of the ROM routines
for CURSET, DRAW etc. is given.

On the music side, this chapter describes how the ROM routines for
MUSIC, PLAY and SOUND are used, as well as giving details of how
the sound chip is accessed.

Chapter seven presents a number of fast high-resolution graphics
routines. A single-point plotter is given which runs about 70 times
faster than BASIC’'s CURSET command. A PAINT routine is listed that
will fill in any shape on the high-resolution screen.

Chapter eight gives six utility programs to help BASIC programmers.
These are: Renumber, Delete, Merge, Auto-Data, Trace, and ON-
ERROR. Other utilities can be found throughout the book.

Chapter nine completes the book with some ambitious ideas, including
a primitive form of speech synthesis, a multiprocessor and a program
that allows single key entry of BASIC keywords.

Geoff Phillips

Preface to the 1998 edition.

Hi, and welcome to the on-line version of this book, first published in 1984 by
McGraw Hill. | scanned this in during Summer 1998, using an OCR tool,
combined with gif images for the program listing. | partially did this as a gift to
the surviving Oric community, and also as an archiving exercise. | was fairly
proud of this book, somewhat displeased when it was published to find it in no
bookstores at all. Although it is hardly relevant today, it surely had some worth
back when Oric was a going concern. Anyway, that’s all water under the
bridge.

My scanning skills improved somewhat during the making of this book, so you
will find the later listings are sharper, bolder. In case you are interested, my
trick was to use Paint shop pro: convert to large colour mode, at full size; then
use Erode filter, which blackens the text; optionally do a flood fill of white;
resize to about 340 across; use the sharpen more filter to highlight some of
the edges; and finally reduce colours to 8 to make the image more compact.
The OCR software was Cunieform. The old version | had of that was terrible
with # signs, but | upgraded the version, and the newer one seemed to like
them. There might be an odd escaped O - 0 problem.

Originally the book was written on a Microtan and saved onto cassette tapes.
Now, those tapes contain music....

I'm hoping that much of the book remains useful to Oric users out there,
emulated or real, the book has been scanned in almost without change - a
few grammatical changes, for instance the changing of “data” to singular - the
proof reader at Mc Graw Hill was convinced that “data” was a plural term [ok
technically it is the plural of Datum, but no-one in their right mind uses this]

So sentences like “The data is read” should be “The data are read” - the latter
sounds horrible, to my mind “data” is a word that is always singular, like
“grass”. So where I've noticed this, | changed it back to how | originally typed
it! I've put all the listings in as images, this means | can’t introduce errors,
since the listings have all come indirectly from those original programs
dumped out from a running Oric. None of my code was written using an
assembler, just the in-line one from Oric Mon. | do apologise for this, it
seemed quite natural at the time, | don’t think I'd have the patience now to
work in this kind of manner, without proper cross assemblers! | can’t vouch at
this time if the programs are all working.

A lot has happened in the 14 or so years since the book was written. The rise
of the PC, the commercialising of software, Windows, the rebirth of consoles.
We've seen computers go from containing 16K of ram to typically 64 megs
(4000 times), storage from 100K on floppy to 6 gigs on hard drive (60,000
times), processor power going from less than 1 MHz at 8 bit to 400 Mhz at 32
bit.

Personally, | stayed in the games industry for almost 10 years, doing
conversions, and to be frank struggling towards the end to make a living out of
it. Now, I'm not doing games, but working with new technology, associated
with CDs, the Internet, video, and audio. | remain at heart an assembler man,
but I'm learning C++ and windows, to keep up with the world.

If you want to reach me, I'm at binky@DeathsDoor.com, on ICQ at 104950,
and have a home page which is linked via come.to/geffers. Email is always

welcome.

I’'m releasing this book as freeware, and can be quoted from, or printed as
desired. If included as part of some piece of work, then please acknowledge

its origin.

CONTENTS

Page numbers are not given, because are irrelevant to the on-line version.

Preface
Chapter 1 Looking inside the Oric

1.1 Introduction

1.2 The ROM

1.3 Use of RAM

1.4 Differences between machines
1.5 The microprocessor — 6502
1.6 The 6522 — VIA

1.7 The 8912 sound chip

1.8 Text screen

1.9 High-resolution mode

1.10 Keyboard

1.11 Printer interface

1.12 Cassette system

Chapter 2 BASIC

2.1 Introduction

2.2 Memory map of BASIC
2.3 The format of a program
2.4 Pointers

2.5 Numeric variables

2.6 Integer variables

2.7 String variables

2.8 Arrays

2.9 READ and DATA

2.10 Using RND

2.11 Using a printer

2.12 The Oric’s status bytes
2.13 INVERSE and NORMAL
2.14 Creating windows of text
2.15 Controlling PRINT

2.16 Bugs in BASIC

Chapter 3 Using machine code

3.1 Advantages of machine code

3.2 Storing machine code

3.3 Types of machine code program

3.4 Creating a machine code program

3.5 Calling a machine code routine

3.6 Passing information to machine code routines
3.7 Patching into BASIC

3.8 Interrupts

3.9 Software timers

3.10 Machine code advice

3.11 Using the ! extension command

3.12 Using the & extension function routine
3.13 A real-time clock

3.14 Relocater program

Chapter 4 The keyboard and cassette system

41 Keyboard

4.2 Cassette input/output

4.3 Saving an area of memory
4.4 Loading an area of memory
4.5 A verify facility for version 1.0
4.6 CLOAD with an exit

4.7 Data saving and loading

4.8 Conclusions

Chapter 5 The Oric ROM in detail

5.1 Introduction

5.2 Use of page 0 memory

5.3 Use of page 1

5.4 Use of page 2

5.5 Summary of ROM addresses

Chapter 6 Maths, HIRES, and music

6.1 Introduction

6.2 Maths

6.3 High-resolution graphics
6.4 Sound and music

Chapter 7 Faster high-resolution graphics

7.1 Objectives

7.2 The theory behind the fast plotting routines
7.3 Collisions

7.4 Fast single-point plotter

7.6 Drawing larger shapes

7.7 Examples

7.8 PAINT subroutine

7.9 High-resolution compactor subroutine
7.10 Conclusions

Chapter 8 Useful utilities

8.1 Introduction

8.2 Renumber routine

8.3 Delete utility

8.4 Merge program facility
8.5 AUTO DATA feature
8.6 Trace utility

8.7 On-error GOTO feature

Chapter 9 Stretching the Oric to its limits

9.1 Introduction

9.2 Speech synthesis program
9.3 Extra 6502 op-codes

9.4 Multitasking in BASIC

9.5 Single-key facility

9.6 Silence routine

144
144
148
149
153
157

1 LOOKING INSIDE THE ORIC

1.1 Introduction

In this chapter we shall look at the various components of the Oric.
Some of the features discussed will be further explored later in this
book — the workings of the cassette system, for example.

1.2 The ROM

The Read Only Memory device contained in each Oric is responsible
for supplying the BASIC interpreter program. It contains some 16K of
instructions located between #CO000 and #FFFF (on all machines).
Since a program cannot overwrite the ROM area, the area #C000 to
#FFFF is not affected by any write operations.

1.3 Use of RAM

Any BASIC program that you write is stored in the Random Access
Memory located between 0 and #BFFF (or up to #3FFF for 16K
users).

However, since the ROM needs a certain amount of working space,
and because of other considerations, any BASIC program that you
write will start at #501. The top of usable memory for your BASIC
program is also going to be reduced, to at least as low as #B3FF, or
#33FF for 16K machines.

If you are using high-resolution mode and have not issued a GRAB
command, then the top of BASIC memory becomes #97FF (#17FF for
16K machines). This means that you have lost more than 11K! The
actual layout and use of the RAM is described in more detail in
Chapter 5.

1.4 Differences between machines

From the point of view of hardware, there are very few differences
between machines.
There are two major categories:

1. Your Oric is either a 16K or a 48K machine.
2. Your Oric is either version 1.0 (i.e., the ORIC-1) or 1.1 (i.e., the
ORIC ATMOS).

When you first power up your Oric, you will be advised of which
version you are running. Chapter 2 lists the differences between the
ROMSs, but there is no apparent difference when looking at the
hardware. Take note of your version number, so that you know which
addresses apply to your particular machine.

The terms 16K machine’ and '48K machine’ relate to the total
memory capacity. On a 16K machine, there would seem to be a gap
between the end of the RAM (#3FFF) and the start of ROM (#C000).
In practice, this is not the case, as the 16K of RAM is mirrored through
each 16K block of addresses; e.g., location 0 is the same as locations
#4000 and #8000. This is the reason why a program can still write to
the screen at #BB80 on a 16K machine. Do not worry that this feature
is 'accidental’ and might not be true for all ORICs - the start-up
routines use the mirroring to detect which machine is which.

Some very early machines have slightly different insides, but the
only important difference is that the sound on these machines is much
louder and can cause the break-up of a TV picture.

In this book, version 1.0 addresses are given first, followed by the
version 1.1 address in brackets.

1.5 The microprocessor — 6502

The 6502 is the heart of the computer, obeying instructions held in
ROM or RAM. When writing BASIC programs, the function of the 6502
is entirely invisible, but if you are going to write machine code
programs, you will need to know quite a lot about this device. It is
certainly worth while buying a book devoted to the subject. The
programs in this book will help you to understand some aspects of
machine code programming, and part of Chapter 3 gives a few
guidelines on the use of some 6502 instructions.

1.6 The 6522 — VIA

The Versatile Interface Adaptor (VIA) is a microchip that belongs to
the same family as the 6502 processor (hence the similar number). It
is a complicated, but invaluable, device which links the Oric’'s 6502 to
its peripherals, as well as providing two timers.

A book devoted to the 6502 will often have a chapter on the usage
of the 6522; here we are only concerned with its use in connection
with the Oric.

TALKING TO THE VIA

The 6522 chip is linked to page 3 of your memory map, so that
whenever you read or write to an address between #300 and #30F
you are enabling the VIA. These 16 addresses are normally mirrored
throughout page 3 — so #380 is the same as #300 — but there is no
reason to use any location between #310 and #3FF.

A quick summary of these locations follows; for more information
you will need to use a book on the 6502 family of chips.

Address Description

#300 Port B in and out

#301 Port A in and out

#302 Define port B output or input (output if bits set)

#303 Define port A output or input

#304,5 Timer-1 counter

#306,7 Timer-1 latch

#308,9 Timer-2 counter/latch

#30A Shift register (not used by ORIC)

#30B Auxiliary control register

@30C Peripheral control register

#30D Interrupt flag register

#30E Interrupt enable register (indicates what sort of event will cause
an interrupt).

#30F Read/write to port A without handshake.

CONTROL LINES ON THE 6522

The two ports can each contain one byte of information, but each bit
can be separately set as input or output. In addition to the ports, there
are four control lines, called CA1, CA2, CB1, and CB2. Here is a
summary of how the Oric uses all of the /O lines:

Port A — connects to the printer's 8bit bus. It is also wired into the
8912 sound chip.

Port B — this port is easier to look at bit by bit. Starting from the right,
the lowest three bits are used to supply the row when looking at the
keyboard (see Sec. 1.10).

Bit 3 of port B is set to 1 when a key is pressed — more on this later.
Bit 4 is connected to the strobe line on the printer socket — when 0
the printer will expect data to be present on port A.
Bit 6 controls the relay circuit on the cassette socket.
Bit 7 connects to the cassette output circuitry.
CA1 — this line is input from the acknowledge signal on the printer
port.
CAZ2 - this line connects to the 8912 sound chip (see Sec. 1.7).
CB1 —this line is connected to the cassette input circuitry. CB2
—when 1 the 8912 reads from port A of the 6522.

THE 6522 TIMERS

It is not often realized that the Oric has two versatile timers at its
disposal. Later in this book it will be shown how easy it is to use these
timers to provide a real-time clock facility — in BASIC or machine code.

The most important timer is designated timer-1 and is used mainly
to count time between each interrupt. Without any supervision from
the 6502, timer-1 counts down from a given 16-bit value (at location
#306,7) to zero — this counter can be read from addresses #304,5.

When zero is reached, timer-1 starts counting again, using the 16-
bit value stored at #306,7, and bit 6 in the interrupt flag register is set.
When this happens, the 6522 will cause an interrupt signal to be sent
to the 6502 processor. If the 6502 has interrupts enabled, then the
appropriate interrupt handling subroutine will be called. It is very
important to realize that the timer will operate regardless of the state
of the 6502 — disabling interrupts does not stop the clock.

During cassette saving and loading, the VIA is set up differently, and
the timers operate in a different fashion:

Timer-2, which is idle at other times, is used when receiving bits from
the cassette input port in order to wait an exact amount of time.

The function of timer-1 is altered (by setting bits 6 and 7 of the
auxiliary control register) so that instead of causing an interrupt bit 7
of port B is toggled and the timer is automatically set running again.

When a cassette operation is complete, the registers in the 6522 are
set back to their initial values in order for the keyboard and printer to
work normally.

1.7 The 8912 sound chip

All sound effects produced on the Oric are performed by the 8912
sound chip. In addition to being able to generate music, this device
has one input/output port — port A — which is used to output the
column number when polling the keyboard.

The 8912 is controlled by 15 eight-bit registers stored inside the
chip. These are set up whenever the Oric’s sound commands are
executed. Here is a summary of how each register is used:

Register |Use
0,1 The lowest 12 bits give the pitch of channel A
2,3 The lowest 12 bits give the pitch of channel B
4,5 The lowest 12 bits give the pitch of channel C
6 The lowest 5 bits give the pitch of the noise channel
7 Enables: each bit has a different meaning:
Bit 6: set port A as output or input
te] Bits 3,4,5: mix noise with channels A, B, and C
Bits 0,1,2: enable channels A, B, and C

9 10 11,12 [Channel A amplitude. If bit 4 is set then the music

13 'envelope’ is used; otherwise bits 0 to 3 give the fixed
volume

Channel B as above

Channel C as above

Length of the envelope

The lowest four bits give the shape of the envelope. This
is different from the value you would use in the PLAY
command, according to the following table:

PLAY value Actual register value

1 0,1,2,3,0r9

2 456,7,0or 15

3 8

4 10 or 14

5 11
14 §] 12

713

Register 14 is the 1/0 port A.

The 8912 registers cannot be accessed directly by the 6502 — but
instead via port A of the 6522 and a couple of control lines.

CB2 or the 6522 is set in order to select the 8912, and then
immediately cleared (the 8912 chip will accept data as fast as you
send it).

CA2 of the 6522 is either set when a register number is being
passed in port A or cleared if it is data for the register. So in order to
write #F7 to register 1, you would:

1. Store 1 in #30F — port A without any handshake signals.
2. Set CA2 and CB2.

3. Immediately clear CB2.

4. Put #F7 in #30F.

5. Clear CA2 and set CB2.

6. Immediately clear CB2.

There is a subroutine in the ROM to handle the above procedure — see Chapter 6 but
as this is unbelievably inefficient, you will find a faster version used in the speech
synthesis program of Chapter 9 (see 9.2).

1.8 Text screen

The text screen is organized as 28 rows by 40 columns of character
cells. Each character cell occupies one byte of memory between
#BB80 and #BFDF, but creates a display of a character 6 pixels wide
by 8 pixels down.

The information for each character is retrieved by the graphics chip
depending on the ASCII value of that character. Eight consecutive
bytes are used for each ASCII character — one for each line of pixels.
The formula for the start address of the definition of a particular
character is: character value * 8 + start of character set.

The start of the character set (in TEXT mode) is #B400 for the
standard character set (A to Z, 0 to 9, etc.) and #B800 for the alternate
character set. Since these are in an area of RAM, it is quite a simple
matter to redefine any character.

ATTRIBUTES

If the screen memory contains a control value, i.e., an ASCII value
between 0 and 31, then this value is taken as an attribute, and the

character set is not referenced. This means that the first 256 bytes of
both the standard and alternate character sets is wasted. Also, you
may have noticed that the alternate character set overlaps with the
screen!

An attribute changes the way that a particular line is interpreted by
the VDU chip. Appendix C of the Oric manual (or Appendix 2 of the
Atmos manual) gives the 32 possible attribute values. Some attributes
— those between 8 and 15 — affect three different features of a line —
double height, flashing, and character set.

At the beginning of each line, five attributes are always assumed:

1. No flashing.

2. Standard character set.
3. Paper of 0 (black).

4. Ink of 7 (white).

5. Single height.

If the character being displayed has a value between 128 and 255,
then the character will be used as though 128 had been subtracted —
except that whatever colours would have been displayed become
inverted.

For instance, if you POKE #BB80 with 65 —i.e., the letter A — you
will get a white A on a black background. If you POKE 65+128
instead, then the colours change — white (7) becomes 0 (7 — 7) and
black (0) becomes white (7 — 0). This rule also works when you are
setting a paper attribute: POKE #BB80,17 leaves a red square at the
top left of the screen, whereas POKE #BB80,17+128 - although
correctly setting the paper colour to red — creates a square which is
cyan (7 —1).

USING ESCAPE

One source of confusion lies when looking at how PRINT uses ESC
(CHR$(27)) in order to set attributes. It is a good idea to totally ignore
what the manual tells you about using ESCAPE when writing in
machine code.

The important fact is that ESCAPE only works because BASIC is
creating all the attributes for you — POKE 27 onto the text screen and
nothing will happen. (Try poking it onto the high-resolution screen!)

The use of ESCAPE when using PRINT is unavoidable because
this command traps any ASCII value less than 32 and treats them like
control characters (changing parameters like keyclick, etc.).

The PLOT command, like POKE, does not understand escape
sequences, so direct attributes must be used.

1.9 High-resolution mode

High-resolution mode moves away from using a character set, and
instead causes the screen to directly reflect the contents of the video
memory.

Each byte in the area #A000 to #BF3F affects 6 horizontal pixels in
a matrix 240 across by 200 down. Part of the text screen remains at
the bottom, at addresses #BF68 to #BFDF, although in high-
resolution mode, these three lines use the character sets at #9800 to
#IOFFF.

This is necessary as the high-resolution screen overwrites the
normal character set area. The exact details of how BASIC enters
into high-resolution mode can be found in Chapter 6.

From a hardware point of view, the graphics chip switches modes
when an attribute of 30 or 31 is interpreted. When an attribute of 26

or 27 is encountered, the mode is switched back to text. All the
copying of character sets, etc., is carried out by software.

1.10 Keyboard

The keyboard on the Oric is a matrix of 8 columns connecting to 8
rows. By writing down one column and along one row, it is possible to
examine the state of an individual key.

After every three interrupts, the system scans all the columns and
rows in an attempt to find any depressed keys. The ROM subroutine
only looks for one key down at a time, except that it does one extra
search for the SHIFT and CONTROL keys. There is no reason,
however, why a program cannot look at every key individually — this is
very useful for games.

Two ports are used to poll the keyboard — port B of the 6522 and
port A of the 8912.

The column is output on port A of the 8912 in the form of one bit
cleared in a byte containing #FF. The row is output as a number (0 —
7) on port B of the 6522 and bit 3 of port B read back to determine
whether that key is pressed.

Chapter 4 gives further details about reading from the keyboard.

1.11 Printer interface
When a byte is sent to the printer, the following occurs:

1. The byte is sent along port A of the 6522.

2. Bit 4 of port B is cleared and then set (this is the printer's strobe
line).

3. The Oric waits until CA1 is pulsed by the acknowledge line on the
printer. CA1 is not read directly, but causes bit 1 of the interrupt flag
register to be set inside the 6522.

1.12 Cassette system

Chapter 4 explains how your programs can use the cassette system to
save and load data, so this section is only concerned with some of the
hardware aspects.

CASSETTE OUTPUT

The cassette output circuitry can only handle one bit at a time,
creating either a high tone or a low tone depending on bit 7 of the
6522’s port B.

This bit is set or reset automatically by the 6522 after timer-1 has
finished counting down; the length of time to be counted depends on
both the tape speed and whether the bit is 0 or 1. In order to save a
whole byte, the cassette routines use a series of eight shift
instructions to separate each bit.

In order for the 6522 to toggle PB7 at the end of each countdown,
bits 6 and 7 of the auxiliary control register are set. Also, for no valid
reason, port B is set completely to output (bit 7 is already in the output
state). Because port B is zeroed in this process the printer’s strobe is
activated and an unwanted character is sent to the printer.

CASSETTE INPUT

The cassette circuitry connects to the CB1 line on the 6522. When this
goes from low to high the CB1 flag is set in the interrupt flag register of
the 6522. Timer-2 is used to count time before looking at the CB1 flag,
and each bit is built up into a whole byte using a series of rotate
instructions.

CASSETTE RELAY

Finally, the cassette relay connection is activated before any of the
cassette routines by setting bit 6 of port B on the 6522. This bit is
cleared after all cassette operations, deactivating the relay.

2 BASIC

2.1 Introduction

An understanding of the workings of BASIC is necessary if it is required to incorporate
machine code routines within BASIC programs, or if special utilities, e.g., ‘Renumber’, are to
be written.

2.2 Memory map of BASIC

BASIC is rather greedy on the RAM — here is how it uses its memory:

#0000 — #00FF — almost all is used by BASIC — see Chapter 5.
#0100 — #010F — used when converting floating-point numbers to
strings.

#0110 — #01FF — the normal 6502 stack area.

#0200 — #02FF — partially used by the non-standard parts of BASIC
(e.g., DRAW and MUSIC).

#0300 — #03FF — an input/output area used by the 6522. This is not

RAM.
#0400 — #04FF — not used by BASIC — reserved for use with the disk
system.

#0501 — (#9C) — 1 — the BASIC program occupies memory as far as
indicated by the address in locations #9C and #9D.

(#9C) — (#9E) — 1 — any simple numeric variables are stored here,
along with the identification of each string variable.

(#9E) — (#A0) — 1 — numeric arrays are stored in this area, along with
the identification of string arrays.

(#AO) — (#A2) — this area of memory is unused. It can be seen that
pointer #A0 reaches up to meet pointer #A2 coming down.

(gA2)+1 — (#AB) — this area is used for storing both permanent and
temporary strings of data. Temporary strings are only cleared
when there is no more room below #A2, or when the FRE function is used.

#9800 — #9BFF — a copy of the standard character set is created here
when a HIRES command is executed.

#9C00 — #9FFF — a copy of the alternate character set is moved here
for use in HIRES.

#A000 — #BFDF — video memory used in HIRES mode.

#B400 — #B7FF — the standard character set when in TEXT mode.

gB800 — #BBFF — the alternate character set when in TEXT mode.

#BB80 — #BFDF — the video memory when in TEXT mode. Note
that this overlaps part of the alternate character set.

BFEO — #BFFF — unused.

2.3 Theformat of a program

A program is stored in a completely different way from its external appearance. If you enter a
simple program and then use PEEK to see what has been entered, you will not find evidence

of either the program keywords (such as SHOOT) or of line numbers.

Each line is stored in its correct place in the program in an exact way. Consider the example:

10 POKE4,3 20 END

Here is how that is translated:

#0501,2
#503,4

#505

#5006
#507
#508
#509
#50A,B
#50C,D
#50E
#50F
#510,1

#512

Link address to the next line in the program — in this case,
#50A. (Remember that the low byte of the address is
always first.)

Two-byte binary form of the line number, e.g., #0A.

A one-byte ‘token’ which means ‘POKE’ — #B9. All BASIC
keywords have a unique token value, always between t80
and #FF, as this conserves memory and makes it quicker
to execute an instruction (Table 2.1, page 12, gives a list of
all possible tokens).

The ASCII code for ‘4’ — 434.

The ASCII code for comma — #2C.

The ASCII code for ‘3" — #33.

An end of line indicator of #00.

The link to the next line — #510.

Line number 20.

Token for END — 080.

End of line — #00.

End of program’s link field — always contains a value < 256. In other
words, #511 must be zero, but #510 could be anything.

Start of free space.

Table 2.1 List of all BASIC tokens

#80,. EMND #81. EDIT
#87. STORE #BZ3. RELALL
#54. TROW #85. TROFF
#5. PO #B7. PLOT
#d8. PUAL #B9. LOREES
#04. DOKE #85. REFEAT
#@C, UNTIL #80. FOR
#BE. LLIST #BF. LFRINT
#90. NEXT a91. DATA
HP2. THNPUT #73. GIM
#94. €LY #9%. READ
#2a,. LET #¥97. GOTO
#98. RN #99. IF
#P4. RESTORE #9B. GBOSUR
HOC. RETURN ¥9D., REM
#9E. HIMEM #9F ., GRAB
#AC, RELEASE #a1. TEXT
#0472, HIRES #AT. SHOOT
#A4, EXPLODE #AS. IAP
#¥A5. FINB #Aa7., SOUND
#AE. MUSIC #a9. PLay
#AA. CURSET #AB. CURMOV
#AC. DRAW #AD. CIRCLE
#AE. PATTERN #AF. FILL
#BO. CHAR #B1., PAPER
#B2. INK #B3I. SToP
#E4. ON #B3. wWAlT
#B&. CLOAD #B7. CSAVE
#Be. DEF Y
#BA. PRINT #BE. CONT
#BC. LIST #BD. CLEAR
#BE. BET #BE. CALL
#Co, ! WCL. NEW
#C2. TAE(#CE. T
#[C&. FN #CS. SPOCY
#Ch. & #C7. ALTO
#C8. ELSE #C3., THEN
#CA. NOT #CB. STEP
#CC. + ¥CD. -

WOE. * BCF. 7/

#o0o, #D1. AMD
#02. OR #D3. >

#04. = #D5. <

#D4. S5N #D7. INT
#DEH., ABS #07. USR
#I}A. FRE #DE. FOS
#DC. HEXS #DD. %

®DE. SOR #DF . RND
#E0. LN EL. EXP
¥EZ. COS #E3. SIN
#E4. TAM #FS. ATH
#E&. FEEK #E7. DEEK
#F8. LOG #ET. EEN
#EA. STR% #EB. WAl
#EC. ASC #ED. CHR$
BEE. FL #EF. TRUE
#FO. FALSE #F1. KEYS
#F2, SCRN #FS. POINT
AF4. LEFTS #FS. REIGHTS

Note that the tokens listed are those for VI.| ROMs. The only differences for V1.0 ROMs
are:

‘STORE’ is INVERSE’ and ‘RECALL’ is ‘NORMAL'.

The use of the link address is to allow a quick method of locating a specific line. You can try
this yourself by typing:

| =#501: REPEAT: J = I: | =DEEK(l): UNTIILI <256: PRINT J

which finds the highest address of your program. Since the links affect the ‘LIST’ command,
you can have endless fun altering the links of a program so that, for instance, a program lists
itself backwards!

Since the line number is always stored in a 2-byte binary format, it must be realized that there

is no saving in having a line number of 5 as opposed to 50 000 — except where a GOTO or
GOSUB occurs. GOTO 12345 takes up 6 bytes, but GOTO 5 only needs 2 bytes.

2.4 Pointers

As mentioned in the memory map, there are a number of pointers used by BASIC to separate
a program from its variables and arrays. Not all of these are useful: #9A is the start of the
BASIC pointer, but BASIC refuses to work if you move it from its normal value of #500.

The most important pointer is that at #9C which gives the address of the start of BASIC
variables — or the end of the BASIC program + 1. Printing the DEEK of #9C is often more
useful than the FRE command since it gives you the exact position of the end of your
program. When a program is saved, this pointer is used to give the upper address limit. It
follows, therefore, that by adjusting the pointer at #9C you can save more than just the BASIC
program using a single CSAVE - though remember to DOKE the correct value before you do
anything else after you have loaded back. The Oric assumes that #9C is always correct,
adding or subtracting values as a program is altered.

When a BASIC program is loaded the upper load address is automatically stored back at
#9C. Version 1.0 owners should beware of loading machine code programs in on top of
BASIC programs since the #9C pointer will then point to the end of that machine code
section. The solution to this is to either correct #9C or load machine code routines before
loading a BASIC program. Version 1.1 owners need not worry about this particular fault.

HIMEM

The HIMEM command is often most unhelpful — especially on V1.0 machines. In cases where
you cannot persuade your machine to do HIMEM correctly, simply DOKE #A6 with the value
before running the program. If you wish this to be done as part of your program, you will also
have to alter #A2 to the same value as #A6, otherwise strings will be placed in the wrong part
of memory.

25 Numeric variables

All calculations are done in ‘floating-point’ arithmetic. This means that an expression such as
‘1+1’ presents as much difficulty as ‘3.1415+9.7373’.

When you assign a value to a variable, as in ‘LET A=52’, this variable is stored away in a 7-
byte area comprising:

Two bytes containing the identification ‘A’.

Five bytes containing the floating-point representation of the number. The exact format of
these 5 by'tes will be described in Chapter 6.

The identification is simply the first two characters of the variable’s name, or one character
followed by #00. The top bit in each of these can be set for the different types of variables —
for a normal numeric variable both bits are clear.

For the fastest possible calculations, always use simple numeric variables. It must be
stressed that ‘10 1=1+4’ is slower than ‘10 I=I+ J’.

2.6 Integer variables

These are stored in the same amount of memory as for normal variables, but the format is
different:

1. Two bytes of identification (as before) with the topmost bits set in both bytes.

2. A 2-byte binary value of the integer stored in twos-complement form with a high byte
followed by a low byte (i.e., against the usual convention).

3. Three unused bytes containing zero!

The advantage of using integer variables is only where it would save the use of INT. Contrary
to many magazine articles stating the opposite, there is no saving in a program that uses
integer variables (but see integer arrays!).

2.7 String variables

Any string variable has two components:

1. An identification of the variable’s name, occupying 2 bytes, as for numeric variables. To
identify the variable as a string the second byte has the top bit set. This identification is
followed by the length of the string, the address of the string, and two spare bytes.

2. The string of characters must be located somewhere in memory.

The first component is in the area between (#9C) and (#9E) — as for any numeric variable.
The second component, however, can be in two distinct areas:

1. If a program assigns a definite value to a string variable, with either READ or LET, then
the first component of the string points to the place in the program where the string has
been entered. So, unlike some other computers, the Oric does not waste memory space
by repeating the same set of characters.

2. If a string is modified in some way, e.g., LEFT$ is used, or one string is moved to another
then the resultant string is placed in the string temporary space which lies between the top
of available memory and the end of array space. The pointer to the next string space
works backwards through memory so that new arrays can be added without the need to
reorganize the strings. Since a string could be created that makes an earlier version
redundant, it should be noted that the string area will eventually become full. When this
happens, or when the FRE function is called, a subroutine known as ‘garbage collection’ is
entered and all unwanted strings are removed. Garbage collection can occur at any time
when a string is being created and can take several minutes to complete. The length of
time that garbage collection takes is in direct proportion to the quantity of permanent
strings.

2.8 Arrays

Each element of an array is stored in the same format as an equivalent single variable, but
without the wasted space. For the integer arrays only 2 bytes are needed per number stored.

An array is stored in sequential order in memory, e.g., consider the array A(1,1,1). The array
is stored working on a left-to-right basis:

A(0,0,0),A(1,0,0),A(0,1,0),A(1,1,0),A(0,0,1), etc.

For each array there is an overhead of at least 7 bytes in the memory area between pointer
#9E and #A0

This area is made up as follows:

1. Two bytes identifying the array name — exactly as for variables, with the top bits set or
cleared to indicate the type of array.

2. A 2-byte binary length which gives the exact amount of memory occupied by this array
(excluding the text part of a string).

3. One byte which gives the number of dimensions.

4. For each dimension, working from right to left, there is a 2-byte number which gives the
dimension plus one (remember that you can have a zero subscript when accessing part of
an array). This number is stored with the high byte followed by the low byte.

29 READ and DATA

It is often useful to be able to use READ in a more controlled way — reading from a particular
line of DATA, Some more advanced BASICs have this facility — this is often known as
RESTORE N, where N is the line number from which DATA is to be read.

The READ command does not keep account of the next line number from which to read, but
instead uses #B0 store the last address in memory where DATA was read. After each READ
command, the line number used is stored in #AE,F so that an error message can report on
the current data line (for ‘OUT OF DATA’, etc.). Writing to #AE,F will have no effect on READ
operations.

04EQ:
04E2:
04E4:
O4E6L:
O4ES8:
0O4EB:
O4ED:
0O4EE:
O4FO:
04F2:
04F4:
Q4F &=
04FB:
04F9:
O4FA:

A RESTORE N FACILITY

Only a very short machine code program is needed to give BASIC this facility, which has
been listed below in Program 2.1. Although the routine has been put at address #4EOQ, it will

AS
B85S
AS
B85
20
AS
38
E?
BS
AS
E?
BS
&0
EA
EA

33
o1
34
E4
CE

01
BO
CF
00
B1

Cé

STA
LDA
STA
JSR
LDA

SBC
STA
LDA
SBC
STA
RTS
NOP
NOP

work at any spare memory location.

Version 1.1 ROM owners should change #4E8 to ‘JSR #C6B9'.

The machine code routine takes the line number stored at address 0,1, calls a ROM routine to
find the address of that line, and stoics that address minus 1 at #B0 to #BI.

USING RESTORE N

A BASIC program has been listed below (Program 2.2), for V1.0 owners, which demonstrates
how to call the machine code routine. Program 2.3 is the listing for V1.1 owners — the only

$00
$33
$01
$34
$C&E4Q
$CE

#%01
$BO
$CF
#$00
$B1

difference is the JSR address in machine code.

10 A$="AS008533A501B53420E4C4ASCEIBESO 1 8SBOASCFEROOASEB1AD"
1S I=#4EQ

20 FORI=1TOLEN(A%) /2: B=VAL ("#"+MIDS (A%, (I-1)%2+1,2)):C=2+I-1:POKEC,E
30 NEXT

100 INPUT"WHICH LINE?";L

110 DOKEO,L:CALL#4EQ

120 FORI=1TOZ:READAT: PRINTAS: NEXT

130 GOTO100

1000 DATA43,55,66,77,88,99

1010 DATATHIS IS LINE 1010

1020 DATA&LL,77,88,99,66, 66

2000 DATAL INE 2000 DATA

000 DATASS, 6,4, 4

Program 2.2 Restore N - BASIC example for version 1.0

e

S REM NEW ROM VERSION OF RESTORE X
10 AS$="AS008533A501853420B9C6ASCESSES018SBOASCFEFOOESEL &0

15 Z=#4E0

20 FORI=1TOLEN(AS) /2:B=VAL ("#"+MID$ (A%, (I-1) #2+1,2)) :C=Z+1~1:POKEC, B
T0 NEXT

100 INPUT*WHICH LINE?"3L

110 DOKEO, L:CALL#4EO

120 FORI=1TO3:READAS: PRINTAS: NEXT

130 GOTO100

1000 DATA43,55,866,77,88,99

1010 DATATHIS IS LINE 1010

1020 DATALSL,77,B8,99, 66, b6

2000 DATALINE 2000 DATA

3000 DATASS,&.4,4

Program 2.3 Restore N - BASIC example for version 1.1

2.10 Using RND

The RND function will start from the same sequence of nhumbers every time you start up
an Oric, providing the argument which follows RND is positive. Although it is not made
clear in the manual, when the argument is negative this starts off a new sequence of
random numbers.

It follows that in order to make RND truly random, you must supply it with an initial
negative random seed. One of the software timers, incremented 100 times per second,
can be employed here. Unless you do a WAIT command, and providing there has been
some sort of user input (to delay the machine by an unknown time), you can use the third
timer at #276,7. For example:

5 GET Z$

10 A=RND(— DEEK(#276))

Note that A itself is not a very random number — it will usually be a number smaller than 0.01
— but any RND afterwards should be correctly balanced between 0 and 1.

2.11 Using a printer

It is often required to make a choice as to whether to print something on a printer or on the
screen. Since PRINT and LPRINT are different commands, it would seem that a program
would need two separate lines to handle any one PRINT statement. Fortunately for us, the
LPRINT command can be achieved by poking 255 into #2F1 and using PRINT. This will stay
in force until either:

1. A proper LPRINT command has finished.
2. The program returns to command mode.
3. Address #2F1 is reset to zero.

Note that this affects all types of PRINT — even the printing of prompts on INPUT commands!

2.12 The Oric’s status bytes

There are two locations in page 2 which are concerned with the status of the keyboard and
the screen.

The first of these is at #20C and controls the CAPS lock function. This location is 127 when
CAPS is off and 255 when on. If you put any other value into 420C, then the Oric will no
longer respond correctly.

The most important status location is at #26A. The lower 6 bits of this byte each have their
own meaning:

BIT O — cursor ON when set.

BIT 1 — screen ON when set.

BIT 2 — not used.

BIT 3 — keyboard click OFF when set.

BIT 4 — ESC has been pressed.

BIT 5 — columns 0 and 1 protected when set.

This means that you can POKE into #26A in order to turn off keyboard click, etc., rather than
the unpredictable method of printing control characters.

For example, POKE #26A,10 turns off keyboard click and the cursor.

2.13 INVERSE and NORMAL

Version 1.0 owners will recognize these two commands as they crop up when listing all the
tokens. Version 1.1. users have STORE and RECALL instead, but what did INVERSE and
NORMAL actually do?

Although the commands do not actually work, on the V1.0 machine there are still some
instructions that relate to them. The theory is that if you set the top bit when displaying a
character on the screen, it is printed in ‘inverse’ colours — this has been explained in Chapter
1.

What remains in old ROM Orics is the code which OR’s location #2F7 (the inverse flag) with
any character as it is printed. Unfortunately, PRINT nearly always strips off the top bit —
otherwise it would be possible to use POKE #2F7,128 to create an INVERSE facility on the
old ROM Oric. You can have some fun though putting different values into #2F7 and watching
PRINT go haywire!

Incidentally, the only place where PRINT does not take off the top bit (again, only for version
1.0 Orics) is where control-D double height is in force, and when the second line is printed.

2.14 Creating windows of text

The normal way of presenting 27 lines of scrolling text is by no means fixed. It is possible with
just a handful of DOKE commands to make just part of the screen scroll up — leaving the rest
of the screen untouched. This has many uses where part of the screen is being plotted.

Here are the DOKEs needed for version 1.0 machines:
1. DOKE #26D with the start address where scrolling is to begin minus 40.
2. POKE #26F with the number of lines which are to be scrolled.

3. You must clear the screen after doing these commands.

For version 1.1 ROMs, the procedure is:

1 DOKE #27A with the start address of the screen.
2 DOKE #278,DEEK(#27A)+40.

3. POKE #27E with the number of lines to scroll.

4

. DOKE #27C, (PEEK(#27E) — 1) *40 — this is the number of characters to be scrolled
up and must agree with location #27E.

The CLS command should be issued after setting up a different format for the screen.

2.15 Controlling PRINT

On version 1.1 machines the PRINT @ facility allows you to print at any place on the screen.
This is also provided on 1.0 machines by way of an add-on machine code routine in the
manual, but no explanation is given on how it works. If you wish to use the general PRINT
subroutine in a machine code program, you will need to know a little about how PRINT works
in this respect.

There are two locations which control where the next PRINT goes to: #268 — the number of
lines down — and #269 — the number of lines across. These are relative to the start of the
screen as defined by #26D (version 1.0) or #27A (version 1.1). On version 1.1 machines you
also have to write the address of the start of the line to #12,3.

On version 1.0 follow this example of moving to D lines down and A characters across:
100 POKE #268,D — 1:PRINT:POKE #269,A

Here is the same line for version 1.1:

100 POKE#268,D:POKE4269,A:DOKE#12,DEEK(#27A)+(D — 1) *40

To avoid large numbers of solid blocks appearing everywhere, it is recommended that you
turn off the cursor before moving around the screen.

2.16 Bugsin BASIC

Most people will be aware of one or two problems with version 1.0 BASIC, the most notable
example being the TAB function, which is quite useless (although the previous section should
help with the problem).

In this section, we look at all the bugs and, where relevant, how they can be overcome. First
of all, here are the quirks found in version 1.0 machines.

1. TAB and COMMA do not work correctly. It is best to use either SPC or, alternatively,
POKE #269 with the TAB position.

2. STR$, when packing a positive number, puts the attribute ‘2 at the front instead of a
space. This often results in green numbers! The cure is to use MID$ to take off the unwanted
character or to define a new STR$ function using the & function.

3. ELSE does not work under several conditions, for different reasons, so it is best to simply
avoid the command altogether.

4. HIMEM is not set correctly on power-up. The solution is to always put in a HIMEM
command at the start of the program, e.g., HIMEM #97FF.

5. When in high-resolution mode, the message ‘SAVING’ is still output to address #BB80 —
putting one line of junk onto the screen. There is no easy cure for this problem, apart from
writing your own save-to-tape routine. If you are saving a high-resolution screen, then first
copy it to a free area of memory and save that part of memory.

6. When the printer is in the middle of either an LLIST or a series of LPRINTS, characters are
often corrupted into ‘squiggles’. This is because the interrupt routines which read the
keyboard frequently conflict with the use of the printer. The solution is to stop the clock (CALL
#EDO1) before printing and to start it again after printing is complete (CALL #ECCY7). If you

are using LLIST, then you can type:

CALL #EDO1: LLIST

and then use the Reset button underneath.

7. When you use CLOAD from within a program, BASIC unkindly ends the program once the
load is complete. To get around this, you could do a series of CALL instructions instead of
CLOAD. Chapter 4 contains all the necessary information.

8. The function HEX$ has an unfortunate tendency to print just the hash sign for zero. This

condition should be specially tested for in your program.

9. The GET command refuses to believe that you have pressed the single quote key and
instead returns an empty string (“ “). It is important that you test for this condition before using
one of the functions such as ASC.

10. If a print line starts with control characters — e.g., ESC N, etc. — then the protected
columns 0 and 1 are used, overwriting any PAPER and INK attributes. Always start the line
with a non-attribute character, such as space,

11. The alternate character set is exactly one bit out of place! The purpose of the
alternate character set, when not modified for a special use, is to provide a ‘chunky’ graphics
capability. The format of such characters is identical to that used in the BBC’'s CEEFAX
system, allowing a resolution of 80 chunks across by 84 chunks down. Each character cell
contains six such chunks, which means that 64 graphics definitions are required to allow for
all possibilities. The Oric’s character set has in fact been set up for this. Characters between
32 and 95 contain all variations between a totally blank cell and a filled cell. However, in
version 1.0 the entire character set must first be divided by 2 (and therefore shifted to the
right) before it can be used. This can be done either with a simple BASIC loop:

FORI = #B900TO #BAFF: POKEI,PEEK(l) /2: NEXTI
or by using a short machine code routine:

LDY 000

LOOP: LSR B900, Y

LSR BAOO, Y

DEY

BNE LOOP

RTS

12. If the single quote character is found at the start of a DATA item, then because of
confusion with the REM facility, the rest of the DATA line is ignored. Use double quotes
around any DATA items containing single quotes.

13. When loading in a machine code program, be warned that the ‘end of BASIC’ pointer
at #9C,D is altered to reflect the end address of the machine code.

To overcome this you could either reset the value at #9C to #9D after the load or make it a
rule to always load the machine code routines first.

14. In the instruction POKE N, #8, the hexadecimal sign upsets BASIC, and zero will be
POKEd. Always use a decimal value or a variable instead. This fault is the reason why you
will often see decimal numbers mixed with hexadecimal numbers in this book.

The DOKE command does not suffer from this fault.
15. One interesting bug is that POINT will work in text mode!

16. When loading a file, the filename is only printed when it is actually supplied within the
CLOAD” command

17. Although potentially useful, it is still a fault that makes the screen scroll down when the
cursor is moved too high.

The following faults lie in version 1.1 ROMs:

1. ELSE fails to work should the colon character occur in quotes after the ELSE. For
example: IF A=1 THEN PRINT ELSE PRINT “HELLO:”.
2. One very obscure problem arises when:
(a) The cursor has been turned off.
(b) A character is placed at the very spot where the cursor would have been.
(c) That character is ‘inverse’ — between 128 and 255.
When this happens, and providing interrupts are running, that character is forced back to
‘normal’ mode — losing the top bit of the character.

One solution for this problem is to force the current cursor position to a place on the screen
(or even off the screen!) where it can do no harm. This is done by poking locations @268 and
t269 as described earlier.

3. One very minor bug is that going into HIRES when in control — S mode results in BASIC
writing to the wrong part of the screen. Make sure that you have enabled the screen
before using the HIRES command.

3. USING MACHINE CODE

3.1 Advantages of machine code

BASIC, though easy to use, hard to misuse, and ideal for simple programs, has two serious
drawbacks:

1. It is very slow to run.
2. It can often (but not always) use up a large amount of memory space.

One alternative language, FORTH, although faster than BASIC, is quite difficult to use. It is
unlikely that you would ever see a program on the market which used FORTH, for the simple
reason that the FORTH language would have to be sold as well.

Machine code, on the other hand, can be loaded and executed on all Oric machines. Indeed,
in many cases a machine code program will be easier to convert to a different machine than
its BASIC equivalent.

The speed of a computer like the Oric is not always appreciated. A simple machine code
instruction takes two microseconds to complete, whereas any single BASIC command will
take at least 2 milliseconds.

If you intend using machine code you will quite definitely need two things, in addition to this
book:

1. A book on the programming of the 6502.

2. An assembler/disassembler program. The one used in the preparation of this book was
ORICMON from Tansoft I.td. Without such a program, you will have to work out the
machine code instructions by hand. An assembler allows you to enter just a three
character mnemonic — such as LDA — and it works out the actual machine code values —
e.g., LDA #is #A9.

A full discussion of machine code is beyond the scope of this book, but at the end of this
chapter you will find some advice on the more difficult aspects of this subject. The book 6,502
Software Design by Leo Scanlon is particularly recommended as both a tutorial and a
reference guide.

3.2 Storing machine code

A programmer has no choice as to where a program written in BASIC resides — he or she is
stuck with the area #501 upwards.

A machine-code programmer has the whole of the machine available, at least in theory. If a
machine code program will never return to BASIC, or use a subroutine in the ROM, then that
program can be located anywhere between #400 and #B4FF, and can use the area #00 to
#2FF as a scratchpad area (not forgetting to allow a certain amount of room for the stack).

The programs and subroutines in this book are of the kind that always return to BASIC, so it is
important not to upset BASIC too much. This means not overwriting certain RAM areas in
pages 0 and 2 and allowing BASIC to create variables and strings. You can use HIMEM to
limit BASIC’s memory, and can thereafter use the remaining memory for your own needs.
Chapter 5 explains which areas of page 0 and page 2 RAM are used by BASIC.

If you are writing an add-on machine code program in order to manipulate a BASIC program,
then you really want to put your program in a place which is unused. The most common of
these are:

1. The stack area — from #110 upwards — can be used by short programs. Providing that you
do not do many GOSUB, FOR, or REPEAT commands, you will be able to use up to about
#1CO. The stack area is never cleared by BASIC, except during normal use.

2. From #400 to #4FF, 256 bytes are available. Be warned, however, that the Oric disk
system makes use of this area.

3. The first 256 bytes of each character set are unused, so programs can be put at #8400 to
#B4FF and #B800 to #B8FF (or in HIRES mode at #9800 to #98FF and #9CO00 to #9CFF).
Although the Reset button on the Oric causes the character set to be regenerated these
areas are not affected.

4. Since the alternate character set is rarely used the entire area between #B800 and #BB7F

is available for a machine code program. This area of RAM is ideal for facilities like
Renumber.

5. Another ‘hidden’ area lies between #BFEO and #BFFF. This area will only be overwritten if
HIMEM is incorrectly set, and survives the commands ‘HIRES’, ‘TEXT’, and the Reset
button.

3.3 Types of machine code program

When you write a program that is all in machine code you do not need to worry about
interfering with BASIC. If your program calls the BASIC ROM for certain functions you should
keep clear of the same areas of RAM that the particular subroutine uses. For instance, if
using the MUSIC command keep away from the parameter area #2EO to #2EF.

Since a machine code program can be made to autorun at the start address of the load, it
makes sense to use this feature and make your program start at the earliest address.

If you are using an Assembler program, such as ORICMON, you will also have to avoid the
area of RAM used by that program.

A common type of machine code program is used when a BASIC program needs an extra
facility, or perhaps a machine code subroutine is used to speed up part of the program. In this
case the BASIC program will often use DATA statements in order to set up the machine code.
A more efficient way, for larger sections of code, is to load in a separate machine code file
from tape or disk.

Another method is to put the machine code after the BASIC code and modify the #9C pointer
before saving to encompass the machine code. The first instruction in the program should
reset the pointers #9C, #9E, and #A0 back to the end of the program.

For example:

BASIC program #501 — #IF00
M/C program #2800 — #2EQ0

Before saving, DOKE #9C, #2EQO. In the program:

1 DOKE #9C, #1F02:CLEAR

An example of a BASIC program creating a machine code subroutine can be found below in
Sec. 3.4.

The third type of machine code program occurs where a BASIC program is being modified.
Normally such a routine will be loaded separately from the BASIC, although you must
remember to reset the #9C pointer on version 1.0 machines — this can often be done by the
machine-code routine itself.

3.4 Creating a machine code program

Nearly all the programs in this book have been listed in terms of the assembly mnemonics

and the actual machine code. In order to set up the programs you are best advised to use a
machine code monitor/ assembler package. If such a facility is not available, you can quite

easily use a short BASIC program to read in machine code.

Program 3.1 is an example of a program to read in a short section of code by using DATA
statements.

The program itself is very useful, as it totally disables the use of control — C. This works by
testing for ASCII code 3 in a routine that is patched into the slow interrupt link.

3 REM IGNORE CONTROL-C

I FOR I=#BFEQ TO #BFEE:READ D:POKE [,DzNEXT I

<0 DATA ®B, #48,8A0, 8DF, 82, #C9, 883, 8DO, 83, 8CE, #DF, #7., #4568, #78, #40
30 IF PEEK (#DOO0) =166 THEN DOKE#231, #BFEO: POKE#2I0, 74

40 IF PEEK(#D0O0O0) < »166 THEN DOKE®24B, WBFEOQ: POKEN24A, 76

Program 3.1 Disable control - C

3.5 Calling amachine-code routine

A machine code program which is completely self-contained can be automatically run by
using the AUTO command. Alternatively, a CALL can be used to start the program off.

Where a BASIC program calls a m/c subroutine, CALL is often used. If a CALL is to return to
BASIC the subroutine must end with the RTS (#60) instruction. Do not worry about saving
registers when writing such a subroutine.

CALL is also useful when entering add-on subroutines, such as ‘Renumber’, when it is used
as an immediate command.

In addition to CALL NN, there are several alternatives:

I. USR and & functions.

2. | —the extension command.

From the point of view of a machine code subroutine, CALL NN is much the same as!, and
USR(X) is identical to &(X). One difference is in the setting-up. For the extension
command ‘" you DOKE the start address into #2F5, and for ‘& you DOKE the address into

#2FC. The USR facility uses DEFUSR in order to set up the start address.

The difference between ‘& and ' (or USR and CALL) is that & is a function that returns a
value; the | command can only take in values. The rest of this chapter will only deal with &
and !, although the same considerations apply for CALL and USR.

3.6 Passing information to machine code routines

The most common method of passing small amounts of data to a machine code routine is
with the DOKE and POKE commands. For small data areas, such as for addresses, use the
area #0 to #B in page 0. Chapter 5 will help you in determining other areas of memory
available.

The! and & keywords can both take parameters, e.g., & A1*3), and this will be explained in
Sec. 3.11.

A machine code routine could read a BASIC variable, but this would involve quite a bit of
searching and conversion.

3.7 Patching into BASIC

Although BASIC is in unalterable ROM, there are several cases where it jumps out to an area
of RAM. The reasons for doing this are:

1. It lets programmers patch in extra facilities.
2. It allows for add-ons, such as disks.
3. It can he more efficient to write some instructions in page 0.

Each of the patch areas has been listed below, with the address for version 1.1 ROMs
given in brackets:

At #1A — a jump vector to the routine that prints ‘READY’. By changing this jump to your

own routine it is possible to:

1. Trap errors.
2. Prohibit control — C.

See the ON — ERROR facility of Chapter 8.

At #E2 lies a very important subroutine. At #E2 the address at #E9,#EA is incremented. Then
at #E8, the contents of the address at #E9, #EA are loaded. This provides a very fast
subroutine for reading in characters from the program.

After getting the next character, the routine jumps back into ROM. It is a very simple
matter to alter the routine at #E2 in order to jump to your own subroutine. By doing this,
you can look for special instructions (perhaps ‘IMPLODE’ and ‘PONG’!). ~~~ important
consideration is that you jump back into the ROM as though nothing had happened —
remember to save all the registers.

#228 (4244) is the address of the ‘fast’ interrupt jump. By altering the jump address at #229,A
(#245,6) you can provide your own interrupt handler.

#230 (#24A) is the address of the ‘slow’ interrupt routine. Control is passed to here at the end
of the fast interrupt routine. Although 3 bytes are reserved here, there is only the single-byte
instruction RTI present normally.

#228(4247) contains the jump vector for the NMI (Non-Maskable Interrupt) routine, which on
the Oric connects to the ‘Reset button’.

On version 1.1 only, there are a few extra jump vectors located in page 2 which are
concerned with input/output:

I. #238 links to the screen output routine used by BASIC commands like PRINT.
#23B jumps to the subroutine which finds which key was last pressed.

#23E jumps to the printer output subroutine.

#241 contains a jump to the subroutine that prints messages on the top line of the screen.
Changing this jump could be useful if you want to stop messages like ‘Loading’ from
showing.

PN

By far the most useful of these patches is the slow interrupt jump which allows you to make
the maximum use of the system’s interrupts.

3.8 Interrupts

The purpose of an interrupt is to stop a program temporarily and to enter a special subroutine
in order to handle a priority condition. An interrupt on a computer will often be caused by a
peripheral (such as a card-reader) announcing that it has data to transfer.

The Oric takes its interrupt line from the 6522 VIA device which is capable of causing an
interrupt for a variety of reasons. Unless the Oric is loading or saving to the cassette port, the
6522 is set up to create an interrupt at exact intervals of 10 000 machine cycles — or every 10
ms. In other words, the machine is interrupted every one-hundredth of a second. (You should
be warned that some BASIC instructions may cause an interrupt to be missed — e.g., PRINT.)

The length of time between interrupts is stored on the 6522’s timer-1 latch at #306,7. By
altering locations #306,7 you affect:

The repeat rate on the keyboard.

The flash rate of the cursor (but not the automatic flash of the VDU chip).

The speed of the WAIT command.

The speed of processing is inversely affected. This happens because the interrupts
‘steal’ time from the processor; the more time spent in interrupt handling, the less is
available for the main task.

N~

When an interrupt occurs, and providing that the ‘fast interrupt’ jump vector has not been
altered, the following events take place:

1. The three software timers are decremented by one. These are 16-bit counters located in
page 2 of memory and will be discussed in Sec. 3.9.

2. If the first timer has reached zero, after counting down from 3, the keyboard is scanned in
a search for any keypress.

3. If the second timer has reached zero, counting down from 25, the cursor is flashed on or
off.

Note that the timers being discussed are merely counters in RAM, and should not be
confused with the timer-1 and timer-2 of the 6522.

When an interrupt occurs, the 6502 jumps to the address given by locations #FFFE and
#FFFF. As was discussed in Sec. 3.7 this address is in page 2 of RAM, and the jump into
ROM can be modified for one’s own requirements.

If the fast interrupt routine does jump into ROM the last operation is to jump back to the slow
interrupt location in page 2, containing the RTI instruction.

You would use the fast interrupt patch if you wanted to add some processing before the
keyboard is scanned. The slow interrupt link allows you to add some processing after the
keyboard has been scanned.

If you intend to modify the interrupt routines, remember:

—_

Save all the registers that you use, and restore them before you finish.

2. Save any locations that might be in use by the system. For instance, if your interrupt
routine calls the SOUND command you will need to save locations #2E0 to #2EF and
#204 (#204 is used when checking your SOUND parameters).

At the end of your interrupt routine, you will usually either execute the RTI instruction if all
interrupt processing is complete, or jump back into the normal ROM interrupt routine (to read
the keyboard, etc.).

Writing interrupt routines is much more difficult than writing a normal subroutine. For one
thing, testing can frequently crash the whole machine, and often a fault will not show up for a
long time. Two important points are:

1. Remember to save any location that could be used by both your interrupt routine and
the main program.

2. Do not assume the state of any of the processor flags. Be especially wary of the
decimal flag — use CLD or SED if you are doing any addition or subtraction.

Several programs in this book modify the interrupt patches, and by understanding how these
work you will be able to create your own routines.

NON-MASKABLE INTERRUPT

The Reset button on the Oric does not in fact connect to the RESET line of the 6522. Instead,
it activates the Non-Maskable Interrupt (NMI) line of the 6502. Whereas a normal interrupt

can be disabled, the NMI causes an unconditional jump to the address contained in locations
#FFFA, #FFFB. On the Oric, this is a jump instruction in page 2 of memory which on the Oric
normally leads to a ‘warm-start’ routine in ROM. This sets up the 6522, clears the screen,
initializes the character sets, and returns to command mode in BASIC.

When writing machine-code programs it is customary to alter the appropriate address in page
2 (see Sec. 3.7) so that pressing the reset button restarts the machine code program. The
button can be disabled by typing POKE DEEK (#FFFA),64.

The ‘BRK’ instruction causes an interrupt, but sets the BRK flag in the 6502 processor. It is
used by some machine code monitors as a terminating command — just as RTS is used to
return to BASIC after a CALL instruction.

Use RTS instead of BRK if your machine code monitor expects it.

3.9 Software timers

This subject was mentioned when interrupts were discussed. There are three 16-bit counters
stored in RAM, maintained by the interrupt routine. The first two timers are in permanent use
on the Oric: the first counts three interrupt cycles (normally 30 ms) before each keyboard read
while the second counts 25 interrupts (250 ms) before flashing the cursor on or off. The third
software timer is only used occasionally by the system — for WAIT, TEXT, and (in version 1.0
only) when using the HIRES command. This means that it is available for use within your own
program. With very little trouble, you can time events to one-hundredth of a second.

Remember that the software timers will only be decremented when interrupts have been
enabled.

Each of the three timers occupies 2 bytes, in the normal tradition of the low byte first, starting
at #272. Therefore, the all-important third timer is located at #276,7. The WAIT command can

be simulated by a simple use of DOKE and DEEK into location #276, but with the advantage
that the program can do further work while the third timer is counting.

Although it is a simple matter to set up this timer, there are a number of subroutines in ROM
which handle each of the timers.

The A, X, and Y registers need to be set up as follows:
A — set to the timer number minus one. For instance, the third timer requires a value of two.
Y — set the Y register to the low part of the timer value.
X— set the X register to the high part of the timer value.

Here is a table of calls which relate to the software timers:

Name Version 1.0 Version 1.1
Start 6522 Clocks #ECC7 #EDEO
Stop 6522 clocks #EDO1 #EE1A
Update timers etc #ED1B #EE34
Clear all timers #ED70 #EE8C
Read a timer into X Y #ED81 #EE9D
Write XY into a timer #EDSF #EEAB
Wait for time X 'Y #EDAD #EEC9

8.10 Machine code advice

As mentioned previously, a book on machine code is essential, not only to teach the subject
but as a constant guide to the 6502. This section covers some of the more error-prone areas
of programming, in the hope that you may learn from my own mistakes!

BRANCHES

The following observations may be useful:

1. Any branch will depend on one bit within the processor status register. Branch instructions
work in pairs, e.g., BEQ, BNE; BCS, BCC.

2. The operand in the branch instruction gives the number of bytes, forward or backward, to
jump. If this number is between 0 and #7F the branch is forward in memory; otherwise the
jump is to a previous location. When a backward branch is required the operand is #100
minus the number of locations that you are jumping. For example: 1200 BNE 11C2 results in
an operand of (#100 — (#1202 — #11C2)) = #CO.

Any good machine code monitor will work out branch offsets for you. An assembler will allow
you to enter either an absolute address or a meaningful label.

COMPARE

A newcomer to 6502 programming can become confused with the CMP instruction when
testing less-than or greater-than conditions.

The compare instruction works in a similar way to subtract as regards the use of the carry
flag. When a subtraction is done, the carry flag is used to indicate a borrow when the value
being subtracted is greater than the accumulator. The advantage of the compare instruction is
that the A, X, and Y registers are not affected.

When writing a compare instruction do a mental subtraction of the value given in the
instruction from the register value (A, X, or Y). If the result is zero, the zero flag is set. If the
result is positive, including zero, the carry flag is set; otherwise it is cleared.

THE BIT INSTRUCTION

BIT is probably the least used of all the instructions — CMP is often used instead.

Like the compare instruction, BIT only alters flags in the processor status register.

If you wanted to examine a number of locations, picking out one bit, then you would load the
accumulator with the bits to examine and just use BIT with each address. If you used the AND
instruction, you would need to keep reloading the accumulator.

BIT also traps bits 6 and 7 of the location you are examining, reflecting them in the overflow
and negative flags.

Because BIT does not affect the A, X, and Y registers, you can use BIT in a sneaky way to
conserve memory. Consider the program:

TRY1 LDA #1

BNE CARRY-ON
TRY2 LDA#2

BNE CARRY-ON
TRY3 LDA#3
CARRY -ON:
This can be replaced by:
TRY1: LDA #1

#2C
TRY2: LDA #2

#2C
TRY3: LDA#3
CARRY-ON:

The 2C’ is the opcode for the 3-byte version of BIT. Here we use the fact that BIT does not
alter the accumulator in order to skip past one or two load instructions. You will find this kind
of confusing programming when you disassemble the Oric’'s ROM.

The saving is so small as to be not worth the trouble, but it does demonstrate an interesting
programming technique.

THE STACK

When using the stack remember:

1. In a subroutine you must leave the stack as you find it. This means that if you execute 5
PHA instructions, you must balance them with 5§ PLA instructions. This is important because
the RTS instruction will be expecting a return address on the stack.

2. To follow up the last point, here is a common mistake:
1000 PHP

1001 JSR 1234

1234 PLP; attempt to pass processor stack.

3. When saving all the registers on the stack, use a sequence such as:

PHP PHA TXA PHA TYA PHA
When you want to restore the registers, remember to reverse the order:

PILA TAY PLA TAX PLA PLP

If you are saving an area of memory on the stack you will need to reverse the loop when
loading back from the stack. For example, if this is your save routine:

LDX #F

A:

LDA 2EO,X
PHA

DEX

BPL A

then the reverse procedure is:
LDX #o

A:

PLA

STA 2EO,X

INX

CPX #10

BNE A

The stack provides the only way of examining the complete processor status register:

PHP PLA
Similarly, to set up the processor status register in one go:

LDA #47
PHA
PLP

DECIMAL INSTRUCTIONS

When a program goes unaccountably wrong always consider the state of the decimal flag.
The normal state for the decimal flag is off. Many ROM subroutines will expect the decimal
flag to be cleared, so remember the CLD instruction.

The decimal flag is only recognized when using either the ADD or SBC instructions, whereas
INC and DEC will always work in binary.

SHIFT AND ROTATE

When using any of the shift or rotate instructions, remember:
1. There is always one bit coming away from the byte. This is always saved in the carry flag.

2. There is always one bit coming into the byte. This is either zero for shift instructions or the
old carry flag for rotate instructions.

3. The rotate instructions work on 9 bits at a time. Therefore, if you rotate 0000 0001 to the
right, the 1 will not appear on the left until a further rotate instruction.

CLEAR CARRY AND SET CARRY
Two simple rules apply here:

1. Clear the carry flag before doing an addition. If adding numbers longer than 8 bits, leave
carry alone after the first clear carry instruction; for example:

CLC
LDA O
ADC 2
STAO
LDA 1
ADC 3
STA 1

INCREMENT AND DECREMENT

Important points:

1. INC and DEC take no notice of the decimal flag — they always

2. work in binary.
INC and DEC do not either use or alter the carry flag. If you want
to increment a 16-bit value, use a branch instruction, as in:

INC 42
BNE B
INC 43
B:

When decrementing numbers, you have to use a compare
instruction:

DEC 42
LDA 42
CMP #FF
BNE C
DEC 43
C: NOP

3 When using INC or DEC with several bytes, remember that you
. can only safely do one set of INC or DEC instructions at a time.
The following example employs such faulty logic:

INC 42
INC 42
BNE A
INC 43
ANOP

RETURN FROM INTERRUPT

Remember to use RTI to finish an interrupt routine. The only difference between RTI and RTS
is that with RTI the 6502 saves the processor flag on the stack. This means that an interrupt
routine need not save the processor status register.

SUBROUTINES

When the jump to subroutine instruction is executed, the return address is saved on the stack.
This address is saved high byte followed by low byte (this follows the 6502 convention of a

low address being stored in the lower location). This return address on the stack is always
one less than the real return address — the 6502 adds one to the program pointer before
executing each instruction.

SEI AND CLI

On the Oric an interrupt can occur at any time. If you want to disable interrupts (which will
stop the keyboard from being scanned and the cursor flashing) you can use the SEI
instruction. CLI (clear interrupt disable) enables interrupts again.

Note that SEI does not stop the 6522 clocks from running, but it does prevent interrupts from
being generated when the clocks reach zero.

SEIl should be used when your program is using the stack area in a non-standard way.

3.11 Using the! extension command

The ! command allows you to create your own BASIC command. When BASIC encounters
the ! token it jumps to the address stored at #2F5,6, assuming it to be a normal subroutine.

PASSING DATA

PEEK and POKE provide one way to send data between your extension subroutine and
BASIC, but a better way is to put the data after the ! command, as you would do for any other
BASIC command.

The pointer #E9, #EA will be identifying the byte following the! command as you enter your
subroutine. You can (and must) use this pointer to extract all the data pertaining to the
command. When you exit from your subroutine #E9, #EA must be pointing to the byte
following the last byte in your command.

In order to look at each character, you can call subroutines at #£2 (which increments #E9,
#EA) or #E8 (which does not increment #E9,#EA). After the call the next character is passed
in the accumulator. This can be used to pass over delimiters, such as commas.

USING THE FORMULA EVALUATION ROUTINE

If you want the extension command to work with expressions (such as X+ Y) as well as fixed-
format data, you may need to call the ROM subroutine which evaluates an expression.

This subroutine (at #CES8B for version 1.0 ROMs or #CF17 for version 1.1 ROMs) only needs
the WE9, #EA pointer to be set up. At the end of the subroutine the #E9, #EA pointer will be
correctly set to the character following your expression. Note that the expression evaluated
can contain the normal BASIC functions, e.g., IX*SQR(Y), but be warned that the subroutine
assumes that all words have been compacted into tokens — including such things as the +,—*,
and / operators. As in BASIC, expressions must be terminated with a comma, colon, or 000

(i.e., the end of a BASIC line).
There are two possible types of answer returned:

1. A string of characters. The information about this string is stored in an area of memory
pointed to by the address #DR, WD4. In this temporary area there are three bytes: length
(one byte) and address of string (two bytes). When the formula results in a string, location
#28 is set to OFF. Once you have finished with the string, you must release the temporary
area it used by calling either #D712 (version 1.0) or gD7CD (version 1.1).

2. A floating-point number. This number is stored in the floating-point accumulator (see
Chapter 6). Location 028 is set to zero to indicate a numeric result.

If you want to convert the number into a signed 2-byte integer, you can simply call #D871
(version 1.0) or #D92C (version 1.1). This will return Y as the low byte and A as the high
byte. For an example of usirv ! see Chapter 4.

3.12 Using the & extension function routine

Whereas ! can only be passed data, the % function not only expects data to be passed but
also returns a value. The & facility assumes that g2FC, #2FD points to the machine code
routine.

PASSING DATA

There are two types of data that can be passed — a string of characters or a number. In both
cases, & must have an argument following, surrounded by parenthesis. For example, &(A$),
&(4.3+S).

The formula evaluation takes place automatically on the argument, and the results are exactly
the same as described in Sec. 3.11.

When a number is passed, you can either take it or leave it, but a string requires extra action.

If your subroutine has been passed a string, you must call subroutine #D7F1 (version 1.0) or
#DBAC (version 1.1) in order to free up the temporary string space. This will also extract the
necessary information, storing the length in the accumulator and the address of the string in
#91, #92.

RETURNING DATA

Returning data will usually be the final thing that the subroutine does. Location #28 should be
set to zero if you are returning a number, or #FF if the result is a string.

To return a number you simply leave that number in the floating-point accumulator at #DO to
#D5 — see Chapter 6.

Returning a string is a little more complicated, since you must first allocate an area for it. This
is done by putting the length (in bytes) into the accumulator and calling #D4FO (version 1.0)

or #D5AB (version 1.1). This will leave the address of the new string at #D1, #D2. Once you
have put the string at this address, you must finish the subroutine with:

PLA

PLA

JMP #D539 (for version 1.0)
JMP #D5F4 (for version 1.1)

When returning a floating-point number, you exit with the usual RTS instruction.

EXAMPLE: THE INSTR FUNCTION

On some computers you will find the INSTR’ function. This searches for a string of characters
within another string, returning its position, if found.

For example, INSTR(“ABCD”,”"BC”,1) is 2 (the last parameter 1 indicates the start position of
the search).

The subroutine of Program 3.2 simulates the INSTR function. The function is called by a
statement such as: A=&(“T$,S$,N”).

String S$ is searched for within string T$, starting at position N. The quotes are used since R
can only take one parameter; this means that you can only use simple variables (such as A$)
in the actual statement.

The listing will work unchanged for version 1.0 owners, but users of version 1.1 ROMs should
make the following adjustments:

9800 JSR
D8AC

981D JSR CF17
982D JSR CF17
983D JSR CF17
9840 JSR
D92C

987B JSR D499

To use INSTR, you must first type DOKE #2FC, #9800.

B0
8032
9BOS5:
2B08:
9809
FB0A:
990C
FBOE
FBOF ¢
Bl
ML
9814:
FH14:
98162
2819
218z
981D:
8201
9A22:
FE2Z41
8271
FR28:
TH2A1
F82D:
FAIN
by ad]
98T 4:
B3I
9938
F83A:
FE3D:
FB40:
98473

20
Al
B
48
B8
10
AS
48
AS
48
an

A
Bl
o9
88
10
20
20
20

F1

Fo
E?

EA

o1
D=
E?

Dz
EA

oz

-
-

35

Fa
E2
BB
0z
D=
g

Fe
EZ
(=1
71

L

o0

CE

O

Me

CE
D8

LDY
LDA
sTA
DEY
BPFL
J5R
JSR
LDy
LDA
STA
DEY

JSR
JSR
JSR

*D7F1
HH09
%0031, Y

$9805
SET

SEA

#8301
($D3Y, Y
SET

(D31, Y
$EA
$CEBE
E02
(SD3), ¥
$O035,Y

$7822
$O0E2
$CEBB
#$02
($D3), ¥
0038, Y

7832
SODEZ
$CESE
D871

oE44: A5 35 LDA %35

9844: ES 38 SBC $38
9848: 85 35 STA %35
984A: E& 35 INC $35
984C: C& 33 DEC %33
984E: AS 33 LDA $33
9850: 85 3B STA $3B
9852: CS 35 CMP %35
9854: BO Z1 BCS $9877
9854: A9 00 LDA #3%00
9858: B85 3IC STA $3C
985A: A4 3B LDY $3B
985C: Bl 3& LDA ($36),Y
985E: A4 3C LDY $3C
9840: D1 39 CMP ($39),Y
98462: DO OF BNE $9873
9864: E& 3B INC $3B
9864 E& 3C INC $3C
9848: BAS 3C LDA %$3C
984A: CI 3B CMP $3B
984C: DO EC BNE $985A
986E: A4 33 LDY ¢33
9870: CB8 INY

9871: DO O0& BNE $9879
9873: Eé 33 INC %33
9875: DO D7 BNE $9B4E
9B77: A0 OO LDY #%00
9879: A9 00 LDA #$00
987B: 20 ED D3 JSR $D3ED
987E: &8 FLA

987F: 85 EA STA $EA
9BE1: A8 PLA

9882: B85 ET STA $EF
ge84: A0 09 LDY #$09
9a86: &S PLA

fg87: 99 I3 00 STA $003I. Y
788A: B8 DEY

988B: 10 F9 BPL $9884&
988D: &0 RTS

988E: EA NOF

988F: EA NOE

9890: EA NOP

Program 3.2 INSTR

3.13 A real-time clock

Program 3.3 is a short program to give your programs a clock that can return the current time
of day.

04t0: 48 PHA

0411 18 CLC

n0412: FB SED

0413: AD C4 02 LDA $02C4
4162 &F 01 ADC #%01
041i8: 8D Ca 02 STA S$02C4
o41B: D8 CLD

241C: AD CS 02 LDA $02C5
O41F £9 00 ADC #$00
0421: 8D CS 02 STa $02C5
o4z24: (C9 3 CMP #%3C
D4Z&5: DO 32 BNE #0454
0428: AF OO LDA #3500
d42A: 8D CS 02 5TA $02CS
042D: 18 CLC

Q042E: AD C& 02 LDA $02Ca
04%1: &9 01 aADC #%01
0433: 8D Cs 02 STA $02C&
Q4%LE: (C9 3C CMP #$+3C
0438: DO 20 BNE $0435A
D4ZA: A7 OO0 LDA #+00
Q43C: BD Cs 02 STA S$02Ch
043F: 18 cLC

o440: AD C7 02 LDa $02C7
04473 69 01 aDC #3501
0445: BD C7 02 STh $02C7
o448: C? 1B CMFP #%18
044A4: DO OE ENE %0454
c44C: AT OO0 LDA #%00
044E: 8D C7 02 STa $02C7
o451 18 CLC

0452: AD CB 02 LDA $02C8H
0855z &% 0l ADC #301
0457 80 C8 02 sSTA ®Q2CE
0458 &8 FLA

045B: 40 RTI

043C: 2 04 LDX #H$049
45k 2 AT OO LD& #5000
O0440: 9D C4 02 ST $02C4,
4&63: CA DEX

o444: 10 FA BPL %0440
Od &b AZ2 02 LDX #$02
04&8: BD 72 04 LDA #0472, X
nasB: 2P0 30 02 STA $0230,X
046E: CaA DEX

Qq6F 10 F7 BFL #0458
CA471: &O RTS

0472 4C 10 04 JMF £0410

Program 3.3 Clock
The time can be set up (and read back) using PEEK and POKE from the following locations:

#2C5 Seconds
#2C6 Minutes
#2C7 Hours

#2C8 Days

Location #2C4 is used to store one-hundredth second intervals — but this is not in a suitable
form for reading.

Owners of version 1.1 ROMs should change the instruction at #46B to STA 24A,X. To start
the clock CALL#45C.

ACCURACY

The clock will stay fairly accurate, except when certain commands are used. The most
serious problems will arise when doing any tape saving or loading. A minor loss of time can
happen during any sound command and when scrolling occurs.

3.14 Relocater program

To complete this chapter, here is a program that allows you to move a machine code program
to a different address (Program 3.4). All 3-byte instructions are modified, where necessary,
reflecting the new start address.

Since a program may reference locations near to itself, but not actually part of the program,
the relocater needs five addresses:

#70, #71 Start address of whole area.
#724#,73 End address of whole area.

#78, 079 Start address of actual program.
#7A, #7B End address of actual program.
#7C, #7D New start address of program.

The routine can only cope with instructions — it cannot handle data. If your program has
imbedded data, you will have to use the utility in stages.

For example, to move the instruction: 1000 INC 1234 to #2000 (assuming that 1234 is a
location that will now become 2234), you would need to set up the following addresses:

#70,#71 - 00 10
#72,#73 — 34 12
#78, #79 - 00 10
#7A, #7B — 02 10
#7C, #7D — 00 20

The routine is entered from address #440 and does not have any calls to the ROM.

048B:
0480 :
O48F :
0490:
O492:
0494:
04%4:
0498:

AS
ES
BS
AS
ES
B35
AQ
Bl
1
29
ce?
FO
ce
FO
B1
A2
DD
Fo
CA
10
A2z
DD
FO
ca
10
29
ce
Fo
ca
B1
21
Do
Fo
AD
Bl
CS

FO
90
BO
a8
Bl
C3
F0

AD
AS

7C
78
74

79

83

78
7C

MY EN

Fa8
OF
08
4D

78
7C
44
44
02
78
71
04
2F
07

78
Fi*)
25
o2
Tz

(listing continues)

14

04

CLD
SEC
LDA
SBC
SThA
LDA
SBC
SThA
LDy
LDA
5Ta
AND
CHMP

CHF
BEQR
LDA
LDX
CHF
BEQR
DEX
BFL
LDX

BCC
LDY
LDA

$7C

$78

$76

$7D

$79

$77
#HE00
($78),Y
($7C), Y
#SOF
#$0D
$0483
HE0OE
$0483
($78),Y
#E10
$0420, X
$0483

$0452
#E0D
$0431, X
$04C7

FO460
#HEOF
#4008
$04C7

($78),Y
($7C), ¥
$04C7
$04C7
#302
($78), ¥
$71
$048F
$04BC
$0494

($78),Y
$70
$04BC
4302
$73

O4FA:
049C:
049E:
Q440
04A2:
04Aa3:
O4A5:
04A7:
04AF:
04AB:
04AD:
D4AE:
4Bz
0ap2:
04p3:
04B5:
O4B7 :
04B9:
Q4BA:
04BC:
04BE:
O40C0:
04C2:
OfC3E:
OacsS:
Q4Cc7:
034CH:
Q89
O4CA:
O4LCC:
04CE:
Qg0
a4D2:
Q4D :
0404
O4D4:
04D8;
O4DA:
o4DC:
D4DE :
OqECH:
O4E2:
D4E4S =
DqE&S:
24EB:
O4E#A:
O4EC:
Q4ED:
O4F Oz

D1
FO
90
BO
88
AS
D1
F0
(218)
Bl
ig
&5
91
ca
Bl
&5
71
8
BO
AD
B1
21
CB
Bl
1
ca
98
18
&3
B85
0
ES
18
78
&3

J=
-

20
E&
a5
cS
F i
B
Q0
AS
=
0O
&0
ac
EA

78
04
IC
o7

78
i3
21
7B

7&
7C

78
77
7C

OB
01
7e
7C

78
7C

78
78

.
a

79

7C
7C
02
7D
7o
7B
04
og
o7
78
TA
01

4E 04

CHMP

BCC
BCS
DEY
LDA
CMFP
BCC
LDY
L-DA
CLC
ADC
STH
ITNY
LDA
ADC
5TA
SEC
BCS
DY
L DA
S5TA
INY
LDA
5TA
INY
TYA
CLC
ADC
5TA
BCC
INC
CLC
TYA
ADC
5TA
BCC
INC
LDA
oy o
BEQR
BCS
BCC
LDA
CMP
BCC
RTS
JMF
NOF

($78), Y
$04A2
$04BC
$04A7

$72
($78),Y
$04BC
#$01
($78),Y

$76
($7C), Y

($78),Y
77
($7C), Y

$04C7
#3501

($78),Y
($7C), Y

($78), Y
($7C), Y

$78
%78
$04D2
79

$7C
$7C
$04DC
£7D
79
%78
$O4EL
SO4EC
$04ED
£78
*7A
$+04ED

$044E

04F1: EA NOF

04F2: EA MOF
O4F3: EA NOF
04F4: EA NOF
O4FS: EA NOF
O4F&: EA NOFP
04F7: EA NOP
04F8: EA NOF

0420; 79 39 DY EC CC 59 4C &C
0428: 20 BY AC BC 19 F9 99 8BC
0430: 00 O0A OO0 BB CA 4A EA 2A
0438: 6A 40 60 AA BA BA 9A 00

Program 3.4 Relocater program (#420 — #43F and #440 — #4F0)

4 . THE KEYBOARD AND CASSETTE SYSTEM

4.1 Keyboard

HARDWARE

The hardware which enables the keyboard to work has already been described in Chapter 1.
To summarize, the keyboard is scanned every 30 ms using port A of the 8912 and port B of
the 6522. This is done by writing to each column and row in the keyboard matrix — identifying
just one key at a time. At any moment there may be any number of keys pressed, but
although the automatic scanning routine only looks for one key (or two, if you count the shift
and control keys) it is still possible to look for multiple keypresses.

USEFUL LOCATIONS

The keyboard routines in ROM leave behind a number of useful locations.

The most important address is #DF which contains the ASCII value of the last keypress.
This value is OR’ed with #80 by the keyboard routine to indicate that the keypress has not
been processed.

‘I'his location is subject to delays when the same key is pressed twice because of the
autorepeat feature, so often you will want a faster access to the keyboard. Location 4208
is set to a unique value when a key is pressed, but there is no direct correspondence
between this value and the ASCII sequence — you will need to use a good deal of trial and
error. The value here is a combination of two 3-bit column and row numbers.

For example, when ‘A’ is pressed (in both upper-case and lowercase) you will find that
location 4208 contains #AE.

The two shift keys and the control key are not recorded in location #208, but instead at
4209. This makes it possible to differentiate between the left and right shift keys — useful
for games, etc.

USEFUL ROM ADDRESSES

When fast key action is not required, a machine code program can quickly get the ASCII code
of the last keypress with one of two calls:

47

1. To read a key without waiting, returning the ASCII code in the accumulator, call
subroutine #E905 (version 1.0) or #EB78 (version 1.1). This is identical to using KEY$
in BASIC.

2. To wait for a key to be pressed (i.e., like GET in BASIC), call either #C5F8 (version 1.0)
or #C5E8 (version 1.1).

INDEPENDENT KEYPRESS ROUTINE

The normal method of detecting keypresses is slow and inefficient, since the whole keyboard
must be scanned 33 times a second and interrupts must be running for this to happen.

More importantly, the limitation of being able to read only one key at a time can be a real
hurdle when writing a game program.

Program 4.1 shows a short subroutine that examines only one key and sets the zero flag to
reflect the state of the key. In other words, the zero flag is set when the key is not pressed
and clear when the key is pressed.

400 08
40021 . 78
4002 48
40032 a9 OE

4005: 20 35 FS

48: &8
400%9: 09 BB

400B: 8D o0 03

400E: A2 04
4010: CaA.

4011: DO FD
401%: AD 00 03
4016 29 08B

4018: A/
4019: 28
40G1A: BA
4018: &0
Program 4.1

This subroutine can be used for any number of keys simultaneously. It requires two registers
to be set up: the accumulator should contain the row number (0 — 7) and the X register should
be set to the column number. The column number is one bit cleared in a byte containing OFF,
i.e., #7F, #BF, #DF, #EF, #F7, #FB, g FD, or #FE. As with location #208, the required values
do not fall in a recognizable pattern — Table 4.1 gives the A and X values for each possible
key. Version 1.1 users must change the instruction at #4005 to JSR #F590.

Table 4.1 Keypress values

FHF

SEI

FHA

LDA #HS0E

JSR $F535
FLA

ORA #$B8B

STA $0300
LDX #304

DEX

BNE $4010C
LDA $0300
AND #3008

TAX

PLF

TXA

RTS

Read kevboard subroutine

Key required
123
456
789
0-=

\ESC Q

WER
TYU
0P

[] DEL
CTRLAS
DFG
HJK

L:
RETURN
SHIFT (LEFT)

ZXC

VBN
M comma period
/ SHIFT (RIGHT)

LEFT ARROW
DOWN ARROW
SPACE
UP ARROW

Accumulat
or
020
202
073
737
311

661
165
555

555
266
116
613

733
7
4

202

020

244
77

Xregister
DF BF
7F F7
FB FD
FE FE
FD FB
F7 7F
BF DF
BF

TF F7
FB FD
FE FE
FD FB
F7

7F BF
DF EF
DF BF
TF F7
FB FD
FE FE

FD FB
7F DF
EF

DF BF

RIGHT ARROW 4 7F
4 F7 FB
FD
FEFD
FB
F7 EF
DF
BF
FE
F7
7F

4.2 Cassette input/output

This section will describe the various ways in which the cassette system can be used.

There are three programs described in this part of the chapter, each giving an extra facility
that can be used from BASIC.

The routines in ROM that allow cassette 1/0 are neatly structured so that saving and loading
can be done either:

1. As a complete section of memory.
2. One byte at a time.
3. One bit at a time.

The third option is not used in this chapter; most applications are only concerned with whole
bytes.

However, Sec. 9. | — speech synthesis — shows how bits can be read from the cassette
hardware.

Saving and loading bytes is often more useful than saving a large area since you can have a
free hand as to the exact format of your data on tape.

This is one subject where the two versions of ROM differ greatly: both the subroutine
addresses and the usage of page 0 and page 2 are altered.

Generally, version 1.1. uses page 2 to store filenames and flags, whereas version 1.0 uses
the BASIC input buffer area — g3F to #67.

4.3 Saving an area of memory

The sequence of events when saving a block of memory (remember that a BASIC program is
just a block of memory) is:

1. Disable interrupts and change the 6522 into cassette mode.
2. Print the message ‘SAVING’ and the filename on the top line of
the screen.

3. Save a header record, composed of:
(a) 259 occurrences of #16 (this is the actual ‘header’).
(b) The value #24 to indicate the start of the record.
(c) For version 1.0 — #5E to #66 — or for version 1.1 — #2A0 to #2B0. This information
is saved backwards and includes the start and end addresses and other flags.
(d) A filename, ending with #0 — this is either #35 onwards, for version 1.0, or #27F
onwards, for version 1.1.
4. Save the block of memory, byte by byte.
5. Re-enable interrupts and reset the 6522 back to its normal mode.

LOCATIONS USED WHEN SAVING

From the previous paragraph, you will notice that all the important information is saved as a 9
byte block of data. Here is how version 1.0 uses its flags and buffers:

#5F, #60 Start address
#61, #62 End address.
#63 Autoload flag — set to zero if no autoload required.

#64 Machine code of BASIC — set to zero for BASIC.

#67 Speed. Zero means fast, one means slow.
#35 — #44 Filename, terminated by #00.

In version 1.1, the same flags are stored as follows:
#2A9, #2AA Start address

#2AB, #2AC End address.

#2AD Autoload flag — zero means no autoload.

#2AE Machine code flag — set to zero if BASIC.

#24D Speed. Zero means fast, one means slow,
#27F — #28E Filename, terminated with zero.

Although the addresses of these flags differ between ROM versions they are in an identical
format. This allows programs saved to tape by one type of machine to work on a different
type.

Note that the machine code and autoload flags will only be recognized by the CLOAD
command — if you use the subroutines as described in this chapter, they will be ignored.

Another point is that the speed flag is used by the routine that saves individual bytes. If
unchanged, the speed will remain the same as the previous cassette operation.

SUBROUTINES REQUIRED

In order to save a block of memory, having set up the speed, start address, etc., you must call
a series of subroutines:

1. For version 1.0:

JSR EG6CA (interrupts off)
JSR E57B (save)
JSR E804 (interrupts on)

2. For version 1.1:

JSR E76A (interrupts off)

JSR E585 (print ‘saving’)

JSR E607 (save header record)
JSR E62E (save area of memory)
JSR E93D (interrupts on)

4.4 Loading an area of memory

Loading back data is basically the reverse of saving, except that:
I. On version 1.1, the loading program may be just verifying the tape against memory.

2. The filename has to be matched against each filename on tape.

The sequence of events when loading (or verifying) is:
1. Disable interrupts and alter the 6522 ready for cassette 1/0.

2. Print the message ‘searching’

Lock onto the file header, until a sequence of three #16s is detected.
Wait until #24 is detected and then read in the header record.

Store the filename coming in.

o o A~ W

If the filename on the tape is different from the required name then go back to sequence 3.
(Version 1.1 also prints ‘FOUND XX'.)

~

Change message to ‘loading’ (or ‘verifying’).
8. Load or verify the file on tape.

9. Re-enable interrupts, etc.

LOCATIONS USED

See Sec. 4.3 for the important locations — these are the same when loading. When loading, it
is not necessary to provide the information that will be loaded in from the header record. The
essential details are:

Version 1.0: #67 — the tape speed (zero when fast, one when slow).
#35 — #44 — the filename, terminated by #00.
Version 1.1: #24D — tape speed (zero when fast, one when slow).

#27F — #28E — the filename, terminated by #00.
#25B — the verify flag — set to zero for load, one for verify.
#25A — the join flag — set to zero for a normal load.

On version 1.1, the count of verify errors is stored at #25C,D. On both versions an error
flag is kept at #2B1 — this indicates errors in loading any byte. Location @2B1 will contain
zero when there are no errors.

Note that when you use a series of subroutines as described in this chapter, you will not
get messages such as ‘errors found’ or the count of verify errors.

One improvement made in version 1.1 is that location #21F is checked before any
message is displayed on the top line — this prevents the HIRES screen from being
overwritten.

The filename on tape is stored at #49 to #56 (version 1.0) or #293 to #2A2 (version 1.1).

SUBROUTINES REQUIRED

In order to load a tape file, call the following subroutines: 1. Version 1.0:

JSR E6CA (disable interrupts, etc.)
JSR E4A8 (search and load)
JSR E804 (enable interrupts, etc.)

2. Version 1.1:

JSR E76A (disable interrupts, etc.)
JSR E57D (print ‘searching’ message)
JSR E4AC (find file)

JSR E59B (print ‘loading’)

JSR E4EOQ (load file, or verify)

JSR E93D (enable interrupts)

Note that these subroutines are not exactly the same as a CLOAD command. As
mentioned before, no error messages are printed and, in addition to this, the program will
not autorun.

On version 1.1, the routine that prints a message on the top line is patched via a jump at
#241. This may be (carefully!) altered in order to add your own processing at either the
‘search’ or the ‘load’ phase.

Yet a further important difference between the two ROM versions exists when a BASIC
program is loaded. On version 1.1 a subroutine is called which relinks all the lines in the
program. This prevents problems arising when the links have been corrupted during
loading, and allows the ‘join’ facility to create an executable program. This is not done on

version 1.0, so be warned that if you deliberately upset the links (one reason would be to
stop ‘LIST’ from working) you will find that version 1.1 ROMs correct your vandalism! If you
are mixing machine code with BASIC, be sure to end your BASIC program with a link
between #00 and #FF (see Chapter 2), or you may find some of your machine code gets
corrupted.

SUMMARY OF ROM SUBROUTINES

In order for you to save and load data, byte by byte, here is a list of all important addresses.
Note that in order to do any cassette 1/0, you must first call the subroutine which disables
interrupts. For version 1.0 this is WEGCA and for version 1.1 it is #£76A. When you have
finished your cassette 1/0, you should call #£804 (version 1.0) or #£93D (version 1.1).

1. Version 1.0:

Clear top line #E563

Print message on top line (Addressed by A=low,Y=high, X=start position) #F436
Find header #E696

Read one byte into accumulator #E630

Output header #E6BA

Output byte from the accumulator #E5C6

2. Version 1.1;

Clear top line #E5F5

Print message on top line (addressed by A=low, Y=high, at position X) #F865
Find header #E735

Read one byte into accumulator #£6C9

Output header #E75A

Output byte from accumulator #E65E

Note that the ‘header’ referred to above is just the sequence of 259 lots of ‘ #16’ — not the
header record.

The following examples will help with an understanding of the
tape subroutines.

4.5 A verify facility for version 1.0

B400: 20 CA E& JSR $E&CA
B403: 20 63 ES JSR $ES63
B40&: AT 03 LDA #%03
B40B: A0 ES LDY #$ES
B40A: 20 7& ES JSR $ES76
B4OD: 20 96 Eb JSR $E&96
B410: 20 30 E& JSR $E&T0
B413: C9 24 CMP #324
B415: DO F9 BNE $B410
B417: A2 09 LDX #$09
B419: 20 30 Eé JSR SE&30
B41C: 95 SD STA $5D, X
B41E: CA DEX

B41F: DO FB8 BNE $B419
B421: 20 30 Eb6 JSR $E&30
B4Z4: FO 05 BE@ $B42B
B4Z6: 95 49 STA $49, X
B428: EB INX

B429: DO F& BNE %$B421
B42B: 20 63 ES JSR $ES&T
B42E: AF 70 LDA #%70
B430: AO B4 LDY #$B4
BAS2:t 20 7& ES JSR $ES7&
B435: AS SF LDA $5F
BAS7: A4 &0 LDY $&0
B4Z9: B85 33 STA %33
Ba3B: 84 34 STY $34
B43D: AO 00 LDY #$00
BA3F; 20 30 Eb JSR $E&30
B442: D1 33 CMP ($33),Y
B444: FO 1& BEQ $BASC
B444: AS 33 LDA $33
B%48: 85 00 STA $00
B44A: AS 34 LDA $34
B44C: 85 01 STA %01
B44E: 20 &3 ES JSR $ES&3
B4S1: A? 74 LDA #$74
B453: A0 B4 LDY #$B4
BASS: 20 76 ES JSR $ES76
B4S8: 4C &4 B4 JMP $B4s4
BASB: &0 RTS

B45C: 20 54 €5 JSR $ESS4
B4SF: 90 DE BCC $B43F

B4&1: 20 &3 ES JSR SES&3

Program 4.2 (continues)

Bas4: 20 O7 EB JSR S$EBO7

B4487: A5 &1 LDA %461
B469: 835 9C 5TA s$9C
B46B: AS &2 LDA %62
BasD: 85 9D STA $9D
Bas&F: &O RTS
B470: V 56 E 45 R 52 I 49
B474: F 46 ¥ S9 I 49 N 4E
B478: G 47 . OD E 45 R 52
B47C: R 52 0 4F R 52 5 53
B4BO: . 00

Program 4.2 Verify for version 1.0 (#B400 — #B46F and #B470 — #B480)

Owners of version 1.1 will not need this routine (Program 4.2), as VERIFY is one of the
features of the updated ROM.

To use this program, POKE #67 with zero or one (fast or slow tape speed) and CALL #B400.

If any differences are found, the ‘errors found’ message is printed, and the program finishes.
This will happen immediately after the error is found, unlike the version 1.1 verify routine
which waits until the end. Another difference is that the program here leaves the address of
the error at #0,1, so that further investigation is possible.

Note that you are able to load this program on top of an existing BASIC program because
although the end-of-BASIC pointer (#9C) is corrupted, the actual verify routine will
subsequently correct it.

You will notice an unfamiliar address — #E807. This is the same as #E804 (which enables
interrupts, etc.), except that the subroutine is called at a later address in order to prevent the
top line being cleared.

4.6 CLOAD with an exit

One irritation when loading a program is that there is no easy way to stop a CLOAD. Control-
C does not work, of course (the keyboard is not scanned during cassette 1/0), and the only
resort is the ‘Reset button’,

While there is simply not enough time between loading each byte to scan the whole keyboard,
it is possible to examine one particular key.

The following program loads the next program it finds, but will exit if ‘' is pressed. We use the
keyboard routine discussed in the first part of this chapter, but since the 6522 is in cassette
mode we must make a temporary alteration to port B. Before looking for a keypress, one bit in
port B is set to be input; after looking at the key, port B is set back to output.

There are two different versions of the program, according to
what version of ROM is used.

VERSION 1.0 PROGREAM

To run this program (Program 4.3), set location #67 to the tape
speed (zero for fast, one for slow) and call #B49B.

B40O: A9 F7 LDA #S$F7
B402: 8D 02 03 STA $0302
B40S: 78 SE1

Ba0&: A2 FD LDX #$FD
B408: A9 OE LDA #$OE
B40A: 20 35 FS JSR $F535
BA0D: A9 FD LDA #$FD
B4OF: 8D 00 03 STA $0300
B412: AQ 04 LDY #3504
B414: B8 DEY

B41S: DO FD BNE $B414
B417: AD 00 03 LDA $0300
B41A: 29 08 AND #s308
B41C: OB PHP

B41D: A9 FF LDA #$FF
B4iF: 8D 02 03 STA $0302
BA22: 28 PLP

B423: &0 RTS

B424: B6 36 STX %36
B42&c 84 37 STY $37
BAZ8: 20 30 E& JSR $E&30
B4ZB: 48 PHA

B42C: 20 00 B4 JSR $B40O
B42F: FO 02 BEQ $B433
B431: &8 PLA

B432: &8 PLA

B433: AL 36 LDX $3&6
B435: A4 37 LDY 37
BA37: 6B PLA

B438: &0 RTS

B439: 20 CA Eé JSR $E&CA
B43C: AT 00 LDA #300
B4ZE: 85 35 STA $3I5
B440: 20 &3 ES JSR SES&T
B443: A9 OX LDA #$03
P445: A0 ES LDY #$ES
BA47: 20 76 ES JSR S$ES7é
Ba4A: 20 %4 Es JSR $E&F6
B44D: 20 24 B4 JSR $B424
BASO: C9 24 CMP #324
BASZ2: DO F9 BNE $B44D

» 3 o Irg
BAS4: a2 09 LDX #%$09 [t‘ﬁgl‘ﬂm 4.3 (confinues)

B4S6: 20 24 B4 JSR $B424
B459: 95 SD STA $5D, X
B45B: CA DEX

B4SC: DO F8 BNE $B456
B4ASE: 20 24 B4 JSR $B424
B4s1: FOQ 05 BEQ $B448
B453: 95 49 STA $49,X
Ba&S: EB INX

B4&6: DO F& BNE $B4SE
B4&B: 95 49 STA $49,X
B4&6A: 20 FO Eéb JSR S$E&FO
B4&D: BA TXA

B46E: DO DO BNE $B440
B470: 20 &3 ES JSR S$ES&3
B473: A9 12 LDA #$12
B475: A0 ES LDY #SES
B477: 20 76 ES JSR $ES76
B47A: 20 &E ES JSR $ES&E
B47D: EA NOP

B47E: EA NOP

BA7F: ES EA SBC s$EA
B481: EA NOP

B482: EA NOP

B4AB3: A5 SF LDA $5F
B48S: A4 &0 LDY $&0
B4B87: 85 33 STA $33
B4B7: B84 34 STY $34
B4BB: A0 00 LDY #$00
B48D: 20 24 B4 JSR $B424
B490: EA NOP

B491: BO 43 BCS $B4D&
B493: 91 33 STA ($33),Y
B49S: 20 54 ES JSR $ESS4
B498: 90 F3 BCC $B48D
B49A: &0 RTS

BagB: 20 39 B4 JSR $Ba39
BAFE: 20 04 EB JER $EEB04

B4Al: &0 RTS
B4AZ2: EA MNOP
BaAa3: EA NOP
B4aA4: EA NOP
BA4AS: EA NOP
Baas: EA NOP
Baa7: EA NOP
B4AB: EA NOF
B4A9: EA NOF
BaaA: EA NOF
B4AB: EA NOF

Program 4.3 Version 1.0 CLOAD with exit

o8

VERSION 1.1 PROGRAM

To run this program (Program 4.4), set location #24D to the tape
speed (zero for fast, one for slow) and call #B4A9.

B4Q0: A% F7 LDA #SF7
B402: 8D 92 03 STA $0302
B405: 78 SEI

B40&: A2 FD LDX #%FD
B408: A% OE LDA #30E
B40oA: 20 90 FS JER $F390
B4oD: A9 FD LDA #$FD
B4OF: 8D 00 03 STA 0300
B412: AD 04 LDY #$04
B414: 88 DEY

B415: DO FD BNE s$B414
B417: AD 00 03 LDA %0300
B41A: 29 08 AND &#%08
B41C: 08 FHF

B41D: A9 FF LDA #$FF
B41F: 8D 02 03 STA 0302
BaAa22: 28 PLP

B423: &0 RTS

BAZ4: B& 34 STX %34
BA2&: B4 37 STY <37
B428: 20 C9 E& JSR S$E&LCT
BaZB: 48 PHA

B42C: 20 00 B4 JSR $B400
B42F: FO 02 BER $B433
B431: 68 PLA

B432: 68 PLA

B433: AL 3b LDX %34
B435: A4 37 LDY %37
BaA3Z7: &8 PLA

Ba38: &O RTS

B43%9: A9 00 LDA #%00

B43B: 8D 7F 02 STA $02Z7F
B43E: aB 02 5TA $025B
Ba41: E7 JER $E74A
B444: 20 7D ES JSR $ES7D

88
2

BA47: 20 35 E7 JSR S$E73S5

B44A: 20 24 B4 JSR s$RB424

B44D: C9 24 CMP #%24

B44F: DO F9 ENE s$E44A

Basl: AZ 09 LDX #$09

BaSZ: 20 24 B4 JSR $B424

BaS4&: 9D A7 02 STA S02A7,X

Ba4S9: CA DEX

B45A: DO F7 BNE $B453

BASC: 20 24 Ba JSR sBaza Program 4.4 (continues)

B4S5F: FO QD BEQ $Bas&E
B4s1: 9D 93 02 STA $0293,X
Bas4a: EB INX

B465: EO 10 CPX #%10
B4&7: DO F3 ENE $BASC
B44&F: 20 24 B4 JSR $B424
Ba4s6C: DO FB BNE $BA44%9
B4&6E: 9D 93 02 STA $0293,X
B471: 20 94 ES JSR S$ES94
Ba74: 20 90 E7 JSR SE790
B477: BA TXA

Ba78: DO CD BNE $B447
B474: EA NOP

BAa7B: 20 9B ES JSR SE3J9B
Ba7E: AD A9 02 LDA $02A%9
BE4ELl: AC AA 02 LDY $O02aA
Baga: B85 I3 sSTA 3133
B4BLs: B4 34 STY %34
Bage: AO 0O LDY #%00
BagA: 20 24 B4 JSR $B42X4
B4BD: &AE 9B 02 LDX $025E
B4gi: DO O3 BNE $B497
B492: 91 33 STA ($33),Y

B494: 4C A B4 JMF $B4AZ

Ba97: D1 33 CMF ($33),Y
B499: FO OB BEQ s$B4A3
B49B: EE SC 02 INC $025C
BAYE: DO O3 BNE s$B4A3
BaAG: EE 30 02 INC 025D
B4AZ: 20 &C ES JSR $ES&C
B4n&d: 90 E2 BCC +B4BA
B4AB: &O RTS

B4AF: 20 39 B4 JSR $B43x9
BaaC: 20 3D E9 JSR SE93ID
B4AF: &0 RTS

B4B0O: EA NOP

B4Bl: EA NOF

B4B2;: EA NOF

B4B3: EA NOF

E4BA4: EA NOF

B4aB53: EaA MNOF

B4B&: EA NOF

B4AB7: EA NOF

B4aBB: EA NOF

B4B9: EA NOF

Program 4.4 Version 1.1 CLOAD with exit

4.7 Datasaving and loading

The version 1.1 ROM gives the facility to save and recall complete data arrays. A similar
routine is available to version 1.0 owners, published in Oric Owner magazine.

However, dealing with whole arrays is not always convenient, and one annoying feature is the
long headers saved before each record. As has been discussed earlier, 259 bytes are saved
to form the header. The purpose of this is to allow time between the cassette recorder
stopping and starting, but at slow speed this amounts to 5 seconds!

The length of these headers has been greatly reduced in the following subroutines, and also
depends on the tape speed. It is assumed that you are not using the cassette relay — if you
are, then you may need to increase the length of the header at #B307.

The following routines can be accessed from BASIC via the ‘I and ‘& extension commands.

SAVING DATA

Data are saved using the! command. A short header is written first, followed by the actual
data. For example, ! "START” would write a record containing the word ‘START’ onto tape.

When a number is written out, it is saved as a floating-point number. A string is saved with the
length first, followed by each character of the string.

LOADING DATA

To load back data you use the & function. This returns the next record from tape. For
example, A$ = & (0) (the argument in brackets can be any numeric expression) would read
the next string on tape into A$.

When loading data, it is important that the correct type of data is recognized; if you get the
type wrong, you will get a TYPE MISMATCH error.

At fast speed, you must not put too much processing between the retrieval of each record —
unless a similar delay was incurred when the data were saved.

There is a short header recorded with each record on tape — this gives a small amount of
leeway between each record, but it is advisable to disconnect the REMOTE jack socket as
the cassette should not be made to start and stop continually.

EXAMPLE

The following BASIC program (Program 4.5) shows how to use the data saving routines.
Remember that it is only a guide — you can save and recall both strings and numbers.

Note the two DOKE commands in line 30 — these set up the addresses for the extension
commands to work.

10 REM DATA SAVING EXAMPLE

20 REM SET UFP EXTENSION COMMAND ADDRESSES
30 DOKE#2FS, #E700: DDEKE#2FC, #B35A

40 HIMEM#S7FF

S0 DIMAS(100)

60 FORZ=1TO100: A$(Z)=STRS(Z#Z) :NEXTZ

70 REM SAVE A HEADER

BO '"START"

?0 FORZ=1T0100

100 'as(z)

110 NEXTZ

120 CLS:FPRINT"LOADING BACk"

130 REPEAT:UNTILL(0)="START"

140 FORZ=1TO100: IFA$(Z)=%{0) THENNEXTZ: END
1350 PRINT"ERROR"

Program 4.5 BASIC example of data saving

PROGRAM LISTINGS

There are two versions, one for each version of ROM. You will probably want to code the
routines into DATA statements, so that they can become part of a BASIC program. You may

find Chapter 3 useful in understanding how the subroutines work.

1.

The program for version 1.0 ROMs is listed in Program 4.6.

B300:
B303:
B306&:
B3I08:
B30A:

AL
EA

8B
CaA
o8
&7

CE
E&

JSR
JSR
LDA
LDX
NOF

$CEBB
$E&CA
#$08
867

Program 4.8 (continues)

BIOEBE:
B30D:
BIOE:
BIOF:
BI10:
BZ12:
B315:
B316:
B318B:
BZ1A:
BE31D:
BI20:
BI2I:
BZ24:
B32&:
B329:
B3ZB:
BIZ2D:
B3ZF:
B332:
B335:
B3I3&:
B338:
B3I39:
B3I3B:
B33D:
B340:
B3I41:
BZ4%:
B345:
B3a8:
B344A:

Bi4Ll:

23338888

QL

156
c&

FB
24
Cé
24
oq

28
C&
28

oc

Do
Cé&

o2

DO

g a

Cé&

Do
o

ES

ES
B3
EB

ES

a0
ES

ES

BNE
ASL
ASL
TAX
LDA
JSR
DEX
BNME
LDA
JSR
JSR
JSK
RTS
LD#A
JSR
LDA
BNE
LDY
LDA
JSR

RTS
LDY
LDA
SThA

BFL
LDA
JSR
LDY
CFPY
EEQ

$BIOF

#$14
SESCE

$BI10
#s24

SESCH
$BI24
SEBOS

$29
$ESCS
$28
$B339
HE0S
$00D0, Y
SESCH

$B32F

#302
($D3), Y
$00D0, ¥

$B3I3B
$DO
$SESCs
#3300
DO
$BISE

E354: DO F&

B35&: 20 12
B339z &0

BEX534: 20 CA
B3SD: 20 &
B3&0: 20 30
BIsX: CF 24
BEI&3: DO F%
EZa7s 20 30

85 28
DO OF
BZ6E: AD 05
20
o3

BI70: 0
B373: Do
BI74: BB

B377: 10 F7
BI7Y: 20 04

BE7D: 20 30
BEIZBO: 85 DO
BZ8Z: 20 FO
B3Z85: A0 00
BZBT7: C4 DO
B3B9: FO OB
30}
01

20

21

CcB
B391: DO F4

20 04

&8

B3I¥T: &8

ES

b7

Es

E&
Ea

E&

Eé&

EB

E&

b4

E&

BI¥8: 4C 3% D5

B3¥B: EA

JMF
NOF

PLA

LCA (8013, ¥
JSR $ESCs
INY
BENE $B34A
JSR sD712
RTS
JSR $E&CA
JSR $ELTS
JSR SE&AZD
CMF #324
BNE $E3&0
J5R SE&I0O
5TA %28
BNE $BI7D
LDY #$035
JS5R $E&30
STA $00DO,Y
DEY
BPL *B3I70
JSR SEBO4
RTS
JSR SE&30
STA $DO
JSR SDAFO
LDY #$00
CFPY $DO
BEQ SBI93
JS5R SE&L30
STA ($D1),Y
INY
BNE $B3B87
JSR $EBO4
FLA

sDa3%

Program 4.8 Version 1.0 data saving

2. The program for version 1.1 ROMs is listed in Program 4.7.

B300: 20 17 CF JSR $CF17
B303: 20 &A ET JSR $E7&A

B30&4: AT 08 LDA #%08
BI0B: AE 4D 02 LDX $024D
B3IOB: DO 02 EHE %B30F
B30D: OA ASL
B30QE: OA ASL
EZ0QF: BAA TAX
B31D: AT & LODA #¥1&

B312: 20 3E E& JSR $E&TE

BE15: C& DEX
BX16: D FB BNE $B310
BIig: AT 24 LA #E24

B31Az 20 SE EbH JSR $EASE
B31D: Z¢ 24 BE JER $B3Z24

B3IZ0: 20 3D ET JER SEFID
B3Z23: &0 RTS

BZIZ4: AS I8 LA %28
BZZ2&4: 20 S5E E& JSR %E&TE
BIZ2F: AS 7B LDA %28
B3ZB: DO OC BNE $BZ39
BZZD: AQD 05 LDY #B05

BIZF: BY DO oo LDa $00Do, Y
BIT2: 20 SE £& JSR $E&CE
B33a5: 88 DEY

BEZZ4: 10 F7 BFL. SE32ZF
z38; &0 BTS Program 4.7 (continues)

B339
B33B:
B33D:
B340:
B3Z41:
B347Z:
BE345:
B348:
234A:
B34C:
B34E:

B3532:
BI54:
B354:
B359:
B35A1
B35D:
B3&60:
BI&3:
BI&S5:
B3I&T:
BI&A:
B34C:
B3&E:
B370:
B373:
B37&:
BR3I77:
B3I79:
B37C:
B37D:
B3I8O:

G228 9883 ERBERRIISEESE IS

mw N O No= 0D 0 N D O
oo o o o @O 49 o O 9

E8M8a 8 8aR

M2

g 2

FB3IINTHS

05
ce

F7
=D

cCe

Eé

E&

D7

E7

E&

E&

E&
oo

E9

E&

LDY
LDA
5TA

LDA
JSR
LDY
CPY

LDA
JSR
INY

JSR
RTS

RTS
JSR
5Ta

#%02
($D3),Y
$00D0, Y

$SEZ3B
$D0
$SELSE
#%00
D0
$B35&
($D1),Y
$ELSE

$B34A
*D7CD

SE756A
$E735

#%24
$B3460

£28
$BI7D
#3505
SEALCT
$00DO0, Y

$B3I70
SEF3D

SEACT
$DO

BIBZ: 20 AB DS JSR $DSAE
B385: A0 00 LDY #s00
B387: C4 DO CPY sDO

B3B9: FoO 0B BEQ@ $B39Z

B3BB: 20 C? E& JSR SELCT

B3BE: 91 D1 STA ($D1},Y
BI%0: C8B INY

B3?1: DD Fa BNE $B387
BI9I: 20 3D E9 JSR SEZ3D
B394: &8 PLA

BI97: &8 FLA

BI98: 4L F4 DS JHMFP SD5F4
BX9B: EA NOF

BI9C: EA NOF

Program 4.7 Version 1.1 data saving

EXPLANATION OF SAVING DATA — THE ! COMMAND

Note that the entry addresses are the same for version 1.0 and version 1.1 ROMs, although
many of the subroutine calls are different.

9.

At #B300, the first step is to call the formula evaluation subroutine. This reads in whatever
follows the ! command.

At # B303, the 6522 is set up for cassette handling and interrupts are disabled.

Depending on the tape speed, either 8 (for slow speed) or 32 (for fast speed) bytes of
header are written to tape.

To indicate an end to the header, #24 is written to tape.

At #B324, the first byte saved is the type indicator at #28. This will have been set to #0 if a
number followed the! command or #FF if a string was processed.

For a number, the floating-point accumulator at #DO to #D5 is saved on tape, in reverse
order.

For a string, the length is output, followed by each byte of the string itself.

In order to release the temporary string created by the formula evaluation routine a special
ROM subroutine is called at #B356

At #B320, the subroutine to reset the 6522 is called, restarting clocks, enabling interrupts,

etc.

EXPLANATION OF LOADING DATA — THE ‘& COMMAND

1
2.

3.

4.

At #B35A, the 6522 is switched into cassette mode, with interrupts disabled, etc
Following this, a subroutine is called in order to latch on to the small header coming in.
Once it has established that it is reading the header, it will return.

At #B360, the routine waits until the header finishes; one- #24 has been received, the
actual data is loaded.

The recall of data follows the same order as the save subroutine, so the first item
encountered is the type of data flag. This is stored into @28 and is used to indicate which
type of data is subsequently read.

5. For a number, the data are stored back into the floating-point accumulator at #DO to gD5.
6. For strings, the length is read, and then a subroutine (called at #B382) allocates the

required amount of string space. The address of this area is stored at #D1,#D2 by this
ROM sub- routine.

7. Finally, the 6522 is reset, interrupts are enabled again, and the subroutine comes to an
end with either: (a) the RTS instruction (for a number) (b) a jump to a special ROM
address, after removing the top return address on the stack. This jump (at #B398) is
different for each ROM version.

4.8 Conclusions

The intention of this chapter was to show how versatile the Oric’s tape system can be. You
are not limited to saving and loading in a fixed way, but can devise your own file
organization on tape. Also, you will see that it is possible to do extra processing between
reading each byte. While your program is loading, why not make the colours on your
screen slowly change, or move a message around? There are other tape routines in this
book — see the Merge program in Chapter 8 and the speech synthesis idea in Chapter 9.

5 THE ORIC ROM IN DETAIL

5.1 Introduction

The purpose of this chapter is to provide a list of all important ROM addresses. In addition to
this, the use of the first three pages of memory is analysed in depth.

Many of the important subroutines are explained elsewhere in this book so only brief
descriptions are provided here.

Where a ROM address is given you will find the version 1.0 presented first, followed by the
version 1.1 address in parenthesis.

5.2 Use of page 0 memory

Any unspecified locations can be assumed to be used by the ROM but to be of no
significance.

#00 — #0B — Unused by BASIC.

#10 — #11 — Address of current HIRES position.

#12 — #13 — Address of start of current line (in TEXT mode).
#14 — #15 — Used by the 8912 register load subroutine.

#18 —#19 — Used to point to the start of error messages.

#1A — #C — Contains a jump to the routine which prints ‘Ready’.
#1F — #20 — Address of last PLOT position.

#21 —#23 — Contains the DEF USR jump.

#28 — The type of data which resulted from formula evaluation; 0 means numeric, #FF means
a string.

#29 — A flag that indicates whether the last variable used was an integer.
#2A — A flag which is used in several places.
#33 — #34 — Various uses, but often used to store aline number that is being located.

#35 — #83 — The BASIC input buffer. This is used to store anything that is typed, including
immediate commands and INPUT data (which explains why an immediate command cannot
use INPUT). This area is also used in version 1.0 during cassette operations — see Chapter 4.

#86 — Address of last temporary string.

#88 — #90 — A table of temporary strings.

#9A — #9B — Start of BASIC pointer.

#9C — #9D — Start of variables pointer.

#9E — #9F — Start of arrays pointer.

#A0 — #A1 — End of arrays pointer.

#A2 — #A3 — Pointer to next free string space.

#A6 — #A7 — Highest available memory location available to BASIC.
#A8 — #A9 — Current line number (read-only).

#AA — #AB - The current line number — saved for error messages.
#AC — #AD- Address of the start of the current instruction — 1.

#AE — #AF — Current DATA line number — used only when printing error messy ges. Altering
this location does not change the READ sequence.

#BO — #B1 — The address of the next DATA item — 1. It is this address that one must modify
in order to change the data accessed by the next READ command.

#B4 — #B5 — The identity of the last variable used.

#DO0 — #D5 — The main floating-point accumulator.

#D8 — #DD — The second accumulator.

#E2 — #E7 — The get-character routine. This part increments the pointer at #£9, #EA and
drops into address #E8.

#E8 — #F9 — The second part of the get-character routine. This section loads the next
character, according to location #E9 #EA.

#FA — #FE — The current random number is stored here as a floating-point number.

5.3 Use of page 1

#100 +##10F — Used as a temporary area containing the ASCII string of characters whenever
a floating-point number is converted. This is used for commands like PRINT and STR$.

#110 — #1FF — Used as a normal 6502 stack area (although it is occasionally pruned by non-
standard methods).

USES OF THE STACK

Obviously the ROM makes extensive use of the stack for JSR commands, etc., but some
BASIC commands can generate extra entries on the stack:

1. The ‘FOR’ command generates 18 bytes on the stack. From low address to high address
these are:

1 byte containing the ‘FOR’ token — #8D.

2 bytes pointing to the FOR variable.

5 bytes containing the STEP value (as a floating-point number).
1 byte indicating the sign of the step (either 1 or #FF).

5 bytes containing the upper limit in floating-point format. Note that the lower limit will have
been stored in the variable being used, so this need not be saved.

2 bytes containing the line number of the FOR command.

2 bytes containir.g the address of the statement which follows the FOR instruction.

2. The ‘GOSUB’ command is somewhat more economical: it only needs 5 bytes. From low to
high addresses these are:

1 byte equal to #9B"’pthe token for ‘GOSUB’).
2 bytes giving the line number of the GOSUB command.

2 bytes giving the address of the character which follows the GOSUB command.

3. ‘REPEAT follows a similar format (again, these are listed from
low address to high address):

1 byte containing the token #8B — ‘REPEAT".
2 bytes equal to the line number of the REPEAT.
2 bytes giving the address of the byte which follows the REPEAT command.

4. The formula evaluation subroutine keeps intermediate results on the stack. This is done
because arithmetic operations have to be done in a strict order of priority. From most
important to least

important, the operators are:

(a) Parenthesis — e.g., 4*(3+6).

(b) Exponentiation — e.g., 3"6+4.
(c) Negate — e.g., — B*4.
(d) Multiply and divide — e.g., 3*4/3+6.
(e) Add and subtract.
(f) NOT.

(g) AND.

(h) ©

From low address to high address, the following information is
stored on the stack:

2 bytes indicating the importance of the operation.

6 bytes containing the floating-point number.

2 bytes containing the address of the appropriate maths routine.

Because these commands use the stack you must ensure that the stack area is not filled. Itis
difficult to upset GOSUB and REPEAT, since you cannot specify which line RETURN and
UNTIL apply to, but often a FOR ... NEXT loop can remain open.

For example, if you used the following lines in your program, you might leave the FOR
information on the stack:

100 FORI=1 TO 10
110 IF X$(I) ="4” THEN 140
120 NEXT |

If this type of logic were repeated in other places you would soon be dealing with out-of-
memory errors. Remember that a FOR... NEXT loop needs 18 bytes of stack!

If this is likely to be a problem, you will need to add a line in order to clear the unwanted
FOR... NEXT information:

100 FOR I=1 TO 100
110 IF X$(I) ="4” THEN FOR I=1 TO 1:NEXT I:GOTO 140
120 NEXT |

Remember also that if you use up most of the stack for FOR and GOSUB commands, you
may eventually hit an out-of-memory error when a complex formula is encountered.

54 Use of page 2

The difference between the use of #00 to #FF and #200 to #2FF is that the latter is mostly
used by the newer Oric commands, while page 0 is almost fully utilised by the standard parts
of Microsoft BASIC.

Only those locations which are of any interest (or are unused) are mentioned. There are often
differences in the use of some locations by the two ROM versions.

#204 — Used when checking the range of values used in sound and graphics
commands.
#208 . . :
— Contains details of the last ordinary key pressed (but not the ASCII code).
209
— Contains details about the last shift or control key pressed.
#20C — Caps lock. This contains either #7F or #FF — no other value will work!
#212 — Contains the HIRES FB flag to indicate whether to draw, erase, or invert.
#213

— The pattern register is stored here. You can POKE values here instead of using

the PATTERN command.

#215 — The graphics cursor mask.

#219 — The HIRES cursor X value.

#21A — The HIRES cursor Y value (do not forget to alter #10 and #11 as
well).

#21F — A graphics flag; 0 is TEXT, 1 is graphics.

#220 — Memory size indicator; 0 means 48K, 1 means 16K.

#221 — #227 — Unused.

#228 — #22A — (version 1.0) Jump vector to the fast interrupt routine.
#22B — #22D — (version 1.0) Jump vector to the non-maskable interrupt routine.
#230 — #232 — (version 1.0) Jump vector to the slow interrupt routine.
#228 — #232 — (version 1.1) Unused.

#233 — #237 — Unused.

#238 — #260 — (version 1.0) Unused.

#238 — #23A — (version 1.1) Jump vector to VDU output routine.

#23B — #23D — (version 1.1) Jump vector to the KEY$ routine.

#23E — #240 — (version 1.1) Jump vector to the printer output subroutine.

#241 — #243 — (version 1.1) Jump vector to the routine that prints on the top line of the
screen.

#244 — #246 — (version 1.1) Jump vector to the fast interrupt routine.

#247 — #249 — (version 1.1) Jump vector to the NMI routine.

#24A — #24C — (version 1.1) Jump vector to the slow interrupt routine.

#24D — #25D — (version 1.1) Various uses in cassette 1/0 — see Chapter 4.

#268 -- Cursor position down the screen, relative to the start address of the screen.
#269 -- Cursor position across the screen.

#26A -- Oric status byte. Each bit relates to one aspect: from high bit to low bit — unused,
double-height,

protected-columns, ESC pressed, keyclick, unused, screen-on, cursor-off.
#26B — Text screen paper colour.

#26C — Text screen ink colour.

#26D — #26E — (version 1.0) Start of the TEXT screen — #28.

#26F — (version 1.0) Number of lines to scroll.

#272 —#273 — Timer 1 (used for reading the keyboard). W274 — 1275 — Timer 2 (used by the
flashing cursor).

#276 — #277 — Timer 3 (used by WAIT, HIRES, and TEXT). #278 — #2BF — (version 1.0)
Unused.

#278 —#279 — (version 1.1) Start of TEXT screen + #28.

#27A — #27B — (version 1.1) Start of the text screen.

#27C —#27D — (version 1.1) Number of bytes to scroll — (#27E — 1) * #28
#27E — (version 1.1) Number of lines to scroll.

#27F — #2BF — (version 1.1) Used by the tape routines — (Chap. 4).

#2CO — Graphics enable: 0 means TEXT with GRAB, 1 means TEXT with RELEASE, and 3
means HIRES.

#2C1 — #2C2 — Highest address with graphics enabled + 1.
#2C4 — #2DE — Unused.

#2DF — The AS’CII code for the last key pressed (with top bit set).

#2E0 — #2EF — The parameter area for graphics and sound commands.

#2F1 — Print flag — set to 128 to make all print go to the printer, O for it to go to the screen.

#2F2
#2F4
#2F5
#2F7

— A flag set by the EDIT command.
— The trace flag.
— Address of the ! extension command.

— (version 1.0 only). The inverse flag. Try out different values!

#2F9 — #2FA — Unused.

#2FB — #2FD — A jump command to the & extension.
#2FE — #2FF — Unused.

55 Summary of ROM addresses

Version 1.0 ROM addresses are given first, followed by the equivalent version 1.1 address in
parenthesis. All addresses are hexadecimal. Where there is no equivalent version 1.1
address, ‘ = has been specified.

C000 (C000)
C003 (C003)
C006 (C006)

COEA (COEA)
COEA (C3C6)
C3F8 (C3F4)
C43B (C437)
C448 (C444)
CA75 (CAT1)
C483 (C47C)

C56F (C55F)
C59C (C58C)
C5F8 (C5E8)
CB0A (C5FA)
C6E4 (C6B9)
C719 (C6EE)
C733 (C708)

C738 (C70D)
C751 (C726)
C773 (C748)
C824 (C7FD)
C832 (C809)
C841 (C855)
C8AD (C8C1)
C91F (C952)

CBED (CCBO)
CES8B (CF17)

Jump to cold start.
Jump to warm start.

Addresses of subroutines to handle each token (-1)

BASIC tokens. The last character of each has its top bit set.
Search the stack until a ‘FOR’ entry is found.

A block move.

Check stack for free space.

Check an address against the top of memory

Warm start entry (does not clear program).

Input and process a line.

Recreate links between each line.
Input a line.

Wait for a keypress and return the ASCII code.
Translate a line into tokens.

Find the address of a given line.
The NEW command.

The RUN command.

The CLEAR command.

Reset the stack.

The LIST command.

The LLIST command.

The LPRINT command.

The FOR command.

Process a BASIC statement.

The RESTORE command.

Print ‘READY".

The formula evaluation subroutine.

D3ED (D499)
D4F0 (D5AB)
D539 (D5F4)
D595 (D650)
D7F1 (D8AC)
D871 (D92C)
DA79 (DB04)
DAB80 (DBOB)
DA97 (DB22)
DC79 (DCAF)
DCB7 (DCED)
DD4D (DD51)
DDA3 (DDA7)
DDBF (DDC3)
DDEO (DDE4)
DDES5 (DDE9)
DE73 (DE77)
DEAS5 (DEAD)
DECD (DED5)
DEDD (DEES5)
DF12 (DF21)
DF31 (DF49)
DFA5 (DFBD)

DFCF (DFE7)
EOD1 (EOD5)
E22A (E22E)
E231 (E235)
E26D (E271)
E34B (E34F)
E387(E38B)
E38E (E392)
E3D7 (E3DB)
E43B (E43F)
E4A8 (-—)

E554 (E56C)
E563 (E5F5)
E576 (E5EA)
E57B (-—)

E5C6 (E65E)
E630 (E6C9)
E696 (E735)
E6BA (E75A)

Integer to floating point.

Allocate string space.

Set up a new string.

Garbage collection subroutine.

Calculate the length of a string and clear temporary strings.
Floating point to integer.

Add 0.5 to accumulator.

Subtract accumulator from memory.

Add accumulator to memory.

Calculate LOG

Multiply the accumulator by memory.

Move memory to the second accumulator.

Multiply the accumulator by 10.

Divide the accumulator by 10.

Divide memory by the accumulator.

Divide the second accumulator by the main accumulator.
Move memory to the main accumulator.

Move the accumulator to memory.

Move the second accumulator to the main accumulator.
Move the main accumulator to the second accumulator.
Calculate SGN.

Calculate ABS.

Calculate INT.

Input a floating-point number from a string of ASCII characters.
Output a floating-point number into a string of ASCII characters.
Calculate the square root.

Raise the second accumulator to the power of a number in memory.
Negate the main accumulator.

Calculate RND.

Calculate COS.

Calculate SIN.

Calculate TAN.

Calculate ATN.

Load a file from tape (see Chapter 4 for version 1.1).

Test for the end of a load from tape.

Clear the top line.

Print message at far left of top line.

Save a file on tape (for version 1.1, see Chapter 4).

Output one byte to tape.

Read byte from tape.

Latch onto tape header.

Output a tape header.

E6CA (E76A)
E6FO (E790)
E70E (-—)
E804 (E93D)
E905 (EB78)
E9A9 (EC21)
E9BB (ECC3)
ECO03 (EE22)
ECC7 (EDEO)
EDO1 (EE1A)
EDO9 (EE22)
ED1B (EE34)
ED70 (EESC)
ED81 (EE9D)
EDSF (EEAB)
EDAD (EEC9)
F02D (FOC8)
F064 (FOFD)
FO79 (F110)
FOAS5 (F12D)
F141 (F1C8)

F17F (F204)
F18B (F210
F1E5 (F268
F2E5 (F37F)
F412 (FA9F)
F415 (FAB5)
F418 (FACB)
F41B (FAE1)
F41E (FB40)
F421 (FBDO)
F424 (FC18)
F409 (F77C)
F430 (F8B2)
F436 (F865)
F4C8 (F523)
F535 (F590)
F57B (F5C1
F89B (F8DO0

FAGC (FA86)
(

)
)

)
)

FAFA (FB14

)
FB10 (FB2A)

Change the 6522 ready for cassette |/0.
Compare filenames.

Print authors’ names.

Reset the 6522 after the completion of tape /0.
Read a key without waiting.
Switch to text mode.

Switch to high-resolution mode.
Entry for interrupt handler.
Start clock.

Stop clock.

Poll timers.

Service timers.

Clear timers.

Read timer.

Set timer.

Wait for a given time.

CURSET

CURMOV

DRAW

CHAR

POINT

PAPER

INK

FILL

CIRCLE

PING

SHOOT

EXPLODE

ZAP

SOUND

PLAY

MUSIC

Output character from X register to screen.
Entry point for non-maskable interrupt (NMI)
Output message to top line at position X.
Poll keyboard.

Write to the 8912 chip.

Output character in A to the printer.

Set up the ASCII character set.

Load up all the 8912 registers.

The high-pitched click.

The low-pitched click.

6 MATHS, HIRES, AND MUSIC

6.1 Introduction

This chapter is concerned with the ROM subroutines which deal with arithmetic calculations,
high-resolution graphics, and the sound facilities.

These three subjects have been grouped together because the ROM subroutines are all quite
complex and their use can save a lot of programming work and memory space.

6.2 Maths

If a machine code program needs to do any arithmetic (such as multiplication or division), it
will normally require a specially written set of subroutines. With the exception of single-byte
add and subtract, the 6502 cannot directly do any arithmetic.

The BASIC interpreter contains a large number of useful subroutines to handle all of its
mathematics. Often a few subroutine calls can save you hundreds of bytes of memory. It must
be pointed out, though, that calling such subroutines is a little risky. Should an error arise
(such as a division by zero error) you will be rudely dumped back to BASIC. Also, you may
find that the routines are not fast enough for your needs — especially functions like TAN and
LOG.

The maths routines make good use of page 0 — see Chapter 5.

FLOATING POINT

All calculations are done in ‘floating point’, In BASIC, numbers can be stored in either a
floating-point variable (e.g., B) or an integer variable (e.g., C%). A variable such as B can
contain any number up to an accuracy of nine digits, with a decimal point that ‘floats’ up and
down the number. An integer variable can only contain a number between — 32768 and
+32767, without a decimal point. Although in theory this would seem to be faster to process,
the ROM can only manipulate numbers in floating-point form, so converts any integers that
are used.

When floating-point numbers are stored in memory (e.g., for variables and array elements),
they occupy 5 bytes of memory. This is made up as follows:

Byte 1: the exponent of the number.
Bytes 2 to 5: the mantissa of the number (most significant bit to least significant bit).

The number is translated into binary, and then the decimal point altered so that it is to the left
of the most significant digit (which in binary is always going to be 1). The exponent represents
the number of decimal places that the decimal point has been moved, so if the mantissa is M
and the exponent is E, then the value of the number is O.M. * 2” E.

There are three considerations:

1. When the exponent is positive (meaning that the number is 1 or greater), the exponent will
be #80 upwards. When the exponent is negative (meaning that the number is 0 — 0.99999)
the exponent is subtracted from #80.

For example, an exponent of — 4 is #7C; an exponent of +4 is #84.

2. Since the leftmost bit of the mantissa is always going to be 1, this bit is assumed and
replaced with a bit that represents the sign of the number (0 is positive, 1 negative).

3. When the number is zero the exponent is set to #00.

This can be quite difficult to follow, so here are a few examples of how numbers are stored.
Do not worry if you do not understand floating point fully — it does not prevent you from using
the subroutines!

EXAMPLES OF FLOATING POINT
1. +4 is Exponent: #83 Mantissa #00 #00 #00 #00. The most significant bit has been

replaced by the positive sign. The exponent is #83 because the number 100.0 is stored as
0.1.

2. -6 is Exponent: #83 Mantissa #CO #00 #00 #00. In this case, the lost bit at the front of the
number has been replaced with ‘1’ because the mantissa is negative.

INTERNAL FLOATING-POINT NUMBERS

All calculations involve two operands, and since intermediate numbers need to be stored
somewhere. there exist two floating-point accumulators. These are similar in format to the
floating-point numbers stored in memory, except that the sign of the mantissa does not
overwrite the highest bit in the mantissa. To save time, the sign is stored as a sixth byte, with
its top bit cleared for positive numbers and set for negative numbers.

A mantissa of zero is still represented by a zero exponent.

The two accumulators are known as ACC1 and ACC2 in the remainder of this chapter. Unless
stated to the contrary, ACC1 is used to receive the result of any calculation, with the
exception of some of the transfer commands. As discussed in Chapters 3 and 4, ACC1 is
used by the extension commands ! and & when passing numeric data, as well as in the
formula evaluation subroutine.

LOCATION OF NUMBERS

ACC1 is stored between #DO and #D5, as described above. ACC2 follows ACC1 at #D8 to
#DD.

When a floating-point number is turned into a string of ASCII characters, this string is always
stored between #100 and #10F. The reverse procedure, however, uses the pointer #E9, #EA
to indicate the start address. Remember also that version 1.0 ROMs have a bug that puts the
attribute 02 (instead of #20) at the front of the number.

When the routines refer to a number in memory, two of the 6502 registers are used to point to
the start of this area.

ROM ROUTINES FOR MATHS

As usual, version 1.0 ROM addresses are given first, followed by the equivalent version 1.1
address in brackets.

Movement of data

Convert integer in Y(low) and A(high) to ACC1. #D3ED (#D499).

Convert ACC1 to integer in Y (low) and A (high). #D871 (#D92C).

Move from memory location A (low), Y (high) to ACC2. #DD4D (#DD51).
Move from memory location A (low), Y (high) to ACC1. #DE73 (#DE77).
Move ACC1 to memory location X (low), Y (high). #DEA5 (#DEAD).
Move ACC2 to ACC1. #DECD (#DED5).

Move ACC1 to ACC2. #DEDD (#DEED5).

Input ACC1 from an ASCII string (as in the VAL function). You must call subroutine #E8 first,
then call #DFCF (#DFE7). The string should be terminated by a comma, colon, or #00.

Output ACC1 into an ASCII string, as in the STR$ function (the string is stored at #100
upwards, ending with #00). #E0D1 (#EOD5).

Arithmetic

Add a half to ACC1. #DAT79 (#DB04).

Calculate a number in memory (A low, Y high) minus ACC1. #DA80 (#DBOB).
Add a number in memory (A low, Y high) to ACC1. #DA97 (#DB22).

Multiply a number in memory (A low, Y high) by ACC1. #DCB7 (#DCED).
Multiply ACC1 by ten. #DDA3 (#DDA7).

Divide ACC1 by ten. #DDBF (#DDC3).

Divide a number in memory by ACC1. #DDEOQ (#DDE4).

Divide ACC2 by ACC1. #DDES5 (#DDE9).

Raise ACC2 to the power of a number in memory. #E231 (#E235).
Multiply by — |. #E26D (#E271).

Mathematical functions — as used in BASIC

LOG (ACC1) #DC79 #DCAF
SGN (ACC1) #DF12 #DF21
ABS (ACC1) #DF31 #DF49
INT (ACC1) | #DFA5 #DFBD
SQR (ACC1) HE22A HE22E
RND (ACC1) HE34B HE34F
cos (ACC1) HE387 HE38B
SIN (ACC1) HE3BE H#E392
TAN (ACC1) #E3D7 #E3DB
ATN (ACC1) HEA3B HEA3F

6.3 High-resolution graphics

HOW HIRES WORKS

The switch from TEXT to HIRES mode is often assumed to be a fixed procedure. In fact it is
possible to mix HIRES and TEXT in combinations other than the usual 200 by 240 pixels
followed by three low-resolution lines.

The standard HIRES effect is obtained by clearing down the area of memory between #A000
and #BF3F and writing a special attribute — #1E to the last text screen position. All the other
processes, such as copying the character sets and spacing out the text lines, are just
cosmetic.

The way of mixing HIRES and TEXT is a little complicated and can be best thought of as a
third graphics mode — SEMI-HIRES. This third mode can be entered while in TEXT mode, but
to BASIC, you remain in TEXT mode. Because of this, the bottom half of the screen cannot
be used for the HIRES area, since this would then overwrite the character sets and conflict
with the text screen.

What happens in SEMI-HIRES mode is that when a code of #1E is found in the text area, the
VDU switches the rest of the screen into HIRES mode, using the HIRES memory. This
continues until the attribute #lA is encountered in the HIRES memory. Figure 6.1 explains
how each character square shown on the screen relates to two different addresses. For
instance, the top left character cell is either #BB80 on the text screen or #A000 on the high-
resolution screen.

In SEMI-HIRES mode, you will normally only use up to #B3FF for the high-resolution part;
anything below that should be in TEXT mode. If you do go below that, you will wipe out part of
the character sets and therefore not be able to display characters on any text areas. In the
proper HIRES mode, it does not matter that we overwrite the character sets, since we are
only presenting text on the bottom three lines. The last three lines on a screen that is in
HIRES mode always use the copied character set at #9800 to #9FFF — this does not apply in
SEMI-HIRES mode.

MIXING HIRES AND TEXT

Looking at Fig. 6.1, you will see that on the left side are the addresses which relate to the
HIRES screen and on the right are addresses which relate to the text screen. It is important to
think in terms of character cells when considering what will happen to the screen. To change

part of the screen into HIRES, you only need the one character position to contain the special
attribute — #1E. However, when switching back to TEXT, you should remember that there are
eight lines which are now in HIRES. If you only switch one line back to TEXT, then the
following lines in that character cell will still be in HIRES — only the rest of that one line will
have been altered back in to TEXT mode. Therefore, to switch the rest of the screen to TEXT,
you need to have that TEXT attribute on the last line of the eight which correspond to a
particular character cell. If you want to change modes in the middle of a line, you will need
one TEXT attribute placed after each of the high-resolution lines. Do not worry if you cannot
follow this — the examples will clarify the issue.

For instance, if we wish the top eight lines of the screen (where CAPS is displayed) to be in
HIRES mode, we POKE #BB80,30 and POKE #A13F,26. Now you will find that the text area
#BB80 to #BBA7 has been replaced by a HIRES area (#A000 to #A13F). There are two
important points to note:

1. The very first location in the high-resolution area (in our last example this is #A000) cannot
be used.

2. The last location must be left alone, since it is responsible for switching back into TEXT
mode.

In BASIC, the system will still think that it is in TEXT mode - little does it know what you have
done to its screen!

This means that it will give you a ‘DISP TYPE MISMATCH ERROR’ if you try any graphics
commands. This is easily overcome by ORing location #2CO with 1. Obviously you should be
careful that the HIRES area #A000 to #A13F is not being used by BASIC — a HIMEM #9FFF
will do the trick! After this, you will be able to use all the HIRES commands as normal. Unless
you have previously entered HIRES mode properly, the cursor position and PATTERN

register will be undefined.

Remember not to draw over the bottom part of the screen!

The SEMIFHIRES mode has the advantage of letting you have a screen composed of half text
and half graphics. In addition you will recover at least 2K of memory space (#9800 to #9FFF).

To create such a set-up, you would:
1. POKE #BB80,30 (switch to HIRES).

2. POKE #B3FF,26 (end of HIRES area). Note that #B3FF is the address of the lowest line
within the required character block.

3. POKE #2CO,PEEK(#2CO) OR 1 (to allow HIRES commands).

4. For version 1.0: POKE#26F,12:DOKE#26D #BDDS8; for version 1.1: POKE #27E,12:
DOKE #27A, #BE0O: DOKE #278, #BE28: DOKE #27C,440.

These POKEs and DOKEs make sure that only the bottom half of the screen scrolls.
5. Clear the screen.

It is advisable to do all these commands in one go. You will notice that the HIRES screen
contains vertical lines. This can be cleared by using the FILL command (filling the screen with
#40). Alternatively, if you do a HIRES command beforehand, this will not be necessary.

When using this HIRES area, remember to leave location #B3FF well alone! Your first HIRES
commands should set the pattern and cursor positions.

MIXING HIRES AND TEXT ON ONE LINE

Here is something quite remarkable! Type the following as a one line command:
FOR K=0T07:J=K*40

POKE #A022+ J,K+1:

POKE #A023+ J,26: NEXT:

POKE #BBA1,30

The CAPS sign should burst into colour!

In this way, part of a text line can be switched to HIRES, and back again, and the attributes in
that HIRES area affect the rest of the text on that line.

This feature opens up all sorts of possibilities. For instance, it is now possible to flash just part
of one character on the text screen.

HIRES AND INTERRUPTS

On version 1.0 ROMs the TEXT and HIRES commands use the third software timer to wait for
two interrupts after storing the HIRES or TEXT attribute at #BFDF. This means that interrupts
must be running normally at the time you use the commands. On version 1.1 ROMs this
applies only to the TEXT command.

MACHINE CODE SUBROUTINES

In order to perform the BASIC HIRES instructions (such as CIRCLE, DRAW, and CURSET),

a machine code program must first set up a number of parameters in the area #2E1 to #2EF.
These are always in the same format as the actual BASIC command and must be stored as

2-byte integer values at #2E1 upward. For instance, ‘CIRCLE 20,1’ would require: #2E1: #14;
#2E2: #0; #2E3: #1; #2E4: #0.

Consult the BASIC handbook for the format of each command.

The range of the parameters you pass will be checked, as it would be in BASIC, and location
#2EOQO is set to 1 if there are any errors.

As usual, the first address is for version 1.0 ROMs and the address in brackets is for version
1.1 ROMs:

HIRES #E9BB (#EC33) — no parameters.

TEXT #E9A9 (#EC21) — no parameters.

PAPER #F17F (#F204) — #2E1,2: paper colour.

INK #F18B (#F210) — #2E1,2: ink colour.

CURSET #F02D (#FOC8) — #2E1,2: X; #2E3,4: Y; #2E5,6: FB code

DRAW #F079 (#F110) — parameters as for CURSET.

POINT #F141 (#F1C8) — #2E1,2: X; #2E3,4: Y. Returns #FF or #00 in #2E1, depending on
whether the point is set or cleared.

CURMOV #F064 (#FOFD) — see CURSET.

CHAR #FOA5 #F12D) — #2E1,2:ASCII code; #2E3,4: character set; #2E5,6:FB code.

(
FILL #F1E5 (#F268) — #2E1,2: No. of rows; #2E3,4:No. of cells; #2E5,6: value.
CIRCLE #F2E5 (#F37F) — #2E1,2:radius; #2E3,4: FB code.

PATTERN — No call is needed, simply POKE #213 with the required pattern.

You will find that these subroutines are only slightly quicker than the equivalent BASIC
command. Chapter 7 explains some faster methods of using high resolution.

6.4 Sound and music

ROM ROUTINES

All of the BASIC commands for sound and music can be easily accessed from machine code.
The same method of supplying parameters is used as for the graphics commands.

PLAY #F421 (#FBDO) — #2E1,2: tone enable; #2E3,4: noise enable;
#2E5,6: envelope; #2E7,8: envelope period.

MUSIC #F424 (#FC18) #2E1,2: channel; #2E3,4: octave; #2E5,6: note;
#2E7,8: volume.

SOUND #F41E (#FB40) #2E1,2: channel; #2E3,4: period; #2E5,6: volume.

ZAP #F41B (#FAE1).

EXPLODE #F418 (#FACB).
PING #F412 (HFAF).
SHOOT #F415 (#FA9B)
KEYCLICK-1 #FAFA (#FB14)
KEYCLICK-2 #FB10 (#FB2A)

In machine code a program can also directly access the sound chip. Chapter 1 describes this
device and gives all the details about the registers.

In order to write to the 8912 sound chip, you must call a subroutine at #F535 (#F590) for
every register that you need to change. This is done by putting the register number (0 to #E)
in the accumulator and loading the data in the X register.

Please note that the envelope shape that you put in register #D is different from that used in
the PLAY command. Refer to Chapter 1 for details of which values relate to which envelope.

Since any one musical effect may require the setting of up to 14 registers, the ROM
conveniently provides a subroutine to do just that. The routine starts at #FA6C (#FA86) and
assumes that the X and Y registers point to the start of a 14-byte table (X is low, Y is high,
and the table refers to registers 0 to #D).

Often it is useful to call this loader in order to get the type of sound required, and then change
individual registers to alter pitch, volume, etc.

The subroutine that loads up a register with a value suffers from being rather inefficient. You
will find a better version in the speech synthesis program of Chapter 9.

FASTER HIGH-RESOLUTION GRAPHICS
7.1 Objectives

Chapter 6 dealt with the subject of high-resolution graphics when using the routines contained in
the ROM. This chapter will present you with a much faster set of routines to be incorporated into
your own programs. Depending on what your program is doing, you could just use one or more
of the subroutines, or just make use of the concepts involved.

These special subroutines occupy RAM between #1200 and #17FF, with other extensions
and examples put elsewhere. The relocating program in Chapter 4 can be used to move the
high-resolution routines to a place suited to your needs.

Here is a summary of the high-resolution routines, to whet your appetite!

1. Plot character cell. This is an extremely fast routine for putting a character cell on the
screen.

2. Test routines to look for collisions between a character cell and other objects.

3. A fast equivalent to CURSET and POINT.

4. An easy-to-use routine for drawing larger, odd-shaped objects, with colours.

5. A colouring facility for the character plot routine.

6. A paint facility to fill in irregular shapes. This can be used from within BASIC.

7. A compactor routine for the high-resolution screen. This makes it possible to store a
picture in a compressed form.

7.2 Thetheory behind the fast plotting routine

THE USE OF TABLES

The normal way of plotting points on the screen involves two things:

1. Finding the correct address for a given X, Y position.
2. Determining the bit position within the byte at that address.

When you are plotting a whole 6 by 8 character, you would then usually shift that character a
number of times, depending on the bit position. If you are just dealing with one pixel, you use
the bit position (as a number 0 to 5) in order to reference a table containing the numbers: #20,
#10, #8, #4, #2, and #1. One of these numbers is then either ANDed or ORed with the
contents of the address in order to set, clear, or test the bit.

The usual way of calculating all this information is to:

1. Multiply the Y co-ordinate by 40 and add #A000.
2. Add this to the X co-ordinate divided by 6, to give the address of the pixel.

3. Use the remainder from this last division to give the bit position.

What really slows up this procedure is the division by 6. Division by 4 or 8 can be done with
the use of simple shifts right, but in order to divide by 6 you must use a rather cumbersome
divide routine. Multiplying by 40 is also a difficult task in machine code.

The method used here gives an increased speed of about 10 times in comparison to using
the ROM routines. When compared with using BASIC, the acceleration is seventy-fold!

The secret is that a 1K table is generated and used, and this provides all the addresses and
bit positions very rapidly. This table sits at 1400 to 17FF (but is easily relocated) and is made
up of four 256-byte tables, as follows:

The high value of the address at the start of every HIRES line.

The low value of this address.

The number of character cell positions across the line, for each possible value of X.

The bit position within the byte for each possible value of X, multiplied by 16. (This will be
explained shortly.)

PO~

It can be seen that given a particular (X, Y) coordinate, the correct address can be quickly
located.

If you want to draw a character at a given point (the top left position of the character) you will

then have to shift each line of that character a number of times — as given by part four of the
table. Since this is rather long-winded, we save time by shifting the character from one to five
times and saving all the possibilities in a table (#60 bytes long). The location of this table is
supplied by the calling program, since there could be any number of these character tables.
These short tables are organized as 6 sets of 16 bytes — one per number of shifts required.
Each of these consists of two sets of 8 bytes, corresponding to the patterns that make up the
character you are plotting. You need 2 bytes since the character, when shifted, falls between
one character cell and the next. Most of the routines in this chapter will rely on the 1K table,
but apart from that there are three different types of graphics, as follows:

1. Graphics routines that draw a previously analysed character.
2. Graphics routines that draw a shape that is not in the form of character cells, e.g., 12 dots

across by 4 dots down.
3. Graphics routines to handle individual pixels, for use in routines like PAINT.

DRAWING AN ANALYSED CHARACTER

Once you have worked out all the possible shifted values of a character, it is quite simple to
display that character, since the last part of the 1K table gives the offset into the #60 byte
table (which is why the values were multiplied by 16 beforehand).

In order to display a character, and subsequently remove it, you only need to use the one
routine, employing the exclusive-OR function.

In other words, if you exclusive-OR the letter ‘A’ onto a blank screen, the ‘A’ will appear, until
you re-do the exclusive-OR, when the ‘A’ disappears. This saves having separate routines to
draw and remove a character.

The added advantage is that if you exclusive-OR on top of an existing pattern, you keep that
pattern intact after the second time you call the routine.

One disadvantage is that you must be careful not to exclusive-OR over the top of an attribute
or the screen could go haywire!

1200: A2 00 LDX #$00
1202z AOD 00 LDY #$00
1204: B4 80 8STX $80
1206z BA TXA

1207: OA ASL

1208: OA AL

1209: OA ASL

120A: OA ASL

120B: 99 00 15 STA #1300,Y
120E: AS 80 LDA <80
1210z %9 00 14 STA %1400,Y
1213: €8 INY

1214 FO OC BER 1222
1Z21&: E& INX

1217: EO 056 CPX #$04
1219: DO EB BNE %1204
121Bs E& BO INC %80
121D A2 00 LDX #&$00

121F: FO ES BEQ 1206
1221: EA NOP

1222: A7 AD LDA #$A0
1224: 85 81 STA sBi1
1226 AT 00O LDA #$00
1228: A8 TAY

1229: B85 BO STA %80
122B: AS B0 LDA %BO
122D: 99 00 1& STA $1&00,Y
1230: AS B1 LDA %81
1232: 99 00 17 STA $1700,Y
1235: AS B0 LDA $BO
1237: i8 CLC

1238: &9 28 ADC #3286
123A: B85 80 STA $80
123C: 90 02 BCC $1240
123E: E& B1 INC %81
1240: C8B INY

1241: DO EB BNE $122B
1243: &0 RTS

Program 7.1 is the first part of our graphics routines, which sets up the tables.

Following the table set-up subroutine, which you call once, we have the routine (Program 7.2)
you call for each character which you will want to display eventually.

To call this routine, you must set up the X register to the appropriate ASCII value, A to the low
part of a spare #60 byte address, and the Y register to the high value of this #60 byte table.
The routine uses the normal character set area at #9800, though you may choose to alter this
to the alternate area at #9CO00.

1244: 83 8C 5TA $BC
1246: B84 8D STY 8D
1248: A% 00 LDA #$00
124A: B3 80 S5TA $80
124C: A9 00O LDA #%$00
124E: B85 85 STA %85
1250: 86 B4 S5TX %84
1252: 06 84 ASL %84
1254: 26 8BS ROL %85
1236: ©0& 84 ASL B84

1258: 24 85 ROL #BS

125A: 064 B4 ASL sB4
125C: 26 85 ROL 85
125E: 18 cLC

125F: AS B85 LDA $85
12613 &9 98 ADC #%98
1263: B85 8BS STA $85
1265: A0 00 LDY #$00
1267: Bl 84 LDA (sB4),Y
1269: 85 a7 STA s87
126B: AT 00 LDA #%00
126D: B85 BB STA B8
i26F: A& BO LDX <80
1271: FO OB BER $127E
1273: 4& 87 LSR 87
1275: &6 B8 ROR $88
1277: CA DEX

1278: DO F9 BNE $1273
127A: 46 88 LSR sB8
127C: 44 BB LSR $88
127E: AS 87 LDa $87
1280: 91 8C STA ($80C),Y
1282: 98 TYA

1283: 48 PHA

1284: 09 08 ODRA #%08
i28&4: AB TAY

1287: A5 BB LDA s88
1289: 91 BC STA ($8C),Y
128B: &8 PLA

128C: A8 TAY

128D: CB INY

128E: CO 08 CPY #%08
1290: DO DS ENE %1247
1292: 18 CLC

1293: A5 BC LDA SB8C
1295: &9 10 ADC #%10
1297: 6835 8C STA s8C
1299: 90 02 BCC $129D
129B: E& BD INC $8D
1290z E& 80 INC =80
129F: A3 BO LDA %8B0
12A1: C9 06 CHP #3056
12A%: DO CO BNE $12435
12AS: &0 RTS
Program 7.2 Create character table (#1244-#12A5)

The subroutine of Program 7.3 is called by the character drawing and testing
routines, and calculates the address of an X, Y co-ordinate.

12A46: A4 BB LDY %8B

12A8: B9 00 1& LDA $1600,Y
12AB: 85 B2 STA $82
12AD: B9 00 17 LDA $1700,Y
12BO: 85 83 STA $83
12B2: A4 BA LDY $8A
12B4: B9 00 14 LDA $1400,Y
12B7: 18 CLC

12B8: &5 B2 ADC $82
12BA: 85 B2 STA $82
12BC: 90 02 BCC $12C0
12BE: E& 83 INC $83
12C0: B9 00 15 LDA $1500,Y
12C3: 18 cLC

12C4: &5 8BC ADC $8BC
12C6: B85 8C STA $BC
12C8: 90 02 BCC $12CC
12CA: E& 8D INC $8D
12CC: &0 RTS

Program 7.3 Calculate address (#12A6-#12CC)

And now to the subroutine which you call when you want to display something (Program 7.4).

The routine exclusive-Ors the character stored in the table pointed to by the A and Y registers
onto the screen at the X, Y co-ordinate given by addresses 8A and 8B respectively. Register
A is the low part of the table’s address and register Y is the high value. For example:

LDA #45 X co-ordinate

STA $8A

LDA #60 Y co-ordinate

STA $8B

LDA #40 F40 is address of the table.

LDY #OF
12CD: 85 BC STA $BC
12CF: 84 8D STY 8D
12D1: 20 AL 12 JSR %1286
12D4: AQ OO0 LDY #%00
12D4: Bl 82 LDA ($82),Y
12D8: 51 8C EOR ($8C),Y
12DA: 91 82 STA ($82),Y

12DC: 98 TYA

12D0D: 48 FHA

12DE: o9 08 ORA #3088
12E0: A TAY

12E1: B1 8C LD#A ($8C) ., Y
12E3: AA TAX

12E4: &8 FLA

12ES: Ag TAY

12E6: ce INY

12E7: 8A TXA

12EB8: 51 82 EOR {$82),Y
12EA: 91 82 STA ($82),Y
12EC: 18 CcLC

12ED:= AS 82 LDA 82
12EF: &9 27 ADC #s27
12F1: 85 B2 STA 82
12F3: Q0 02 BCC S12F7
12FS: E& 83 INC 383
12F7: co 08 CPY #%08
12F9: DO DB BEME $12D&
12FB: &0 RTS

Program 7.4 Display character cell (#12CD-#12FB)

7.3 Collisions
The last routine can be used to put a character on and take a character off the screen, but
one important facility is to be able to test for collisions — in games, etc.
There are two main cases to consider:
1. When an object is prohibited from running into other objects, including any screen border.

2. When an object is being shot at, by some other moving character that is using exclusive-
OR, and it is possible that a given character has been ‘destroyed’. An example of this is
where a laser base is destroyed by a rain of missiles.

In the first case, we need a routine that looks at a given area, and if there is room for your
character, it returns with the zero flag set. The second subroutine examines the area where
your character was last seen, and returns the zero flag set if your character is still in one
piece.

The timings for calling these two routines are quite different:
1. The first routine is looking for a clear area, so call it before drawing on the character.

2. The second routine must be called after all screen objects have been moved and drawn.
The assumption here is that after one character has been drawn, another may overlap it and
thus wipe part of it out.

To call either of these routines you must set up the A and Y registers, as in the previous
subroutine, with 8A and 8B containing the X and Y positions of the character on the screen.

12FC: B3 8C STA $8C

12FE: 84 BD STY $8D
1300: 20 A& 12 JSR $12R6
1303: A0 00 LDY #$00
1305: B1 82 LDA ($82),Y
1307: 31 8C AND ($BC),Y
1309: DO IF BNE $132A
130B: 98 TYA

130C: 48 PHA

130D: 0% 08 DRA #$08
130F: A8 TAY

1310: Bl 8C LDA ($8C),Y
1312: AR TAX

1313: &8 PLA

1314: ABD TAY

1315: C8 INY

1316: B4 @A

1317: 31 B2 AND ($82),Y
1319: DO OF BNE $132A
131B: 18 CLC

131C: AS 82 LDA $82
131E: &9 27 ADC #$27
1320: 85 82 STA %82
1322: 90 02 BCC $132&
1324: E& 83 INC $B3
1326: CO 08 CPY #$08
1328: DO DB BNE $1305
1324: &0 RTS

Program 7.5 Test for collisions (#12FC-#132A)

The first subroutine is given in Program 7.5.

The second routine,which tests to see if a character is a whole is listed in 7.6

132B:
132D:
132F:
1332:
1334;
1336:
13%8:
133A:
133C:
133D:
133E:
1340:
1341:
13432
13435:
1344:
13471
1348:
1T4A:
1.34C:
134E:
1350:
1351:
13332
135%5:
1357:
135%9:
1.35B:
135D:
135F:

BC

288

a8z
BC
BC
23

S

A8

GEARBNA SROA

STA =80

STY 8D
JER $12A4
LDY #$00

LDA ($82),Y
AND ($8C),Y
CMP (SBC),Y

BNE S13I5F
TYA

PHA

ORA #3088
TAY

LDA {($BC),Y
STA SBE
PLA

TAY

INY

LDA s8E
AND ($B2),Y
CHP 3BE
BNE $135F
cLC

LDA 82
ADC w327
STA =82
BCC %1358
INC $B3
CPY #308
BNE %1334
RTS

Program 7.8 Test for desiroyed character {#132B—#135F)

7.4 Fast single-point plotter

This short routine (Program 7.7) uses the 1K table set up at 1400 to 17FF to provide an
extremely fast method of dealing with individual pixels. It takes registers X and Y which give
the co-ordinates and returns an address at #82 and a bit position in the accumulator. This bit
position is in the form of one bit set in the byte — ready to be ORed with the contents of the

address.

1360: 18
1361: B9 00
1364: 7D 00 14
1367: B85 82

146

Program 7.7 (continues)
136%: A% 00 LD
136B: 79 00 17 ADC
134E: B3 83 5TA
1370: BD 00 15 LDa
1373: 4A LSR
1374; 44 LSR
1X75: 4A LSR
13761 4A LSR
1377: A8 TAY
137B: BY 9E 13 LD
137B: A0 00 LDY
137D= &0 RTS

CLC
LDA $1&00,Y
ADC $1400, X
STA s$82

#$00
$1700, Y
83

$1500, X

$139E, Y
#8500

Program 7.7 Fast pixel-addressing subroutine (#1380— £137D)

This subroutine also uses a short table of the bit positions at 139E:

139E: 20 10 08 04 02 01

The next subroutines (Programs 7.8 to 7.11) use a fast plotting routine, as follows:

1. Set (OR) a dot — #137E.

2. Remove (AND after inverting) a dot — 01386.

3. Alter dot (exclusive-OR) — #1390.

4. Test dot — return the zero flag set if dot is clear — #1398.

To call any of these subroutines, you only need to set registers X and Y to the correct
horizontal and vertical values.

137E: 20 &0 13 JSR #1340

1381: 11 B2 ORA ($82),Y
1383: 91 82 STA ($82),Y
1385: &0 RTS

Program 7.8 Set dot (#137E—#13835)

1386: 20 &0 13 JSR $1350
1389: 49 FF EOR #SFF
138B: 31 82 AND ($82),Y
138D: 91 82 STA ($82),Y
138F: &0 RTS

Program 7.9 Clear dot (#1386- #138F)

1390: 20 &0 13 JSR #1360

1393: 51 B2 EOR (s8B2),Y
1395: 91 B2 STa ($B2),Y
1397: &0 RTS

Program 7.10 Alter dot {#1390-#1397)

1398: 20 &0 13 JSR $13460
139B: 31 82 AND (38B2),Y
139D: &0 RTS

Program 7.11 Test dot (#1398-#139D)

COLOURING THE SCREEN

For the fastest possible graphics, it is advisable to colour the screen with preset paper and ink
attributes to the left of your graphics area. If it is important to colour a character, then the
following routines in Program 7.12 can be used.

For each character you need a 16-byte area, half filled with the attribute for each of the eight
lines. The remaining 8 bytes are used to store the contents of the screen before it is

overwritten. Normally you will store a set of INK colours (i.e., numbers between 0 and 7), but
remember that it is possible to specify a PAPER colour, or perhaps even a flashing attribute.

The routine is called with X and Y registers set to the screen position (top left) where the
colours are to be stored. Also, #8C, #8D should be set to the address of the 16-byte area that
is being used for this character.

1187: 20 &0 13 JSR $1340

1i8A: B1 82 LDA ($82),Y
118C: 48 FPHA

118D0: 98 TYA

118E: AA TAX

118F: 09 08 ORA #$08
1191: a8 TAY

1192: &8 FLA

1193: 91 8C STaA ($8C),Y
1195: Ba TXA

1196: AB TAY

1197: B1 82 LDA ($B2),Y

Program 7.12 (continues)

1199: C? 40 CHF #%40
119B: Do o4 BME %11Al
119D: B1 8C LDA ($BC),Y
119F: 91 @2 STA ($B2),Y
11A1: 1B cLC

11A2: AS B2 LDA B2
1184: &% 27 ADE #4327
11A6: 85 82 STA =82
11A8: 0 02 BCC =11AC
11AA: E& BE INC =83
11AC: ce INY

11AD: Co o8 CPY #3208
11AF: Do D9 BNE %118A
11B1: a0 RTS

Program 7.12 Colour character subroutine (#1187-#11B1)

Having drawn the colours, and perhaps worked out a new position for the character, you must
remove the attributes, restoring the screen to its former glory.

11B2: 20 &0 13 JSR %1340
1185: A5 8C LDa #8C
1187: 09 08 DRA #%08
1189 8BS 8C STh %8C
11BB: Bl 8C LDA ($8C). Y
118D: 91 82 S5Ta ($82),Y
i1BF 18 CLC

1ICO: AS B2 LDA %82
11C2: &9 27 anc Hs27
{iC4: a5 B2 STA £82
11Cé&: 9 02 BCLC $11CA
11CB: E& B3 1MC 83X
11CA: cC8 TNY

11CB: CO 08 CPY #%08
11CD: DO EC BENE $11EBE
11CFs &0 RTS

Program 7.13 Remove colours (#1182-#11CF)

This is done by the subroutine at #11B2, listed in Program 7.13.
If you intend to colour moving objects by using these two subroutines, follow this order of
events:

1. Draw all the objects, using the exclusive-OR character facility provided.
2. Fill in the colour attributes, where required.

3. Delay as necessary, and work out new positions of objects, etc.

4. Remove colours, restoring parts of the screen.

5. Use exclusive-OR at the old positions to remove objects.

This sequence is important because you may get into trouble using exclusive-OR over
attributes, since the attributes may be altered to one of the ‘nasty’ control codes and cause
the picture to break up.

7.6 Drawing larger shapes

Although the character drawing subroutines are quite fast, it can be quite awkward to have to
work out graphics in terms of 6 by 8 character cells. The following routine (Program 7.14),
though still using the special graphics table, moves away from using character cells, and lets
you draw an irregular shape, complete with colour.

All you have to do is provide the subroutine with the address of your object, plus details of its
height (in pixels) and width (in character cells).

You must set up this information as follows:

1. Store the graphics shape in a free area of memory. The area must be pointed to by #8C,
#3D.

2. A second free area is required, equal in size to the first, pointed to by #80, #81.
3. The data for the object must be stored line by line, with 1 byte for
each 6 pixels, or an attribute, and the number of bytes across
should be stored at #8E.
4. The number of lines down is required at location 8F.

5. Finally, you must load up the X and Y registers with the appropriate screen position (top
left of the object).

With the parameters stored in exactly the same way, you call the routine at #115E in order to
remove your artwork (Program 7.15).

10F2: 20 &0 13 JSR $13&60
10F5S: BD 00 15 LDA %1500, X
10F8: a5 LSR
10F9: a0 LSR
10FA: 4R LSR

Program 7.14 (continues)

10FB: 44 LSR

10FC: 835 8A STA $BA
10FE: AS BF LDA $8F
1100: B3 BS STA 85
1102: AQ 0O LDY #8000
1104: A9 0O LDA 8800
1104: 83 B4 STA sBa
1108: A9 00 LDA #%0C
1104A: 83 B& STA $Bs&
110C: AL BA LDX %8aA
110€: Bl 82 LD#A (%82),Y
1110: 21 80 SThA (880),Y
1112: Bl BC LDA (s8C),Y
1114: C9 4D CMF #%40
1114 90 19 BCC #1131
1118: 29 BF AND #$BF
111A: EQ OO CFPFX #%00
111C: FO O7 BEQ %1125
111E: 18 cLC

111F: &A ROR

1120: &b& B& ROR $8&
1122: CA DEX

1123: DO Fa BNE S111F
1125: OF B4 ORA %84
1127: 44 B& LBR s8&4
1129: 44& B& LEBR s8s&
112B: AL BA LDX 8546
112D: ©& B4 STX =B84
112F: 09 &0 DRA #%40
1131 91 82 sSTA (882),Y
1133 ce INY

1134: C4 BE CPY S$BE
1134: DO DO BNE %1108
1138: 18 cLC

1139: AS B2 LDA $82
113B: &9 2B ADC #s2B
113Dz 835 82 S5TAa %82
113F: F0 02 BCC %1143
1141: E& B3 INC %83
1143%: 1B CLC

ila4: AS 80 LDA &8O
1146: &5 BE ADC $BE
1148: B3 B0 STA %80
114A: 0 02 BCC %®114E
114C: Eé& B1 INC %81
114E: 18 CLC

114F: AS BC LDA s8C
1151: &5 BE ADC $BE
1153: 8BS 8C STA =8C
1155: 90 02 BCC %1159
1157: E& BD INC $8D
1159: C& B85 DEC %85
115E: DO AS BNE %1102
115D: &0 RTS

Program 7.14 Draw large shape (#10F2-#115D)

11SE: 20 &0 13 JSR $13&0
11413 A6 BF LDX s8F
11631 A4 BE LDY SBE
1145: B8 DEY

1166: Bl B0 LDA (3B0),Y
1168: T1 82 STA (s82),Y
1i&: 88 DEY

114B: 10 F9 BPFL S1i&&4
114D 18 ac

i14E: AS 80 LDA $B80
1170: &5 BE ADC SBE
1172: 835 B0 STA $B80
1174: 90 02 BCC #1178
1174: E& Bl INC s81
1178: 1B CLC

1179: AS 82 LDA 82
117B: &9 28 ADC #%28
117D: B5 82 STA sB2
117F: 90 02 BCC #1183
1181: E& B3 INC 83
1183: CA DEX

1184: DO DD BNE S$1143
1184: &0 RTS

Program 7.15 Remove large shape (#115E-#1186)

The method used to show graphics in these last two routines is simply to
overwrite parts of the screen, and not use exclusive-OR. This will occasionally
be more convenient, since you will then not have to worry about drawing over
the top of other attributes. However, | have not provided any method of
detecting collisions when using this method.

7.7 Examples

EXAMPLE 1 — A DEMONSTRATION OF THE CHARACTER DRAW FACILITY

This first example is based on the character cell type of graphics. It moves a multicoloured
square of AB and CD back and forth.

Of course, if you modified the character definitions for A to D, then you would see some other
graphics pattern crossing the screen.

0DO0:
0DO03:
0DOS2
ODO07:
0oDO%:
ODOC:
ODOE:
0D10:
0D12:
0oD15:
oD17:
oD19:
OD1B:
OD1E:
0D20:
0D22:
0OD24:
oD27:
0oD29:
0D2ZB:
0DZDs
OD2F:
0D30:
oD32:
OD34:
0D36:2
oD38:
OD3A:
OD3C:
OD3F:
OD40:
0oD42:
oDA4:
OD4&:
0ODA48:
OD4A:
OD4D:=
OD4E:

3aN33R%3a8330R2R 8300333833 RBBIRNYBIRS

22852382 RBAXRBAIREBES

BREBRE BREBESS

-0
-

12

12

12

12

12

12

$1200

oo o
o

3BRES38RE88

LR L R E R R A ek e ki kR R R R L kA R Lk

o
o

a5B88%

&3

8983

87

B2

782

3

B33

12

12

11

11

11

11

ADC
STA

LDY
JSR
LDX
87X
LDA
LDy
JESR

SBEC
TAX
LDY
LDA
STA

PLA
PHA

JSR
BER
JSR

ADC
TAY
SEC

TAX
LDA
sSTA
LDA
STA

PHA

JSR
BEQ
JSR
FLA

LDX
DEX
BNE

as08
8B
#$20
H#HSOF
%12CD
S50
$BA
#SLO

$12CD
$70

$71
#8890
$8C
#SOF

$0D7F
$1187
30DB2
$11B2

571

$70

#$70
8c
#E0F
48D

SODFF
21187
$0DAZ
$11B2

#501
$0DAF
#$FF

$0DA%

ODAC: FO 81 BEQ s$OD2F
ODAE: EA NOP

ODAF: E& 90 INC s90
0DB1: AS 90 LDA €90
ODB3: C9 80 CMFP #s80
0oDB5: DO OD BNE $0DC4
OoDB7: A9 10 LDA #%10
ODB7: 85 90 STA $%0
oDBB: E& 91 INC 891
ODBD: AS 91 LDA 91
ODBF: C9 80 CHMFP #%80
ODC1: DO 01 BNE $0DC4
oDC3: 00 BRK

ODC4: 4C 2D 0D JHP $0D2D

Program 7.16 Example 1 (#D00-#DC8)

This program (7.16) assumes that BRK will return you to whatever machine code monitor you
are using. You should change this to RTS (instruction code #60) if you are just using BASIC.
Please note that these routines assume that you are already in HIRES mode — if you are in a
machine code routine, call subroutine #E9BB (or V1.1 ROM #EC33) in order to enter HIRES.
The call to get back into TEXT mode is #E9A9 (#EC21 VI. 1 ROM). To run the program call

#DO00.
The colours for Example 1 are as follows:

F80:11112222
F90: 66663333

EXAMPLE 2 — USING THE NON-CHARACTER GRAPHICS ROUTINES

2000: A9 40 LDA #$40
2002: 85 8C STA s8C
2004: A9 20 LDA #8220
2006: 85 8D STA $8D
2008: 835 81 STA 81
200A: A% 80 LDA #$80
200C: 85 80 STA $80
200E: A9 05 LDA #$05
2010: B85 BE STA $BE
2012: A9 09 LDA #$09
14: 85 6F STA $BF
16: A4 90 LDY %90
18: A& 91 LDX $91
1Az 20 CO 20 JSR $20C0
1D: A5 93 LDA $93

201F: FO OC BEG $202D
2021: E& 90 INC &90
2023: AS 90 LDA $90
2025: C9 BO CMFP #$BO
2027: DO D7 BNE $2000
2029: Cé& 93 DEC %93
202B: FO D3 BEQ $2000
202D: C& 90 DEC $90
202F: AS 90 LDA $90
2031: C9 10 CMP #%10
2033: DO CB BNE $2000
2035: E& 93 INC 93
2037: DO C7 BNE $2000
2039: 00 HEy

203A: EA NDP

20C0: BA TXA

20C1: 48 PHA

20C2: 98 TYA

20C3: A48 PHA

20C4: AS 80 LDA 80
20C6&: 48 PHA

Z20CT: A5 81 LDA 381
20C9: 48 PHA

20CA: 20 F2 10 JSR %$10F2
20CD: AOQ 10 LDY #$10
20CF: CA DEX

20D0: DO FD BNE $20CF
20D2: 88 DEY

20D3: DO FA BNE $20CF
20D05: &8 PLA

20D&6: 85 81 STA %81
20D08: &8 PLA

20D9: 835 BO STA %8O
20DB: &8 PLA

20DC: A8 TAY

20DD: &8 PLA

20DE = (T3] TAX

20DF: 20 SE 11 JSR $115E
20E2: &0 RTS

Program 7.17 Example 2 (02000 — #2039 and #20CO — #20E2)

This example (Program 7.17) demonstrates how easy it is to move any shape around, using
the second drawing method. The flickering is due to the constant drawing and clearing of the
object. One way round this would be to leave the object on the screen and not clear it off.
Providing that your object has been defined with at least one blank pixel on all sides, you will
automatically wipe out the previous creation when moving in any direction. Of course, this will
clear anything that your object crosses, but the graphics animation is smoother and twice as
fast as before.

The shape for Example 2 in the area #2040 to #206C is as follows:

7.8 PAINT subroutines

| wonder if you thought that the FILL command would paint an area of the screen when you
first bought your Oric! Unfortunately there is no easy way to shade in anything more
complicated than a rectangle, so here is the highlight of the graphics routines, a super-fast
PAINT subroutine.

THEORY

The paint facility here uses the 1K graphics table, created by calling 1200, and the set and
test dot subroutines at 137E and 1398. However, so that the routine can be called from
BASIC, the subroutine has been designed to do all necessary calls, and saves all zero page
locations that it overwrites.

The theory behind a PAINT subroutine assumes that the shape is completely enclosed and
that a starting point is supplied somewhere inside. The general approach is to move away
from this starting point, going in all directions in turn. From each new point that is not yet filled,
another set of directions is remembered, and in this way the whole shape is eventually
painted.

To ‘remember’ each point that needs painting, a stack is used, so that we explore all avenues
until a complete dead-end is reached and then back-track through all other possibilities — like
you might do when mapping a maze.

The problem with this is that you have only a limited stack to use. In order for PAINT to work
within this constraint, it must constantly prune unwanted values off the stack. Even so, this
PAINT routine is probably the fastest you will ever see on the Oric.

Rather than try to explain in detail how the machine code routine works., Program 7.18 is a
BASIC equivalent to the PAINT subroutine listed below in Program 7.19.

5 REM BASIC VERSION OF PAINT

10 DIMA(100):S=100

15 INPUTX,Y

20 RF=0:8=5-11A (8) =255 5=6-1:A(S) =255: 60TO3S

30 Y=A(5):5=5+11 X=A(S): S=5+1

35 IFX=25STHEN END

40 IFRF=0THENUF=TRUE: DF=TRUE

45 T=S:R=T

86 IFA(R)=255THENSO

47 IFA{R)=YANDA (R+1)}=XTHENR=R—1:FORK=RTOTSTEP-1:A(K+2) =A(K) tNEXT:S=
8+2: B0TOSO

48 R=R+2:B0T04&

50 CURSETX,Y,1

60 IFUFANDPOINT (X,Y—1)=0THENS=S—1:A (5) =X15=8-1:A(§) =Y-1

70 UF=POINT(X,Y-1)

80 IFDFANDPOINT (X,Y+1)=0THENS=S—-1:A(S) =X1E=6-1:A(S) =V+1

90 DF=POINT(X,Y+1)

100 RF=0: IFPOINT (X—1,Y¥)=0THENS=S-1:A (8) =X-1:8=6~11A(S5) =Y RF=TRUE
120 IFPOINT (X+1,Y)=0THENS=S-1:A(S)=X+1:5=8-11A(S)=Y:RF=TRUE

130 80TO30

Program 7.18 BASIC paint program

This program runs very slowly because, for every point plotted, the routine must look in the
four surrounding positions. Here is a summary of what is happening:

1. The flag RF (right flag) is set to true whenever it is possible to move either left or right.

2. The flags UF and DF (up and down flags) are set to the state of the pixels above and
below the current dot position. Before doing this, the subroutine looks for an empty pixel
above or below, and if the up or down flag is set as well, that position is put on the stack
as a point to investigate. These flags are used in order to stop the stack from being
saturated with unnecessary values. Since all dots along a line are investigated, it is not
necessary to look at all the dots above and below, since any one of them will scan its own
horizontal brothers.

3. As each point is set, the stack is examined for any outstanding references to that point,
and these are removed.

Program 7.19 gives the listing of the machine code PAINT subroutine.

1000: 78 SEI
1001: A2 OF LDX #SOF
1003: BS 80 LDA $80,X
Program 7.19 (continues)

1005: 9D E2 10 STA S10E2,X
1008: CA DEX

1009: 10 FB BPL $1003
100B: D8 CLD

100C: 20 00 12 JSR $1200
100F: A& 00 LDX s00
1011i: A4 01 LDY s$01
1013: A9 OO LDA #%00
1015: 85 ac STA s8C
1017: A9 FF LDA #SFF
1019: 48 PHA

101A: 48 PHA

101B: DO 04 BNE %1021
10iD: &B PLA

101E: A8 TAY

101F: &B FLA

1020: AA TAX

1021: EO FF CPX #%FF
1023: FO SF BER 1084
1025: AS BC LDa S8C
1027: DO 06 BNE S102F
1029: A9 01 LDA 8$01
102B: B85 8D STA 8D
102D: B5 BE STa =BE
102F: 20 A2 10 JSR $10A2
1032: 88 DEY

1033: 20 98 10 JSR %1098
1034: B85 BF S5TA s8BF
1038: DO OB BNE %1042
103Az AS BD iDa SBD
103C: FO 04 BER %1042
103E: 8A TXA

103F: 48 PHA

i040: 98 TYA

1041: 48 PHA

1042: A5 BF LDa SBF
1044: 83 8D 5Ta $8D
10456: CB INY

1047: C8 INY

1i048: 20 98B 10 JSR #1098
iocap: B85 8F STA $BF
104Dz DO OB BNE $1057
i04F: AS BE LDA SBE
1051: FO 04 BER %1057
1053: B4 TXA

1054: 48 PHA

1055: 98 TYA

1054: 48 PHA

1057: AS BF LDA S$BF

105%:
105B:
105C:
103D :
10&0:
1062z
1063
10445
1045
10661
1068:
106A:
10&Cs
10&E:
1070z
1071:
1072:
10735:
1077
1078:
1079:
107hA:
1078:
107Dz
107F:
1080:
1082:
1084:
1084:
1089:
108B:
108C:
10BE:
108F:
1090z
1092:
1095:
1097:
1098:
109A:
109D:
109E:
10A0:
10Al1:
10A2:
10A4:
10A6:
10A7:
10A%:

PP PPN RN PN e iER3358283288800R38R24348888583

88 B8R8= 23

s 30%388 B8R

g 88 EAE

aR

g

10

10

10

13

13

8TA

INX
INX

RTS
sTY
JSR

LDY
PLP
RTS
STX
sTY
78X
STX
INX

$1098
$10&6C

#3501

$1070

$1098
$107F

#3501

$101D

$10E2, |

$1085&

g

$137E

3 8

$1398

$8°

SHF

10AA: E8 INX
10AB: ES8 INX

10AC: BD 00 01 LDA $0100,X
10AFT C9 FF CMP #$FF
10B1: FO 25 BER $10D8
10B3: C5 83 CMF $83
10BS: DO 1C BNE $10D3
10B7: BD 01 01 LDA $0101.X
10BA: CS 82 CMP $82
10BC: DO 15 BNE $10D3
10BE: CA DEX

10BF: E4 8F CPX $8F
10C1: FO 09 BER $10CC
10C3: BD 00 Of LDA $0100,X
10C6: 9D 02 O1 STA $0102,X
10C9: 38 SEC

10CA: BO F2 BCS $10BE
10CC: E6 BF INC $68F
10CE: E& 8F INC $8F
10D0: 38 SEC

10D1: BO 05 BCS $10D8
10D3: EB INX

10D4: ES8 INX

10DS: 38 SEC

10D&6: BO D4 BCS $10AC
10D8: A& BF LDX $8F
10DA: 94 TXS

10DB: A& 82 LDX #82
10DD: A4 83 LDY 83
10DF: 4C 90 10 JMP $1090

Program 7.19 PAINT subroutine (#1000-#10E1)

USING THE PAINT FACILITY
The routine is called at #1000 after setting X (at #0) and Y (at #1) to a point inside the shape.

It assumes that high-resolution mode has been selected, though of course this is not of
importance to the program itself, since it is simply processing an area of memory.

PAINT is great fun to watch!

7.9 High-resolution compactor subroutine

When displaying a high-resolution screen, you would normally need nearly 8K of RAM. This
may strike you as being wasteful, especially when most of the time you are just looking at
blank or filled areas. Below is a routine that compacts a high-resolution screen (or any other
data) into anything from 1K to 8K, according to the complexity of the picture. You do not have
to save the whole of the screen in any case, so this routine can be used with the split-screen
facility discussed in Chapter 6.

The compactor and the companion expander routine do not use any of the other subroutines
in this chapter, so can be used on their own. One obvious use is the creation of front pages
when loading a program: instead of loading a complete 8K picture, you only need to load
maybe 3 or 4K.

COMPACTOR CONSIDERATIONS

These routines make two assumptions:

1. The value #0F is not used. (It has no meaning in HIRES mode anyway.)

2. Most of the screen contains characters with an ASCII value between 0 and 127. The
routine does cope with the occasional ‘inverse’ byte, though with less efficiency than ‘normal’
characters.

USING THE COMPACTOR

You need to set up start and end addresses as follows:

1. The start address of the area to be condensed should be entered at #82, #88.
2. The end address of this area should be stored at #84, #85.

3. The start address of the resultant data must be stored at #86, #87.

After using the compactor subroutine, the highest address of the compacted data is left at
#88, #89.

The compactor subroutine is intended for use within a machine code program. If you wish to
use it from BASIC you will have to save locations #80 to #8F in the same way as the PAINT
routine does.

The expander routine, which reverses the compacting process, uses the same addresses, but
does not need the end address (#82) to be specified.

0C00: AS B2 LDA $82
OoC02: 48 PHA
OCO3: AS 83 LDA =83

Program 7.20 (continues)

OCO0S:
0C0&:
OoC0o8:
OC0A:
OCOoC:
OCOE:
oC10:
OoC12:
0oC13:
OC15:
OoC17:
0C19:
OC1B:
OC1D:z
OC1E:
OC20:
0oC22:
OC24:
0C26:
oC28:
OC2A:
OC2C:

OC30:
OC32:
OC34:
OCXA:
0C38:
OC3A:
OC3B:
OC3C:
OLC3E:
0C40:
oC42:
OC43:
0OCA4S5:
OC47:
0C48:
OC49:
OCA4B:
0OCA4LC:
OC4E:

0OCS2:
OCS54:
OCSS:
OCS6:
oCcS8:
oCSA:

dRG3o N8B0 388 2082333383 2RRB8ERIURIBARE23aR2BREAEE

S2E8BB2RBABRRY BRERS $2338°F

2% B8

o
N

INBE

82
az
02

F1THE1T

1535853

ne3EERITEEREE

5TA

INC
cLC
TYA
ADC
STA

3588

#8001
(s84),Y

(584),Y

(882),Y

5k

(882),Y

SOC1D

(s88, X)
#801
$0C4B

#$80

($88),Y

(sbB),Y

HIE

ﬁﬁﬁ

OoCSC: E& B INC =83
OCSE: AS BA Lvd =BA
OC&0: C9 OF CMP 8S0F
oC&2: DO B3 BNE =O0C17
oC&4: &8 PLA

oCAaS: A0 O1 LDY &%l
OoCs57: 91 B84 ETA (s84),Y
OC&F: &B PLA

OC&A: B3 83 6TA =83
QC&C: &B LA

oC&D: B85 82 STaA =82
OCAEFr: &0 RTS

Program 7.20 Compactor routine (#C00-#C8F)
Program 7.20 gives the compactor subroutine, which starts at #C00

Finally, Program 7.21 gives the expander routine, at #C75.

OC75: A3 B2 LDA s82
oC77: BS5 84 STA %84
OC79: AS 83 LDA 83
OC7B: 85 895 STA 483
OC7D: AS B& LDA SB&
OC7F: 48 PHA

oCcao: AS 87 LDA 87
oCB2: 48 PHA

oCaE3: A0 00 LDY #$00
oc8sS: Bl 86 LDA (8B&),Y
oC87: 30 06 BMI SOCBF
oCcB9: 91 84 8Ta ($84),Y
oC8B: A% 01 LDA #3001
ocap: DO 135 BNE sSOCA4
OCBF: 29 7F AND @#%7F
OCT1: AA TAX

oCc92: C8B INY

oC93: Bl B LDA ($86),Y
oC9S: 48 PHA

oC946: BA TXA

oC97: A8 TAY

OC98: &8 PLA

OC99: B8 DEY

OoCFhR: 91 845 STA ($84),Y
OC9C: 88 DEY

Program 7.21 (continues)

OCYD: 10 FB BPL SO0C7A
OC9F: BA TXA

OCAD: AB TAY

OCAl: 88 DEY

OCAZ2: A9 02 LDA #8002
oCA4: 1B cLC

OCAS: &S B& ADC $B&
OCA7: 85 Ba STA SB&
OCA%: 90 02 BCC sOCAD
oCAB: E& BT INC s$87
OCAD: 3B SEC

OCAE: 98 TYA

OCAF: &5 B4 ADC $84
OCBl: B85 B4 STA s84
OCB3: 90 02 BCC $OCB7
OCBS: E& 85 INC SBS
OCB7: AQ0 0D LDY #%00
OCB%: Bl B& LDA (%B&),Y
OCBB: C9 OF CHMF #s0F
OCBD: DO Ca BNE S$O0CB3
OCBF: &8 FLA

OoCCO: 85 87 5TAa SB7
OCC2: &8 PLA

OCC3: B85 Bé STA %846
0OCCS: &0 RTS

Program 7.21 Expander routine (#C75-#CCB)

7.10 Conclusions

It is not intended that you use all of these routines every time that you want to do some high-
resolution graphics — indeed the ROM routines may prove to be fast enough for your needs. It
may well be, though, that you require several of the routines for a game involving fast-moving
graphics, and these could be relocated into a spare memory address using the relocater
program in Chapter 3.

Even if you do not want to use the movement routines, the paint facility is invaluable in
BASIC, though once again you may need to relocate it to a higher address if you have a 48K
machine.

The use of tables to speed up graphics should be remembered for other applications where
memory can be sacrificed in return for a faster response.

The compactor routine can certainly be improved upon. It depends largely on the picture

being stored, but you may find it better to scan vertically rather than horizontally. A completely
different approach would be to analyse the screen in terms of pixels, keeping a count of the
number of dots alternately set or clear.

Additional note (August 1998)

A lot of water has passed under the bridge since this was written,15 years of
programming, including much games programming on other machines has taught me
that some of the methods in this chapter aren’t quite optimal. At the time, | clearly had
only a passing knowledge of TV's workings, i.e. raster and flybacks. I don’t think |
would really use XOR these days, far better to restore previous sprite, save
background, draw sprite. Having said that, | still come across the XOR trick, for
instance in a C++ MFC book, which suggested its use for drawing lines and boxes. As
for the suggestion that multiplying by 40 is hard, well in fact it’s just a a few shifts and
adds.

8 USEFUL UTILITIES

8.1 Introduction

This chapter presents six utilities to help you write programs in BASIC. You may have seen other
versions of some of the routines (such as Delete and Renumber), but the routines here are
generally shorter and faster.

The programs can be entered by using a machine code monitor (such as Tansoft's ORICMON
program) or by using a simple BASIC loader, as described in Chapter 3. Once the machine code
is in memory, you should save it on tape so that it can be loaded independently of any other
program.

Chapter 3 contains a relocater routine should you need to move the programs to a different
address.

Some of the programs are considerably dependent on the ROM, and often you will find two
listings printed — one per version of ROM. Where there are only a small number of differences, a
listing is given for version 1.0, with the changes that are required for version 1.1.

8.2 Renumberroutine

This is quite a lengthy program, occupying about 600 bytes. Its purpose is to resequence a
BASIC program so that the line numbers increase in even steps. This is very useful when you
need to insert new lines into a program.

The utility is located in the alternate character set area, between #B800 and #BA5C. Remember
that pressing the Reset button will wipe out the program!

To renumber your program you must first DOKE 0 with the starting line number and then DOKE 2
with the increment. Finally, you should CALL #BA1E in order to start the process. For large

programs, prepare to wait a couple of minutes. For example, DOKE 0,10:DOKE
2,10:CALL#BA1E would renumber the program starting at 10, in steps of 10.

ALL GOTO, GOSUB, THEN, and ELSE statements are converted to fit in with the new steps.

Version 1.0 owners should note that the Renumber program can be loaded after the BASIC
program to be renumbered, since the #9C end-ofBASIC pointer is corrected.

HOW IT WORKS

Renumber is the most complicated program in this book. The theory is as follows:

1. Use the two link bytes to store the new line numbers. The old numbers must be kept for cross-
reference purposes.

2. Go through the program looking for ‘GOTO’, ‘GOSUB’, ‘THEN’, or ‘ELSE’.

3. When one of these tokens is found, look up the line number that follows and replace it with the
new line number stored in the link field.

4. At the end of the program, recalculate the links.

CHANGES FOR VERSION 1.1

The ROM is called in eight places; however, for version 1.1 these addresses are different:

#BO4E: JSR (input a number into ACC1 from ASCII)
DFE7 #B951: (turn ACC1 into an integer)

JSR D92C (turn integer into floating point)

#B968: JSR D499 (create program links)

#BA1A: JSR (disable interrupts)

C55F #BA1E: (enable interrupts)
JSR E76A (add memory to ACC1)

#BA30: JSR (convert ACC1 into ASCII)

E93D #BA44:
JSR DB22
#BAAT: JSR
EODS

PROGRAM LISTING

The program (8.1) needs this short table: #BA58: #91, #00, #00, #00, #00.

This is the floating-point representation of 65536 which is used to handle line numbers beyond
32767.

BB00: AZ 00 LDX #$00
BB0O2: AS 35 LDA 435
BB0O4: 48 PHA

BBOS: AS 36 LDA %$3&
BBO7: 48 PHA

BBOB: AOC 00 LDY #$00
BEOA: B1 35 LDA ($35),Y

BBOC:
BBOE:
B810:
BB12:
BB14:
BB15:
BB17:
BB19:
B81B:
B81D:
BB1F:
B821:
BE23:
BB25:
BB27:
B8291:
BB2B:
BB2D:
BB2F:
BB831:
BB32:
BB834:
BB3&:

R EE R EEE I F R N R RN - R Y

a 4P2O02OD2O00TTDIMM
8 E = U ODOYO DD

G838

dBESHBESRNAEAA

37

g3 3

D

3&

35

01

28383

g f

T

rmr
23

:

S5TA

STA
LDX
LDA
STA
LDA

$BB17
$BB17

$BEOA
($35),Y
($35, X)
$9C
$35
$BE27
$9D
$36
S$BB2F
35
$BB2D
$36
$B817
$37

$9C
$37
$9C
9D
#%00
$90D

$36

#3500
$0101,Y
$B852

$BB4A
$9C
$38
7D
$39
#$00
($38, X)
(£38),Y
%38
$35
$BB&C

BB&&:
BB&B:
BB&A:
BB&LC:
BB4D:

BB871:

BB97:
BB99:
BB9B:
B89D:
BB9F :
B8A1:
BBAZ:

23383858580 5355823588300389548303

ODOME2TIOD0O00N M0
mgmo-cam—mamﬁgﬂﬂ

39

§ ¢

01
38
39

39
El
37

01

38

FB

37
FC

2D
00
D

2E&as

35
FF
32
02
35
D4
07

35
D3
18
04
35
03

F9

o1

LDA
CMP
BEQ
SEC
LDA
8BC
STA

CLC

ADC
8TaA

STA
RTS

LDA
8TA
LDA
STA
LDY
LDA

LDY
LDA
CMF

INY
LDA
CMP
BER
LDY
LDA

INY
BNE
INY

$39
$36
$B87E

%38
#3501
$38
$39
#$00
$37
s$BBSC
$37

sBB88
$0101,Y
($38),Y

$BB80

$37
$9C
$9C
$9D
#5500
$9D

#%01
$35
#%05
346
#3501
($35),Y
#SFF
$BBDY
#502
($35),Y
D4
$B8B&

($35),Y
$D3
$BBCE
#%04
($35),¥
$BEBF

$BBB8

BBCO:
BBC1:
BBC2:
BECA:
BBCA:

BBE4:
BBEA:
BBEB:
BBE9:
BBEB:
BBED:
BBEE:
BEBFOD:
BBF1:
BBF35:
BBF3:
BBF &1
BBFB:
BBFA:
BBFC:
BBFE:
BY00:
B902:
B903:

BF06:
B908:
B90A:
B90C:

BSOF:
B911e
BY13:
B915:

@

AR A A A A A R R B R A B R kR R R X R

NRA2ERHEE R4

=G28R8 W8 # H=

#3484 HABE 4

3838853536

T11

]
pg

4

T

330388

8TA

11311

g3

%35

$35

$36
#$00
$35
S$EG9F
HE00

($I5),Y

$D3

(835),Y
sD4

#301
$35
#$05
S35
#801
($35), Y
$B90A

$01
($35),Y

($35),Y

($35),Y

$01
$03
$01

$36
$BBE2
#9FF
($35),Y

$3I5
#802
*9C
356

B?17:
B919:
B91B:
B91C:
B?1F:
B920:
B9Z1:

B925:
B927:
B?29:
B72B:
B92C:
B?2D:
B92F:
B931:
B?33:
B935:
B9X7:
B9397:
B93A:
B93C:
B93IE:
B93F:
B940:
B941:
B?42:
B943:
B945;
BE94&:
B948:
B949:
B74A:
B94B:
B4E:
B951:
B9354:
B9S57:
B9S5Y:
B935B:
B?5D:
B95SF:
BY&2:
B9&4:
BY4L:
B9&B:
B9&B:
BP&E:
B?&F:

CEE NN R R R R R R R A R R R R R R R

BE88HR3

D

34

P8HTS

00
ET

07
30
03

F3

=98
B8R 8

/-
D=
Da
o7

o1
OR
D3
D4
ED

D3

STA
RTS
JSR
cLC
TYA
ADC
STa

ADC
STA
TYA

:

LD

<

23835

INY

53338888387

-
D

Y

:

JSR
JSR
JSR

Reg

LDA
STA

LDY
LDA
JSR
JSR
PLA
TAY

#300
$9D

$BA34

$3A

$3B
#$00
$EA

#8500
($EF), Y
#$3A
$B93C
#$30
$B93C

$BY2F
($EF), Y

3 8

$00EB
SDFCF
$D871
SBE9S
s$D3
$D4
$B944
#%00
$0101
$B9&E
$D3
D4
$D3ED
$BAZC

B970:
B971:
B973:
B974:
B976:
B977:
B979:
B97B:
B97D:
B97F:
B981:
BF84:
B987:
B988:
B?89:
B988B:
B98BD:
B98F =
B991:
B99Z:
B994:
B994:
B998:
B99A:
B99C:
B99D:
B99E:
B99F:
B?Aa0:
B9AZ:
B7AS:
BFAT7:
B9AY:
B?AB:
B9AD:
BYAF:
B9BE1:
B?B3:
B9BS:
B?B7:
BE9B9:
B9BB:
B9BD:
B9BF :
P9C1:
B9C3:
B9LCS:
B9C7:
B9C:

SRR 2R8ERE
88FB63

o
]
B8

28338328

W
[

3333332833 2883838888835

nABRBB8IBICSRNAEREAECS

-n
o

883

ET

RN

F3
ZA
2C
80

STA
LDY

($3A4),Y
#$3A
$B996
#$30
$B996

$B787
($3A),Y

$B91C

$B8DA
#8301
$3A
#$05
$3B
#%01
($3A),Y

#$FF
$BIDF
#3804
($3A),Y
$B9D1
#$97
$B9CY
#$CT
$B7CY
#sC8
$BICY
#$9B
$BYCE
$B91C

B9CC:
B9CE:
BYCF:
BYD1:
B9D2:
BFD3:
BYD4:
B9DA:
BYD8:
BYDA:
B9DC:
BYDD:
B9DF:
BYE1l:
BYE3:
B9ES:
BYET:
BYE9:
B9EB:
BYED:
B9EF:
B9F 1:
BYF3:
B9FS:
BYF7:
B9F7:
B9FB:
B9F¥D:
BYFE:
BAOO:
BAOZ:
BAOA4
BAOA:
BAOT7 ¢
BAO9:
BAOA:
BAOB:
BACD:
BAOF =
BAll:
BA13:
BAl4:
BAlb&:
BAlB:
BAlA:
BAl1D:
BA1E:
BA21:
BA23:

830283038 EN330-38888

2ARABUANAESRAHRA

28238232382
GeRb

ah8882388F8Ahed383

E4

E888

#REE 3

S8 hH8=2

REIZRER

1]
k]

T

T1.iL:

HE

S5ThA
JSR
RTS
JSR
LDA

$B9BS5

$3A
$3A
$B9DC
$3B

S$B?AB
#301

#8035
$36
#3501
($35),Y

$BAls

($35),Y
#$00
($35),Y
#$02
($35),Y
#301

($35),Y
#$04
($35),Y
$BA0Y

$BAD2
$35
$35
$BAl3
$36
SBYE7

($35),Y

BAZ4: AS EA LDA S$EA
BAZ6: 48 PHA

BA27: 20 9F B% JSR S$B9?9F
BAZA: &8 PLA

BAZB: 85 EA STA S$SEA
BAZD: &8 PLA

BAZE: 85 ET STA SE9
BAZO: 20 04 EB JSR S$SEBO4
BA3Z3: &0 RTS

BAS4: C8 INY

BA3S: Bl 3A LDA (s$34),Y
BA37: C9 20 CMP #8$20
BA39: FO F9 BEG $BA34
BA3B: &0 RTS

BA3LC: a3 DS LDA SDS
BA3E: 10 O7 BPL $SBA47
BA40O: AT 38 LDA #%58
BA4Z2: AD BA LDY #s$BA
BAd4: 20 97 DA JSR SDA97
BA47: 20 D1 EO JSR $EOD1
BA4A: &0 RTS

8.3 Delete utility

It is often useful to be able to extract part of a program, but normally this would involve much
typing in order to remove the unwanted lines. Here is a short routine that will delete any given
section of a program.

To run the program, DOKE 0 with the lowest line number and DOKE 2 with the highest line
number. When you are ready to delete part of the program, type CALL#420. For example,

DOKEO,100: DOKE2,200:CALL#420 would delete lines 100 to 200 (inclusive).

Owners of version 1.0 ROMs should load the DELETE program before loading the BASIC
program that is to be modified, otherwise the #9C end-of-BASIC pointer will be incorrect.

Version 1.1 ROM owners must make these three changes to the listed routine:
#429: JSR C6B9 (find address of a given line number)

#441: JSR C6B9

#462: JSR C55F (create program links)

HOW THE DELETE UTILITY WORKS

This program first finds the address of the earliest line to delete, storing it at 0,1.

Then it finds the address of the line following the section that is to be deleted. It is then a simple
matter to move down the program, from the second address to the first. Finally, the program is re-
linked, and the #9C end-of-BASIC pointer corrected.

PROGRAM LISTING

This is given in Program 8.2.

GRCEROARERBAE8

oo
-0

20

SREMIE2US

SThA
LDA
sSTa
JSR

LDA
STA
cLC
LDA

STA

STA
JSR
LDY
LDA
STA
INC

INC
INC

INC
LDA

#%01
$33
$03
#%$00
$34
$C&E4
#%00

($CE) , Y
($00),Y

$00
$0450
$01
$CE
%0435

0458: C5 9C CMP s$9C
045A: DO EA BNE $0446
045C: AS CF LDA SCF
O4SE: C35 9D CMP $9D
0460: DO E4 BNE 30446
0462: 20 &F CS JSR S$CS&6F
04465: 18 cLC

0466: AS 791 LDA 291
0448: &9 02 ADC #%02
046A: 85 9C STA S9C
046C: 85 9E STA $9E
046E: AS 72 LDA €92
0470: &9 00 ADC #%00
0472: 85 9D STA $9D
0474: 85 9F STA $9F
0476: &0 RTS

0477: EA NOP
Program 8.2 Delete

8.4 Merge program facility

This is an invaluable routine, often used in connection with the previous two subroutines when
copying parts of BASIC programs around.

This program is much more sophisticated than the ‘join’ facility of version 1.1 ROMs, as it can
interleave two programs correctly and also replace duplicated lines.

To use Merge:

1. Load up the Merge machine code routine.
2. Load up the first BASIC program.

3. Type in CALL #B8AE.

4. Play back the tape containing the new section to be introduced. Any lines with the same line
number will act as replacements.

If the tape speed of the first BASIC program is different from the second, you will need to alter the

tape-speed flag. This is either O fast) or 1 (slow) and is stored at #67 (version 1.0) or #24D
(version 1.1).

The Merge routine will take a maximum of 3 minutes to complete, depending on the size of the
first program.

There must be room in memory to store both the original program andthe program that is merged.

HOW MERGE WORKS

It is not possible to insert lines into a program directly as they arrive from tape — there is not
enough time between bytes. The method used here is to move the existing program up to the end
of memory and then load in the new lines as a normal program. Then the Merge routine can input
each line of the program stored at the end of memory into the correct place. When this process is
finished, the #9C end-of-BASIC pointer is recalculated and the program is re-linked.

PROGRAM LISTINGS

Because the tape handling routines are greatly different between the two ROM versions, there
are two program listings (Programs 8.3 and 8.4).

BBOO: AT 05 LDA #$05
B802: 8BS 38 STA $38
B804: A 01 LDA #3%01
BBO&: B85 I7 STA $37
BB0OB: A0 03 LDY #$03
B8OA: B1 37 LDA ($37),Y
BBOC: C3S 3& CHF $3&
BBOE: FO 24 BEQ $BB34
B810: BO 2F BCS $BB41
B812: AO 03 LDY #$03
BB814: C8B INY

BB15: B1 37 LDA ($37),Y
BB17: DO FB BNE $BB814
B819: C8 INY

B81A: 98 TYA

p81B: 18 cLC

B81C: &5 37 ADC $37
BB1E: 835 37 STA $37
B820: 90 02 BCC $BB824
B822: E& 38 INC 38
B824: AOQ 00 LDY #$00
p82&6: Bl 37 LDA ($37),Y
B828: DO DE BNE $BBOB
BB2A: C8 INY

B82B: B1 37 LDA ($37),Y
B82D: DO DY BENE s$BBog
B82F: 18 CLC

BE30: &0 RTS

B831: EA NOF

BA32: EA NOF

BB33: EA NOP

BBB1:

E P R F AR R R R R

g%

37

04
D3

$38

2D

39
39
39

SEERY

01

w
0

n$8%

583338

SRR

STA

:

SBC
8TA

TYA
cLC

-

STA
LDA

:

8TA

23883

($37),Y
$35
$BB3F
$B841
$B812

#$00
$9C
$39
$9D

($39, X)
($39),Y
$39

$37
$B862
$3A

$38
$B871

#301

$3A
#3500
$3A
$B852

$7C
$9C
$9D
#$00
9D

($00), Y

BB87:

BB88A:
BBBB:
BBBC:
BE8D:
BEBF:

BE93:
BE94:
BB9S:
BB97:
BB99:
BBYA:
BB9C:
BB9D:
BH9E:
B8AD:

BBA4:
BBAL:
BE8A8:
BBAT:
BBAA:
BBAB:
BBAC:
BBAD:
BBAE:
BBAF:
B8B1:
BBB3:
B8B5S:
BBB7:
BBB7:
BBBB:
BBBD:
BBEF :
BBC1:
BBC2:
BBCA4:
BBCA:
BBCHB:
BBCY:
BBCB:
BBCD:
BBCF:
BBD1:=
BBD3:

BA28c388388883

[
o
m
0

&

48

28283

EHAEGSHES

2gn

BEQ
INY

INY
PLP
TYA

JSR
TYA
PHA
DEY
LDA
STA

LDA
SBC
STA

LDA
§TA
LDA
STA
LDY
LDA

$BE8A

$B883

$B879D
$B848

($00),Y
($37),Y

$B895

$00
$00
$01
#8800
$01

S9C
#$04
$35
$9D
#$05
$36
#SFF
$35
$00

#$B3
$36
$01

#801
$02
#$05
$03
#$00
($02) , Y

BBDS:
BBD7:
BBD9:
BBDE:
BB8DD:
BBDF ¢
BBE1:
BBE3:
BBES:
BBE7:
BBET:
BBEB:
B8ED:
BBEF:
BBF1:
BBF2:
BBF3:
BBF 4:
BBF5S:
BBF &:
BBF7:
BBFB:
BBFB:
BEBFE:
B701:
B90O2:
B903:
BT04:
BF0S5:
B906:
B907:
BR08:
B909:
B?0A:
BYOL:
BY0D:
B90OF
BY11:
B?12:
B714:
B917:
B718:
B?1A:
B?1B:
B91D:
B9?1F:
B921:

R R R R R R R R R R R R R A R Rk

o1
10
02
01
02
02
03
E&

39

CA Eb&

AB
04

&1

&2

7D
41

01

01
B4
17

E4
E8

5TA

HiF

33888 REE

RER8R388338 R uRRRREEE

a
B

THLY

($00), Y
$01
#$B4
$BBED
$00
$BBES
$01

$BBEY
$03
#$00
$BBD3

$35

SE&CA
$E4AB
$EBO4

$9C

$9D
$B741

$00
$01
#sB4
$B93A

B923: EA

B924: EA
B92S: A0 02 LDY #$02
B927: Bl 00 LDA ($00),Y
B?29: 85 35 5TA %35
B92B: C8B INY
B92C: Bl 00 LDA ($00),Y
B92E: 85 36 STA $3&6

BY30: 20 00 BB JSR $BBOO
BY33: 20 BO BB JSR $BB8O

B93&: AT 00 LDA #%$00
B938: FO E3 BER $BY1D
B93A: 20 &F CS5 JSR $SCS5&F
B93D: 20 FA FA JSR S$FAFA
B940: &0 RTS

B741: 38 SEC

BEF42: AS 9C LDAa $9C
B944: ET 02 SBC #s02
B946: B85 02 5Ta $02
B948: AS 9D LDA $9D
BE?4A: E9 00 SBC #$00
B94C: 85 03 STA $03
B?4E: A0 OO0 LDY #$00
B950: A9 00 LDA #$00
B952: 91 02 STA ($02),Y
B9S54: C8 INY

BY?5S5: 91 02 STA ($02).Y
B957: &0 RTS

BY58: EA NOF

B959: EA NOF

B9S5A: EA NOF

B?5B: EA NOF

B95C: EA NOF

B95D: EA NOF

Program 8.3 Merge (version 1.0 ROMs)

BB0OO:
B802:
BBO4:
BBO0O&:
BB08:
BBOA:
BBOC:

B810:
BB12:
BB814:
BB15:
BB17:
BB19:

BZZE383G238383

GREFYRYRESR

9 <

8TA
LDA
STA

#$05
$38
#s801
$37

($37),Y
$346
$BE34
$B841
#$03

($37),Y
$BB14

BB1A:
B81B:
BB1C:
BE1E:
B820:
BE22:
BE24:
BB2&:
B828:
B82A:
B82B:
B82D:
BB2F:
BB30:
BB31:
BE32:
BB33:
BB34:
BAXS:
BB37:
BE39:
BB3B:
BB83D:

B840D:
BB41:
BB42Z:
B843:
BBA4:
BB45S:
BB44&:
BB47:
BB48:
BE4AA:
BBAC:
BBAE:

BEBS2:
B854 :

B8358:
BBSA:
BBSC:
BB3SE:
BB&D:
BB4&2:
BB&Z:
BB&5:
BBA&T:

SEED

BIBE3UBBUBIRRERERE

328 RESRY

axgdy RUBERYY

$34988

39
39
39

= = m»>0 -
FYEEEELE

=
]

ABERIERRRR3ERE

288838353

-
2
p

I HT

r
g

J1EETLE

i
b

$37

$37
$B824
$38
#$00
($37),Y
$B808

($37),Y
$B808

($37),Y
$35
$B83F
$B841
$B812

#300
$9C
$39
$9D
$34
($39, X)
($39),Y
$39

$B8&62

$38
$B871

#801
$39

BB&T:
BB&B:
BB&D:
BB&F =
BB71:
BB72:
Ba73:
BB7S:
BB77:
BEB879:
B87B:
BB7D:
BB7E:
BB7F:
BBBO:
BE81:
BBE3:
BE85:
BBBR7:

BBBA:
BB8B:
B8E8C:
BB88D:

BE72:
BB93:
B894:
BB?S:
BB97:
BE99:
B89A:
BB9C:
B3Y9D:
BBYE:
BBAO;
BBAZ:
BBA4:
BBA&:
BBAB:
BBAT:
BBAA:
BB8AB:
B8BAC:
BB8AD:
BBAE :
BBAF:
BB8B1:
BBB3:

2388338883238 %R

D (1] o
SRR B E-E

BEEER

a mDbLmm
HdUnDB

rg8%

58533

&G88

37

Fo

00
00
01
00
o1

2C

35

0
|
D

TEERVEEIEL

PHP
LDY
LDA
BEQ
INY

INY

TYA
BCS
JSR
TYA

DEY
LDA
STA
DEY
BPFL
PLA
cLC
ADC
STA
LDA
ADC
s5TA
RTS
NOP
NOF
NOP

NOP
SEC
LDA
SBC
8TA

$3A
#$00
$3A
$B852

$9C
$9C
$9D
#%00
7D

#$04
($00),Y
$BB88A

$B883

$B89D
$B848

($00),Y
($37),Y

$BB9S

$00
$00
$01
#$00
$01

$9C
#304
$35

g
=

HhHLL

AL EEEEES X ER-EE:

R EEE P ER LR EY R

B85

Bl
71

cCe
FO
Eé

E&
Eé6

E&6
A9
FoO
AT
8D

8D

20
20
20
20
20
AD

AD
a5

&H8

G8&8
2

SF8 8LAFRS

38aGR8=2

o
=

01

]
- 2

o
=8

8

o2
02
02
E7
ES
E4
ES
E4
E?
02

02

B?

LDA
SBC
5TaA

STA

LDA
SBC
STA

LDA
SThA
LDA
STA
LDY
LDA
STA

CMP
BEQ
INC

INC
INC

INC
LDA

LDA
S5TA
sTA
STA
JSR
JSR
JSR
JS5R
JSR
JSR
LDa
STA
LDA
STA
JSR
PLA
STA
PLA
STA
LD#A

9D
#$05
$346
#S$FF
$35
$00

#EB3
36
$01

#$01
$02
#$05
$03
#$00
($02),Y
($00),Y
$01
#$B4
$BBED

$BBES
$01
$02
$BEEY?

#5000
$BBD3
#$00
$027F
$0Z5B
$025A
SE7&A
$ES7D
$E4AC
S$ESTB
S$E4EOD
SE93D
$02AB
$9C
$02AC
7D
$B741

$01

2300
301

B91F: C9 B4 CMFP #$B4
B921: FO 17 BE@ $B93A
B923: EA NOP

B?24: EA NDP

B925: A0 02 LDY #$02
B927: Bl 00 LDA (s00),Y
B929: B85 35 S5TA $35
B?2B: CB INY

B92C: Bl 00 LDA (s00),Y
BY2E: 895 3& STA $34
B930: 20 00 BB JSR $BBOO
B933: 20 BO B8 JSR $BBBO
B93&6: A9 00 LDA #300
B?38: FO E3 BEG@ $BY1D
B93A: 20 SF CS JSR SCSSF
B3D: 20 14 FB JSR SFB14
B940: &0 RTS

B?41: 3B SEC

B942: AS 9C LDA $9C
B944: ET 02 SBC #s02
B?4&6: 85 02 STA $02
B948: AS 9D LDA s%D
B?4A: ET 00 SBC #300
B?4C: 835 03 STA $03
B74E: AOQ 00 LDY #$00
B?350: AT 00 LDA #300
B952: 91 02 STA ($02),Y
B?54: C8 INY

B955: 91 02 STA (s02),Y
B?957: &0 RTS

B?58: EA NOP

B?59%: EA NOP

B93A: EA NOP

B93B: EA NOP

Program 8.4 Merge (version 1.1 ROMs)
8.5 AUTO DATA feature

This utility is designed to save time when typing long programs. As it stands, the program types
the next line number (in sequence) followed by the command ‘DATA’, every time that you press
RETURN.

This can be easily changed to any other automatic command — such as PRINT —or just the line
number alone.

On version 1.0, remember to load the machine code program before you load the BASIC
program, or the end-of-BASIC pointer will be incorrectly set up.

To start the AUTO feature, CALL #4A1. To stop the AUTO temporarily (to do an immediate
command, such as CSAVE), you can use CONTROL-X. To turn off AUTO, you need to do two
DOKE commands in immediate mode: For version 1.0 ROMs, do: DOKE #229 #EC03:POKE

#230,64. For version 1.1 ROMs, do: DOKE #245 #EE22:POKE #24A,64.
Before you call the routine, you must DOKE 0 with the starting line number and DOKE 2 with the

line increment.

This routine can only handle line numbers up to 32767. You will also find that the first digit of the
line number will be lost whenever the ‘READY’ message appears.

HOW AUTO DATA WORKS

The routine is called every time that an interrupt occurs (normally 100 times per second) before
the keyboard is scanned. When the last key pressed was RETURN, the AUTO routine feeds in
the next line number and the word ‘DATA’ (not as a token!). To the system, it is as if these keys
have been pressed. You will notice a small delay is made between the end of one line and the
start of the next. This is done because problems arose when characters were sent at full speed
and the line was corrupted as it was stored in memory.

It is at #453 that the word ‘DATA’ is moved into a temporary buffer, but this can be altered or
removed if required.

If you change location #454 to #0, the subroutine will only generate a line number.

PROGRAM LISTINGS

There are two program listings, one for each ROM version (Programs 8.5 and 8.6).

0410; 08 FHF

0411: 48 PHA

0412: BA TXA

0413: 48 PHA

0414: 98 TYA

0415: 48 PHA

0416: AD DF 02 LDA $0Z2DF
0419: 30 OE BMI %0429
041B: AD 00 04 LDA $0400
041E: C9 8B CMF #%88
0420: FO 57 BER $0479
0422: C9 66 CMF #3646
0424: DO 03 BNE %0429

0426: 4C BB 04 JMF $04BB

0429:
O42A:
042B:
042C:
042D:
042E:
O42F:
0432:
0434:
0437z
0439:
043C:
0O43E:
0440:
04435z
0444z
0448:
044B:
044D:
0450:
0451:
0453:
0455:
0458:
04542
045D:
0450:
04562:
04465:
08467z
0456A:
D45B:
(sl ¥-10 H
D4a46F 2
0471:
0473:
0475:
o477 :
0478:
0479:
047C:
0O47F:

04822
04B84:
0484:
0489:
0488:
O4BE:
04703

38332888333 YERRCT52ABEBEEE

3333

-
o

883 IRACBELARGE

g
$8AK8

5

o7

04

D3
EO

g

£ 8 8% %

222

28 %

02

04

5TA

STA

LDY

mn
D

T

1EL

#%$B88
$0400
#$01
$0401

$01
$D3ED
$EOD1

$0100,Y
$0453

$0402,Y
#3541
$0403,Y
$0405, Y
#3554
$0404,Y

$0404,Y

$0401
$0401
$0402, Y
#$80
$0429

$0429

0410z
o411
0412
04173z
0418:
0415z
0416
0419
O41B:
O41E:
D420
042322
0424:
OAa26s
0429
Oa2Ae
Q428
042C:
04205

PPEBBABRI3ELE2 30888

AAE2MBYEEETE3E3B3E38888388388

JHaRR2] BRUVSKHRHE3IELE

SRFYABRST

=]
-

a

2 8
LA IRITEE:

EEGER

8

R

R

02

0z

04

04
04

04
04

1117

EHS

3

S5ThA

#$BD
$049E

#8501

$040F
$040F
$04CB
$0432
$0429

AUTO DATA utility (version 1.0 ROMas)

i3

-
o
k-1

1%

0429
$0400

$0477

$0429
$O4BE

Program 8.8 (continues)

O42E:
042F:
0432z
0434
08437:
0439:
O83C:
O43E:
0440
0443:
D445:
0448z
044B:
044D:
0450z
0451
0453:
0435:
0458:
045A:
045D:
04&60:
0442:
(oL T4 H
0447
Od4&A:
044B:
044D:
Qa&F 2
0471:
0473:
0475:
0477:
0478:
0479:
047C:
O/47Fz

0482:
0484
048é6:
0489:
048D:
DA4B8E :
0490z
0491:
0492:
04952
0497
049%9:

838348

$§338333888382838E2

)
0 0

18

SRE88HE282288N

01
01
02

ERRES

FAER

04

D4
EO

01

04

04

04

04

04

04
04
04

02

04

JMP

STA
LDA
sSTA
LDY

JSR
JSR
LDY
LDA
BER
SThA
INY

LDA
STA
LDA
STA
sSTA
LDA
STA
LDA
s5TA
CLC
LDA

STA
LDA
ADC
STA

NOF
LDY
INC
LDA

BER

5TA

STA
BEQ

PHA
LDA

SEE22
#s88
$0400
#8001
$0401
$00

$01
+D499
SEODS
#$00
$0100,Y
$0453
$0402,Y

$0448
LE S
$0402,Y
4841
$0403,Y
$0405,Y
#e54
$0404,Y
#8000
$0406, Y

$00
$02
$0C
$01
%03
%01

%0401
%0401
$0402,Y

$048E
#%80

S02DF
$0429
$0400
#0429

$02DF
#+8D
$049E

STA S0/00

2
2
3
g
:

O49E: &8 FLA

o49F: 28 PLP

04/0: 40 RTI

O4Aal: AT aCc LDA #&$4C
04A3Z: BD 4A 02 STA $024A
o4ALK: AT 0 LDA #3590
O4R8B: 8D 4B 02 STA S024B
o4AB: AT 04 LDA &304
Oo4aD: 8D 4C 02 STA S024C
0o4B0O: A% 10 LDA #%10
04B2: 8D 43 02 STA %0245
04B5: AT 04 LDA @&$04
04B7: 8D 46 02 STA $0244
04BA: &O RTS

04BB: AD OF 04 LDA SO040F
O4BE: 2% 01 AND @301
Oo8C0: BD OF 0§ STA SO40F
08C3: CE OF 04 DEC SO40F
04C&2 DO O3 BNE SOACE
O4CB: 4C 3Z 04 JMP $0432
O4CB: 4C 29 04 JHP S0429

Program 868 AUTO DATA uiility (version 1.1 ROMs)

8.6 Trace utility

This program helps a BASIC program to be debugged by constantly displaying the current line
number as the program runs.

This is often useful in determining what exactly a program is doing. If a program should crash, or
go into a tight loop, then this will be immediately noticeable.

USING THE PROGRAM

The Trace program should be loaded from tape first, followed by the program to be traced. On
version 1.0 this order is important since the end-of-BASIC pointer (#9C) must reflect the end of
the BASIC program.

To start the trace, type CALL #495 — a very large number should appear in the top left corner.
When you run your BASIC program, this number will change to show the line number currently

being executed.

HOW IT WORKS

The program is called by the slow interrupt vector, but only updates the line number when it
changes. Locations #A8, #A9 contain the current line number in integer form, so this must be
converted to decimal and displayed. This could be done with ROM subroutines, but you must
remember that we are in the middle of an interrupt call; it is important not to disturb any page 0
and page 2 locations that might be in use.

In the Trace program, we use a standard binary-to-decimal technique which involves the
subtraction of the powers of 10.

The Trace program demonstrates how it is possible for the Oric to do two tasks at the same time.
The demonstration program for the Oric Atmos uses interrupts in order to play music while the
main BASIC program runs. Chapter 9 shows how it is possible to run two BASIC programs

concurrently —again using interrupts.

PROGRAM LISTING
First of all, there is a table of 11 bytes at #4A1:
#AA1: #10, #27, #ES8, #03, #64, #00, #OA, #00, #4C, #22, #04

This table contains the binary value for each power of 10. At the end of the table is the jump that
overwrites the page 2 slow interrupt vector. Owners of version 1.1 ROMs should DOKE #49B with

#24A because of the different interrupt patch address.

The program listing is given in Program 8.7.

0422:
0423:
0424:
0425:
04262
0427
0428:
0429:
042B:
042D:
042F:
0431:
0433:
0435:
0437 :
0439:
043B:
043D:
0O43F:
0442:
0444:
0444:
0448:

RN EENEENEEEEE R L

?8E8303IRBBAIRRB

AGBES

01

04

LDA

LDA
STA
LDA
STA
LDA
STA
LDA
sSTA
LDA
sSTA

$AB
$02
$043D
$A9
$03
$048F
$AB
$02
$A9
$03
#$00
$0420
$A8
$00

$01

O44A:
044C:
O44E:
0450:
04351:
0454 :
0454:
0458:
0459
045C:
045E:
04560:
o481z
044622
0446%:
04465:
04466:
D46B:
045B:
04&D:
O456E:
0470:
0473%:
0476
0879
o47C:
047F =
0480:
0481:
0483:
0485:
0487 =
0489:
048C:
O48F =
0490:
0491:
0492
049%:
0494 :
0495:
Q497
0497a8;:
049Dz
D49E:
O4A0:
O4A/1 =
O/AZ2:
04A5:

IBHRILERE

o 0
mo

BRRSARSSRIGREERT

an
o m

TR R

PBDESB3338835

00
4 10]
00
Al
o1
Al

o1

m
0

RE8BRE 828

02
A7
30

F7

04

04

o4

04
o4

o4
o4

04
02

LDY
LDX
LDA
SEC

5TA
LDA
INY
SBC

STA
INX
DEY
SEC

DEY
LDA
ADC
8TA
TXA

5TX
LDX
STA
INC
LDX
INY
INY

#$00
#%00
$00

$04A1,Y
$00
$01

$04A1,Y
$04465
$01

$044E

$00
s$04A1,Y

#$30
$0421
$0420
$BB8O, X
$0420
$0421

#%08
$044LC
$00
#$30
$0420

#302
$04AF,Y
$0230,Y

$0497

8.7 On-error GOTO feature

When a BASIC program stops, it always returns to command mode. This can be undesirable,
especially on the production version of a complicated program, where obscure bugs may still be
lurking. Also, it is often a nice touch to detect control-C, and not just crash the machine, but
instead jump back into the program.

This short utility traps any attempt to return to command mode and forces the computer to re-
enter the program at line 500, without loss of variables.

Be warned that using this routine can be a little annoying to yourself, especially when you find
yourself stuck in your own program!

HOW IT WORKS

When BASIC finishes a program, or a command, it prints ‘Ready’. This is not done directly, but
instead through a jump command at #1A to #IC. This means that the jump can be modified for our
own purposes. Often the address at #1B is changed so that the machine simply jumps to the
start-up routine — wiping everything out. If you want to do this incidentally, type DOKE
#1B,DEEK(#FFFC).

Here we change the vector to jump to #B1DO (the program can be easily relocated to another
address if you wish), so you must DOKE #1B, #B1DO.

The routine does exactly what would have normally happened; then we force ‘GOTO500’ into
BASIC’s input buffer, as though it had been typed, which persuades the machine to re -enter the
program. The GOTO500 can easily he changed to any other command. Note that when the
program is re-entered, all GOSUBs have effectively been POPped, so RETURN will produce an
error message — and unless you are very careful, you will end up with unceasing display of that
error message, since there is now a fault in the error handler!

HOW TO USE THE PROGRAM

Version 1.1 owners will need to change #B1F0 to JMP #C4BD. The on-error feature is switched
on by DOKE #1B, #B1D0 and off by either DOKE #1B,#CBED (version 1.0) or DOKE #1B,#CCB0
(version 1.1). You can quite easily change the line number that is jumped to by altering #B1D8 to
#B1E3.

Note that should a BASIC error occur, you will still get the error message printed before the
program continues. This is one occasion where control-S can be used in order to inhibit the
printing of error messages. The screen will still scroll if the cursor is within the bottom four lines,
regardless of control-S.

PROGRAM LISTING

B1DO: &8 FLA

BiD1: 4E F1 02 LSR SO2F1
BiD4: A9 97 LDA #8997
BiD&6: B3 35 STA S35
BiDB8: A9 35 LDA #835
BiDA: 85 36 STA $36
B1DC: A9 30 LDA #$30
B1DE: 835 37 STA $37
B1EO: A9 30 LDA #$30
B1E2: 85 38 STA %38
Bl1E4: A2 04 LDX #%04
BlE&: A0 00 LDY #$00
BlE8: 84 39 STY $39
Bl1EA: A2Z 34 LDX #$34
BIEC: A9 13 LDA #$13
B1EE: 85 30 STA %30
BiFO: 4C CD Ca& JHMP sSCA4CD

Program 8.8 On-error GOTO facility

9. STRETCHING THE ORIC TO ITS LIMITS

9.1 Introduction

This chapter presents a few ideas that are more interesting than practical. It is
hoped that these last few programs will encourage further experimentation —
perhaps to improve the methods used.

9.2 Speech synthesis program

The first thing to be said here is that you should not expect too much of this
program!

Speech synthesis is normally done with the help of a special add-on piece of
hardware. The two programs below show that a limited form of speech synthesis
is possible on an unexpanded Oric. The speech produced is frequently
unintelligible, requires about 2K per second of speech, but can add a touch of
magic to a dull program.

The program here fills up about 15K of memory in around 7 to 10 seconds
(depending on the content of the message).

USING THE PROGRAM
There are two very short programs (it is just the data that is bulky!).

The first reads from the cassette port and produces a stream of data in memory.
The second reverses the process, but puts out the speech through the
loudspeaker via the sound chip.

The best way to create a message (at least when you first experiment) is to set
up the cassette recorder so that as you record, the signal goes directly to the
Oric. On many cassette recorders, this is done by disconnecting the recording
jack, so that the internal microphone is used, but leaving in the earphone jack. If
your cassette recorder cannot do this, or has a five-pin connector, you will have
to record the message on the cassette recorder and then play it back.

For best results speak loudly, clearly, slowly, and very near to the microphone. If
you are recording on to tape, play your voice back at a very high volume. You
will find that music will not come out in a recognizable form, although pure tones
(such as whistling) come out clearly, but much faster.

If you have difficulties at first, try different levels of playback, and above all
remember to speak S-L-O-W-L-Y!

Words containing the letters T, S, and D will sound better than letters such as P,
L,and R.

To record a message, type CALL #420 once all the connections have been
made, and start talking immediately! After about 10 seconds of constant speech
the program should return to you. If not, then something has gone wrong — the
Reset button should get you out of trouble.

When you are ready to hear the Oric’s interpretation of your message, type in:
PLAY 1,0,0,0:SOUND1,1,1:CALL #480.

Prepare to be disappointed for the first few attempts!

THE THEORY BEHIND THE PROGRAM
The first program at #420 works as follows:

. Interrupts are disabled — we need full use of the machine and the cassette also
needs to be used.

2. Locations 2,3 are used to point to the next address where data is stored.
3. At #42D, the cassette input bit is cleared by reading from port B.

4. When #30D contains #52, then one bit has been received from the cassette
input port; otherwise counter X is increased — measuring the gaps between input
bits.

5. When a bit is received, or the counter reaches 255, the value of the counter is
stored at the next address as pointed to by (2,3)

6. When the pointer at (2,3) reaches #3400, interrupts are enabled again and the
program returns to BASIC.

Obviously, you can change the lower and upper limits of the data area to suit
your needs. Once the data has been input, you can edit it — for example, to
remove any delay at the front of the message. The data can then be stored on
tape, or incorporated into a larger program.

The second program has to work in reverse of the first, turning the series of
counts into a series of clicks. Providing that these clicks are separated by the
same time interval as the gaps between each bit in the original signal, you should
get an approximation of the speech. The main problem encountered when
developing the idea was that the ROM subroutine which writes to the 8912 sound
chip is incredibly inefficient. From #4AD to #4C6 you will find a considerably
faster routine to write value X into register A.

The second program alternates between sending a volume of 7 and a volume of
13 to channel A. The SOUND 1,1,1 command will have set up a frequency that is

beyond both human hearing and the capabilities of the loudspeaker, so the basic
sound signal does not show up during pauses.

Here is how the program at #480 functions:
1. Disables interrupts to get the maximum use of the machine.
2. Sets up the pointer (2,3) to the start of the data area.

3. Delays depending on the next byte of data. The NOP instructions act as a fine
tune to get the best results. Two-millionths of a second can make all the

difference to this program!

4. Sets the volume to either 7 or 13, and writes this to register 8 of the 8912 chip.
5. When the pointer (2,3) reaches #3400, enables interrupts and returns to
BASIC.

CHANGES FOR VERSION 1.1 ROMS

Four changes are required if you own a version 1.1 ROM:
#420 JSR #E76A

#451 JSR #E93D
#480 JSR #E76A

#4D2 JSR #E93D

PROGRAM LISTINGS
There are two — Programs 9.1 and 9.2

0420:
0423:
0425:
0427:
0429:
042B:
042D:
0430:
0432:
0434;
0437:
0439:
043A:
043C:

043E:
Q43F:
0441:
0443;
0444;
0445:
0447;
0449
044B:
0440:
O044F:
0451:
0454:

20 CA Eb&

A7
85
A7
a5
AOD
AD
A2
A7
CD

SN888GRRNE

03

FO 05
EB

DO F8
A2 FF

aa
21
AZ
ca
Do
ce
Do
E&
AS
ce
Do
20
&0

02
01

FD

E4
03
03
34
Dc
04 EB

JSR SE&CA
LDA #$00
STA 802
LDA #$06
STA $03
LDY #%00
LDA $0300
LDX #300
LDA #s$52
CMP $030D
BEQ $O43E
INX
BNE $0434
LDX #S$FF

TXA

STA ($02),Y

LDX #%01

DEX

BNE $0443

INY

BNE $042D

INC $03

LDA $03

CMP #$34

ENE $042D

JSR $EB04

RTS

Program 9.1 Speech input (#420-#454)

Program 9.2 follows.

0480:
0483:
0485:
0487:
0489:
0488:
048D:
048F =
0490:
0491:
0492:
0f493:
0494z
Q495:
o497 :
Q499:
049B:
049C:
049E:
04A0:
04A2:
04A4:
04Ak:
04A8:
O4AA:
04A/B:
Q4AD:
04B0O:
04B2:
04B5:
04B7:

04BA:
04BD:
QO4BF:
04C2:
04C4:
04C7:
04C8:
Q4CA:
O4CC:
04CE:
04D0O:
04D2:
04D5:
04DéA:

20
AZ
85
A7
BS
AD
Bl
AA
CA
EA
EA
EA
Ca
Do
ce
BO
EA
AS
c?
DO
AT
Do
A
85
AR
A7
8D
A9
8D
29
BD

8E
09
8D
29
8D
c8
DO
Eé
AS
c9
DO
20
&0
EA

CA E&

00
02
o0&
03
o0
02

FD
FF
2C

04
07
04
oD
02
07
04

o8

OF 03

FE

oCc 03

Db

oC 03

OF
20
oC
DD
oc

c3
03
03
34
BB
04

03

03

03

EB

JSR
LDA
S5TA
LDA
STA
LDY
LDA
TAX
DEX
NOP
NOP
NOF
DEX
BNE
CHMP
BLCS
NOF
LDA
CMP
ENE
L.DA
BNE
LPA
5TA
TAX
LDA
STA
LDA
85TA
AND
STA

STX
ORA
STA

STA
INY
BNE
INC
LDA
CMP
BNE
JSR
RTS
NOFP

$E&CA
#$00
$02
#$06
$03
#$00
($02),Y

$0494
#S$FF
$04C7

$04
#3507
S04A5
#3$0D
$04A8
#$07
$04

#3508
$030F
#3$FE
$030C
#$DD
$030C

$030F
#%$20
$030C
#$DD
$030C

$048D
$03
$03
#%$34
$048D
$EB0O4

9.3 Extra 6502 op-codes

Out of the 256 possible instruction codes, about 100 would appear to be unused.
However, if you try to execute any of these, one of three things can happen:

1. The machine crashes.
2. The instruction acts like a NOP, and alters nothing.
3. The instruction obeys a combination of instructions.

The first of these is very puzzling— it appears that the 6502 itself halts, refusing
to obey any more commands until it is reset (not by the NMI button undemeath
the Oric). These instructions, which we might give the mnemonic KILL, have
instruction codes ending in #2— e.g., #22 — except for the valid instruction #A2.

The second category is not very important, except that, in doing nothing, the
instructions are still useful in protecting a program from being understood! A
disassembler program will usually be unable to cope with any unknown
instructions and will often be misled into passing over real instructions in your
program!

Just as real instructions can take 1, 2, or 3 bytes, so can our new ‘NOP’
instructions:

One-byte NOP instructions: #1A, #3A, #5A, #7A, #DA, #EA, #FA.
Two-byte NOP instructions: #64, #74, #D4, #F4.
Three-byte NOP instructions: #0C, #1C, #3C, #5C, #7C, #9C, #DC, #FC.

The third category are the most interesting instructions — hybrid op-codes. Some
instructions on the 6502 do two operations at once. These are instruction codes
ending in #3, #7, and #F. You may find that instructions ending in #B also do a
combination of things, but not to any fixed pattern.

What happens to these instructions is that they execute two instructions in quick
succession. For op-codes ending in 3, combine that op-code with an ending of 6,
followed by the same op-code with an ending of 1. For example, #23 is #26 and
#21, or:

ROL NN
AND (NN,X)
This is not a particularly useful combination, yet interesting nonetheless.

Similarly, op-codes that end in 7 are combinations of 6 and 5. For instance, #27
is #26, #25, or:

ROL NN
AND NN

Finally, op-codes that end in 4F are combinations of #E and #D. So #2F is the
same as #2E and #2D, or:

ROL NNNN
AND NNNN

IMPORTANT NOTE

There is noguarantee that the hidden op-codes act in the same way on all 6502
microprocessors. It is fairly likely that all Oric machines behave in the same way,
but it is still a risky business to rely upon any undocumented instruction.

9.4 Multitasking in BASIC

Fundamentally, a computer such as the Oric can only execute one instruction at
atime. This is done at such a speed that a computer can appear to run two or

more programs concurrently.

This happens on the Oric every hundredth of a second, in order to handle
interrupts, and the impression is given that two things are happening at once —

the cursor flashing on and off is an example.
As some of the programs in this book have shown, it is quite possible to use
interrupts to run a small machine code program as a background task. It is more

of a problem to be able to cope with two BASIC programs running
simultaneously, and such is the purpose of the routine in this section.

149

THEORY

The major problem with switching between two BASIC programs is that they
need their own versions of page 0, stack, and page 2 memory. Since copying
1500 bytes of data is a time-consuming task, even for machine code, we can
only afford to interchange the running of the two programs about every twelfth of
a second. Any less than that and we would be spending too little time on the
actual programs; any more and the interchange would become more noticeable.

The program uses #8100 to #83FF to store the first three pages of the BASIC
program 1 and #8400 to #86FF for BASIC program 2.

The multitasking is called by the slow interrupt vector, i.e., every hundredth of a
second. If the counter at #87FF is not either O or 8, the routine simply returns;
otherwise it switches from its current place in the program to the other position,
moving about all the important locations that BASIC uses. Instead of having two
different BASIC programs which are swapped in and out, this utility works by
allowing one BASIC program to have two independent sections running. All
BASIC statements will work — including CALL.

USING THE PROGRAM

A special part of the routine starts the procedure, by setting the counter at #87FF
to 255. This gives the first’ program a chance to split off into a different section. It
will be about two seconds before the machine will switch to the ‘second’ program.
The BASIC program example will demonstrate this (Program 9.3).

1 REM EXAMFLE OF SPLIT PROGRAM

2 CLS:kk=0

10 DOKERBTAF, #B877F: DOKENZIL , #B7AE: POKENZIO0, 74
20 REM SPLIT DFF FIRST PROGRAM

25 FORX=1TOFF:iNEXT

30 IFKK=0THENKK=1:GOTO&000

35 REM FROGRAM B GETS TO HERE

40 FORZ=1TOZ0000:PLOTLO, 10,8TR$({Z)
90 NEXT

5999 REM PROGRAM A BGETS HERE

&000 FORX=1rDZ0000: PLOTZ0, 20,8TRS (X)
6005 ZAPIFORT=1TO1D0sNEXT

&010 MNEXT

Program 83 BASIC example of multi-tasking

Firstly, #87AF is DOKEd with #877F — this makes the very first interrupt go to the
special routine at #877F, instead of the normal address at #8700.

Then the slow interrupt patch is entered— at #231 for version 1.0 (as listed) or at
#24B for version 1.1 —please use the appropriate address. Finally, location #230
(version 1.0) or #24A (version 1.1) is POKEd with 76.

Once this last instruction is complete and the first interrupt occurs (which will
happen some time during the FOR... NEXT loop), the current BASIC
circumstances are saved as the starting point for program 2.

Program 1 will then continue until 247 interrupts have passed, and has ample
time to switch to line 6000, preventing the second program from following.

When the second program does get to line 30, it will find KK equal to 1, and will
drop through to line 40.

PROGRAMMING LIMITATIONS

Since only the first three pages of memory are being switched, both the BASIC
program and its variables are being shared between the programs. Once the
program has separated into two paths, you will get into trouble if you try to set up

variables in each section since they keep their own account of the end of
variables, strings, etc. It is a good idea to have one section creating the variables
and the other only using variables set up before the multitasking began.

Although you can have a lot of fun experimenting with this idea (try pressing
control-C!), there are many pitfalls, and its practical use may be limited.

Note that the machine code areas ought to be protected by a HIMEM #80FF
command.

To stop the programs multi-tasking, cancel one of the programs (the other will
carry on while you are typing!) and enter either POKE #230,64 (for version 1.0)
or POKE #24A,64 (for version 1.1).

PROGRAM LISTING

8700: 78 SEI
8701: 48 PHA
8702: BA TXA
8703: 48 PHA
B704: 98 TYA

8705: 48 PHA

B70&:
g70%9:
a870B:
870D:
B70F:
B710:
8713:
B715:
8717:
a7ia:
871D:
8720:
B723:
B72&:

B72B:
872E:
8731:
8734:
8737:
g8738:
8734a:

873E:
8740z
8742:
B743:
8744&:
B748:
874A:
874D:
8730:
B753:
8754:
875%:
g7aC:
875E:
B7&1:
87&4:
87&7:
87&6A:
87&B:
87&D:
8770:
8771:
8773:
B77&:
8779:
B77A:

FC

00

00
o0
00
a0

88888

o0

DB
FB

10
FF
FF

87

B1
01
82
02
83
84

85
01
8&
02

87

87

84
01
85
02
86
B1

82
01

02

a7
87

LDA
BELR
CMP
BNE

S5TX
LDX

STA
LDA
S5TA
LDA

LDA
STA
LDA
STA
LDA
STA

$87FF
$8742
#3508

$877&6

$37FB
#$00

$00, X

$8100, X
$0100, X
$8200, X
$0200, X
$8300, X
$8400, X
$00, X

$8500, X
$0100, X
$8400, X
$0200, X

$8715
$87FC

#$00
$87756

$87FC
#$00

$00, X

$8400, X
$0100, X
$8500, X
$0200, X
$8600, X
$8100, X
$00, X

$8200, X
$0100, X
$8300, X
$0200, X

$8748
$87FB

#$10
$B7FF
$87FF

a877B:
877C:
g877D:
877E:
877F:
8780:
g781:
g8782:
g87a3:
B784:
B784:
a878%9:
878B:
g878E:
8790:
8792:
8795:
8798:
B79B:
B79E:
a7al:
87A2:
g87Aa4:
87a5:
87A8:
B7A9:
87AA:
B7AB:
87AC:
B7AD:
‘B7AE:
B7B1:
87B2:
87B3:
87B4:

&8
AN
&8

B8A
48
o8
48
A7
8D
A7
ab
A2
BS
7D
BD
7D
BD
7D
cA
Do
BA
8E
&8

E8G 353

EA
EA
EA
EA

FF
00
AF
00
00

00
00
00
o0

EC

00

ar
87
84
01
85

02
8&

87

a7

PLA
TAX
PLA
RTI
PHA
TXA
PHA
TYA
PHA
LDA
STA
LDA
sSTA
LDX
LDA
8TA
LDA
STA
LDA
STA
DEX
BNE
TSX
STX
PLA
TAY
PLA
TAX
PLA
RTI
JMP
NOP
NOP
NOF
NOP

#SFF
$87FF
#3500
$8748F
#3$00
$00, X
$8400, X
$0100, X
$8500, X
$0200, X
$8600, X

$87790

$87FC

$8700

Program 9.4 Multi-tasking routine

9.5 Single-key facility

Since the first appearance of cheap computers, there have evolved two methods
of entering programs.

The first Sinclair computers up to the ZX Spectrum use a single-key system, in
which every key, when combined with different shifts, generates a complete
BASIC word. For example, pressing ‘R’ could result in ‘RANDOMIZE’ appearing.

On the Oric, and almost all of the more expensive computers, each command
must be entered letter by letter. The reason for this is that BASIC is not

necessarily the only language available, and the BASIC commands would be
meaningless to FORTH, Assembler, etc.

The program in this section gives the capability of single-key command entry.
Although intended for use with BASIC, you could quite easily change the table of

commands to work with other languages.

USING THE PROGRAM

The program occupies the first two pages of the alternate character set, and so
will only be dislodged by a HIRES command, or the Reset button.

To run the program, type CALL #B894.
Owners of version 1.1 ROMs should also change #B89A to #49, instead of #2F.

While the single-key program is running, you can carry on typing commands in
full by switching to lower case (use control- T). Lower case will be turned into
upper case when commands are entered, and lower case only is applied when
quotes are used. This in itself is a useful tool when entering a lot of PRINT or

DATA statements.

When a capital letter is entered outside of quotes, a command is inserted. For
example, ‘N’ might produce the word ‘NEXT’. These commands are generated
from a table at #B900. This table contains the ASCII codes required for each
character between #40 and #5A. Each ASCII string must be terminated by #00.
This will be clarified if you examine the table of single-key commands, Table 9.1.

Table 9.1

BFOO: 40 00 41 53 43 2B 00 43
BF0B: 53 41 55 45 00 43 4C 4F
B?10: 41 44 00 44 41 54 41 00
B?18: 45 4C 53 45 00 45 4F 52
B920: 00 47 4F 54 4F QO 48 49
B928: 52 45 53 00 49 4E 50 355
B?I30: 54 00 47 4F 53 55 42 00
B938: 4B 45 599 24 00 4C 49 53
BF40: 54 OO0 4D 55 53 49 43 00
B?48: 4E 45 58 54 00 50 45 45
BE?S0:z 4B OO 50 4C 41 59 00 43
B58: 48 52 24 28 00 52 45 54
BR&0D: 55 52 4E 00 53 54 52 24
B96B: 28 00 54 4F 00 55 4F 54
BE?70: 49 4C 00 S5&6 41 4C 28 00
BF7B: 57 41 49 54 00 45 5B 50
BE7BED: 4C 4F 44 45 OO0 32 45 50
B7E8B: 45 41 54 00 5A 41 S0 00O

The single-key facility can be stopped by changing either #230 (version 1.0) or
#24A (version 1.1) to 64, using the POKE statement.

HOW IT WORKS

The program patches into the ever-popular slow interrupt vector so that it can
alter any keypress found in #2DF.

If a lower-case letter is entered and no quote has been found, it is converted to

upper case with a simple AND #DF instruction. If it is upper case, then the
appropriate word is located in the table, and that word is fed out to #2DF,
character by character, as part of the interrupt routine. A similar technique was
used by the AUTO DATA program of Chapter 8.

PROGRAM LISTING

The program occupies #B800 to #B8AA but could be easily relocated (Program
9.5).

Bg0O0: 78 SEI

B801: 48 PHA

B802: 98 TYA

BE803: 48 PHA

BBO4: BA XA

BBOS: 48 PHA

BBO&: A3 00 LDA S00
B0B: FO 1% BER $BB2Z
BBOA: AD DF 02 LDA $0Z2DF
BBOD: DO 73 BNE sBBB2
BBOF: A4 00 LDY %00
BB1i: BY 00 BY LDA SB700,Y
BB14: FO 09 BER s$BBIF
BB1l&6: 0% BO ORA #3B0
BB18: 8D DF 02 S5TA S$O02DF
BB1B: E& 00 INC $00
BE81D: DO 5B BNE S$BB7A
BB1F: 85 00 STA s$00
B821: FO SF BER s$BB82
BB23: AD DF 02 LDA $O02DF
B824: FO SA BER sBg2
Bg2B: 29 TF AND #%7F
BB2ZA: C7 22 CMP #3522
BE2C: DO OF BNE $BB3D
BBZE: AD FF B8 LDA <BBFF
BE51: DO OS5 BNE 4B838

B83Z3: EE FF BB INC S$B8FF
BB3&: DO 42 BNE <B87A

BB3I8:
BBIB:
BB3D:
BB40:
BB42:
BB44:
BB4SH:
BB48:
BEBAA:
BHA4AC:
BB4E:
BB30:
BE52:
BB54:
BBSA:
BB58:
BBSE:
BBSD:
BBSF:
BB&1:
BB&3:
BB&5:
BBb&b:
BB&T:
BBAT:
BB&A:
BEB&C:
BB&D:
B870:
BB72:

BB7I:
BA7S:
B874:
Ba7a:
BB7A:
BB7D:
BB7F:
BEB82:
BBES:
BBE7:
BBB9:
BBEB:
BBBE:
BBBF:
BBTF0O:
BBT71:
BB92:
BEB93:
BB94:

BPU83349538333338333ERIN

A2

888833

Do
EB

282G BRB3383288388F

FF
3D
FF

SEd828

0A
41
o9
=B
o5

Ci
1B
DB
17
iF

00

00

8o
DF
DF
8D
05
0
FF

03

BB

02

02

02
02

DEC

g

LDX

ELEL

0
=

M

2H38

T

0w
33

C

RER3E

HIHHE

BNE
INX
STX

LDA

STA
LDA
CMFP
ENE
LDA
SThA
FLA
TAX

TAY
PLA
RTI
LDY

$BEBFF
$BEB7A
$BEFF
sBS7A
#5561
$BE4E
#37B
$BB4E
#SDF
$B85H
#5541
+B85SB
#5358
$B8SH
#380
$02DF
#sC1
SBBTA
#$DB
$BB7A
#%1F

#3$00
$BB76

$B900, X
$BB&C

sBasC

$00
$BOF

#s$80
$02DF
$02DF
#$8D
$BE8E
#%00
$BEBFF

#8503

BEB?&4: BY A7 BB LDA S$BBAT,Y
B99: 99 2ZF 02 STA $022F,Y

BBFC: BB DEY
BEYD: Do F7 BNE $B8%&
BE?F: ©BC FF B8 STY SBBFF
BEBAZ: A9 2B LDA #52B
BBAad4: BD O7 03 8Ta $0307
BBA7: &O RTS
BBAB: 4C 00 BS JMF S$BBOO
BEBAB: EA NOP
BBAC: EA NOP
EBAD: EA NOP
BBRE: EA NOP

Program 9.5 Single-key utility

9.6 Silence routine
The last program in this book can be used to shut up even the noisiest program!

It works by altering the slow interrupt vector so that every hundredth of a second
all sound channels are disabled.

The routine will work for most programs, failing in cases where the interrupts are
tampered with. Most sound commands (including the keyclick) will generate a
very soft click, although some sound effects (such as PING and EXPLODE) will
present part of their noise before being silenced.

USING THE PROGRAM

Version 1.1 ROM owners should change the address at #42E to #F590, instead
of #F535.

Load up the silence routine first, and type

DOKE#231,#420:POKE#230,76 for version 1.0 ROMSs or
DOKE#24B,#420:P OKE#24A,76 for version 1.1 ROMs

The silence routine should now be in service— try typing ZAP — and you can now
load in the program to be silenced.

The silence routine can be finished by typing POKE #230,64 for version 1.0
ROMs or POKE #24A,64 for version 1.1 ROMs.

PROGRAM LISTING
This is given in Program 9.6.

0420: 4B FHA

0421: 8A TXA

0q422: 48 FHA

0423: 98 TYA

0424: 4B PHA

0425: AD OF 02 LDA $020F
0428: 48 FHA

0429: A2 3IF LDX #$3F

042B: A7 07 LDA #3507

042D: 20 35 FS JS5R $F535
430z &8 FLA

0431: 8D OF 0OZ STA $020F
0434: &B PLA

0435: AB TAY

0436: &B PLA

0437: AA TAX

0438: &8 PLA

043%: 40 RT1

Afterthoughts (August 1998)

Hehe, this chapter shows its age doesn’t it. I'm afraid my ignorance of some of the basic
concepts of digital audio in 1983 show up here, the proper way of playing back sound effects is of
course to use analogue to digital, store the data, and then the fun begins when we try to
playback. There is a way on this rather limited sound chip (when compared with today’s luxurious
sound blasters) to playback PCM data (i.e. wave files), which is to use the volume controls on the
three channels to simulate the wave’s amplitude - you'd probably need a ‘scope to do this

properly.

| think my explanation of the extra op-codes is probably inaccurate, it is not so much that two
instructions are executed, rather that the logic inside the ALU of the 6502 decodes the instruction,
and the logic simply has the effect of following a combination of instructions.

| wonder if any of the emulators for 6502 based machines work in the same way...

I like my bias against ZX Spectrums in this chapter, heh, | did go on to program the Spectrums of
this world, but | have to confess to having used an Amstrad CPC to do all the programming, | just
couldn’t stand that wretched keyboard.

