— g - |

User Guide

SPECTRUM SOFTWARE
The entire range of software available for
Spectrum computers (including all existing
titles) is completely compatible with your
new ZX Spectrum+.

INTRODUCING THE ZX SPECTRUM +

Sinclair Research has long led the advance in microchip
technology that has brought computing to all. Following
the advent of the world's first low-cost microcomputer,
the ZX80, we have combined ever greater computing
power with ever greater value in its successors — the

ZX81, ZX Spectrum and QL computers. Ease of use has

also been our watchword, both in the design of these
products and in the ways in which they work.

The ZX Spectrum + takes Sinclair Research one further
step along this road. In it, you have a machine with all the
best features of the Spectrum in an upgraded version that

makes this most powerful and popular of all
microcomputers even simpler to use. It is our hope that
you will take full advantage of the many possibilities that
your new computer will provide.

Lo T —

CONTENTS

GET GOING 3

START PROGRAMMING 17

LEARN ABOUT YOUR ZX SPECTRUM + 41

LEARN ABOUT SINCLAIR BASIC 49

Written by Neil Ardley
Published by Dorling Kindersley Ltd
in association with
Sinclair Research Ltd

HOW TO USE
THIS BOOK

This guide to your ZX Spectrum + contains four
colour-coded chapters. To turn to a chapter,
simply open the book at the section with the

right colour.

1 GET GOING

Setting up your ZX Spectrum + ® Tuning in your
TV m Setting up troubleshooter ® What your ZX
Spectrum + can do ® How to use ready-to-run
software m How to load a program ® Software
loading troubleshooter

2 START PROGRAMMING

The keyboard — your computer's control panel ® How

to operate the keys ® The television calculator

m Colour and how to use it ® Simple DIY graphics
® The on-screen sketchpad ® Design your own
patterns and pictures ® How to create your own

computer characters ® Animation ® How to make

music and sound effects @ How to save your own

programs ® Software saving troubleshooter

3 LEARN ABOUT YOUR ZX SPECTRUM +

What's inside? ® How does your ZX Spectrum + work?
® How to connect peripherals ® ZX Spectrum + memory map

4 LEARN ABOUT SINCLAIR BASIC

Programmer's reference guide to Sinclair BASIC
keywords ® Spectrum screen reports ® Beyond BASIC
m Computer jargon — what it means

GET GOING

This chapter shows you how to start exploring the
potential of your ZX Spectrum +. You'll find out here
how to set up the computer so that it is ready to
spring into action whenever you wish. Then you have a
choice. You can key in several prOﬁrams that put
the Spectrum through its paces and show off its colour
graphics and sound, or you can find out how to use
ready-to-run software, such as computer games.
Either way, you'll soon be enjoying operating
your new computer.

SETTING UP YOUR
ZX SPECTRUM +

To get your Spectrum ready for action, first
go through the checklist below to make sure
that you have all the parts you need, then

follow the instructions on the opposite page

for connecting and powering up. You do not
need to use a cassette player at this stage

Connect everything firmly. If you
accidentally disconnect or switch off the
power supply when the Spectrumis in use,
you will then lose your program and all your
information or results.

When you have finished with the
computer, switch off at the power point on
the wall if it has a switch and pull the mains
plug out of the power point.

Checklist: Have yo_u_got_ everything you need?

On unpacking, you
will find:

1 Your ZX
Spectrum +

2 The ZX Power
Supply — this produces
the 9-volt DC supply
required by the

| Spectrum

‘ 3 The aerial lead - this
connects your
Spectrum to a
television set

4 The cassette lead -
this connects your
Spectrum to a cassette ,[
player.

5 A guarantee card -
which you should
complete and return.

6 The User Guide
Companion Cassette.

7 This manual.

You will need to supply:
1 Atelevision set.

2 A cassette player,

3 A mains plug.

Setting up questions and answers

ZX Power Supply

Cassette lead

Aerial lead

Must | have a colour TV?

No. However, you will not be able to see the
colours produced by the Spectrum on a black-
and-white set.

Will any TV do?

Your Spectrum should give a picture with any
television set that you own. If it does not, the
reason may be that the television set and
computer have different picture systems. This
could happen if the television set is very old, or if
the television set and your Spectrum were
purchased in different countries. If in doubt,

consult your television dealer

Can | use a monitor instead of a TV set?
Yes. Your dealer may be able to supply monitors
giving a superior picture for the Spectrum

What mains supply is required?
The Spectrum requires a mains current of 1.4A
at 240V/50Hz, the standard UK supply.

Does the Spectrum produce interference?

The Spectrum may interfere with a radio that is
near the computer. This will not harm the radio
or the computer.

Can | use the ZX 16K RAM?
No. This RAM pack is only to be used with the
Sinclair ZX81 computer.

Powering up your ZX Spectrum +

Begin by fitting a mains plug to
theg twoybaredgends of thF:: v§ire
from the power supply. You will
then need to fit a 3A fuse to the
plug. Note that your Spectrum
does not require an earth
connection even if the mains
pllﬁ that you fit has three pins.
ext follow the sequence of
illustrations here to connect
your Spectrum to the mains
electricity supply and your
television set. Once you have
made all the connections and

powered up the system, turn
over the page to find out about
tuning in.

37

plugs on the aerial lead will fit.

\

P
©
Insert the aerial lead into the ~ Detach the aerial cable from
socket marked TV on your your television set. Insert the
Spectrum. Only one of the other plug on the Spectrum’s

aerial lead into the aerial socket.

P

v

Switch on the television set and Insert the small plug on the

turn the volume control right power supply wire into the
down. socket marked 9VDC on your
Spectrum.

Power socket
The 9-volt DC
supply produced
by the ZX Power

Edge connector
A wide range of
hardware, including
Microdrives, printers

Suppl and modems can be
transformer is connected here.
connected

through this

socket.

The microphone
socket of a cassette
player is connected
here in order to save
(record) programs

on cassettes.
-» —

Push the mains plug into a
power point and switch on if it
has a switch. Your Spectrum
does not have its own switch.

EAR socket

The earphone socket of a
cassette player is connected
here in order to load
programs recorded on
cassettes into the Spectrum

TV socket

The aerial socket
of a television set
is connected here
so that the
Spectrum’s
picture can be
seen on the
screen.

Reset button

TUNING INYOUR TV

Your Spectrum puts out a colour television
video signal at the frequency of channel 36
in the UHF band, so your television set must
be tuned to this channel to display the
computer's picture.

When you have powered up your
Spectrum and plugged it into the television
set, adjust the tuning control on the set until
you get the Sinclair copyright message as in
the first screen below. When you can see
this, you will be ready to test the Spectrum'’s
colours and then begin computing. If you
can't get the copyright message, or if the
colours don't look right, check through the
chart opposite.

Tuning controls

Variable tuning

A variable tuning
control selects any
channel. Just turn the
knob until you get the
copyright message.

Push-button tuning
Select a tuning button
which is to be used for
computing and then
adjust it until the
copyright message
appears. If possible,
use a spare button.
Then you will not have
to tune the set every
time you want to put
your Spectrum to
work.

Electronic tuning
With this system, the
set itself tunes in the
required channel. TV
sets with synthesized
channel selection but
no manual tuning
option may not be
suitable for use with
this computer.

How to test the Spectrum’s colours

To test the Spectrum’s colours, simply press the
B key and then a number from 1 to 6. The
copyright message disappears; first the word
BORDER appears and then the number. Now
press the key marked ENTER. The ‘border’ area

of the screen should change to the colour
marked on the number key. The screens below
show what happens when you key in BORDER 4
and ENTER and then BORDER 3 and ENTER.
BORDER 7 will return the border to white.

BORDER 4

BORDER 3

Tune in your television

Indistinct Sinclair Distinct Sinclair
copyright message

copyright message

| “Herringbone”
screen pattemn

fuse functioning?

electronic tuning?

Your system is
correctly tuned. Now test
the colour as shown
on the opposite page.

Are you using 5 Colours all functioning

a colour television

Adijust television colour
controls/fine tune

WHAT YOUR ZX
SPECTRUM+CANDO

First, experiment

Now that your Spectrum is powered up and
your television set is tuned in, try pressing a
few keys. You'll see words and letters
appearing on the screen, and maybe some
numbers too.

However, unless you know how to
program the Spectrum, it's unlikely that the
computer will respond by doing anything.
But don't worry — nothing can go wrong
with it, no matter which keys you press.

Now press the reset button on the left-
hand side of the computer, and you're ready
to set your Spectrum to work. The next four
pages will give you some demonstrations on
the TV screen of what the Spectrum can do.

To key in
position on the key. Then use the same
sequence of selector keys shown here.

'&g rd Press Lower ord or si

END MODE then Press EXTEND MOD

the key. then hold down
SYMBOL SHIFT and
press the key.

Top keyword (raised
M

Letter or number Lower keyword or si;
(raised section) Press (raised section) Hol
the key. Hold down down SYMBOL SHIFT

CAPSSHIFT for capitals. and press the key.

You can find out full details on how to operate
the keys on pages 20—-21.

Next, program your Spectrum

Your Spectrum can do a lot of things. But to
make it work, you have to give it a set of
instructions called a computer program.

Here is a collection of short programs that
will put your Spectrum through its paces. All
you have to do is key in the program
instructions exactly as they appear here.
The panel marked How to alter a program
will show you how to experiment, while to
begin a new program, see the panel on
page 11. Pages 74 and 76-77 may help if
you run into any problems.

How to enter and run a program

Each set of instructions is shown in a list
called a listing. You'll see that the program
listings contain several sections each
beginning with anumber— 10, 20 and so on.
Each section is called a line in the program
(even if it takes up two lines on the screen),

NAMES

1@ BORDER 1: INK RND=#7

2@ PAPER RND=*7

3@ PRINT " ZX Spectirum +";
4@ GO TO 1ie

The name ZX Spectrum + appears in many
colours all over the screen. The computer then
stops and a message, scroll?, appears at the
bottom of the screen. To make the displa
“scroll” up, press any key except N, SPACE,
BREAK or STOP. If you do stop the scrolling,
and press BREAK, then R (RUN) followed by
ENTER, the names will appear in a different
pattern of colours.

Try this
In'line 3@, change "ZX Spectrum +" to your
name in quote marks (") — for example

30 PRINT "“John ";

Remember to include the semicolon (;). You'll
then see your name appear all over the screen.

and it contains one or more instructions for
the computer.

In each program line, you'll see whole
words or abbreviations containing two or
more letters, such as PRINT, LET, RND, PI,
PAPER and GOTO. These are called
keywords and you cannot key them
in letter by letter. Instead, find the key on the
keyboard bearing the keyword (PRINT is on
the P key, for example), and then follow the
instructions in the How to key in panel .

As you key in a line, it appears at the
bottom of the screen. When you get to the
end of the program line, press the ENTER
key. The line now appears at the top of the
screen. Then key in and enter each line in the
same way. If you press a wrong key by
accident, turn to the panel marked How to
correct mistakes on the next page.

When you have entered all the lines, press
R. The keyword RUN appears. Now press
ENTER and your Spectrum will spring into
action as it runs the program.

Wait until the program ends or stop it by
pressing BREAK. Then press V (CLS) then

ENTER followed by K (LIST) then ENTER. The
program listing (list of lines) appears on the
screen.

LEN
SCRANS
ust \

K

See which line you want to char:jge. then
key in the whole new line, including the line
number, and press ENTER. The new line

will replace the old one. Press R (RUN) and
ENTER and the new program will start.

AT AT
A A T.me

A geometric coloured pattern forms on the
screen when you run the program. When the
screen is full, the display stops with the scroll?
message. To see more of the same display,
press any key (except N, SPACE, BREAK or
STOP) to make the pattern move up. To see a
new kind of pattern in a different combination
of colours, press N when the scroll? message
appears. Then press BREAK, followed by R
(RUN) then ENTER.

Try this
In line 20, change 7 to another number to get
a different kind of pattern. Try 8, for example.

10 LET ass 108 BORDER @: PAPER ©@: CLS
20 FOR x=1 T 2@ CIRCLE INK RHNDs LASH ENDG
?Q LéTT;s=;;.rnug IRNG *14+129 :1§g+gggéaéa?ogzg.gépuo;ﬂe
x ¥
4 Tﬁa RNDRT 4@ IF RND>.9 THEN GO TO &0
6@ BORDER RNUMN? gg EngS 20 S
& SN =-2
58 co To 38 7e FOR x=0 TO &
8 X
9@ BEEP .0S,x+y
108 NEXT x
11@ NEXT y
120 RUN

A set of almost concentric flashing circles in a
range of different colours builds up on the
screen. Then suddenly the border flashes, the
computer produces a trilling sound, and a new
set of circles appears.

Try this

Before listinﬁthe program (using the K key),

key in PAPER 7 and press ENTER. Then key in

line 2@ again, missing out the two keywords

:ILAI'?H RND; and the circles will no longer
ash.

MANIC MOSAIC How to correct mistakes
= If you press a wrong key or do not press the
18 shift or EXTEND MODE keys prodperly, don't
NT O worry. Press the DELETE key, and the last

Sl keyword, sign, letter or number will disappear.
22 Hold down DELETE to delete more.
2%
309

100

119

120

132

A coloured square dashes to and fro all over
the screen, building up a coloured pattern. A
different pattern is produced every time you
restart the program.

Try this

Inline 50, change 143 to 42 and you'll see
stars! Try other numbers from 33 to 142.
Consult the character set chart on page 51 to
check what will happen.

How to restart a program

Some of these programs — like STARS AND
STRIPES — come to an end and produce the
report @ OK, and the last line number in the
ﬁmgra.m. This means that the whole program
as finished. To start again, simply press R

(RUN) and ENTER.

Other programs either keep on running, like
MANIC MOSAIC, orstart a%a‘m automatically,
like SHIMMERING SUNRISE.

To stop these programs, press BREAK.

Hold this key down until the program stops
and the BREAK report appears. Torestart, just
press R (RUN) and ENTER.

If you have made a mistake in a line and then
you press ENTER, a flashing question mark
may appear. This precedes the mistake. Press
DELETE to delete the line up to and including
the mistake, then complete the line correctly
and press ENTER.

If you manage to enter an incorrect line, the
program may stoE working, producing a
report that gives the number of the wrong line
at the bottom of the screen. Key in the whole
of this line correctly, then press ENTER, R
(RUkN) and ENTER. Now the program should
work.

| POLYHEDRA -

ST o WL

SONEESEONSNSEHN

Qwum

5y

At first, you see a blank screen. Key in 6, then
press ENTER. A six-sided shaiale builds up.

Restart the program when it has finished and
key in another number to get a shape with a
different number of sides.

Try this

Inline 20, change 2 to another number. The

gattern builds more quickly if the number is
igger, and the polyhedra (many-sided

figures) are farther apart.

STARS AND STRIPES SHIMMERING SUNRISE

10 INk 2
Se cis - 7 28 ZRRCEROATC
i@ FOR x=28_TO 148 STEP 20 Sl ada it A
S@ FOR z=0 TO 11 S8 LET z=RNDs1@+2
E@ PLOT 16.z+x DRAU 216,0 T D R e s
ol L) TR 7@ PLOT 125.0
ey e 80 DRAU -128.x
98 PLOT 16,28 DRAU 0,131 o] PR =
100 PLOT 232,28 ORAL 9,131 el Al Al S
e imts o 110 FOR x=-127 TO 127 STEP z
e o - i2@ PLOT 128.@
130 FOR x=2 TO 8 STEP 2 JEaELOT Aen®
120 PRINT AT 2,.7% . * 2R pRadlxud el
15@ PRINT AT 1.2 « & & & 3% 15@ MNEXT x
160 FOR x=174 TO @ STEP -z
160 NEXT »
170 PRINT AT %.3, % 5 2 & & i7@ PLOT 128.@

The United States flag appears on the screen.

Try this i i i i i i ;
Change the colour numbers of the flag. The Qig‘ﬁ:rﬁ IctgfotiE?;?g&,s;‘lgfd':u;ﬁitp "
stripe colour is at line 10, the stars at line 120 screen goes blank, just wait. A new sunrise
and the background to the stars at line 110. s00n dawns. } '

Try this

In line 210, change 200 to another number in
How to begin a new program order to alter the time for which each sunrise

stays on the screen. 200 is equal to 4 seconds.

When you have finished with a program and
want to enter a totally new program, wait until
it ends or stop it by pressing BREAK.

You t{;hen I}gve a choicfe of tmo ways fotr
erasing the old program from the computer's
e | | e

and then ENTER. The screen will go i
black for a moment and then the copyright Now you havea ehaice. If you wantto Keep
message will appear. any of these programs to run them again
later, you can record them on cassette tapes.
Turn to How to save your own programs on
page 38 to find out how to do this.

If you want to carry on experimenting
with your Spectrum, you can find out about
programming by turning to Chapter 2 Start
programming. So far you have just tried
programs out, without necessarily
understanding how they work. Chapter 2

Altsematively, and more sasly, you can just will explain some of the features of Spectrum

press the reset button. This has the same effect programming.
as turning the Spectrum off and on at the If you want to try out some software
power socket. tapes, such as a computer game that you've

bought, then turn the page to How to use
ready-to-run software.

HOW TO USE
READY-TO-RUN
SOFTWARE

When you enter a program into the
Spectrum, you produce a sequence of
electronically coded signals as you press the
keys. The codes go to the Spectrum'’s
memory, which stores them so that the
computer can use them when the program
runs. The codes stay in the memory until you
either remove them (by entering NEW or
pressing the reset button, for example) or
switch off your Spectrum.

However, it's not always necessary to key
in a program when you want to use your
Spectrum. Instead you can buy ready-to-run
software, which contains programs that can
be fed into the computer directly and
automatically. Using ready-to-run software
not only saves you the trouble of keyingina
program every time you want to put your
Spectrum to work, but it also enables you to
have a library of programs ready for use that
would take days or even weeks to write
yourself. Software manufacturers produce
programs of all kinds written by the best
programmers, and a wide range is available
for the Spectrum. Look at the Sinclair
Spectrum Software Catalogue to getanidea
of the kind of programs you can enjoy and
use. Then whenever you want, you can run
a particular program to suit your needs.

How programs are loaded into the Spectrum

The code signals on a software tape consist
of high and low bleeps recorded at the rate
of about 1500 every second. When you play
back a software tape in a cassette player, the
player produces the sequence of bleeps that
make up the program. You just connect the
cassette player to your Spectrum, and the
codes go directly into the Spectrum'’s
memory. This is called loading a program.
On these two pages, you can see how to
connect up your cassette player. Pages
14-15 will then show you how to use it.

What does ‘software’ mean?

Software is the general name given to
programs that are fed into computers to make
them work. Hardware is the term for the
actual machinery - the computers themselves
and any other devices involved in computing.

Why is software produced on cassette tapes?
Cassette tapes are easy to use and do not
require special equipment. An inexpensive
cassette player is all that you need to load this
kind of software.

What do taped programs sound like?

Play one on your cassette player without
connecting it to the Spectrum. You'll hear a
high-pitched screech. This is caused by the
code signals going to the loudspeaker in the
playerinstead of the computer. The signals are
sent from the cassette to the Spectrum at such
a high speed thatitis impossible to distinguish
the individual sounds.

Are there any other kinds of software?

Yes. You can get programs on ROM cartridges
instead of cassette tapes. The cartridges plug
into an interface which fits into the back of
your Spectrum. A program on a ROM
cartlrlidge loads instantly without any waiting
at all.

Software is also available on Microdrive
cartridges. These contain programs recorded
in magnetic form like a cassette tape. Several
programs may be present on a cartridge and,
unlike a cassette tape, any program can be
loaded within seconds rather than minutes.
Microdrive cartridges are used with the
Microdrive unit (see page 46).

Which is the best cassette player?

The Spectrum is happy with an inexpensive
porta&e cassette player, preferab!g connected
to the mains e1ectriC|tz supply rather than
driven by batteries. The player should have its
own volume control but a tone control is not
essential. Special computer cassette players
are also available. These are designed to store
and load programs more reliably than ordinary
machines.

A cassette deck that is part of a sound
system is unlikely to be easy to connect up.
Furthermore, the audio (line) output sockets
of cassette decks do not produce a sufficiently
strong signal for the Spectrum.

Do taped programs need any special care?
Like any form of magnetic storage, programs
on cassette may be disrupted by strong
magnetic fields. So don’t store your cassettes
near anything that uses a powerful electric
current, Software cassettes also need to be
kept fairly free of dust.

Does any kind of software work?
No. Only software produced for the ZX
Spectrum or ZX Spectrum + will load.

How to connect your cassette player

The cassette lead supplied with your Spectrum is
intended to connect it to your cassette player.
This is the lead with a pair of small plugs at each
end. Place the cassette player beside your
Spectrum and plug in the lead as shown. The

cassette player and the Spectrum may be
switched either on or off as you do this, though
it's a good idea to take a cassette out of the
cassette player before switching it on or off. This
will safeguard programs stored on it.

Making the right connections

z

Push any one of the four plugs
into the EAR socket on the back
of your Spectrum.

Push the other plug of the same
colour into the EAR socket on
the cassette player if it has one.

20

If the cassette player does not
have an EAR socket, connect

the plug to a headphone socket

if there is one. Otherwise ti
connecting it to an externa
loudspeaker socket.

EAR and MIC Sockets

When loading programs, you
can have both EAR and MIC

sockets connected, as shown
here. But when you are saving
programs (see page 38), you
must disconnect
the EAR lead.

If the plug on the cassette lead
does not fit the socket on the
cassette player, you'll need an
adaptor or a special lead with

the right plugs from an electrical

dealer. The Spectrum EAR
socket requires a 3.5 mm jack
plug and an input signal of
about 1 volt.

Software tips

M The Spectrum's cassette
lead has colour-coded
plugs to prevent cross-
connections between
sockets on the computer
and the cassette player.
When you use a cassette
player with your Spectrum,
always try to keep to the
same system, with one
colour for the EAR sockets
and the other for the MIC
sockets.

B Some cassette recorders
may be affected by other
electrical equipment nearby.
Sometimes this can distort
signals sent between the
computer and cassette
player with the result that
programs will not load
properly. If your cassette
player occasionally does not
seem to work, try moving it
so that it is not alongside
either the television or
computer.

HOW TO LOAD A
PROGRAM

Now that you've connected a cassette
player to your Spectrum, you are ready to
load and run a program. You can use a
ready-to-run software tape or your own
tape containing your programs. The
procedure is exactly the same in both cases.
Switch on the cassette player. Make sure

that the Spectrum is powered up, theninsert
the cassette into the player. If there is already
a program in the computer, wait forit to end
or stop it by pressing the BREAK key. You
can then enter NEW or press the reset
button to remove the program from the
Spectrum's memory, but this is not essential
as loading a new program clears the memory
first. It is important to remember that if you
load a program, the previous program will
be erased from the memory.

Now follow the numbered instructions. If
anything goes wrong, consult the Software
loading troubleshooter on page 16.

Insert the cassette and rewind it to the
beginning.

Set the volume and tone controls on the

cassette player to the required levels. Try

the volume at about two-thirds maximum and if

there is a tone control, set it to maximum treble.

Press) and LOAD should appear on the
screen. Then key in the program name in
quote marks, for example

LOAD "“Prog 1"

4 Press ENTER. The screen will go blank.

Start the tape. The border of the screen
should go red or blue or flash red and blue.

This indicates that the Spectrum is searching for a
program.

Izl After a few seconds, red and blue stripes
should begin to move up or down the
border. This indicates that the Spectrum has
begun to receive a signal.

Software loading tips

frogram, write the names of
he programs in order on the
label. Remember to spell the
program name exactly as the
computer will need to use it.

[2]

If your cassette player
has a counter, use it to
find a program quickly on a tape
with more than one program

Here are some tips that will gerside. Zero the counterat the
help you to save time eginning of the tape, then
when loading. i W= g | enter LOAD followed by anz
e rogram name (in quotes) that
li' Label all tapes clearly so ——— is not on the tape. Play the tape
that you can find the e — and the Spectrum will displa;
programs easily. If a tape the name of each program that
contains more than one it finds without loading it. Write
the counter numbers on the

label beside the program names.
This lets you quickly reach the
program you want.

The word Program: followed by the
program name, or Bytes: followed by a

name or letter, appears on the screen. This
indicates that the computer has successfully
located the program.

;8_‘ The red and blue stripes appear again as
the computer waits to load the program.
@ A pattern of yellow and blue lines appears
in the border. This indicates that the
Spectrum is loading the program. Loading can
take several minutes if the program is very long.

Operations 7, 8 and 9 may repeat once or
several times if the program is split up into
sections.

tape.

@ If the program does not begin
automatically when it has loaded, the

screen goes blank and the report @ OK, 0:1

appears. Stop the tape.

The proiram may begin automatically
when it has loaded. Remember to stop the

@ Press R (RUN) and ENTER, and the
program will now begin.

0

3 If the tape is at the
correct program or if you
do not know the name of the
program, enter LOAD “"

instead of LOAD followed by
the name in quotes. There must
be no space between the two
quotes. Your Spectrum will then
load the first program that it
finds on the tape. If the program
name that appears is not the
one that you want, press
BREAK, wind on and try again.

Note the levels of the
volume and tone
controls that enable your

VOLUME TONE
179 8 1%\ 08 8 1%\
IO T

Spectrum to load. Set these
levels on the cassette player
before loading.

S

LOAD “filename”
and press PLAY

Alternating blue/red
border (computer
searching for a program)

Are all
con s secure
and correct?
Border v:ithﬁt;leue and
red bands; filename
Check tape, on screen (computer has
cassette head and speed. | identified pmpgl:m)
NO
No chan,
insert computer tape i tsarching e
YES ‘
Check tape is inserted . — _
correctly, and is not [ﬁfg 7
a recorded music tape | Alternating blue/red | Border with blue and
| border (wrong program | yellow lines; filename
| found; computer 1 | onscreen (computer
not loading) ‘J | loading program)
Check correct i
filename used S | —— =

SHORT
Is program
long or short?
Create extra memory
NEW and load LONG

START
PROGRAMMING

This chapter is an introduction to program writing on
the ZX Spectrum +. It tells you how to get to grips with
your Spectrum by showing you how to find your way
around the keyboard. Then you'll see how you can begin
to put your Spectrum to work. The short programs for
you to try out here concentrate on the Spectrum’s special
features so that when you come to writing programs of
your own you'll be able to make the most of all your

computer can do.

THE KEYBOARD -
YOUR COMPUTER'S |
CONTROL PANEL

iny program hel

DELETE

EXTEND MODE

his key selects the

CAPS SHIFT

Press this key with a

letter ke y T" i"'”:‘}l' £d
|] capital letter. If you
in of the key —see want a number of
pages 20-21 letters to appear in
capitals, use CAPS
LOCK

| instruct the co

keyboard allows you to control the
while it is running your programs
'|1 = dialect of BASIC that the
Spectrum understands is a simple but
; owe '111" rm of this language. It's designed
0 be as much like English as possible to
M.\qu it easy to use. In addition, the
Spectrum has one great feature that makes
programming much easier. This is the single-
key keyword entry s

computer

version)

ystem

Keys and keywords

Keywords are spe

| words ir

mputer Pmliu g

BASIC that
ymething

like PRINT and INPUT. On most
TRU[VIDEO nd INV VIDEO
These key ert control cod
prograrn \'Wz' to produce normal
; it

CAPS LOCK

Use this key if you
want the letter keys to
;th.l(i;.r € Ca

BEEP

This key produces the
| s all keyword which

. Press it again controls the
get small (lower Spectrum’s sound
15e) letter: synthesizer

computers you have to key in each letter of
a keyword as you would on a typewriter,
and you must spell each word absolutely
correctly. But on the Spectrum, you simply
press a single key to get a whole keyword on
the screen

Sinclair BASIC has over 80 keywords,
accessed by a total of 36 keys (26 letter keys
and 10 number keys). Because the Spectrum

uses such a wide range of BASIC instructions,

many keys produce not one but several
keywords which the computer will
recognize. Most keys actually give you
keywords as well as a letter, number, sign or
even a shape (graphics character) all of
which can be used in programs

. Colour display keys
These six keys produce keywords
that control colour on the

| screen

Space bar
This produces a space
like the space bar on a
typewriter

Selecting keywords and signs

On the Spectrum keyboard, there are two
keys which you will be using alot. These are
EXTEND MODE and SYMBOL SHIFT, and
they are the keys which let you choose
which of the keywords and signs on the
other keys you want to appear on the screen
You have already had a brief introduction to
keying in with these keys on page 8. Now,
after you have familiarized yourself with the
keyboard layout, the next two pages will
show you exactly how to select anything
that appears on the computer’s keyboard
Once you know how to do this, you can
begin to write your own programs

Number keys

As well as produ(m% numbers, these
keys can put control codes in programs
for the colours shown —see page 33. The
keywords immediately above the key
tops from 4 to @, except key 8, are used

| only with ZX Microdrives

BREAK

This key stops a
program running. It
does not erase the
program from the
computer’'s memory

ENTER

This key tells the
computer that the
information just
entered is complete
and that it can go
ahead

SYMBOL SHIFT

Hold down and press a
letter or number to
select the lower
keyword orsign on the
raised section of the
key. When used after
EXTEND MODE, it
selects the symbol or
keyword immediately
above the raised
section — see pages

.]r) .(‘ 1

Cursor controls

Pressing these keys makes the

move in the same direction as the arrows
| These keys are often used by programs

cursor

| to control the movement of shapes on

the screen. They are also used when
editing programs

HOW TO OPERATE
THE KEYS

You can get as many as six different
keywords, letters, numbers or signs from
most keys on your ZX Spectrum +. However,
selecting a character or keyword on the
board is not complicated once you become
familiar with one of the Spectrum’s special
features. If you press a key, the result that
appears on the screen depends upon the
mode that the computer is in at that
moment. The different modes each let you
key in different types of information, like
keywords, letters or graphics characters. The
advantage of this is that as you operate the
keyboard, the Spectrum actually helps you
in choosing keyboard modes so that you
enter instructions and information in the
right order. On these two pages you will find
out exactly what the modes do.

Keyword mode

Switch on or reset your Spectrum so that the
copyright message appears. Now press
ENTER. A flashing K appears in the bottom
left-hand corner. The flashing square is
called the cursor. It shows you where
something is going to appear on the screen
and the K indicates that the computer is in
keyword mode. Press any letter key and the
top keyword on the raised section of the key
appears on the screen. Try Q, for example,
and the keyword PLOT appears. Press the
DELETE key to remove the keyword and try
other keys. Number keys will give numbers,
but as soon as you press a letter key, the top
keyword on the raised section appears.

Use DELETE again so that the K cursor
reappears. Now press either SYMBOL SHIFT
key, hold it down and press any letter key.
Thistime, the keyword orsign just above the
letter on the raised section appears. With a
number key, the sign to the right on the
raised section appears. So, keyword mode
relates to the raised section of the key.

How to select a keyword, symbol or character

You can see here how to select
any keyword, sign or character
on either a letter or number key.
When selecting a key function,

note where it is on the key, and
then by using the two example
keys here, decide which other

keys — if any — you will need to

change to the correct mode.
Always look at the cursor on the
screen first to see which mode
the computeris in.

Letter key
BIN Keyword (K) mode
BRIGHT
BORDER | A BORDER
‘.l“.‘ "k |
A B and key .
Extended (E) mode

then key only BIN
[ree]then[5i] *fe, BRIGHT

Letter (L) mode
Key only b

and key B
and key .

Capitals (C) mode

then key only B
then and key .

Graphics (G) mode

m then keys A to U only
user-defined graphic

Number key
Keyword (K) mode
Key only 3
*Sarr| and key #

Extended (E) mode
then key only g;%%i"ta
then andkey LINE
Letter (L) mode

Key only 3

and key #
Capitals (C) mode
then key only 3

then andkey #

Graphics (G) mode

then key only -
then and key gl

Letter and capitals modes

Having produced a keyword or sign in
keyword mode, the computer automatically
changes the cursor to L. It is now in letter
mode. Press any letter key and the lower-
case (small) letter appears. Press a number
and the number appears. If you want to get
a capital letter, hold down CAPS SHIFT and
then press the letter key.

If you want all capital letters, then press
CAPS LOCK first. The cursor changes to C.
Your Spectrum is now in capitals mode and
you get a capital letter every time you press
a letter key. You still get numbers in capitals
mode. To return to letter mode (L), press
CAPS LOCK again.

Extended mode

The next mode is called extended mode and
it is produced by pressing the EXTEND
MODE key. The cursor now changes to E.
Press any letter key, and the top keyword of
the pair of keywords above the raised section

is given. For example, press B and you get
BIN. To get the bottom keyword or sign
above the raised section, press either
SYMBOL SHIFT key first and hold it down,
then press the letter key. On key B, for
example, you now get BRIGHT. So in
extended mode, you get the pair of
keywords above the raised section of the
key. After pressing a key (or EXTEND
MODE) in extended mode, the computer
automatically returns to letter or capitals
mode.

Graphics mode

The fifth mode is called graphics mode and it
is produced by pressing the GRAPH key. The
cursor changes to G. Press keys 1 to 8 and
see that the graphics characters marked on
these keys appear. Now press CAPS SHIFT
and any number from 1 to 8. The graphics
appear again, but this time black and white
are reversed. To leave graphics mode, you
must always press GRAPH again, as the
computer does not leave it automatically.

Editing on the Spectrum

When you give commands or
when you come to writing
programs for your Spectrum,
you will want to correct
mistakes in commands or
program lines or to alter them.

How to correct a mistake

If you try to enter a line or a
command that is wrong in
BASIC, the Spectrum will
display a flashing ? before the
error. To correct the mistake,
hold down the left or right
cursor control key to move the
cursor to the right of the error.
Then either delete the mistake
by pressing DELETE or add
whatever keyword, letter,
number or sign is required.
Then press ENTER.

For example, suppose you
want the computer to multiply
7 by 8 and you do not press
SYMBOL SHIFT to get the =
sign. You would in fact key in

You can easily do this by editing.

PRINT 7b8

instead. The Spectrum cannot
obey this command, so on
pressing ENTER it displays a
flashing question mark before
the b, which is where the
mistake has occurred. All you

need to do is move the cursor
just to the right of the mistake,
then press DELETE to remove b.
Then press SYMBOL SHIFT and
B to get » and press ENTER to
make the computer obey the
correct command; you don't
need to move the cursor back to
the end of the line first. The
Spectrum carries out the
command and displays the
result.

How to edit a program line
When you write a program, you
build up a sequence of
numbered lines of instructions
called alisting. If, after writinga
program, you ‘list' it by pressing
K (LIST) and ENTER, you ma
see a > sign against one of the
program’s lines. If not, press
and hold either the up or down
key until the cursor appears. If
you then press EDIT, the line

is duplicated at the bottom of
the screen and can then be
changed as before with the
cursor and DELETE keys. Press
ENTER to place the new line in
the program. If you want to edit
another line, move the > sign
with the up or down cursor
control key to the line you wish
to change and then press EDIT.
If this takes too long, enter LIST
followed by the line number
and then press EDIT. In each
case, the line you require will
appear at the bottom of the
screen and can be changed.

To delete a complete line
from a program, simply key in
the line number alone and then
press ENTER. If you do run a
program that contains an error,
you will see a screen report.
These are explained on page 74.

[]
-

THE TELEVISION
CALCULATOR

The ZX Spectrum + can make calculations
extremely quickly and with great accuracy.
All it needs are some numbers to work on
and signs such as + and — that tell it what to
do with the numbers.

First key in this instruction (you'll find the
+ sign on the K key):

PRINT 6+2

This is a command. When you press ENTER,
the command disappears and the answer,
the number 8, is printed on the screen.

Your Spectrum uses five signs known as
arithmetic operators for calculations. You
can see what they each do in the panel at the
bottom of this page. You can use them allin
just the same way with PRINT.

Entering commands such as PRINT 6+2
turns your Spectrum into a calculator. But it
can do many things that an ordinary
calculator cannot. For a start, it can display
calculations and their results together. Enter
this command:

PRINT “6+2=";6+2
The computer responds by displaying
6+2=8

What happens is that PRINT causes
everything between double quote marks (")
to be displayed on the screen, so 6+2=
appears. The characters between the quote
marks make up a string. The semicolon
instructs the Spectrum to display the result
immediately after the equals sign.

The followinﬁ signs or ‘arithmetic operators’
are used by the Spectrum to carry out
mathematical operations. Note that the
computer does not use x or + signs.

Symbol Key Function Example
+ K Add two numbers 8+2=19
- J Subtract two numbers 8-2=6
. B Multiply two numbers 8+2=16
/ V Divide two numbers B8/2=4
t H Raise firstnumber to

the power of the

second 812=64

Your first program

When a command has been carried out,
your Spectrum forgets it. If you want the
computer to repeat the calculation, you can
write it as a program. Key in this instruction
and then press ENTER.

10 PRINT6+2

This time, itis not obeyed straightaway. The
computer displays the instruction on the
screen instead. Next press R (RUN) and
ENTER. The result 8 now appears.

The whole instruction is now a computer
program. Putting a number at the beginning
makes your Spectrum place the instruction
in its memory, but not carry it out until told
to do so. Whenever you run a program by
pressing R (RUN) and then ENTER, the
instruction is carried out. The instruction is
now called a statement instead of a
command, and it forms a numbered lineina
program. Program statements are always
carried out in order of their line numbers,
and these usually go in tens so that extra
lines can be inserted later if necessary.

Next, get the Spectrum really working.
Enter this program. Remember to press
ENTER after keying in each line, and then
when you have finished, press R (RUN) and
ENTER. When you have run the program,
this is what you should see.

NUMBER CHART

BUNe
0866

"L
we
N
we
NN

e e
IS
"
L)
NG B e
NORQ e
ae ne

PN

OO P el

[T
N

- uﬂﬂ\lmﬂhﬁﬂnﬁ’ﬂﬂ.

4 e wn

0 By gu -
B BO -
LP I Lo
{11 ﬂB' !

VERIOPORJOHLOW Ok QOO
']

s‘
-

38
L T

e e e e el

-uluav ad i
o e e
GOO-1IOAB W

]
[ELL T LR TT ENTYTY

OROUNDRE GO
b e e O OF
]

Ll

b e e 1 s e e et et

ONEPDOREPBEN Y
BN E U G0

FRRIOSLNNOR LR

00

R e e e e
COBNCANE LG
Ut s

GO0

L
B‘Oﬂﬂ@dﬁg
WERDON B o

1
1
&
1
1
i
i
1
1
1
1
1
i
Y

S OOONEGEENE e

N POOORE BV
]

All the numbers from 1 to 203 are displayed.
Now press any key except N, the space bar,
STOP or BREAK. A whole new set of
numbers appears.

This program uses a variable. In this case,
the variable is called n. Any letter or word
could be used — n here simply stands for

number. A variable is given a value that
changes as the program runs. In line 10, the
keyword LET is used to set the value to 1.
Line 20 displays the value followed by a
space. Thenin line 30, LET is used again, this
time toincrease the value by 1, so n becomes
2. Line 40 uses the (single) keyword GOTO
to send the program back to line 20, which
now displays 2. This is repeated over and
over again until the numbers fill the screen.

How to make a program ask for a number

Stop the program by pressing BREAK. Now
key in a new line

10 INPUT n

b
kEEEEER

&
&
=
&
s
=

<
+
+
e
-
L4
e
a
2
g
+
o
+
&
&
<

Why you need to use brackets

This line replaces the old line 1@ in the
program. When you run it, the computer
now waits for you to enter a number. Key in
any number and press ENTER. Now the
numbers begin at the number you entered.
This is because INPUT n makes the value of
n equal to the number you enter. INPUT
instructs the computer to ask forinformation
during a program.

Programming a multiplication table

Press the reset button to remove the old
program and enter the next one. This
program gets the Spectrum multiplying. Key
in any number and a multiplication table for
the number will flash up on the screen. Press
any key except N, BREAK or the space bar,
and the table continues. Press BREAK and
then run the program again to create a new
table. Here is the program and what you
should see if you key in 3 and next 146.

MULTIPLICATION TABLE

3s
3s
-
.
-
.
*
-
3
3%
3%
3s
3
3
3+
3
3
*
*
=2
-
-
cf

- QPQANNEEFLULLGLUNAFDAN
1 BLBNERBANYRLE

You will sometimes need to use bracketsina
calculation. Enter these two commands and
compare the results:

PRINT 6+2 /4
PRINT (6+2)/4

The first gives 6.5 and the second gives 2.
The reason for these different results is that
the computer has an in-built system of
priorities which it uses in calculations. It
carries out 1 first, then » or /, and finally +
or —, but it always carries out any
calculations in brackets first. So, in the first
command above, it first divides 2 by 4 and
then adds the result (@.5) to 6. In the second
command, the computer adds 6 and 2, and
then divides by 4.

The Spectrum uses a range of punctuation
si?ns. They are very important because many
of them double up as instructions to the
computer, affecting the way it understands a
program line or produces a display.

. Semicolon When used with PRINT, tells
the computer to display the two items on

! eitherside of it next to each other on the
screen.

. Colon Signals the end of one statement

i in a program line and the beginning of the
next.

" Quote mark Any characters within

quotes are treated not as numbers or
variables but just as text. Quotes begin
and end a string.

Comma When used with PRINT,
tells the computer to display the following
item eitherin the centre of the line or at

' the beginning of the next line. Do not use
to indicate thousands or millions.

Point Eithera decimal point or full
. stop.

COLOUR AND HOW
TO USE IT

Your ZX Spectrum + can produce eight
different colours, and each colour has a
colour code number. You can use each
colour in three different ways — as a border
colour, an ink colour and a paper colour.

ZX Spectrum + colour codes

This chart shows the colours and codes used
by the Spectrum. You don't have to remember
these codes; the number keys that produce
them are also marked with the colour names.
(These names are not keywords.)

Colour

The actual shades you get on your television
set will depend on the set and the adjustment
of the colour, contrast and brightness controls.
Remember that you need a colour set.

The Spectrum's three ways of using colour

You can control colour in three different
ways. The border colour is the colour of the
border around the central display area. The
ink colour is the colour in which characters
(letters, numbers, signs and graphics shapes)
and points or lines appear. The paper colour
is the colour of the background, either over
the whole display area or in a square just
around each character.

When you turn the Spectrum on, it uses
the preset colours. The ink colour is black,
and the border and paper colours are white.
You can change these colours instantly by
entering direct commands from the
keyboard. You have already seen this at
work on pages 6—7, where the BORDER
command was used to check that your
television and Spectrum were both properly

set up for colour. Now press the reset button
and key in and run this simple program.

COLOUR TESTER

A pattern of stars builds up in black and
white. Now press BREAK and enter some
colour commands. Key in the keywords
BORDER, INK and PAPER each followed by
a number from @ to 7, pressing ENTER after
each, and then run the program again. Here
are two displays, the first with BORDER 4,
PAPER 2 and INK 7, and the second with
BORDER 3, PAPER 5 and INK 1.

How to write programs with colour

You can use the BORDER, PAPER and INK
keywords in a program to make text, tables,
patterns and pictures appear in all kinds of
colours. Using BORDER in a program line
makes the border colour change as soon as
the Spectrum reaches this line. INK in a line
on its own gives a new ink colour when any
characters orlines next appear on the screen.
PAPERin aline onits own changes the paper
colour but only around any characters (this
includes any points or lines as well). If you
want the whole background of the display
area to be a certain colour, you must follow
PAPER with CLS.

You can also use INK and PAPER after
PRINT. In this case, only the particular
characters displayed by PRINT have these
INK and PAPER colours. The next program
demonstrates all the border, ink and paper
colours. It also shows you how to use INK
and PAPER after PRINT.

COLOUR COMBINATIONS

FO b=@ TO 7

BDHD R b PRAPER b CLS
PRINT AT &, .1.2 INK 9 b

FO P=@ TO

DFIINIT AT PGB 8. INK p., PARPE

o
9&0;05&08
o~
m
m
o

T
HFOOONOONE LN
008

o

m

m

2.5, bon“B*P
FOR 1i=0 TO 7
PRINT INK 1; PARAPER p," "1,
P @.01,1*5S
NEXT
NEXT p
12@ MNEXT b

When you run this program, you'll see all the
combinations of border, paper and ink. 7 he
program has three variables, b for the border
number, i for the ink number and p for the
paper number. BEEP produces the sound,
and the lines beginning with FOR and NEXT
mark the beginning and end of a program
loop that changes all the colour numbers
from @ through to 7 in order. You'll find out
more about using FOR and NEXT in program
loops on page 27. Note that INK and PAPER
can both have a value of 9. This makes the

ink or paper colour either black or white so
thatit shows up against the background ora
character.

Programming coloured bar charts

The next program uses the Spectrum'’s
colours to produce a bar chart. It shows
twelve daytime temperatures as yellow
columns with numbers. In line 60, enter two
spaces between the quote marks.

BAR CHART

EDRDEI:‘ Q: FAPER 1

3,156 ,19,20,18.,1

i@
2
o
2
2
@ PRINT PAP
2
=)
2
2
=]
2

x
CATA 20,15, 13
2T

PROOO-OUE WL

™
- He

Now add the following lines, and key in the
new line 110 as shown. The chart now
appears in two colours. To find out about
READ and DATA, turn to page 33.

DOUBLE BAR CHART

85 RERD t

86 FOR (=21 TO 21-t STEP -1
87 PRINT PAPER 3.AT L .,c,” o5
88 NEXT_ L

89 PRINT INK 1. PARAPER S,AT 20-
T,C,t

11@ DATA 20,6,15,4,13,5,16,6,19
,10.,29,8 ., 166114 146,19 ,8, 14,
9.,172,7

SIMPLE DIY
GRAPHICS

Your ZX Spectrum + can give you low-
resolution and high-resolution graphics.
Both kinds can appear on the screen at the
same time. Low-resolution graphics displays
are made up of blocks of colour. On these
two pages, you will see how to produce
these blocks from the keyboard, and how

to position them on the screen.

The low-resolution screen

On the low-resolution screen there are 32
positions in which characters can be placed
across the screen and 22 positions in which
they can be placed down it. Each screen
position has a pair of numbers to identify it.
First comes the line number, which is the
number of lines down the screen to reach
the position. The top line is line @ and the
bottom line is line 21. Next comes the
column number, which is the number of
columns across the screen to reach the
position. The left-hand column is column @
and the right-hand column is column 31.
(On page 80 you can see the low-resolution
grid laid out.) The next program fills these
character positions with colours. The
keyword RND (on the R key) chooses a
random ink colour.

RANDOM SQUARES

: IMK RMND =7

Here squares appear all over the screen. To
make a character appear at a particular
position, you need to use the keyword
PRINT together with AT. AT is placed after
PRINT and is followed by the line number, a
comma, the column number and a
semicolon. The command

PRINT AT 11,16;"+"

for example, displays a star at line 11,
column 16, which is the centre of the screen.

How to draw rainbow patterns

A good way of producing coloured patterns
is to use FOR NEXT loops in your graphics
programs. FOR NEXT loops are parts of a
program that repeat themselves a certain

keyboard graphics characters
that make low-resolution
graphics easy to program. You
can see them on keys 1 to 8.

characters on the screen, press
the GRAPH key and then press

BLUE
DEFFN

GRAPH

This key is used to
switch the Spectrum
to graphics mode.

Your ZX Spectrum + has a set of | between each one. The graphics
characters appear at the bottom
of the screen. The white part of
each character on the key is the
ink colourand the black part the
To produce the graphics Eaper colour. Now press the
eys again, holding down CAPS
SHIFT at the same time. This
keys 1 to 8, using the space bar | time the characters appear with

the ink and paper colours
reversed.

This is exactly how you put
graphics characters into
program lines. To leave graphics
selection and return the number
keys to normal, simply press
GRAPH again.

WHITE
ERASE POINT

Key 8

This key is often
used with GRAPH
and CAPS SHIFT to
produce a solid
square of colour.

number of times. In the line that begins a
loop, you can tell the computer how many
times you want the loop to be carried out. As
it does so, it can be used to place characters
on the screen, for example.

You aren't limited to programming just
one loop at a time. You can put one loop
inside another, often with very useful results.
The next program shows you how two FOR
NEXT loops (one 'nested’ inside the other)
can be used to change the colours and
positions produced by INK and AT. You can
see how to program these loops in the panel
at the end of this page.

RAINBOW

NOAE W~
29860880

Programming pictures

In low-resolution graphics, you can 'paint’
pictures by working out the positions and
colours of the graphics characters. You can
plan your own picture by using the low-
resolution grid on page 80. Then, by
selecting the graphics characters in the way
shown on the opposite page, enter the
program lines one by one to build up the
picture.

The next program shows you the sort of
results you can produce. All the shapes in it
can be found on the number keys. You can
either wait until you have keyed in all the
lines before running the program, but if
instead you run it after entering each line,
you'll see how the different parts of the
robot are put together. (Remember that if
you key in the wrong graphics characters,
you can edit them just as you would edit
incorrect numbers or letters.)

ZX ROBOT
S5 BORDER 2: PAPER 1: CLS
10 PRINT INMK 2, AT 3,15, -
15 PRINT INK 2.AT 4.15, Kl
20 PRINT INK 2 AT S,1S, " x>
3@ PRINT INK S,RT 6,13,
4@ FOR .l=? ‘I’C;i 10:59?!'{“’ INK S.
B, Rl i NEX
45 pHINTﬁ S; PRPER @ ,RT 8.1
s;: $3x
‘S3 PRINT INK 2;AT 11,13, "0
60 FOR L=11_TO 1S: PRINT INK &
AT L. 14: " 4 NEXT [}
a2 PRINTINK 3;AT 16.13: "EE":T
B 17 .
80 FOR L=17 TO =1: FOR ¢=@ TO
98 PRINT INK 4:AT L.c: "I
188 MNEXT c¢: HEXT

The keyword TAB that appears after PRINT
in line 70 is used to position a character
along the line that the computer is currently
working at. TAB is followed by one number
from @ to 31, specifying a column position.

A FOR NEXT loop always begins with a line
containing the keywords FOR and TO,
together with a variable and its beginning and
end value, for example

30FORc=1TO 6

Here the variable is c. The loop that this begins
would then contain line(s) that make the
computer repeat an operation. They might
also use the variable c themselves. FOR NEXT
loops always end with the keyword NEXT and
the variable, for example

50 NEXT c

When the program is run, the whole loo
from FOR to NEXT repeats a set number o
times. The variable begins at the first value
before TO and increases by 1 each time until it
reaches the limit after TO. In this case, the loop
repeats six times, with c starting at 1 and then
becominF 2,3, 4,5 and finally 6.

In the first program on page 25, three loops
are used in a 'nest'. This means that for every
cycle of the ‘outside’ loop, the ‘middle’ one
goes through all its cycles. The ‘inside’ loop
goes around all its cycles most often, every
time the ‘middle’ loop cycles once.

THE ON-SCREEN
SKETCHPAD

Graphics on the ZX Spectrum + are not
limited to chunky low-resolution patterns
and pictures. With its high-resolution
capability, you can use your Spectrum to
create detailed images with sharp outlines
and straight or curved lines and edges.

High-resolution graphics are made up of
many dots placed one after another to form
a line or to fill out a shape in solid colour.
Each dot is a sixty-fourth of the size of the
squares you use in low-resolution graphics.
If you enter this command

PLOT 128,87

you'll see one in the centre of the screen.
The dots used in high-resolution graphics
are called pixels, which is short for picture
cells. Like a low-resolution character, each
pixel requires two numbers to specify its
position. These are not the same numbers as
those used in low-resolution displays.

The high-resolution grid

The high-resolution grid consists of 256
pixels across the screen and 176 down.
However, unlike in low-resolution displays,
the first number is the horizontal coordinate
— its position across the screen. These
position numbers go from 0 at the left-hand
edge to 255 at the right-hand edge. The
second number is the vertical coordinate,
but the numbers go from @ at the bottom to
175 at the top. Position 0,0 is the bottom
left-hand corner, not the top left-hand
corner asin low resolution. See page 80fora
chart of the high-resolution grid.

Plotting and drawing

You need only three keywords for producing
high-resolution graphics — PLOT, DRAW
and CIRCLE. PLOT is followed by the
horizontal and vertical coordinates
separated by a comma, and it places a pixel
at this position. DRAW is also followed by
two numbers separated by a comma, but
these are not the coordinates of a position.
Instead they are the distances in pixels from
one position to another position across and
up or down the screen, and DRAW then

draws a line between the two positions.
The first position is @,@ if PLOT or DRAW
have not already been used in the program.
If they have been used, then this position is
the last PLOT position or the last position
reached by DRAW, whichever is most
recent. The DRAW statement then draws
the line to the new position. If the line is to
go to the left or down the screen, then the
horizontal or vertical distances must be
negative (minus) values. Try this program.

STAR

NOREL -
6660000
Q
n
p!]
=
'
™
-

U]

o
(2]

PLOT moves the start position to the top of
the screen. Then the five DRAW statements
draw the five red lines.

Now add these lines to the program.

4 BORDER 1:PAPER 6:INK 1:CLS
5 CIRCLE 128,87,87

Run the program again, and the red star
appears in a circle on coloured paper.

CIRCLE needs three values. The first two
give the position of the centre of the circle,
and the third number is its radius. You can
also add a third value to DRAW statements.

Try values between 2 and —2 with the
program and see what happens.

How to fill in shapes

You can easily produce solid shapes in high
resolution by drawing many lines close
together. This can be done with a FOR NEXT
loop that changes the DRAW positions so
that they increase by 1 each time.

SOLID TRIANGLE

1® BORDER 1:
20 FOR_x=-100

PRAPER 6:
TO 120
g=1"

INK 2: C

You get an interesting effect if you draw
lines slightly apart. You can do this by adding
the keyword STEP and a number to the FOR
statement. This technique is used in the
Shimmering sunrise program on page 11. It
will work on the triangle program in the
same way. Enter a different line 20 and run
the program again

20 FOR x=—100 TO 100 STEP 4

This time the fan-like shape shown below
emerges. The reason for this is that STEP
makes x increase in jumps of 4 instead of
increasing by 1 each time a line is drawn.

Your screen sketchpad

Your Spectrum is very versatile. You don't
need to write a program every time you
want to produce a picture or pattern.
Instead, you can use a program that allows
you to build up a picture directly on the
screen. Here's a very simple program that
allows you to do this.

It starts by using the keyword INPUT to
ask you for an ink number. Then, using
INPUT again (this time with a § sign to label
a string), it makes the computer draw short
lines every time you press one of four
specified keys—u, d, land r.

SKETCHPAD AND EXAMPLE

Lines 60 to 90 in the Sketchpad program
contain IF THEN statements. These allow
your Spectrum to make a decision. In this case,
the computer checks to see if the key you have
pressed is either u, d, | or r. IF any of these are

ressed, THEN the computer is told to draw a
ine. It won't draw a line if a capital letter is
entered.

IF is always followed by something that the
Spectrum tests to see if it is true or if it is
happening —like certain keys being pressed. If
itis true or happening, then the action
following THEN is carried out. If not, then the
program goes to the next line.

Everything following THEN in a line is
subject to the decision. In this line

110 IF b=5 THEN PRINT "=" : GOTO 200
the computer will only go to line 200 if b is 5.

DESIGNING PATTERNS
AND PICTURES

You can produce all kinds of patterns and
pictures with your ZX Spectrum +, using
either low-resolution graphics, high-
resolution graphics or both. The best way to
tackle graphics is first to draw out your
design on a copy of the grids on page 80.
Then work out the program that will produce
the lines and shapes at the right positions.

To draw patterns and pictures, you can
often use FOR NEXT loops that repeat part
of a program a set number of times. Each
time, the positions and colours of the
characters or lines can change, usually in a
regular way. Here is a program which uses
this technique.

SQUARES

This program contains three FOR NEXT
loops. The x loop changes the colour and
also the size of the big squares that are
produced, while the | loop and the c loop
change the line and column position of the
little square every time it is printed. Try
changing the square in line 60 to a star or
some other character on the keyboard.

Random effects and subroutines

Using loops need not give identical patterns
each time a graphics program is run. By
using the keyword RND (short for RaNDom)
in loops, you can make colours, positions

and other display features different every
time. Look at the mosaic program on page
10. It works because the ink colour is RND+
7, which means any number with a decimal
paint from @ to 7. INK changes this to the
nearest whole number. So each time a
square is displayed, its olour is any colour
from INK @ to INK 7.

The next program draws symmetrical
patterns of graphics characters on the
screen. It uses RND to change these
characters and their positions. The variables
i and p give the ink and paper colours, and a
indicates how many patterns are drawn (in
this case four). The variable n gives the
number of characters in each pattern, while
x is a random number from 129 to 142,

The statement GOSUB 10@@ in line 50
sends the computer to a subroutine.

SYMMETRICAL PATTERNS

18 BORDER 4: PAPER ©@&: CLS
L L LET

i=4: P =@

a4
13+129
40: GO SUB 1009:

LET p=p+1

e -0+
= O%0

A subroutine is a group of lines that acts like
a program-within-a-program. In this
program the subroutine is at line 1000. It
displays a graphics characterin four quarters
of the screen so that each one is the same
distance from the centre (position 11,16).
This distance is given by lines 1000 and
1010, | giving the distance in lines and c the
distance in columns. INT changes the
random number to a whole number so that |
is any whole number from @ to 10and cany
whole number froin @ to 15. Then lines
1030 to 1060 display the graphics character

whose code is x (see the character set table
on page 51). BEEP makes a sound whose
pitch is related to the position, and then
RETURN in line 1080 sends the program
right back to the next statement after
GOSUB in line 50.

Line 6@ changes the ink and paper colours,
then PAUSE 100 in line 70 delays the
program for 2 seconds before it loops back
to begin again. STOP is needed in line 90 to
stop the program running straight into the
subroutine after the fourth loop.

You can change this program by altering 4
inline 3@, and 4@ in line 50 to other numbers.
If you make the range of x wider in line 40,
you'll get other characters appearing on the
screen. Do not allow i and p to be greater
than 7.

Using FOR NEXT loops in graphics

FOR NEXT loops can be used very effectively
in high-resolution graphics to create pictures
made up of regular shapes and lines. Key in

the following program and run it. Using only

PLOT and DRAW, the two FOR NEXT loops
first draw lines on the ground and then five

solid triangles or pyramids.

PYRAMIDS

1@ BORDER @ PAPER 1 INK &
2@ CLS

3@ FOR y=@ TO 290 STEP 2

40 PLOT ©.,4

S@ DRAU 2S5 .,@

6@ NEXT 49

7@ FOR n=10@ TO 220 STEP 3@
8@ FOR x=-10-n-10 TO 1@+n-10@
890 PLOT n,3S+n - 10
10©® DRRAU x ,-nsa
110 NEXT x: NEXT n

Now add the lines in the next column.
When you runitagain, you'll find that a laser
beam continually shoots up into the night
sky, creating bursts of stars. Itis drawn from
the corner of the screen to position x,y, the
variables x and y being random numbers.
These are then converted to low-resolution
star position numbers.

DT
o
e

,@: DRAU OUER 1;x,4

. X /a4
,@:; DRAU OUVER 1.,x.,4
PRINT AT L,cC; "%

T 1 bt 1 et e
SOUJOUNEWL
0606080006

OVER 1 in lines 160 and 180 allows the
first line to draw the laser beam and the
second line to remove it without changing
the rest of the picture. Save this program
(see page 38) as you will need it later.

FLASH, BRIGHT and INVERSE

These three keywords can really make the
colours of the Spectrum work for you. Each
keyword is followed by either @ or 1, and you
can put them in PRINT statements provided
you put a semicolon after the @ or 1. FLASH 1
makes character positions flash between the
ink and paper colours, while BRIGHT 1 makes
the colours brighter. INVERSE 1 changes the
ink colour to the paper colour and vice versa.
Using @ after these keywords restores the
display to normal.

Try making these changes to the programs
on these two pages to see how the Eeywords
work. In the Squares program, change the
square in line 6@ to a star and then add

15 INVERSE 1

Now the stars appear in black (the paper
colour) against coloured bands (the changing
ink colours). Enter INVERSE @ before
continuing.

In the Symmetrical Patterns program, add
thes;: lines to see how BRIGHT and FLASH
work.

15 BRIGHT 1
16 FLASH 1

Note how FLASH makes the pattern appear to
move to and fro. Enter FLASH 0:CLS to stop
the display flashing.

All these changes affect the whole display
produced by each program. Using FLASH,
BRIGHT or INVERSE within a PRINT statement
restricts the three keywords to whatever is
printed by that line.

HOW TO CREATE
COMPUTER
CHARACTERS

Your ZX Spectrum + is not limited just to the
graphics characters that you can key in at
the keyboard. In a special section of its
memory, it can store other characters that
you design yourself. These are called user-
defined graphics characters and each
program can have a maximum of 21 of
them.

Each character is made of up to 64 little
dots or pixels of ink colour. These are
arranged in eight rows of eight pixels each,
and each character occupies one character
position on the low-resolution grid— just like
the standard graphics characters on the
keyboard.

Designing a graphics character

First draw an 8 x8 grid as shown below.
Then fillin some of the squares to create the
character. These squares represent the
ink-coloured pixels. Then draw in or think of
each full square as 1 and each empty square
as 0. Here is a design for a spider.

Each of the user-defined graphics
charactersis identified by a letter fromatou
(or A to U — it makes no difference). To
program the character, you enter eight
POKE USR statements each ending with BIN
followed by a binary number consisting of
the eight @s and 1s in each row of the grid.
Let's call the spider character s.

1@ FOKE USSR '"s" ,BIN 0011110

11 POKE USR "sS' +1,BIN 21111110
12 POKE USR "s'""+2.BIN 11011011
13 FOKE USR s +3,BIN 11111111
13 POKE USR "s"+4 ,BIN 10111101
15 POKE USR s +S5,BIN 12100101
16 POKE USHR “s"+5 ,EIN 10100101
17 POKE USRH "s"+7,BEIN Q0100129

Now run this program and then press
GRAPH and S. Instead of an S, the spider
agpears! Next add the following lines,
obtaining the spider in line 3@ in this way,
and run the program. Spiders appear across
the whole of the screen.

SPIDERS

: PRAPER @: CLS

1
NK. RND+7, "M
-]

When you are designing your own
characters, remember that you won't be
able to see them on the screen until you
have run a program that defines them. Until
then they will just appearin listings as letters.

How to ‘mix’ colours with speckled squares

You can quite easily simulate mixed colours on
your Spectrum. To do this you need to create
acharacter which when ||Jrinted ives a square
that is 50 percent ink colour and 50 percent
paper colour.

@ FOR X=@0 TO
2 POKE USR “a' +x ,BIN
2 POKE USR “a’

2 NEXT X

Whe

a1

"

All you have to do is define two

pixel lines and then instruct the computer to
use them alternately in a character.

When you run the program, you should see a
speckled square. If you use the same technique
ina proiram that contains colour keywords,
the speckled square will produce a colour that
is ? mixture of the program's paper and ink
colours.

Simplifying graphics with READ and DATA Drawing a chessboard

There i: an easiﬁr waydo{hcrfgtitng yom:jr i Here is a program that displays a
computer graphics and that is to use decimal h
numgers with READ and DATA. First change chieshiadrd on the screen and then lays

out the pieces ready for a game. You can

the eight binary numbers made up of @s and 1s make colours appear in a listing by using

into decimal numbers. Do this by entering

PRINT BIN followed by the number, for colour control codes — see the panel

example below.

PRINT BIN 90111100 CHESSBOARD

The Spectrum displays 60, the decimal 1@ FOR x=1 TO &

equivglent of 001 11%@0. In the case of the §§ gg:;@ *seo

spider, the eight decimal numbers are 60, 126, SQ@ BORDER_4: PAPER_1: CLS

219, 255, 189, 165, 165 and 36. _.59. FoR =7 To 14 STEP 3: romr c
Now you can use READ and DATA. These 7@ PRINT AT L,c;" “;AT Lil,c;

two keywords provide you with an easy way 80 NEXT c: NEXT L. . __

of fee ing lots of values such as numbers into 100 ERINT BY Z:13: pbmemens:

the variables in a program. READ is followed e SRR GEE R Bl L

by a variable — one or more letters if you are i3e oo To 1se

dealing with numbers, or a single letfer 298 remp”s

followed by §$ if you are dealing with strings. BaL PRD eSS R

As you want to FgEAD decimal numbers here, B8 REVHRNE

you need a numeric variable. Call it y.

When your Spectrum encounters READ, it The pieces are defined by a subroutine

looks at the first DATA statement in the which begins at line 500.

program. This statement contains a list of S50 CATA “P,@,2,16,56,56. 15,12
values separated by commas. The computer *48o pATA rv,0,84,124,56,56, 1z
takes the first value from the list and this is 2228 8ath “hv,a,16,56, 120,24, 56,
given to the variable after READ. The next e s o e
fime that the computer gets to READ, the 1280 e k.o e R Y
second value is given to the variable and so on, 5,0 L s i ks
strictly in order. SR SRTERRG BB E G 0N E L es et

Here is the new program that will produce
the spider.

1@ FOR x=@ TO 7

2@ RERD 4

3@ POKE USR "s™+x.,4

4@ NEXT x

S@ DRATA 6@,126,219,255,189,16%
;165,36

The program will actually store any eight
decimal numbers in the memory to create a
character. Just change s in line 30 to the letter
you want, and after DATA in line 50, key in the
eight numbers each seFarated by a comma.
Press GRAPH and the letter to get the
character after you have run the program.

Using colour control codes

Instead of using keywords such | displayed then change colour in | a number key with or without

as INK and PAPER, you can put | the listing itself and will also CAPS SHIFT. Remember to
control codes in PRINT appear in these colours onthe | select black ink and white
statements after the first quote | screen. To get the codes, first paper afterwards or what you
mark. The characters to be press EXTEND MODE and then | type will still be in colour.

BLUE RED MGNTA| GREEN| CYAN | YELLW | WHITE| FLASH | FLASH | BLACK
INK INK INK INK INK INK INK OFF ON INK

Yy | 2/3/4/5/6/7/8/9]0]

PAPER | PAPER | PAPER | PAPER | PAPER | PAPER | PAPER | OFF PAPER

- BLUE RED MGNTA| GREEN| CYAN | YELLW | WHITE | BRIGHT| BRIGHT | BLACK
ON

H

ANIMATION

Computer graphics look their best when the
characters or lines move about the screen,
and producing animation on your Spectrum
is not difficult. All you have to do is to keep
on changing the position at which a
characteris printed or a line drawn. The best
way to make this happen is to use one or
more FOR NEXT loops.

Vertical and horizontal motion

Key in and run this program. If you have not
reset or switched off your Spectrum since
producing the spider graphics character on
page 32, then don't bother to enter lines 10
to 50. The graphics character will still be in
the memory under “s"

FALLING SPIDER

S BgRDER 3 PFIPER S: CLS

1@
2@ READ
Eg F‘FJKE USR SV eX LY
se onTn Z0.126,219,255,189, 165
‘188 FoR x ge To 7
7@ RE
8@ FoKe U dsw
@0 CATA 18,18,18,18,16,16,16,1
1
2
3
a

LT EN

L3 INK @; "
PRINT AT L+1.3, INK 2 ﬂ

You'll see the spider fall down the screen on
its thread every time you run the program.

In the program, lines 60 to 10@ produce
another graphics character (“t") for the
thread. The animation occurs in lines 110 to
140, which make up a FOR NEXT loop in
which | (the line number) changes from @ to
20. Each time the loop repeats, a length of
thread is printed at one position and the
spider is printed at the next position below.
The next time round, the spider is replaced
by another length of thread and again
appears below. In this way, the spider rapidly
descends on its thread until it reaches line
21, which is the bottom of the display area.

Your Spectrum can calculate the new
positions very fast, so the spider drops
Iquickly. To slow down the action, insert this
ine.

135 PAUSE 10

This makes the computer wait for a fifth of a
second each time before printing the spider
at the next position. Try changing 10 to
other values and see how the speed varies.

Now add these extra lines to the program
and run it again. You'll see animation but in
a different direction.

SCUTTLING SPIDER

15@ FOR =3 TO 3@ v
16@ PRINT AT 21,c;" "
17@ PRINT AT 21,c+1;
18@ MEXT c

IMNK 2; "

Now the spider races off to one side as soon
as it touches down. The extra lines form
another FOR NEXT loop that controls the
column position c. Note that a space is
printed first and then the spider is displayed
at the next column position. This causes the
spider to disappear from one position and
appear at the next, moving it to the right. It
is always better to delete a character before
printing it at the next position, rather than to
print the character first and then delete it at
the old position. This helps to avoid or
reduce flicker in moving graphics.

Target practice

In many computer games, action often
occurs when two moving shapes collide or
an object is hit by a beam. How does the
computer know when a crash or explosion
should happen?

Detecting collisions is not difficult. If two
characters are printed at position |,c (for line
and column) and position v,h (for vertical
and horizontal), then if I=v and c=h, they
must be at the same position. You can write
this as a statement, for example

160 IF |=v AND c=h THEN PRINT
"CRASH!"

Another way of checking for collisions is
to use colour. Remove the spider program
by entering NEW. Then enter the complete
Pyramids program on page 31, or load the
program if you have saved it on tape. You
can now upgrade it and combine it with your
spider (still in the memory unless you have

reset or switched off) to produce another
program.

First add the following lines, which create
an explosion graphic called "e".

S FOR x=@ TO 7
& READ 4

7 POKE USR e +X .y
8 NEXT
9 D
B

x
ATR 14%,82,44,121,153,52,7

Now delete line 190 and add or change the
following lines.

SPIDERS AND PYRAMIDS

114 LET h=RNC %21

11S FOR v=0 TO =20

117 PRINT AT v, h; CTLRAT v*lih;
ENK . 4 5"

200 NEXT v

20S PRINT AT 21,k FLASH 1, INK
2 PRPER 6;"5"

21 GO T 114

The bursts of stars no longer appear.
Instead spiders fall through the sky and eat
away the pyramids and ground. What you
have done is to add a FOR NEXT loop in
which v and h give the position of the spider.
The variable his random, so the spiders start
their vertical fall at different places across
the screen. Next add these lines.

19@ IF ATTR (v+1,h) =14 THEN GO

TO See
S@® PRINT AT v+1,h; FLASH 1, PA
PER 2, "E"

S10 PAUSE 100
520 GO TO 114

When the laser beams hit the spiders, they
briefly turn yellow. When the line produced
by DRAW enters a spider’s character
position, the ink colour changes to the same
colour as the line, which is yellow. In line
190, ATTR detects if the spider goes yellow
and sends the computer to the explosion
subroutine at line 500.

Bouncing a ball

Many graphics programs feature shapes
that bounce off the edges of the screen. This
program shows you how it is done. The
variables v and h work in the same way as in
the exploding spiders program, but +1 or
—1 is added to v or h to make the ball go
down or up, and right or left. SCREEN$
checks whether there is an X at position v,h.
BOUNCING BALL ' —

1@ BORDER 1

20 FOR z=1 T 12

30 LET h=INT (RND*2S)

a9 PRIﬁT INK 2,

PURET,. SR A

S@ NEXT z

62 LET x=1 LET y=1

7@ PRINT AT v,k *

80 LET w=v+y LET h=h+x

9@ IF h=0 EF h=31 THEN LET x=-

BEEP .2,
19@ IF w=@ OR v=21 THEN LET y=-

LET wv=1I

PAPER &, FLASH

(v,h) ="X" THEN P
PRAPER S, AT V,h; "l +'32

- & x
o

STOP

1

IN

120 PRINT AT v ,h; 0"
1 AUSE 2

&

The keyword ATTR detects the ‘attributes’ ata
particular position on the screen. The
attributes are the ink and paper colours and
whether or not the position is flashing or
b[li%ht. In the Exploding Spiders program,

ATIR ensures that the spider is destroyed if it
goesyellow. This is then its ink colour (number
6). The paper colour is blue (number 1) and
the spider is not bright or flashing. This means
that its attributes total 14. The ATTR entry in
the Programmer’s Reference Guide will show
you how these numbers are arrived at.

HOW TO MAKE
MUSIC AND SOUND
EFFECTS

The ZX Spectrum + possesses a sound
synthesizer that can make your programs
spring to life with a great variety of musical
sounds and special sound effects. Itis simple
to use, even if you have little or no
knowledge of music. The synthesizer
produces a sound signal that goes to the
Spectrum'’s internal loudspeaker.

Programming sounds

To produce sound on your Spectrum, you
use only one keyword — BEEP. It is followed
by two numbers or variables representing
numbers. The first tells the computer how
long (in seconds) to make the sound last,
and the second informs it how high or low
the sound is in pitch. Pitch is measured in
semitones. The pitch values are @ for middle
C, 1 for C#, —1 for B (Cb) and so on.

To hear the complete range of sounds
that your Spectrum can produce, run this
program.

1@ FOR p=69 TO -68 STEF -1

2@ BEEP ©.2,pP

2@ PRINT AT @,@;" "|AT @,0jp
42 NEXT p

The Spectrum runs through its complete
range of notes from the highest pitch (69) to
the lowest (—60). You'll find that the highest

sound like clicks. This is because these notes
extend beyond the range of the human ear.

The chart at the bottom of this page
shows the pitch values of arange of notes so
that with it you can transform a piece of
sheet music into a Spectrum program.

Sound effects

You can get all kinds of sound effects out of
your Spectrum, usually by placing BEEP
inside a loop that rapidly changes the pitch
value. Try these programs and experiment
with them to develop your own sounds.
Note that the duration values are very short,
being as little as a hundredth of a second.
Press BREAK to end the looped programs.

BUBBLING

This program plays a group of three notes over
and over again at random pitches. The pitch
range is wide, but you can change the values
in line 10 to alter the range.

MACHINE

notes are almost inaudible and the lowest

19 FOR x=12 TO 3&
2@ BEEP .01,x
ig BEEP .01,24-x

This program produces two sounds, one going
up in pitch as the other goes down. This is
because the two BEEP statements make two
notes sound over and over again only a
hundredth of a second apart at different
pitches.

Here are the Spectrum's pitch | top of the bass and treble | a sharp note; deduct 1 for a flat
values from the bottom to the | staves. Add 1 to pitch value for | note.
o2®
i o et
Ty &
L a

* *

Iy P i
Y i L
Fd
Ld
oo®”

Note C|D|E|F|G|A|B|C|D|E|JF|G|A|B|C|D|E|F|G|A]B|C|D|E|F |G |A|B |C
Pitch
value |-24-22}-20l-19 117 151-13f-12)10l -8 [-7 | -5 |-3 | -4

0121415171911 112 114 116 117 119 121 123 24

LIFTOFF

Sound and vision

1@ FOR p=1 TO 45 STEP @.
2@ BEEP .01,p: BEEP .01,p-6
3@ NEXT p

This program is similar to the machine
program, but now the two notes go up
together six semitones apart. In addition, the
pitch values change by 0.2 - a fifth of a
semitone — each time. This makes the sound
rise slowly in pitch. Try other small pitch
changes by changing the STEP value.

KEYBOARD CONVERTER

The sound effects that your Spectrum can
produce go best with action on the screen.
To demonstrate how you can add sound to
programs, return to the complete scuttling
spider program on page 34.

Remember that you inserted a PAUSE
statement at line 135 to slow down the
action. Instead of delaying the program in
this way, you can program a pause that
produces sound. Change line 135 to

135 GOSUB 500

Wi
eeune
QOHC
ommm
m
470

Now add the following lines to the program.

This program waits for you to press any letter
or number key. When you do, each one gives
out a different sound. Pressing CAPS SHIFT
while holding down a key makes the sound
lower. CODE INKEY$ gives a different value
to p every time a new key is pressed. Line 20
stops the computer making a sound if no key
is pressed. You can see the values that CODE
returns in the character set table on page 51.

208 STOP
S@@ FOR p=4©8-L TO 38-L STEP -1
Sie BE§$ @.02,p

N P
S3@ RETURN

Run the program and the spider now makes
a warbling sound as it falls. The subroutine
plays three notes very quickly that get lower
every time the spider descends to the next
position on the screen. Try adding more
notes by changing line 500 and speeding up
or slowing down the notes by changing 0.02
in line 510,

To make the sound of your
Spectrum louder, you can
connect either the EAR socket
to headphones or to an amplifier
and loudspeaker. The amplifier
will have a volume control that
you can adjust to make the
sounds as loud as you want.
The simplest way to do this is
to use the Spectrum cassette
lead to connect the EAR
socket to the MIC socket of a
cassette player. Take out the
cassette if necessary, switch on
the cassette player and then
press PLAY, REWIND

(REVERSE) or FAST FORWARD
(CUE). Adjust the cassette
player's volume control and you
should hear the computer's
sound coming from the
loudspeaker in the player.
Alternatively, you can connect
headphones with the cassette
player if you want.

You can also connect your
Spectrum to a hi-fi or music
centre if you want a really full
sound. You will need a special
lead with a 3.5mm jack Flug to
fit the Spectrum and a plug to
insert into the input socket of

the hi-fi amplifier or the music
centre. The Spectrum produces
a line signal similar to that
output by cassette decks and
tape recorders, so the REPLAY
or LINE IN socket on the
amplifier should work. If you
have any problems, consult a
shop that sells sound
equipment.

et L
il O i O 0 O

LEL] T TTLL] —
I [ITIT] &

!
[Fhwssmsne I
= 7

HOW TO SAVE YOUR
OWN PROGRAMS

Before long, you'll want to store your own
programs on cassette tape. To do this, you

[1 First connect your Spectrum to a
suitable cassette player using the
cassette lead as described on page 14, but
make sure that only the Spectrum's MIC
socket is connected to the cassette player.

@ If the cassette player has a record level
or volume control, adjust it to about
two-thirds maximum. If not, don’t worry as
the recording level will be set automatically.

3 Key in SAVE followed by the name of
the program in quote marks, for
example

SAVE “prog2"

SAVE “"proga" s

Any combination of up to ten letters and
numbers can be used. Now press ENTER. The
SAVE line will disappear and then you will see
the cassette operating instruction from the
Spectrum.

then press any keu.

Start tape,

connect a cassette player to your Spectrum ! that the iroiram has been saved correctli

and save the program that is in the
computer. The Spectrum sends the program
to the cassette playerin a form that it can
record on tape. Then whenever you need to
use the program, you load it from the
cassette tape back into the computer using
the loading procedure described on pages
14-15. On these two pages, you can see
how to save programs and also how to check

! Set the cassette player to record,
usually by pressing RECORD and PLAY
together. Then press any key on the Spectrum.

—

5 Now wait as your Spectrum saves the
program. First you should see blue and
red bands moving slowly up the screen.

Then you get a short burst of blue and yellow
stripes. This happens as the Spectrum sends
the name of the program to the tape.

@ Next comes a short gap and then more
blue and red bands. This is followed by
the blue and yellow stripes again as the
Spectrum now sends the program to the tape.
A long program may take some time.

When the program has been sent to
the tape, the report @ OK, @:1 appears.
Stop the tape. The program has now been

saved. If you want, you can now check or
‘verify' it.

Now verify your program

Although the computer has sent the
program to the cassette player, you cannot
be sure that the program has been
successfully recorded on the tape.
Fortunately, your Spectrum is able to check
this for you.

This procedure is called verification. First
rewind the tape to the start of the program,
then connect the Spectrum EAR socket to
the cassette EAR socket. (You can leave the
MIC sockets connected.) Next key in VERIFY
followed by the program name in quotes.
Then press ENTER and start the tape. The
same sequence of blue and red bands and
blue and yellow stripes should be seen. The
program name will appear and remain until
verification is completed.

When the second blue and yellow section
shown below ends the report

0 OK, 0:1

should appear. This means that your
Spectrum has checked the program on the
tape with the program in its memory and

found that they are exactly the same. The
program has been positively verified.

You can now be sure that your program
is safely on tape.

1. Write the name of a program on the
cassette label or card when you save it. Use the
same capital or small letters as appear on the
screen. If the cassette player hasa counter, use
it to locate the program and write the counter
number by the name.

2. Before saving, place the program name in
the program by using a REM statement, for
example

5 REM SPIDER program Version 3

The computer ignores all REM statements
when the program runs, and you can use REM
to put remarks and reminders in the program
wherever you like.

If you do not get this report, then
something has gone wrong. First check the
Software loading troubleshooter on page
16 as the fault could be that the program is
safe on tape but is not loading back into the
computer for verification. If you find
something wrong here, correct the fault,
rewind the tape and verify the program
again. If the computer still does not verify
the program, consult the Software saving
troubleshooter on the next page. Don't
press NEW, reset or turn off the computer
because you will then lose the program in
memory, without having a reliable copy on
tape.

Automatic program start

You can follow SAVE by the program name
and then LINE 1, for example

SAVE “SPIDER" LINE 1

The saving procedure is no different from
before but when you verify, do not include
LINE 1 after VERIFY and the program name.
Programs saved with LINE 1 will start
automatically when you load them. There is
no need to use RUN (but remember to stop
the tape when the program starts).

What happens is that the program begins
atline 1 andifthereis noline 1, the computer
skips to the first line in the program.
Changing 1 to another number makes the
program begin automatically at the line
having this number.

Saving CODE, SCREENS and DATA

SAVE may also be used with CODE or
SCREENS to store a section of Spectrum’s
memory and with DATA to store an array. See
the entries in the Programmer's Reference
Guide.

Software saving troubleshooter

START HERE
SAVE “filename"

When saving is completed,
VERIFY “filename”

Verification display,
then @ OK, 8:1

The correct verification
procedure (same as
correct loading
procedure) has occurred

Program verified

LEARN ABOUT
YOUR ZX SPECTRUM +

This chapter takes you inside your ZX Spectrum +,
explaining how the various components beneath the
keyboard work and how they link together to
make the computer function. It also shows you how you
can use 'peripherals' — add-on devices that let you
upgrade your Spectrum into a full computer system.
Finally, you'll find out here more about the
technical side of your computer — including the way in
which memory is organized up, together with
the Spectrum'’s technical specification.

WHAT'S INSIDE?

Read on to find out—and do not try to open
up your ZX Spectrum + in order to find out
how it works. You will invalidate your
guarantee if you do and you could do serious
damage.

Inside the case are two ribbon connectors
that link the keyboard to the rest of the
Spectrum's components. These are all
mounted on a single printed circuit board.
The board carries standard electrical
components such as resistors and capacitors,
but the most prominent items are the black
rectangular microchips, arranged either
singly or in blocks.

Inside a chip

The functioning part of a microchip is
actually much smaller than the plastic
package that contains it. The casing is
primarily designed to support all the
connections that the chip requires, allowing
it to be plugged into sockets on the circuit
board. The chip itself is a thin silicon wafer
that contains many thousands of electrical
junctions. Each junction acts as a switch to
stop, pass or store electric signals reaching it.
Although this is a simple procedure, there
are so many junctions acting together that
they can produce signals that store or
process information with astonishing speed
and accuracy. The ZX Spectrum + contains a
number of different chips, each designed to
play a particular part in the running of the
computer.

How the chips link up

So overall, your Spectrum is an electric
circuit of enormous complexity. Code signals
consisting of pulses of electricity constantly
flash along the pathways inside and between
the chips and components to make the
computer work

How is everything kept in order so that
the right signal arrives in the right place at
the right time? Hidden away inside one of
the chips is the computer’s clock. It ticks by
emitting pulses of electricity — 3.5 million of
them every second. These pulses move
regularly through the circuits to produce the
code signals that control the action of each
part and keep everything in step.

The interior of your
ZX Spectrum +

In this view of the
Spectrum’s circuit
board, the two
ribbon connectors to
the keyboard have
been removed

When the Spectrum
is in use, pressing a
key brings a pair of
wires under the
keyboard into
contact. This sends a
code signal to the
CPU

Uncommitted Logic
Array (ULA)

This chip generates
the display from
information held in
RAM and also acts as
a systems controller

TV output
This produces the
signal that goes to
the television set

Keyboard connector
point

One of the ribbon
connectors to the
keyboard is attached
here

TV encoder
This changes signals
produced by the
computer’s circuits
into colour television
signals.

Random Access

Memory (RAM)
These chips contain
the program that is
fed into the
computer and any
particular
information needed
by the program, such
as values held by
variables. The
contents of the 48K
of RAM can be
changed from the
keyboard, and can
be erased altogether
by resetting or
turning off the
computer.

Cassette sockets Central Processing

These are used to Unit (CPU)
send information The ‘brains’ of the

and programs from computer. The CPU

the memory to a isa 280
tape and to feed microprocessor. It
them back into the carries out all the
memory from the computing

tape calculations and

controls the overall
Logic chips operation of the
These chips act as an Spectrum
interface in the

‘ exchange of

| information between

the CPU and the
RAM. 9 VDC socket

This connects to the
power supply

Edge connector

This connects the
Spectrum to external
devices such as a
printer.

The 16K section of
the memory holding
the permanent

operating
instructions needed Keyboard connector Voltage regulator | |
by the CPU. Among point This component
other things, these One of the ribbon prevents any
intructions convert connectors to the changes in ycltaﬁe
BASIC programs into ‘ keyboard is attached from affecting the
a form that the CPU here computer
can understand. The
contents of these
memory chips cannot Loudspeaker
be altered from the This produces sound
keyboard when required

HOW DOES YOUR
ZX SPECTRUM +
WORK?

The operating ZX Spectrum +, like other
microcomputer systems, consists of four
main parts. These are the input units, such as
the keyboard, which put information or a
program into the computer; the temporary
and permanent memories, which store
information, programs and operating
instructions; the Central Processing Unit
CPU, which carries out the program
instructions on the information, and the
output units, which give the result.

takes the stored codes from RAM one by
one in the order of the program. It first
receives the code for PRINT, which tells it to
get a particular operating code from ROM.
This operating code goes to the CPU and the
CPU gets ready to perform the actions that
display a value on the screen. The CPU next
gets the value of 6 from RAM. This too is in
the form of a code, and the CPU stores it in
a small internal memory called a register.
Next comes the code for addition, and the
CPU again gets the necessary operating
code from ROM. Finally, the CPU takes the
code for 2 from RAM. It adds this code to the
valuein the register to get the result (8). The
CPU then converts the result into another
set of codes and sends them to the display
file. This is the section of RAM that holds
codes for everything you see on the screen,
and the number 8 appears on the screen.

Entering and running a program

Storing a program

What happens inside the Spectrum when
you enter and run a very simple program?
Here's a one-line example

10 PRINT 6+2

First, you operate the keyboard. Beneath the
keys is a grid of criss-cross wires. Every time
you press a key, a pair of wires makes contact
and sends a code signal to the CPU. The
CPU in turn sends the code to RAM, where
it is stored.

When you run the program, the CPU

If you ask the Spectrum to save the program
on tape, the CPU again takes the codes from
RAM. Butinstead of acting on them, it sends
the codes to a converter unit which changes
them into sound signals. These signals are
then sent to the cassette player and recorded
on tape.

When you load the program later, the
sound signals from the cassette player are
changed back into computer codes by the
converter. The CPU sends them back to

RAM, where they are stored until required.

Binary codes

6
-3 N A N .

All the codes that make your Derile
Sﬁectrum work are in binary form. =

They are called binary because they | Joa
are all composed of just two t£$ of

signal. They can be represented as

binary numbers, that is numbers Hanycoce
which contain only two numerals — @ mgm
and 1. The binary number for 6 for | computer

example is 00000110,

different types of binary coding are

Inside your Spectrum, the codes — geiiom 4 charge charge
consist of sequences of rapid pulses Clas o1
of electricity. If a pulse arrives at any | Binary code

point, this represents a 1 in binary. If | stored in

a pulse does not arrive within a set memory cells e e

period, this represents a 0. In e e "4 hign low
computer codes therefore, 6 is Bnarycode . 0 -~ sound sound
off-off-off-off-off-on-on-off. :';‘i;?:!o« JATAPAPAPA.L I o N B > .
G e MR EMEE
You can see in this diagram how B record replay 400 high low
used by the computer to move Binary code

information from one place to ;“’hfg:d

another.

pulse off pulse on

00000000 @@ ©

This dia shows how coded information Single-headed arrows indicate pathways that
passes from input units like the keyboard, operate in one direction only. Double-headed
through the Spectrum’s processing system, and | arrows indicate pathways that can operate in
then to output units like the television screen. both directions.

INPUT UNITS

PERMANENT MEMORY

Keyboard _ _
Produces program and information

ROM
Holds operating instructions for CPU.

Microdrive storage
Stores program and
information for as long as
required. Random access,

X Interface 1
Essential interface for
Microdnive operation

RAM
Holds program and information
in computer when needec.

;::.m program and
information for as long as
required. Sequential access.

OUTPUT UNITS

Television set
Displays results on screen.

Loudspeaker
Produces sound.

Joystick ROM cartridge
Produces control signals. Permanently programmed chip.
Overwrites computer's ROM.
Interface
Interface
M'}'t FEEROn BN Links ROM cartridge to edge connector,
TEMPORARY MEMORY

CENTRAL PROCESSING UNIT (CPU)

Produces printed copy of
programs and results.

ZB0 microprocessor — the heart of the
computer. Uses operating instructions to
follow program and control signals in order
to compute results from information. Also
controis output units and peripherals

EXTERNAL COMMUNICATION

ZX Interface 1
J Acts as a signal converter.

RS232 =
Standard interface unit
ZX Interface 1)

Printer érip
Produces printed copy of Communication with
programs and results. standard penpheral units.

HOW TO CONNECT
PERIPHERALS

You can upgrade your ZX Spectrum +intoa
complete and powerful computer systemby
using Sinclair and other Spectrum-
compatible peripherals. Central to this
system is the ZX Interface 1, which enables
you Lo connect Microdrives for fasl and
simple handling of programs and data, and
which also connects with a wide range of
different peripherals, including other
Spectrums. With this interface, you can
connect your Spectrum to standard printers,
and hook the computer up fo a modem,
allowing you to transmit and receive
programs and data via telephone lines.
Other interfaces are available that link
plug-in ROM cartridges to the computer for
instant program loading. Through these,
you can alsoattach joysticks to make games
easier to control.

behind the com

Loading a Microdrive
Microdrive cartridges are
nserted into the slot in front of
the drive.

Plugging in a ROM cartridge
Thecartridge is incerted into the
interface socket. When the

computer is powered UF' the
rogram is automatically
oaded, bypassing the ROM

inside the computer. Foot-note

Spectrum-compatible printers

Some printers plug directly into the
Spectrum's edge connector. If you already
nave a Sinclair 7X printer, for example, you
can connect it up to the computer without
using an interface. This kind of printer will
also plug into the back of the ZX Interface 1.
However, to use printers that require an
RS232 output, you must use the D socket on
the ZX Interface 1.

ZX Interface 1

The ZX Interface 1 unit is attached to the
rear and base of the Spectrum. It links your
Spectrum to as many as eight Microdrives,
up to 63 other Spectrum computers and,
through its RS232 standard interface unit, a
vast range of standard peripherals.
Microdrives and Microdrive cartridges
replace the cassette player and tapes for
storing programs and data. By inserting
Microdrive cartridges, you can save, verify
and load programs in seconds. Each
cartridge can store up to 85K of data and,

Connecling peripherals
During operation, the ZX Interface 1is piuiged
into the edge connector <o that it is beneath and

puter. The illustration here shows

the system before the computer is connected.

Microdrive units
Up to eight of these
storage units can be

attached to one
Spectrum

Ribbon cable

This ronnects the

Microdrive to the

computer via the ZX
Interface 1

The ZX Spectrum+ has two built-in feet which
can be usedto tilt the keyboard. These feet do not
reed to be used when a ZX Interface 1 is fitted

using the maximum of eight Microdrives,
your Spectrum will have up to 680K on-line
storage capacity! Any program is located
automatically with a typical access time of
3.5 seconds

Using the network lead provided with the
interface unit, you can link your computer to
anather one — either a ZX Spectrum or
another ZX Spectrum 1 . This network can
then be extended to a maximum of 63 other
Spectrums. Information is exchanged
between them at a rate of 10,000 characters
a second

The ZX Interface 1 unit also includes an
RS232 interface with a 9-way D socket
through which printers, other standard
peripherals, modems and other computers
can be linked to your Spectrum. A stardard
nterface cabe is also available

ROM cartndge/joystick
interface

.

Standard printers are rannecred through the 7

Interface

ROM cartridges and joysticks

Interfaces like the ZX Interface 2 let you
connect up ROM cartridges and joysticks
ROM cartridges load immediately on power-
up to give you piograms thal would take a

long time to loac from tape

i Edge connector

Waming
Periot

arals should a

THE ZX SPECTRUM+
MEMORY MAP

If you look at the photograph of the interior
of the Spectrum on pages 42-43, you will
see that there is one ROM chip, and 16
smaller RAM chips. These chips give the
Spectrum its memory. The memory consists
of 65536 storage units that each contain
one byte (a number from @ to 255). Each
unit is identified by a number called its
address.

ROM means Read Only Memory. This
part of the memory contains operating
instructions for the Central Processing Unit.
Itis a 16K ROM, meaning that it contains
161024 (16384) bytes or addresses. The
bytes can only be read from this memory, so
that they cannot be changed. (If they could,
the computer would stop working.) You can
obtain the byte at any address by using
PEEK.

RAM means Random Access Memory
and it contains the programs and
information that are fed into the computer.
The Spectrum has a 48K RAM, that is it
contains 48 x1024 (49152) bytes or
addresses. Random access means that a
byte at any address can be changed, and this
can be done by using POKE.

The memory addresses extend from @ to
65535, the first quarter being ROM and the
remainder RAM.

Memory map

User-defined
graphics

GOSUB stack

Spare

Calculator stack

Temporary
work space

INPUT data

Command or
line being edited

Variables

BASIC program

Channel
information

System variables

The column opposite shows how the
memory of the Spectrum is organized. On it
you can see where the various sections that
control the computer are located. Several of
these may change position, and their
boundaries are given by system variables.

The Spectrum's system variables are not
variables like those used in BASIC. They are
simply names for certain useful values that
are located at particular addresses or
locations in the memory. The purpose of the
name is to help you remember the
significance of the particular value stored at
the location. For example, the system
variable RAMTOP is the top address in
RAM. This area of memory holds a BASIC
program and the values of its variables. The
address of RAMTOP is 23730.

Microdrive maps

System variables

Printer buffer

Attributes

Display file

16K ROM

RAMTOP

STKEND

STKBOT

WORKSP

E-LINE

VARS

PROG

CHANS

23734

23552

23296

22528

16384

WV 81

LEARN ABOUT
SINCLAIR BASIC

This chapter describes Sinclair BASIC in full. In it, you will
find a summary of the way every keyword is used,
and further details of how Sinclair BASIC works. The
information given ranges from that needed for the
simplest to the most advanced BASIC programming. This
is not a chapter to be read through from
beginning to end. Instead, it's a programmer's dictionary
that will enable you to make the fullest use of
the Spectrum'’s abilities.

: This guide containsfqlldescriptLons of allthe
PROGRAMMER'S Spectum . Each entryfestures.
REFERENCE GUlDE B Keyword location

[Keyworg class
TOSINCLARBASIC ¢ 5o
)

The details given for location, purpose and
use are self-explanatory. Class and format
are more complex, and to make the

Kepward ciesses most effective use of the guide,
Keywords fall into one or more of four classes. you should first read carefully the
Command information on this page.

A keyword which causes an action to occur

and which can be used to form a direct

command. It is carried out on being entered. Numbers and variables
Examples — RUN, LOAD.
Stat ¢ Numbers »
ASETTET e . Stored to an accuracy of 9 or 10 digits.
A keyword which causes an action to occur Number handling range is about 1539 o
and which can be used in a program line. It is 4410
carried out only when the program is run.
Examples — DRAW, INPUT Variables accepted
Function) Number Any length, starting with a letter.
A keyword which produces a value of some Spaces are ignored and all letters converted
kind. It forms parfof acommand or statement. to lower-case letters. Cap]tal and lower-case
Examples — RND, INT. letters are not distinguished.
Logical operator - String Any single letter followed by $. Capital
A keyword which is used to express logic in a and lower-case letters are not distinguished.

statement or command. It can determine or
change the truth of certain conditions. The
Spectrum has three logical operators — AND,
OR and NOT.

Array For array variables and subscripts, see
the entry on DIM.

Keyword format

The keyword format expresses the syntax of and variables. The following abbreviations are
each keyword — that is, the correct combination | used in giving the format.
of the keyword and other factors such as values

Abbreviation Explanation Example

num-const A numeric constant (a number) 245

num-var A numeric variable (a variable that may containa number) sum

num-expr A numeric expression (any valid combination of sume245
numeric constants, variables and keywords that gives RND-7
anumber)

int-num-const A numeric constant, variable or expression whose value

int-num-var 15 rounded to the nearest integer

int-num-expr

string-const Astring constant or string (any combination of characters “ZX Spectrum+"
within quote marks)

string-var Astning variable (a variable that may contain a string) a$

string-expr A string expression (any valid combination of string a$ +"ZX Spectrum + "~
constants, variables and keywords that gives a string) as(6TO8)

letter Any capital orlower-case letter Y x

letters Any capital or lower-case letter followed by § BS a$

cond A condition or sub-condition within a condition x=10AND <10

statement Any BASIC statement that is valid when IFt>10 THENSTOP
used with another statement PRINT INK 2. x

[] An optional item that may be repeated

NOTE The terms numeric value and string value are used in the text for numeric or string items respectively

Signs in Sinclair BASIC

Sign Location Action/Use Sign Location Action/Use
$ 4 String variable = L Is equal to
7 Begins new line ki z Separates statementsin
(8 Open bracket programline
) 9 Close bracket / ¥ Division
== Q Is less than orequal to 2 B Multiplication
== W Is not equal to : Own key Decimal point
>= E Is greaterthan orequalto | : Own key Displays at next column
Separates statements
< R Isless than i
within program statement
> T Is greater than = :
; Own key Open and close string
1 H Raise to power d
; : ; Ownkey Displays at column @
- J Subtraction/negative e
* K Addition/positive/ Separates values
string concatenation following keywords
ZX Spectrum + character set
0 1 2 3 4 5 6 7 8 9
0 TRUE INV PRINT EDIT cursor cursor
VIDEO VIDEQ | comma left right
10 |cursor cursor DELETE | ENTER number | GRAPHICS | INK PAPER FLASH BRIGHT
down up MODE | control control control control
20 INVERSE (OVER AT TAB
control icontrol control control
30 space | " # $ % | & '
| () * | + . = ; /) 1
50| 2 3 4 5 6 7/ 8 |9 : ;
0| < |=|>|? @ | A | B|C|DJ|E
nl F |G | H I J K LIM|IN]O
ol P Q| R[S T U |V I IWIX]|Y
ol Z | [1/ 11 t 1l 1 £la|bi]c
w | d | e f | g | h | | k | m
10 | N 0 D q r S t u vV | w
20| x |y |z | | I l |~ 1© [[1][™
EANJEE-RErEN BN."EE. B Nl 1NN .N
GRAPHICS |GRAPHICS [GRAPHICS [GRAPHICS |GRAPHICS | GRAPHICS
140 | i | Wl | I] e~] i
150 IGRAPHICS [GRAPHICS [GRAPHICS |[GRAPHICS |GRAPHICS |[GRAPHICS IGRAPHICS |GRAPHICS [GRAPHICS [GRAPHICS
G H ! J K L M N O p
160 GRAgHICS ZRA;HICS GRAEHFCS GRA?HICS GRALPJHICS RND INKEYS Pl FN POINT
170 | SCREENS | ATTR AT TAB VALS CODE VAL LEN SIN cos
180 | AN ASN ACS ATN LN EXP INT sar SGN ABS
190 | Peex IN USR STRS CHRS NOT BIN OR AND p—
200 > = | < > | une THEN T0 STEP DEFFN | CAT FORMAT | MOVE
210 | ERASE OPEN # CLOSE# | MERGE | VERIFY BEEP CIRCLE INK PAPER FLASH
220 | BRIGHT | INVERSE | OVER out LPRINT | LLIST STOP READ DATA RESTORE
CON-
230 | NEwW BORDER | CON- DIM REM FOR GoTo GOSUB | INPUT LOAD
240 | usT LET PAUSE NEXT POKE PRINT PLOT RUN SAVE :‘z‘;NDOM-
250 | F cLs DRAW CLEAR RETURN | COPY

T R T T
ABS agsolute value

Keyboard location
EXTEND MODE
G

Function

ABS gives the absolute
magnitude of a numeric value,
that is the value without a
positive or negative sign.

How to use ABS

ABS is followed by a numeric
value. An expression must be
enclosed in brackets, for
example

5@ LET x=ABS (y—2)

ABS returns the absolute value
of the numeric value.

Example
The command

PRINT ABS —34.2
displays 34.2.

Format

ABS num-const
ABS num-var
ABS (num-expr)

ACS ArcCosine

Keyboard location
EXTEND MODE
SYMBOL SHIFT W

Function

ACS calculates the value of an
angle from its cosine.

How to use ACS

ACS is followed by a numeric
value. An expression must be
enclosed in brackets, for
example

60 LET x=ACS (y+2)

The value following ACS (y=z
above) is the cosine of the
required an§le and may range
from —1 to 1. ACS then returns
the value of the angle in radians.
To convert radians to degrees,
multiply the value returned by
ACS by 180/PI.

Example
The command

PRINT 180/PI « ACS 0.5

displays 60, the angle in degrees
that has a cosine o% 0.5.

Format

ACS num-const
ACS num-var
ACS (num-expr)

TN T R L TR
AND

Keyboard location
SYMBOL SHIFT Y

Logical Operator/Function

AND acts as a logical operator
to test the truth of a
combination of conditions.
Only if all conditions are true is
the overall combination true.
AND also acts as a function to
perform binary operations on
two numeric or string values.

How to use AND

As a logical operator, AND links
two conditions in a statement
where the truth of the whole is
to be tested, for example

90 IF x=y+z AND time<10
~ THEN PRINT “Correct”

Only if both conditions (x=y+z
and time<10) are true will the
computer display Correct. If
either or both conditions are
false, then the whole
combination is false and in this
example, the program proceeds
to the next line.

AND as a function

As a function, AND can operate
on two numeric values, for
example

50 LET x=y AND z

AND returns the first value (y) if
the second (z) is not equal to 0,
and returns @ if the second
value (z) is 0.

AND may also operate on a
string value providing it
precedes AND. A numeric value
must always follow AND, for
example

50 LET a§=b$ AND z

AND returns the first value (b$)
if the second (z) is non-zero and
a null string (“ ") if the second
value (z) is 0.

Note that the ZX Spectrum +
assigns a value of 1 to a true
condition and 0 to a false
condition, and recognizes any
non-zero value as true and @ as
false. It does not evaluate
combinations of numeric values
in accordance with standard
truth tables.

Examples

6@ LET correct=(x=y+2z) AND
time<10

70 LET score=score+10+ (1

AND correct)
80 LET a$=("Out Of Time Or

Not “ AND NOT
correct)+ “Correct”

If the two conditions in line 60
are true, then the numeric
variable correct is assigned a
value of 1. Then score is
increased by 1@ and a§ becomes
"Correct". If either of the
conditions is false, then correct
has a value of @; score is
unchanged and a$ becomes
“Out Of Time Or Not Correct”.
Format

cond AND cond

num-expr AND num-expr
string-expr AND num-expr

ASN ArcsiNe

Keyboard location
EXTEND MODE
SYMBOL SHIFT Q

Function

ASN calculates the value of an
angle from its sine.

How to use ASN

ASN is followed by a numeric
value. An expression must be
enclosed in brackets, for
example -

60 LET x=ASN (y+2)

The value followin§ ASN (y=z
above) is the sine of the required
angle and it may range from —1
to 1. ASN then returns the value
of the angle in radians. To
convert radians to degrees,
multiply the value returned by
ASN by 180/PI.

Example
The command

PRINT 180/Pi= ASNO.5

displays 30, the angle in degrees
that has a sine of Og.S. -

Format

ASN num-const
ASN num-var
ASN (num-expr)

T T T LK TP e, 1 WP
AT

Keyboard location
SYMBOL SHIFT |

See INPUT; LPRINT; PRINT

P i —————"]
ATN Arc TaNgent

Keyboard location
EXTEND MODE
SYMBOL SHIFT E

Function

ATN calculates the value of an
angle from its tangent.

How to use ATN

ATN is followed by a numeric
value. An expression must be
enclosed in brackets, for
example

60 LET x=ATN (y+2)

The value following ATN (y+z
above) is the tangent of the
required angle. ATN returns the
value of the angle in radians. To
convert radians to degrees,
multigly the value returned by
ATN by 180/PI.

Example
The command

PRINT 180/Pl+ ATN 1

displays 45, the angle in degrees
that has a tangent of 1.

Format

ATN num-const
ATN num-var
ATN (num-expr)

ATTR ATTRibutes

Keyboard location
EXTEND MODE
SYMBOL SHIFT L

Function

ATTR gives the attributes of a
specified character position on
e screen. These are the ink

and paper colours, brightness
and flash status of the character
at the position.

How to use ATTR

ATTR is followed by two
numeric values separated by a
comma and enclosed in
brackets, for example

150 IF ATTR (v,h)=115 THEN
GOSUB 2000

The first value following ATTR
(v above) may range from 0 to
23 and is the line number of a
position on the screen. The
second value (h above) ma
range from @ to 31 and is the
column number of the position.
ATTR then returns a number
from @ to 255. This number is
the sum of the attributes at the
specified position, and is made
up as follows:

Ink colour Colour code (@ to 7)

Paper colour 8 times
colour code

Bright 64
Flashing 128
Example

If a character at position 11,16
is displayed in ink colour 3
(magenta), paper colour 6
(yellow) and is bright but not
ashing, then the command

PRINT ATTR (11,16)
displays 115 (3 + 8x6 + 64 +
0).

ATTR in binary form

ATTR returns one byte in which
bit 7 (most significant) is 1 for
flashing or @ for normal, bit 6 is
1 for bright or @ for normal, bits
5 to 3 are the paper colour (in
binary) and bits 2 to 0 are the
ink colour.

Format
ATTR (num-expr, num-expr)

BEEP

K;board location
EXTEND MODE
SYMBOL SHIFT Z

Statement/Command

BEEP makes the loudspeaker
produce asingle note of a given
duration and pitch.

How to use BEEP
BEEP may be used to form a
statement in a program or a
direct command. It is followed
by two numeric values
separated by a comma, for
example
80 BEEP x,y
The first value (x) may range
from 0 to 10 and defines the
duration of the note in seconds.
The second value (y) may range
from —60 to 69 and defines the
Bitch of the note in semitones
elow middle C if negative or
above middle C if positive.
Example
The command

BEEP 0.5,1

causes the note C# above
middle C to sound for half a
second.

Format

BEEP num-expr, num-expr
e e S

BIN BiNary number
Keyboard location

EXTEND MODE
B

BIN turns a binary number into
a decimal number.

How to use BIN

BIN is followed by a binary
number consisting of up to
sixteen 1s and @s, for example

50 POKEUSR “a", BIN 1010
1010

BIN returns the decimal value of
the binary number. It is
commonly used in conjunction
with POKE and USR as above
for creating user-defined
graphics characters, with 1
signifying a pixel of ink colour
and 0 a pixel of paper colour.

Example
The command

PRINT BIN 11111110

displays 254, the decimal value
of the binary number.

Format
BIN [1] [@]
B e

BORDER
IB(eyboard location

Statement/Command

BORDER specifies the colour of
the border around the screen
display area.

How to use BORDER

BORDER may be used as a
direct command or as a
statement in a program. Itis
followed by a numeric value, for
example

30 BORDER RND+7

The value following BORDER is
rounded to the nearest integer
and specifies the colour of the
border as follows:

Black
Blue

Red
Magenta
Green
Cyan
Yellow
White

Note that BORDER also sets the
paper colour of the lower part
of the screen. Unlike INK and
PAPER, a BORDER statement
cannot be embedded (inserted)
in a PRINT statement.

Format
BORDER int-num-expr

NS WNaS

BRIGHT
Keyboard location
EXTEND MODE
SYMBOL SHIFT B

Statement/Command

BRIGHT causes characters to be
displayed in brighter colours
than normal.

How to use BRIGHT

BRIGHT may by used as a direct
command but is normally used
to form a statement in a
program. It is followed by a
numeric value, for example

80 BRIGHT 1

The value following BRIGHT is
rounded to the nearest integer
if necessary and may then be
either @, 1 or 8. A value of 1
causes all characters
subsequently displayed by
PRINT or INPUT statements to
appear in a brighter ink and
paper colour, and a value of 8
causes bright character
positions to remain bright and
normal character positions to
remain normal when new
characters are printed there.
BRIGHT followed by @ cancels
both BRIGHT 1 and BRIGHT 8
so that all characters
subsec‘ently displayed are
normal.

BRIGHT may also be
embedded (inserted) within
display statements formed by
PRINT, INPUT, PLOT, DRAW
and CIRCLE. BRIGHT follows
the keyword but precedes the
data or display parameters; it is
followed by the same values
and a semicolon, for example

50 PRINT BRIGHT 1;
"WARNING"

The effect of BRIGHT is then
local and applies only to the
characters displayed, point
plotted or line drawn by the
display statement. Note that
BRIGHT 1 brightens the paper
colour of the whole character
position of 8x8 pixels if any
pixel in the position is plotted in
an ink colour.

Format
BRIGHT int-num-expr [;]
T B A e

CAT catalogue

Microdrive file-handling
command. See Microdrive and
Interface 1 manual,

e
CH Rs CHaRacter string

Keyboard location
EXTEND MODE
U

Function

The characters and keywords
available on the keyboard plus
any user-defined graphics
characters make up the
Spectrum character set. By
using CHR$ and a code number,
each one can be obtained as a
string. The character set also
contains several control codes
that affect the display of
characters. These codes can be
brought into operation and
characters displayed by using
PRINT before CHR$. The
complete character set and
code numbers can be found on
page 51.

How to use CHR$
CHRS$ is followed by a numeric
value, for example

80 PRINT CHRS x

An expression must be enclosed
in brackets. The value following
CHRS (x above) is rounded to
the nearest integer. If it is in the
range 32 to 255, CHRS$ returns
a keyboard character, user-
defined graphics character or a
keyword as a string. The
Spectrum uses the ASCI| code
for values from 32 to 95 and 97
to 126. If xis assigned a value of
65, the above statement
displays A, for example.

CHRS$ control codes

Values from 1 to 31 either
return control codes or are not
used. CHR$ 6 (PRINT comma),
8 (back-space) and 13 (new line
or ENTER) affect displays on the
screen if included in a PRINT
statement. CHR$ may be
followed by the code value and
a semicolon, for example

60 PRINT “A'"; CHR$ 6; "'B”

This statement displays
A B
Another way of using CHR$

control codes is to form a
composite string containing
them. The statement

60 PRINT “A"”+CHR$ 6+"'B"

has exactly the same effect as
the previous example.

Codes 16 to 23 affect colour
and position and each may be

used in a composite string
together with CHR$ followed
by a colour code value from @ to
7 for CHR$ 16 (INK control) and
CHR$ 17 (PAPER contral), or by
0 or 1 for CHRS 18 to CHRS 21
(FLASH, BRIGHT, INVERSE and
OVER controls). The command

PRINT CHRS$ 16+ CHR$
3+CHRS 17+CHRS$ 6+CHRS
18+CHRS 1+ "ZX
SPECTRUM +"

displays ZX SPECTRUM +

flashing in red and yellow.

Alternatively, as above, each
Jus (+) sign may be replaced
y a semicolon.

CHRS 22 (AT control) is
followed by two CHR$ values
to indicate the line and column
numbers. The command

PRINT CHRS 22+ CHR$ 11+
CHRS$ 16+ CHR$ 42

displays a star in the centre of
the screen.

CHRS 23 (TAB control) is also
followed by two values in the
same way. The second value is
normally @ and the first value
gives the TAB position. The
command

PRINT CHRS 23+ CHRS$ 16+
CHRS 0+CHRS 42

displays a star halfway across
the screen.

Note that only these controls
are available. Using PRINT
CHRS$ with a keyword value

reater than 164 simply displays
the keyword and does not bring
it into operation.
Format
CHRS$ int-num-const [;] [+]
CHRS int-num-var [;] [+]
CHRS (int-num-expr) [;] [+]

P A S T R L
CIRCLE

Keyboard location
EXTEND MODE
SYMBOL SHIFT H

Statement/Command

CIRCLE draws a circle on the
screen.

How to use CIRCLE

CIRCLE is followed by three
numeric values each separated
by a comma, for example

80 CIRCLE x,y,z

Each of the three values is
rounded to the nearest integer
if necessary. CIRCLE then draws

a circle on the high-resolution
graphics grid in the current ink
colour. The first two values (x,y)
define the horizontal and
vertical coordinates of the
centre, and the third value (z)
defines the length of the radius.
The dimensions must be such
that the circle does not extend
beyond the display area.
CIRCLE is aftected by colour
statements or commands and
may include embedded colour
statements with the same
effects as PLOT and DRAW.

Example
The command

CIRCLE 128,88,87

draws a circle taking up most of
this display area.

Format

CIRCLE [statement;] int-num-
expr, int-num-expr, int-num-
expr

A P Y S AP T

CLEAR

Keyboard location
X

Statement/Command

CLEAR deletes the current
values of all variables, freeing
the memory space that the
values occupied and space as
faras RAMTOP, the top address
of the BASIC system area.
CLEAR may also be used to
reset RAMTOP.

How to use CLEAR
CLEAR may be used as a direct
command or it may form a
statement in a program. It
requires no parameters, for
example
50 CLEAR N
CLEAR then deletes the values
that are currently assigned to all
variables, including arrays. It
also executes CLS and RESTORE
to clear the screen and restore
the data pointer to the firstitem
of data. In addition, the PLOT
osition is reset to the bottom
eft-hand corner of the display
area and the GOSUB stack is
cleared.

Note that CLEAR is not
required before re-
dimensioning arrays as DIM
deletes an existing array of the
same name. Note also that RUN
executes CLEAR.

CLEAR and RAMTOP
CLEAR may also be followed by

a numeric value, for example
CLEAR 65267

CLEAR then executes CLEAR as
above and also sets RAMTOP,
the highest address of the
BASIC system area, to the given
value. RAMTORP is set at 65367
in the ZX Spectrum+, and lies
below the area reserved for
user-defined graphics. NEW
clears out the memory as far as
RAMTOP so using CLEAR to
lower RAMTOP (by 100 bytes
in the above example) provides
more memory that is immune
from NEW. RaisinF RAMTOP

ives more space for BASIC at
the expense of user-defined
graphics. Note that the GOSUB
stack is then located at
RAMTOP.

The current RAMTOP

address can be located by using
the following command

PRINT PEEK 23730+ 256-PEEK-
23731

Format
CLEAR [num-expr]
A Vo, LR |

CLOSE #

Microdrive file-handling
command. See Microdrive and
Interface 1 manual.

T e R v i 5|
CLS clear Screen

Keyboard location

Vv

Statement/Command

CLS clears all text and graphics
from the display area, leaving it
blank in the current paper
(background) colour.

How to use CLS

CLS may be used as a direct
command or it may form a
statement in a program. It
requires no parameters, for
example
250 IFa$=""NO" THEN CLS

The display area (but not the
border) is then cleared to the
colour selected by the previous
PAPER statement or command
orto the default paper colour of
white.

Note that CLS must be used
after PAPER and before PRINT
or any other display statement
to produce a coloured
background over the whole
display area.

Format

CLS
A e L A SR T £

CODE

Keyboard location '
EXTEND MODE
|

Function

CODE gives the code number
of a character in the Spectrum
character set (see page 51).

How to use CODE

CODE is followed by a string

value, for example

90 IF CODE a$<65 OR CODE
a$>90 THEN GOTO 80

A string expression must be
enclosed in brackets. CODE
returns the code number of the
first character in the string. If
this is a null string (' '*), then
CODE returns 0.
SAVE/LOAD/VERIFY CODE
CODE is used in a different way
with SAVE, LOAD and VERIFY.
See respective entries.

Format

CODE string-const
CODE string-var
CODE (string-expr)

bt =
CONTINUE

Keyboard location
&

Command

If a program stops, CONTINUE
can be used to restart the
program from the point at
which it stopped. If an error has
occured to halt the program,
then it must be rectified before
CONTINUE will allow the
program to resume.

How to use CONTINUE
CONTINUE is used as a direct
command when a program has
stopped. It requires no
parameters. After CONTINUE a
program then normally resumes
at the same statement at which
it stopped. If the cause was an
error, then a command can be
entered to rectify the error and
CONTINUE will allow the
program to continue from the
statement. If the program
stopped at a STOP statement
Eiving report 9 or if it halted
ecause the BREAK key was
pressed giving report L, then
CONTINUE causes the program

to resume from the next
statement. A rectifying
command can be entered first if
necessary.

If CONTINUE is used to
resume a direct command, then
it will go into a loop if the
command stopped at the first
statement in the command. The
display disappears, but control
can be regained by pressing
BREAK. CONTINUE gives
report @ if the command
stopped at the second
statement and report N at the
third or subsequent statements.

Format
CONTINUE

R TN T S S e
COorY
geyboard location

Command

COPY makes Sinclair-type
printers produce a copy of the
screen display.

How to use COPY

COPY is used as a direct
command when a program has
been completed or stopped. It
requires no parameters. After
COPY, and providing the
printer is connected, a copy of
the first 22 lines of the screen
display is then printed. Note
that all ink (foreground) colours
are printed in black; paper
(background) colours are not
printed. The printer can be
sto?ped by pressing BREAK.

If a program listing appears
on the screen, it can be printed
by using COPY provided it was
produced by a LIST command
or statement. Note that a listing
will appear on the screen on
ﬁressing ENTER aftera program

as been completed or stopped,
but this ‘automatic’ listing
cannot be printed with COPY.
Format
CcoPY
T ST T P

COS cosine

Keyboard location
EXTEND MODE
w

Function

COS gives the cosine of an
angle.

How to use COS
COS is followed by a numeric

value, for example

140 LET x=COS y

An expression must be enclosed
in brackets. The value following
COS is the angle in radians.
COS then returns the cosine of
the angle. Degrees may be
converted into radians by
multiplying by PI/180.

Note that COS returns a
negative value for angles from
9@ to 270 degrees and a positive
value for angles from @ to 90
and 270 to 360 degrees.

Example
The command

PRINT COS (60+PI/180)

displays 0.5, the cosine of 60
degrees.

Format

COS num-const

COS num-var

COS (num-expr)

B e e

DATA

Keyboard location
EXTEND MODE
D

Statement

DATA provides a list of items of
data within a program. These
items may be values of variables
or strings to be displayed, for
example. Each item is assigned
to a variable by a READ
statement.

Assignment is carried out in
the order in which items of data
appear in the program, but
RESTORE can be used to begin
assignment at the first item in a
given DATA statement.

How to use DATA

DATA can only be used to form

a statement in a program. It is

normally followed by a list of

numeric or string constants

each separated by a comma, for

example

50 DATA 31, “JAN", 28,
“FEB"

Each constant is then assigned
to a variable by a READ
statement that reads the DATA.
The DATA statement may be
positioned anywhere in the
program. The number, kind
(numeric or string) and order of
the constants must correspond
to the number of times the
READ statement is executed
and the kind and order of

variables in the READ
statement. The list of data may
be split up into several
successive DATA statements if
there are too many items to fit
into one statement.

Example
The following program

10 FORn=1TO 2

20 READ x,a$

30 PRINT a$,x;" days”

40 NEXTn

50 DATA 31, “JAN", 28, “FEB"

displays

JAN 31 days
FEB 28 days

Using DATA with variables
The items of data in a DATA
statement may consist of
numeric or string variables or
expressions provided the
variables have previously been
assigned values. In the above
example, the DATA statement
may be changed to

50 DATA d,m$,d-3, “FEB"

If d is previously assigned a
value of 31 and m$ a value of
“JAN", then the same display is
given.

LOAD DATA, SAVE DATA and
VERIFY DATA

DATA may also be used with
LOAD, SAVE and VERIFY to
store arrays on tape. See LOAD
DATA, SAVE DATA and
VERIFY.

Format

DATA num-expr [,num-expr]
[,string-expr]

DATA string-expr [,num-expr]
[,string-expr]

e Ere e s TS
DEF FN DtFine Futhion

Keyboard location
EXTEND MODE
SYMBOL SﬂLFT 1 -

Statement

DEF FN enables the user to
define a function that is not
available as a keyword. A
variety of parameters can be
passed to the function in an FN
statement, which calls the
function and may return either
a numeric or string value as a
result.

How to use DEF FN

DEF FN may only be used as a
statement in a program. If a
numeric function is to be

defined, DEF FN is followed by
any single letter and then by
one or more numeric variables
each separated by a comma and
enclosed in brackets, for
example DEF FN r(x,y). This is
followed by an equals sign and
then a numeric expression
containing the variables, for
example

1000 DEF FN r(x,y)=
SQR(x 12+y 12)

The letter following DEF FN (r
above) is a name that identifies
the function. The variables may
also only be single letters. Note
thatin both cases, the Spectrum
does not distinguish between
capital and lower-case letters.

The expression that follows
the equals sign uses the
variables (x and y above) to
define the function.

A DEF FN statement may be
placed anywhere in a program.
To call the function that it
defines, a FN statement is used.
This is then followed by the
function name letter and a list of
numeric values each separated
by a comma and enclosed in
brackets, for example

50 PRINT FN r(3,4)

The values within the brackets
are passed to the function in the
same order as the variables in
the DEF FN statement. Thus, in
this example, x is assigned a
value of3 and y a value of 4. FN
evaluates the expression and
returns the value.

DEF FN may also be followed
by a letter and a pair of brackets
only, for example

1000 DEF FNr ()=INT (x+0.5)

The value currently assigned to
the variable (x above) is passed
to the function when it is called
by FN. In this case, FN r()
returns the value currently
assigned to x rounded to the
nearest integer.

DEF FN and strings

DEF FN and FN may also be
used in the same way to define
and call a string function. In this
case, the function name is a
single letter followed by $ and
one or more of the variables in
the statement is a letter
followed by $. A corresponding
string expression forms the
definition, for example

1000 DEF FN a$(b$,x,y)=
b$(xTOYy)

The strinF expression following
the equals sign in this example is
a string slicer, and x and y are
the first and last characters of a
section of b$. FN must be
followed by the function name
and, in brackets, a string value
together with any other
parameters that are to be
passed to the function. In this
case, the command

PRINT FN a$
("FUNDAMENTAL", 1,3)

displays FUN, and the command

PRINT FN a$
("FUNDAMENTAL", 5,8)
displays AMEN.

Format

DEF FN letter ([letter] [letter])

=num-expr
DEF FN letter$ ([letter§] [letter]
[letter] [letter§])=string-expr
FN letter ([num-expr] [,num-
expr])

FN letter$ ([string-expr] [num-
expr] [,num-expr] [,string-
expr])

T T T S

DIM pimension

Keyboard location
D

Statement

DIM is used to dimension (set
up) an array of a given number
of numeric or string variables.
An array is a list of

variables of the same name that
are distinguished by subscripts
(values that identify each
variable orelement in the array).

How to use DIM with numeric
arrays

DIM s used to form a statement
in a program. It is followed by a
single letter that names the
array, and one or more numeric
values each separated by a
comma and enclosed in
brackets, for example

20 DIM x (10)
80 DIMz (20,5)

In the first case, a one-
dimensional numeric array is
created containing ten elements
with subscripts from 1 to 10.
The array has the name x and
the subscripted variables are x
(1) to x (10) inclusive. Any
existing array of the same name
is deleted, and the variables are
each assigned a value of @. Note
that in dimensioning an array,

the Spectrum does not
distinguish between names
with capital and lower-case
letters — variable x (2) is the
same as X (2). However, simple
numeric variables having the
same letter as an array name (x
or X) can coexist and may be
used separately if required.

The number of values in
brackets equals the number of
dimensions created in a numeric
array. The second example sets
up a two-dimensional array of
100 elements with 20 elements
in the first dimension and 5 in
the second. These elements are
numbered z(1,1) up to z (20,5).

Arrays of any number of
dimensions may be created.

The elements of a numeric
array may subsequently be
identified by the array name
followed by a value in brackets,
for example

70 PRINT x (a)
160 PRINT z (7,b)

DIM and string arrays

DIM is used in the same way as
with numeric arrays except that
asingle letter followed by $ is
used for the array name.
Furthermore, an extra value
must be added to the dimension
values in brackets in order to
define the length of each string,
for example

30 DIM a$ (20,5)
90 DIM bS$ (20,5,10)

The first statement creates an
array of 20 elements, each of
which contains a string of 5
characters. The subscripted
variables are named a$ (1) to a$
(20) inclusive, and they are
initially assigned a null (empty)
string (**). Any existing array
of the same name is deleted
and, unlike numeric arrays, a
simple string variable of the
same name cannot coexist.

The second example creates
a two-dimensional string array
of 100 elements with 20
elements in the first dimension
and 5 in the second. All
elements have a length of 10
characters.

When string values are
subsequently assigned to a
string array, they are padded
out with spaces at the end of
the strinF or truncated to the
defined length if necessary.

The elements of a string array
are identified by the array name

followed, in brackets, by one or
more numeric values giving the
subscript number(s). For
example, element a§(2) may be
“SMITH" and element b$(12,4)
may be ''DERBYSHIRE".
However, an extra value ma

be added to define a particular
character in the string. In these
examples, a$(2,2) would be
“M" (the second character in
“SMITH"), and b$ (12,4,5)
would be "Y"'.

Zero-dimension string arrays
It is possible to create a zero-
dimension string array by using
only one value in brackets, for
example

10 DIM c$ (15)

This array has only one element,
which is c§, and its length is
fixed at the defined value (15
characters).

Format

DIM letter (num-expr [,num-
exprl)

DIM letter§ (num-expr [,num-
exprl)

= — —___—|

DRAW

Keyboard location
W

Statement/Command

DRAW is used to draw straight
lines and curves on the screen.

How to use DRAW
DRAW is normally used to form
a statement in a program. If a
straight line is required, it is
followed by two numeric values
separated by a comma, for
example

40 DRAWxy

A straight line is then drawn on
the high-resolution graphics
Erid from the position defined

y the previous PLOT statement
or the position reached by the
previous DRAW statement,
whichever is last. Both values
following DRAW are rounded
to the nearest integer if neces-
sary. The first value (x above)
defines the horizontal distance
from this position, and the
second value (y) the vertical
distance. These values are
negative if the lineis to go to the
left or down respectively, and
the position reached must be
within the display area.

If there is no previous PLOT

or DRAW statement, DRAW

commences at position 0,0 (the
bottom left-hand corner of the
screen).

DRAW is affected by colour
statements or commands and
may include embedded state-
ments with the same effects as
with PLOT and CIRCLE.

DRAWing curved lines
DRAW may be followed by a
third value to produce a curve
that is a part of a circle, for
example

40 DRAW x,y,z

The third value (z above)
defines the angle (in radians)
through which the line turns as
it is drawn. The line turns to the
left if this value is positive, and
to the right if it is negative.
Values of Pl or —PI produce a
circle.

Example
The following program draws a
triangle:

10 PLOT 127,150
20 DRAW 70,—100
30 DRAW -140,0
40 DRAW 70,100

Adding, 1 or, -1 to the DRAW
statement causes the sides to
curve in or out respectively.

Format

DRAW [statement;] int-num-
expr, int-num-expr [,int-num-
expr]

RS A R e WA T
ERASE B

Microdrive fiie-ha;dling com-
mand. See Microdrive and
Interface 1 manual.

EXP EXPonent

Keyboard location
EXTEND MODE
X

Function

EXP is a mathematical function
that raises the exponent e to a
given power.

How to use EXP
EXP is followed by a numeric
value for example

60 LET y=EXP x

An expression must be enclosed
in brackets. EXP then returns
the exponent e raised to the
power of the argument (x
above).

Example
The command

PRINT EXP 1

displays 2.7182818, the value
of e.

Format

EXP num-const
EXP num-var
EXP (num-expr)

| T S ey s (R]
FLASH

Kﬁoard location
EXTEND MODE
SYMBOL SHIFT V

Statement/Command

FLASH causes character posi-
tions to flash, making the ink
and paper colours alternate at a
constant rate.

How to use FLASH

FLASH may be used as a direct
command but it is normally
used to form a statement in a
program. Itis followed by a
numeric value, for example

50 FLASH 1

The value following FLASH is
rounded to the nearest integer
if necessary and may then be
either @, 1 or 8. A value of 1
causes all characters
subsequentlg displa{ed by
PRINT or INPUT to flash. A
value of 8 causes flashing
character positions to remain
flashing and normal character
positions to remain normal
when new characters are
grinted there. FLASH followed

y @ cancels both FLASH 1 and
FLASH 8 so that all characters
subseciuently displayed are
normal.

FLASH may also be
embedded (inserted) within
display statements formed by
PRINT, INPUT, PLOT, DRAW
and CIRCLE. FLASH follows the
keyword but precedes the data
or display parameters; it is
followed by the same values
and a semicolon, for example

120 PRINT FLASH 1; INK 2;
PAPER 6; ""WARNING"

The effect of FLASH is then local
and applies only to the
characters displayed, point
plotted or line drawn by the
display statement. Note that
FLASH 1 causes the whole 8x8
pixel position to flash if any
pixel is plotted in an ink colour.

Format
FLASH int-num-exprl[;]

FN Function

Keyboard location

EXTEND MODE

SYMBOL SHIFT 2

Function

FN calls a user-defined function.
It is always used in conjunction

with DEF FN, which defines the
function to be called.

How to use FN

If a numeric function is to be
called, FN is followed by a letter
and then a pair of brackets. If
any parameters are to be passed
to the function, then these are
each separated by a comma and
enclosed in the brackets, for
example

170 LET x=FNr(3,4)

The parameters (3 and 4 above)
are then passed to the function
called r. FN then returns the
result. If no parameters are to
be passed, the pair of brackets
must still be included, for
example

70 PRINT FN r()

In this case, the function uses
the values currently assigned to
its variables.

FN calls a string function in
the same way, except that §
must be added after the letter
(see DEF FN).

FN does not work recursively.

Format

FN letter ([num-expr]
[,num-expr])

FN letter$ ([string-expr]
[num-expr][,num-expr][,string-
expr])

e e —
FOR

Keyboard location
E

Statement/Command

FOR is always used with the
keywords TO and NEXT to
create a FOR NEXT loop. This
structure enables a section of
the program to repeat a given
number of times.

How to use FOR

FOR always forms a statement
with TO. FOR is followed by a
letter, an equals sign, and then
two numeric values separated

by TO, for example
60 FORa=1T09

The letter (a above) forms a
control variable. The statements
that are to be repeated follow,
and one or more of these
normally makes use of the
control variable. The loop then
ends with a NEXT statement, in
which NEXT is followed by the
control variable, for example
90 NEXT a

On execution, FOR deletes any
variable of the same name as
the control variable and assigns
it an initial value equal to the
value before TO (1 above). The
statements are then executed
with the control variable having
this value. On reaching NEXT,
the value of the control variable
is increased by 1. If this value is
less than or equal to the value
after TO (the limit value of 9
above), the program returns to
the FOR statement and the
FOR NEXT loop is repeated. If
the control variable has a
greater value than the limit
value, then the loop ends and
the program continues with the
statement after NEXT.

In the above example, the
loop is repeated nine times with
the control variable a increasing
from 1 to 9. On leaving the
loop, a has a value of 10.

Note that the Spectrum does
not distinguish between capital
and lower-case letters when
naming the control variable.

Using STEP in a FOR NEXT loop
STEP is a keyword that can be
incorporated in a FOR
statement if the control variable
is to increase by a value other
than 1 or to decrease. STEP
follows the limit value and is
followed by a numeric value, for
example

60 FORa=1TO 9 STEP2

The control variable is increased
by the step value (2 above) until
it is greater than the limit value.
The control variable a has
successive valuesof 1,3,5,7
and 9 and leaves the loop witha
value of 11.

A negative step value causes
the value of the control variable
to decrease. In this case, the
initial value must be greater
than the limit value and the loop
ends when the value of the
control variable is less than the

limit value, for example
60 FORa=9TO 1 STEP —1

The value of a decreases from 9
to 1 and leaves the loop with a
value of 0.

Nesting loops

One or more FOR NEXT loops
may be placed inside each
other, a procedure called
‘nestin F loops. The order of the
control variables in the NEXT
statements must be the reverse
of the order of the control
variables in the FOR statements.
FOR NEXT loops may be nested
to any depth, that is as many
loops as required may be placed
inside each other.

Format

FOR letter=num-expr TO
num-expr [STEP num-expr]
NEXT letter

e e ———
FORMAT

Microdrive file-handling
command. See Microdrive and
Interface 1 manual.

T e e e e e
GOSUB

zeyboard location

Statement/Command

GOSUB causes the program to
branch to a subroutine, which is
a separate section of the
program. This is useful if a
subroutine is required several
times in a program.

How to use GOSUB

GOSUB may be used as a
statement or direct command
and it is followed by a numeric
value, for example

GOSUB 1000

On execution, the value
following GOSUB (1000
above) is rounded to the nearest
integer, and the program
branches to the line number
havinﬁ this value. The use of a
variable or expression enables
the program to branch to a
subroutine at a calculated line
number. Note that if the line
number does not exist, the
program still branches and
continues with the first
statement that is then
encountered.

A subroutine ends with
RETURN, and the program then
branches back to the statement

following the GOSUB
statement. Subroutines may be
nested so that one is reached
from another, in which case
RETURN sends the program
back to the statement following
the last GOSUB statement
executed.

The GOSUB stack

Whenever GOSUB is executed,
its line number is ﬁlaced on the
GOSUB stack in the memory. If
two or more GOSUBs are
executed before RETURN, their
line numbers stack up so that
the last number is on top of the
stack. RETURN always takes the
top line number from the stack
and goes to this line to continue
the program.

Note that error 4 (Out of
memory) can occur if there are
not enough RETURN
statements.

Format
GOSUB int-num-expr
e T ey

GOTO

Keyboard location
G

Statement/Command

GOTO makes a program
branch to a particular line.

How to use GOTO

GOTO may be used as a direct
command to run a program
from a Fiven line number
withoutfirst clearing the screen.
It may also be used to form a
statement in a program. GOTO
is followed by a numeric value,
for example

60 GOTO 350

On execution, the value
following GOTO is rounded to
the nearest integer and the
program branches to the line
number havin% this value. The
use of a variable or expression
allows the program to branch to
a calculated line number. Note
that if the line does not exist,
then the program still branches
and continues with the first
statement that is then
encountered.

Format
GOTO int-num-expr

IF

Keyboard location
U

Statement/Command

IF is always used with the
keyword THEN to prompt a
decision that affects subsequent
action. To do this, the computer
tests something to find out
whether or not it is true. If it is
true, then one course of action
follows. If it is untrue, another
occurs.

How to use IF and THEN

IF normally forms a statement
with THEN. IF is first followed
by a numeric value or by a
condition, and second by THEN
and one or more valid BASIC
statements, for example

'80 IF x THEN GOTO 250

240 IF a$="NO" THEN PRINT
“THE END": STOP

A constant, variable or
expression (such as x above) is
considered to be true if it has a
non-zero value. In this case, the
statement following THEN and
any more statements in the
same line are executed. The
program then proceeds to the
next line. If the value is @, then
the constant, variable or
expression is considered to be
false. The following statements
are then not executed and the
program skips to the next line.
In the example, the program
will not go to line 250 if x is @.
If a condition (a§="NO")
following IF is true, then the
statements following THEN are
executed. If the condition is
false, then the program moves
to the next line. In this example,
if a$ has the value “NO" then
“THEEND" is displayed and the
program stops. If a$ has any
other value, the ﬂrogram
continues from the next line.
The Spectrum gives a true
condition a value of 1 and a
false condition a value of @. It
recognises any non-zero value
astrue and @ as false. A variable
can be assigned the value of a
condition by a statement such as

70 LET x=a$="NO"

Note that, unlike in some other
BASICs, THEN cannot be
omitted before GOTO.

Format

IF num-expr THEN statement
[: statement]

IF cond THEN statement

[: statement]

AR e R R e oS
IN

Keyboard location
EXTEND MODE
SYMBOL SHIFT |

Function

IN checks the status of the
keyboard and other input and
output devices. It reads a byte
from a given port address that
indicates the status of the
device connected to the port.

How to use IN
IN is followed by a numeric
value, for example

150 LET x=INy

The value following IN may
range from @ to 65535 and
specifies the port address that is
to be read. IN then returns the
byte read from this port.

Keyboard addresses

The keyboard has eight
addresses, each of which may
contain one of five different
bytes depending on which key
is pressed. The addresses are
65278, 65022, 64510, 63486,
61438, 57342, 49150 and
32766. Byte values at these
addresses may be 175, 183,
187, 189 or 190.

Format

IN num-const

IN num-var

IN (num-expr)

INK

Keyboard location
EXTEND MODE
SYMBOL SHIFT X

Statement/Command

INK specifies the foreground

colour in which characters are
displayed, points plotted and
lines and curves drawn.

How to use INK

INK may be used as direct
command but is normally used
to form a statement in a
program. It is followed by a
numeric value, for example

70 INK x -

The value following INK is
rounded to the nearest integer
and may then range from@to 9.
The following foreground
colours are then given.

0 Black
1 Blue

Red

Magenta (Purple)
Green

Cyan (Blue-green)
Yellow

White
Transparent
Contrasting black
or white

INK 8 specifies that the existing
colour remains unchanged at
any position on the screen
where INK 8 is used. INK 9
causes the ink colour to be
either black or white so that it
shows up against the paper
(background) colour.

Global and local ink colours
When INK forms a statement
alone, as above, the colour is
lobal and all subsequent
ﬁisplays occur in this foreground
colour. INK may also be
embedded (inserted) in display
statements formed by PRINT,
INPUT, PLOT, DRAW and
CIRCLE. INK follows the
keyword but precedes the data
or display parameters; it is
followed by the same values
and a semicolon, for example

60 CIRCLE INK 4; 128, 88, 87

The effect of INK is then local
and applies only to the
characters displayed, point
plotted or line drawn by the
display statement, this example
drawing a green circle.
Thereafter the ink colour reverts
to the global colour or default
colour of black.

Format
INK int-num-expr [;]

INKEY$ iNput KeY string

Keyboard location
EXTEND MODE
N

Function

INKEY$ is used to detect the
Eress'mg of the keys on the
eyboard.

How to use INKEY$S

INKEY$ requires no argument
and is generally used to assign a
character to a string variable or
to test for a particular character,
for example

70 LET a$=INKEY$
130 IFINKEY$="N" THEN
STOP

On execution, INKEYS$ returns

VoSN AWK

the character given by the key
that is being pressed at that
instant. If no key is being
pressed, then INKEY$ returns a
null (empty) string (“ ”). Note
that INKEY$ distinguishes
between capital and lower-case
letters and other shifted and
unshifted characters. (Use IN to
detect an¥I key without
distinguishing characters.)

Unlike INPUT, INKEY$ does
not wait but goes immediately
to the next statement. It is
therefore normally placed
inside a loop that repeats until
the required key is pressed.

Example

This line suspends operation
until the Y key is pressed
(without CAPS SHIFT or CAPS
LOCK).

60 IF INKEYS<>"y" THEN
GOTO 60

Format
INKEY$

L e .
INPUT

Keyboard location
|

Statement@m mand

INPUT enables data to be
entered during the running of a
program.

How to use INPUT

INPUT normally forms a
statement in a program and is
used in a very similar way to
PRINT. In its simplest form, it is
followed by a numeric or string
variable, for example

60 INPUT x
90 INPUT a$

The computer then waits until
either a number or a string is
entered. The value is displayed
at the beginning of the bottom
lineasitis keyedin. On pressing
ENTER, the value is assigned to
the named variable and the
program continues.

An INPUT statement may
include more than one variable
and will display characters to
form a prompt. This is done in
exact%y the same way as with
PRINT, using quote marks to
enclose the prompt characters
and semicolons or commas as
necessary to separate items.
Display statements such as INK,
FLASH and PAPER mar be
embedded, for example

80 INPUTINK2; “Whatis your
name? “;n$, ("How old are
you, "+n$§+"? "); age

Note the following differences
to PRINT. INPUT waits when it
comes to a variable, so all
variables and expressions (such
as that including n§ above)
which are to be included in
prompts must be enclosed in
brackets. Display begins at the
start of the bottom line and
then scrolls up if more than one
line is used. AT may be used in
an INPUT statement in the
same way as with PRINT. AT
0,0 displays at the start of the
line above the bottom line and
the display scrolls up if more
than two lines are displayed.

How to halt INPUT

If INPUT is followed by a
numeric variable and STOP is
entered, then the program
stops. With a string variable, the
first quote mark that appears
may be deleted and then STOP
entered to halt the program.

Using INPUT with LINE
INPUT LINE may be used with
string variables only. Normally,
INPL?T with a string variable
causes a pair of quotes to be
displayed. As the string is keyed
in, it appears between the
quotes. To remove these
quotes, use INPUT LINE
followed by the string variable.
If a prompt is required, it is
placed between INPUT and
LINE, for example

70 INPUT “What is your
name? "; LINE n$

Format

INPUT [prompt](;1[,1[]
num-var

INPUT fprompt][;]LI[']
string-var

INPUT [prompt](;1[.1['] LINE
string-var
[prompt]=[string-const]
[(string-expr)][AT
int-num-expr,int-num-expr]
[statement] [;][1[]

s e
INT iNTeger

Keyboard location
EXTEND MODE
R

Function

INT changes non-integers
(numbers that are not whole)
into integers or whole numbers.

How to use INT
INT is followed by a numeric
value for example

7@ LET x=INTy

An expression must be enclosed
in brackets. INT then returns the
value rounded down to an
integer.

Example
The command

PRINT INT 45.67, INT -7.66
displays

45 -8
Format

INT num-const

INT num-var
INT (num-expr)

e A e T
INVERSE

Keyboard location
EXTEND MODE
SYMBOL SHIFT M

Statement/Command

INVERSE causes colours to be
inverted at character positions
so that the ink colour becomes
the paper colour and vice-versa.

How to use INVERSE

INVERSE is normally used to
form a statement in a program.
Itis followed by a numeric
value, for example

70 INVERSE 1

The value following INVERSE is
rounded to the nearest integer
and may then be either @ or

1. INVERSE 1 causes all
subsequent displays made by
PRINT and INPUT to be
produced in inverse colours.
INVERSE @ restores the ink and
paper colours to normal.

Note that INVERSE can be
embedded (inserted) within
display statements in the same
way as INK. However, if used
with CIRCLE, PLOT or DRAW,
INVERSE 1 causes a line or point
to be plotted in the paper colour
so that it disappears.

Format
INVERSE int-num-expr

S e TR
LEN LENgth of string

Keyboard location
EXTEND MODE
K

Function

LEN gives the length of a string.

How to use LEN
LEN is followed by a string
value, for example

50 LET x=LEN a$

An expression must be enclosed
in brackets. LEN returns the
number of characters in the
string.

Example
The following line

120 INPUT a$: IF LEN a$>9
THEN GOTO 120

passes only strings containing
up to nine characters.

Format

LEN string-const
LEN string-var
LEN (string-expr)

N — = S
LET

Keyboard location
L

Statement/Command

LETisusedtoassignavaluetoa
variable. In Sinclair BASIC, LET
cannot be omitted in an
assignment statement.

How to use LET

LET normally forms a statement
ina program but may be used as
a direct command. Itis followed
by a numeric or string variable,
an equals sign, and then a
value. The value may be
numeric or string, depending on
the variable preceding LET, for
example

60 LET x=x+1
80 LET a$="Correct”

The value is then assigned to
the variable.

Note that simple variables are
undefined until assigned values
by LET, READ or INPUT. Array
variables however are initialized
to @ or a null string (see DIM).

Format
LET num-var=num-expr
LET string-var=string-expr

LINE

Keyboard location
EXTEND MODE
SYMBOL SHIFT 3

see INPUT, SA\{E

R R S~ X
LIST

Keyboard location
K

Command/Statement

LIST produces a listing of the
program currently in the
memory.

How to use LIST

LIST is normally used as a direct
command but may form a
statementina program. Tolista
complete program, it is used
alone. After the direct command

LIST

the first page of the listing
ap’aears and subsequent pages
will scroll up the screen at the
touch of any key except N, the
space bar, STOP or BREAK.
LIST may also be followed by
a line number, in the form of a
numeric value, for example

LIST 100

The value following LIST is then
rounded to the nearest integer
if necessary, and the listing
commences at this line. If there
is no line with this number, the
listing commences at the next
line.

Format
LIST [int-num-expr]

T i E
LLIST Line printer LIST

Keyboard location
EXTEND MODE
v

Command/Statement

LLIST makes Sinclair-type

rinters Produce a print-out
isting of the program currently
in memory.

How to use LLIST

LLIST is used in exactly the same
way as LIST (see LIST for further
details). Note that the screen
display does not change as the
listing is printed.

Format

LLIST [int-num-expr]

e = T
LN Logarithm (Natural)

Keyboard location
EXTEND MODE
Z

Function

LN gives the natural logarithm
(the logarithm to base e) of a
value. It acts as the inverse of
EXP.

How to use LN
LN is followed by a numeric
value, for example

60 LET x=LN y

An expression must be enclosed
in brackets. The value following
LN must be greater than 0. LN
then returns the natural
logarithm of this value.

Format

LN num-const
LN num-var
LN (num-expr)

L Pl A ety
LOAD

Keyboard location
J

Command/Statement

LOAD loads a complete
program into the memory from
a tape.

How to use LOAD

LOAD is normally used as a
direct command, but it may
form a statement in a program
in order to load a new program.
LOAD is followed by a filename,
which is a string value up to ten
characters long, for example

LOAD “filename”

On execution, the program
currently in memory, and all the
values of its variables, are
deleted. The Spectrum then
searches for the named program
and loads it when it is located.
Note that the computer
distinguishes between capital
and lower-case letters in
program names.

It a null string follows LOAD,
as in this command

LOAD "

then the Spectrum loads the
first complete program that it
locates.

Note that LOAD is used
differently when a Microdrive is
connected. See the Microdrive
and Interface 1 manual for
details.

Format
LOAD string-expr

TR T iy SR TR |
LOAD CODE

Keyboard locations
J

EXTEND MODE

|

Command/Statement

LOAD CODE is used to load a
section of the memory with
information that has been
stored on tape. The information
consists of a set of bytes, and
these are sent to a set of
addresses in the memory.
LOAD CODE can be used to
load a display, or to load
information for user-defined
graphics, for example.

How to use LOAD CODE
LOAD CODE may be used as a
direct command or it may form
a statement in a program.
LOAD is followed by a filename,
which is a string value, and then
CODE, for example

LOAD “data” CODE

The filename following LOAD is
the name of the information to
be loaded and is subject to the
same restrictions as program
names (see LOAD). LOAD
CODE then searches for the
named information and when
found, displays Bytes: followed
by the name. The Spectrum
then loads the bytes into the
memory at the addresses from
which they were saved. Any
existing information is
overwritten.

CODE may also be followed
by one or two numeric values,
separated by a comma, for
example

LOAD “picture” CODE
16384,6912

The values following CODE are
rounded to the nearest integer
and then define the startin
address (16384 above) at which
the named information is to be
loaded, and the number of
bytes (6912) that are to be sent
to locations beginning at this
address. If the number is wrong,
the tape loading error report is

iven. If only one value follows

ODE, it defines the starting
address from which allthe bytes
are to be located.

The above example can also
be carried out by the keywords
LOAD SCREENS.

For details on storing bytes,
see SAVE CODE.

Format

LOAD string-expr CODE
[int-num-exprl[.int-num-expr]
e

LOAD DATA

Keyboaril locations
J

EXTEND MODE
D

Statement/Command

LOAD DATA is used to load
arrays from tape. The arrays are
recorded using SAVE DATA.

How to use LOAD DATA
LOAD DATA may be used to
form a statement in a program
or as a direct command. LOAD
is first followed by a filename,
which is a string value,
followed by DATA and a letter
oraletterand $, and finally by a
pair of empty brackets, for
example

270 LOAD "numbers”
DATA n()

300 LOAD "names” DATA
n$()

The filename following LOAD is
the name that is given to the
array on tape and it is subject to
the same restrictions as program
names used with LOAD. The
letter or letter$ following DATA
is the name to be given to the
array in the program when it is
loaded and used.

On execution, the Spectrum
searches forthe named array on
tape. When found, the message
Number array: or Character
array: followed by the name
appears and the array is loaded.
Any array currently in memory
having the same letter name (n
or n§ above) is deleted, and a
new array having this letter
name and the values stored on
tape is created. Note that with
character arrays, any string
variable currently in memory
having the same letter name is
also deleted.

Format
LOAD string-expr DATA
letter[$]10)

=i —
LOAD SCREENS

Keyboard locations
J

EXTEND MODE
SYMBOL SHIFT K

Statement/Command

LOAD SCREENS enables a
screen display to be loaded
directly from tape. It sends
information from the tape to
the section of the memory
controlling the screen display in
order to produce the picture.

How to use LOAD SCREENS$
LOAD SCREENS$ may be used
to form a statement in a
program or as a direct
command. LOAD is followed by
a filename, which is a string
value, and then SCREENS, for
example
LOAD "“picture” SCREENS

The filename following LOAD is
the name that is given to the
screeninformation on tape, and
it is subject to the same
restrictions as program names
used with LOAD. The Spectrum
then searches for the named
information and when found,
loads it first into the display file
and then the attributes section
of the memory. The picture
slowly builds up in the current
ink and gaper colours and then
the attributes (true colours and
so on) are added.

For details on storing screen
information, see SAVE
SCREENS.

Format
LOAD string-expr SCREENS

R URAE D T L N SRR
LPRINT Line printer PRINT

k%ard location
EXTEND MODE
C

'.S__tat_emea;t/C0mmand

LPRINT makes Sinclair~tyJJe
printers print an item of data in
the same way that PRINT
causes the item to appear on
the screen.

How to use LPRINT
LPRINT may form a statement
in a program or a direct
command. It is followed by
items of data that may be
separated by semicolons,
commas or apostrophes, for
example
6@ LPRINT “Number ";x'
“Name ";n$,"Age ";a
When output to the printer, the

items are printed in the same
format as PRINT would cause

them to be displayed on the
screen. An LPRINT statement or
command may also include TAB
statements, certain CHR$
controls, INVERSE and OVER
statements and control codes
with the same effect as PRINT.
An AT statement may also be
included, but the line number is
ignored and the item of data
printed at the given column
position in the same line.
Format

LPRINT [TAB int-num-expr;)]
[AT int-num-expr,int-num-
expr;] [CHR$ (int-num-
expr);][statement;1[num-
exprl(string-exprl[;1[1[']

R R T e i alE SRS
MERGE

Keyboard location
EXTEND MODE
SYMBOL SHIFT T

Statement/Command

MERGE allows two programs to
be merged together.

How to use MERGE

MERGE may be used to form a
statement in a program oras a
direct command. It is followed
by a filename in the form of
string value, for example

500 MERGE “prog2"”

The filename following MERGE
is the name of the program to
be mer€ed with the program
currently in memory. This name
is subject to the same
restrictions as program names
used with LOAD. MERGE then
loads the new program without
first deleting the existing
program. However, the new
program overwrites any lines in
the existing program that have
the same line numbers as lines
in the new program, and
variables with the same name
are also overwritten.

Format
MERGE string-expr

MOVE

Microdrive file-handling
command. See the Microdrive
and Interface 1 manual.

B e
NEW

Keyboard location

A

Command/Statement

NEW clears the BASIC memory
area (the area as far as
RAMTOP) removing any
program currently in this part of
the memory.

How to use NEW

NEW is normally used as a direct
command but may form a
statement in a program. Itis
used alone. On execution, the
program and variables are
deleted. The memory is cleared
as far as RAMTOP so that
user-defined graphics
characters, which are stored
above RAMTOP, are not
affected.

Format

NEW

N

St;ater_nen_t/Comman_d

NEXT is always used in
conjunction with FOR to create
a FOR NEXT loop.

How to use NEXT

NEXT is normally used to form a
statement in a program to
complete a FOR NEXT loop. Itis
followed by a letter that is the
control variable in the loop, for
example

9 NEXTa

In Sinclair BASIC, the control
variable must be included.

See FOR for further details of
FOR NEXT loops.

Format -
NEXT letter

R e e T
NOT

Keyboard location
SYMBOL SHIFT S
Logical Operator/Function
NOT is used to reverse the truth
of a condition so that a false

condition becomes true and
vice versa.

How to use NOT

NOT is followed by a condition
or by a numeric value, for
example

PRINT “"Wrong”

90 LET correct=x=y+z: IF
NOT correct THEN PRINT
"Wrong"

When NOT is followed by a
condition (x=y+z above), the
Spectrum first assigns a value of
1 to the condition if itis true and
Qifitis false. NOT thenactsasa
function, reversing the value
produced, so that the reverse of
the condition can be tested.
Note that a condition should be
enclosed in brackets if it
contains AND or OR.

If NOT is followed by a
numeric value, it returns @ if the
value following is non-zero and
1 if the value following is 0.
Thus in the above examples, the
Spectrum prints "Wrong" if
x<>y+z or if correct has a
value of 0.

Format
NOT cond
NOT num-expr

s e i —
OPEN#

Microdrive file-handling
command. See the Microdrive
and Interface 1 manual.

T e e [S S S,
OR

Keyboard location
SYMBOL SHIFT U

Logical Operator/Function
ORacts asa Io§ical operator to
test the truth of a combination
of conditions. If one or more
conditions are true, then the
overall combination is true. OR
also acts as a function to
perform binary operations on
two numeric values.

How to use OR

As a logical operator, OR links
two conditions in a statement
where the truth of the whole is
to be tested, for example

70 IF INKEYS="N" OR
INKEY$="n" THEN STOP

If any or both of the conditions
is true, then the overall
combination is true. In the line
above, one of the conditions
(INKEY$="N" and
INKEY$="n") becomes true as
soon as the N key is pressed,
regardless of whether CAPS
SHIFT or CAPS LOCK is
operating or not. The whole
combination is then true and
the program stops.

OR as a function

The ZX Spectrum + assigns a
numeric value of 1 to a true
condition and @ to a false
condition. It recognizes an
non-zero value as true an
false. OR may therefore be
preceded or followed by a
numeric value, for example

40 LETx=yORz

The variable x is then assigned a
value of 1 if z is non-zero or a
true condition, or a value of y if
z is 0 or a false condition.

This is useful in arithmetic. In
the following example, the fare
is halved if the age is less than
14.

60 PRINT fare«(0.5 OR
age=>13)

If the age is less than 14, the
condition age>13 is false, so
the fare is multiplied by 0.5. If
age>13is true, then t[:e fareis
multiplied by 1.

Note that the Spectrum does
not evaluate combinations of
numeric values in accordance
with standard truth tables.

Qas

Format
cond OR cond
num-expr OR num-expr

Y S e TR S T
ouT

Keyboard location
EXTEND MODE
SYMBOL SHIFT O

Statement/Command

OUT sends a byte to a given
input/output port address in
order to drive an output device.

How to use OUT

OUT may be used to form a
statement in a program or as a
direct command. It is followed
by two numeric values,
separated by a comma, for
example

40 OUT 2543

Both values are rounded to the
nearest integer. The first value
(254 above) may then range
from @ to 65535 and is the port
address. The second value (3)
may range from @ to 255 and is
the byte to be sent to this
address.

Bits @ to 2 of the byte output
to port address 254 set the
border colour; the above
example therefore turns the

border magenta. Bit 3 at this
address drives the MIC socket
and bit 4 the loudspeaker. Port
address 251 drives the printer
and ports 254, 247 and 239 are
used with other peripherals.

Format
OUT int-num-expr,int-num-
expr

S L TS
OVER

Keyboard location
EXTEND MODE
SYMBOL SHIFT N

Statement/Command

OVER is used to overprint one
characteron another. It can also
be used to plot points or draw
lines or curves in a paper colour
instead of an ink colour.

How to use OVER

OVER is normally used to form
a statement in a program. It is
followed by anumeric value, for
example

80 OVER 1

The value following OVER is
rounded to the nearest integer
and may then be either @ or 1.
OVER @, which is the default
(preset) state, causes any
character to obliterate a
previous character at the same
character position and replace
it. OVER 1 causes any two
characters displayed at the
same character position to be
combined.

OVER may be embedded
(inserted) in a PRINT or INPUT
statement in the same way as
INK so that it affects only the
characters displayed by the
statement. This statement for
example, underlines a word

60 PRINT AT 11,15; "YES";
OVER 1; AT 11,15 ;“__"

However, note that
characters are combined so that
the paper colour is given where
the ink colours overlap.

OVER in high resolution
OVER may be used with PLOT,
DRAW and CIRCLE. Without
OVER, lines and curves can
overlap each other, but they
must have the same ink colour
otherwise the ink colour in the
whole character Eosition
changes where they cross. If
OVER 1 is used, lines or curves
produce the paper colour where

they overlap or meet characters.
Plotting points or drawing lines
or curves again in exactly the
same position with OVER 1
causes them to disappear.

Format
OVER int-num-expr

PSSR P s |
PAPER

Keyboard location
EXTEND MODE
SYMBOL SHIFT C

Statement/Command

PAPER is used to select the
paper or background colour
used for the screen display. This
may be either the colour of the
background over the whole
display area, or the colour
behind individual characters,
points or lines that appear in
single character positions.

How to use PAPER

PAPER may be used to form a
statement in a program or as a
direct command. It is followed
by a numeric value, for example

80 PAPER x

The value following PAPER is
rounded to the nearest integer
and it may then range from @ to
9. The paper colours that are
then given are the same as
those given by INK. Paper
colours may also be global or
may be made local by
embedding (inserting) them in
display statements in exactly
the same way as ink colours.
See INK for further details.

Whenever characters are
printed following a PAPER
statement, whether global or
local, the background over the
whole of the character position
affected changes to the selected
colour. This is also true when
points are plotted or lines or
circles drawn with an embedded
PAPER statement but not
following a global command or
statement.

To produce a coloured
background over the whole
display area, it is necessary to
use CLS after a PAPER
statement. The entire display is
cleared to this colour, which
then remains the overall
background colour.

Format
PAPER int-num-expr(;]

e a1}
PAUSE

Keyboard location
M

Statement/Command

PAUSE can be used to suspend
a program for a definite or
indefinite time.

How to use PAUSE

PAUSE is normally used to form
a statement in a program. It is
followed by a numeric value, for
example

130 PAUSE 100

The value following PAUSE is
rounded to the nearest integer
and may then range from @ to
65535. It defines the delay that
occurs as this number of frames
of the television picture, so that
a value of 50 produces a pause
of 1 second in the UK and
Europe where the frame
frequency is 50 Hz.

However, note that any
pause may be cut short by
pressing any key and that
PAUSE @ gives an unlimited
pause that lasts until a key is
pressed.

Format
PAUSE int-num-expr

e S S e R LT S
PEEK

Keyboard location
EXTEND MODE
O

Function

PEEK(fives the value of the byte
stored at a particular address in
the memory.

How to use PEEK
PEEK is followed by a numeric
value, for example

80 LET x=PEEK (256+y)

Note that an expression must
be enclosed in brackets. The
value following PEEK is rounded
to the nearest integer if
necessary, and may then range
from @ to 65535 to give an
address in the memory. PEEK
then returns the value of the
byte (a number from @ to 255)
at the address specified.

Example
The number of frames of the
television display that have

occurred since the Spectrum
was last switched on is stored at
addresses 23672 to 23674. As
the frames are produced at a
regular rate, PEEKing these
locations gives a method of
measuring time. The following
line displays the time in seconds
since the Spectrum was last
powered up (less any time spent
in producing sound and
operating peripherals such as
the cassette player and printer).

10 PRINT (PEEK 23672+256+
PEEK 23673+65536+PEEK
23674)/50

Note If the mains frequency is
6@ Hz and not 50 Hz (the UK
standard), change 50 to 60.

Format

PEEK int-num-const
PEEK int-num-var
PEEK (int-num-expr)

T I il
Pl

Keyboard location
EXTEND MODE
M

Function

Pl gives the value of pi (7) for
use in calculations. Pl is the ratio
of the circumference of a circle
to its diameter.

How to use Pl

Pl requires no values or variables
when used in a statement or
command, for example

DRAW 255,0,—PI

Plreturns a value of 3.1415927,
so that the above command
draws a large semicircle on the
screen.

Format
Pl

S RS N R T
PLOT

Keyboard location
Q

Statement/Command

PLOT is used in high-resolution
graphics to plot a pixel or dot of
colour at a particular position on
the screen.

How to use PLOT

PLOT is used to form a
statement in a program oras a
command. It is normally
followed by two numeric values

separated by a comma, for
example

50 PLOT 128,87

Both values following PLOT are
rounded to integers if necessary.
The first value may then range
from @ to 255 and defines the
horizontal coordinate of a
position on the screen. The
second value may range from @
to 175 and defines a vertical
coordinate. A pixel is then
normally plotted in the current
ink colour at the defined
position—in the above example
at the centre of the screen.

Note the following effects of
colour statements or commands
on PLOT. After OVER 1, an
existing dot at the same position
is changed to the paper colour.
Following INVERSE 1, the dot is
plotted in the current paper
colour. After BRIGHT 1 or
FLASH 1, the whole character
position on the low-resolution
screen in which the pixel is
plotted will be bright or flash.

These four keywords and INK
may also be embedded
(inserted) within a PLOT
statement in the same way as
with PRINT, for example

160 PLOT INK 2;xy

Their effect is the same but is
then local and limited to the
pixel plotted by the statement.
If PAPER is embedded in a
PLOT statement, the paper
colour of the whole character
position around the pixel
changes to the given colour.

Note that PLOT also defines
the starting position of the next
DRAW statement.

Format
PLOT [statement;]
int-num-expr,int-num-expr

TR T T R e
POINT

Keyboard location
EXTEND MODE
SYMBOL SHIFT 8

Function

POINT is used to find out
whether the colour at a
ﬁarticular position on the

igh-resolution screen is either
an ink colour or a Eaper colour.
POINT does not check the
actual colour itself.

How to use POINT

POINT is followed by two
numeric values separated by a
comma and enclosed in
brackets, for example

240 IF POINT (x,y)=1 THEN
GOSUB 600

The two values following
POINT are rounded to integers
if necessary. The first value may
then range from @ to 255 and
defines the horizontal
coordinate of a pixel on the
screen. The second value may
range from @to 175 and defines
a vertical coordinate. POINT
then returns 1 if the pixel at the
defined position is ink colour or
@ if it is paper colour.

Format
POINT (int-num-expr, int-num-
expr)

e e ——— i SR e
POKE

Keyboard location
o

Statement/Command

POKE is used to change the
value of the byte at a particular
address in the memory. Values
are normally POKEd to memory
locations in order to produce
actions not given by the BASIC
keywords.

How to use POKE

POKE is used to form a
statement in a program or as a
command. Itis followed by two
numeric values separated by a
comma, for example

POKE 23609,255

The two values following POKE
are rounded to the nearest
integers if necessary. The first
value may then range from
16384 to 65535 and is an
address in RAM. The second
value may range from -255 to
255 and is the byte to be
written to the defined address

In the above example, 255 is
POKEd to address 23609,
which controls the sound
produced when a key is pressed.
Avalue of 255 gives a Ion% beep
instead of the normal click,
other values producing a shorter
beep.

Format
POKE int-num-expr,
int-num-expr

PRINT

geyboard location

Statement/ Command

PRINT displays data on the
screen. The data may be any
single character or sequence of
characters. A PRINT statement
may incorporate other
keywords to define the position
and colour of the data.

How to use PRINT

PRINT may be used alone or it
may be followed by data. This
data may be in the form of any
numeric or string expressions,
or a mixture of these.

When using PRINT with data,
two or more separate items
must each be separated by a
semicolon, comma or
apostrophe.

Certain other keywords may
be inserted in any order
between PRINT and the data,
provided each statement
formed by the keyword ends in
a semicolon. These keywords
are CHRS$, TAB, AT, INK,
PAPER, FLASH, BRIGHT,
INVERSE and OVER.

PRINT with strings
PRINT alone or followed by a
null string (* ") displays a blank
line and moves the cursor to the
beginning of the next line.
PRINT followed by a strin
constant (any characters within
double quote marks) displays
the characters as they aﬁpear
between the quote marks. The
command

PRINT "3/542/76/21"
for example displays
3/542/76/21

PRINT followed by a string
variable or expression displays
the string or strings they
represent.

PRINT with numbers
PRINT followed by any numeric
expression displays the
expression’s value. Numbers
are displayed in decimal
notation with up to eight
significant digits and no trailing
zeros after the decimal point.
Very large and very small
numbers are displayed in a
shorter scientific notation, as
two figures separated by the
letter E. This indicates a number

in which the first part (the
mantissa) is multiplied by 10 to
the power of the second part
(the exponent). The command

PRINT 3/542/76/21
for example displays
3.4680798E-6

PRINT formatting with
punctuation signs

PRINT followed by items of
data separated by a semicolon
displays the items placed next
to each other without a space.
The command

PRINT 1;2;3
displays
123

PRINT followed by items of
data separated by a comma
displays each item at the
beginning or in the middle of a
line depending on the position
of the first item. The command

PRINT 1,2,3
displays

1 2
3

PRINT followed by items of
data separated by an
apostrophe displays the item
after the apostrophe at the
beginning of the next line. The
comman

PRINT 1'2'3
displays

1
2
3

If a PRINT statement or
command ends with a
semicolon, comma or
apostrophe, then the item
displayed by the next PRINT
statement is affected in the
same way.

PRINT and other keywords
PRINT may be followed by TAB,
a numeric value, a semicolon
and then an item of data, for
example

60 PRINT TAB x; a$

The value following TAB (x
above) is rounded to the nearest
integer if necessary and is then
divided by 32 and the remainder
returned to give a value
between @ and 31. The item of
data is then displayed at this

column position in the same or
the next line.

PRINT may be followed by
AT and then two numeric
values separated by acomma, a
semicolon and an item of data,
for example

50 PRINT AT |,c; "Data”

The first value (| above) may
range from @ to 21 and defines
the number of the line or row in
which the data will be displayed.
The second value (c) may range
from @ to 31 and defines the
number of the column in which
the first character or digit of the
data will be displayed. Non-
integer values are accepted and
rounded to the nearest integer.
The command PRINT AT
11,16;"«" displays a star in the
centre of the screen.

PRINT may also be followed
by one or more CHRS$ functions.
See CHRS$ for further details.

PRINT and colour keywords
The display produced by PRINT
is affected by colour statements
or commands given by INK,
PAPER, FLASH, BRIGHT,
INVERSE and OVER that are
currently in operation. PRINT
may also be followed by one or
more of these six statements
each followed by a semicolon
before the item of data, for
example

5@ PRINT AT 11,16; INK 2;
FLASH 1;"+"

The item of data is then
displayed with the attributes
specified by the colour
keyword(s). These attributes
are local and apply only to the
item displayed. Following
execution of the PRINT
statement, they revert to their
default or previously declared
global values. PRINT will also
obey local colour control codes
inserted with the data (see
page 33).

Format

PRINT [TAB int-num-expr;]
[AT int-num-expr,
int-num-expr;]

[CHRS (int-num-expr);]
[statement;] [num-expr]
[string-expr] ;1 [1 [']

B
RANDOMIZE

Keyboard location
T

Siateme;t/ C(;n't_mand

RANDOMIZE, which appears
on the keyboard as RAND, is
used in conjunction with RND
to produce sequences of
numbers that are either random
or predictable.

How to use RANDOMIZE
RANDOMIZE is used either to
form a statement in a program
orasacommand. Itis optionally
followed by a numeric value, for
example

RANDOMIZE 1
10 RANDOMIZE

The value following
RANDOMIZE is rounded to the
nearest integer if necessary and
may then range from @ to
65535, A value greater than @
sets the system vaniable SEED to
this value, following which RND
always generates the same
sequence of numbers (see page
48 for information on system
variables). The actual sequence
depends on the value of
RANDOMIZE.

If RANDOMIZE is followed
by @ or no value, then SEED is
given the value of another
system variable called FRAMES,
which counts the frames
displayed on the television since
the Spectrum was switched on.
As SEED changes 50 or 6@ times
a second, the sequence of
numbers generated by RND
following RANDOMIZE or
RANDOMIZE @ is highly
random.

If RANDOMIZE is not used,
RND generates the same
sequence of numbers from
power up and after using the
reset button or NEW.

Format
RANDOMIZE [int-num-expr]

PR A B 2 |
READ

Keyboard location
EXTEND MODE
A

Statement/Command

READ is used in conjunction
with DATA to assign values to
variables using the valuesin a
DATA statement.

How to use READ

READ is normally used to form a
statement in a program. Itis
followed by one or more

numeric variables or string
variables each separated by a
comma, for example

20 READ a$ x

When READ is first executed, it
takes the same number of
values as there are variables
from the start of the first DATA
list and assigns the values to the
variables in order. When READ
is next executed, the next set of
DATA values is assigned to the
variables named in the READ
statement and so on.

For further details, see DATA.

Format

READ num-var [,num-var]
[,string-var]

READ string-var [,num-var]
[,string-var

e e———
REM Rremark

Keyboard location

E

Statement

REM is used to put remarks or
reminders into a program.
These may be the title and
author of the program, and
explanations of lines in the
program such as the purpose of
a variable. The remarks play no
part in the running of the
program and can be seen only
in the listing,

How to use REM

REM forms either a line of its
own in a program or the last
statementin a line. Itis followed
by any remark that can be
keyed in as required, for
example

80 INPUT n$: REM n$ is name

When the computer encounters
REM, it ignores everything that
follows REM in that line.

Format
REM any characters -

T e Sl
RESTORE

Keyboard location
EXTEND MODE
S

Statement/Command

RESTORE is used in conjunction
with READ and DATA to make
READ take values from a
particular DATA statement
instead of the first or next DATA

statement in the program.

How to use RESTORE
RESTORE normally forms a
statement in a program. It is
optionally followed by a
numeric value, for example

160 RESTORE 800

The value following RESTORE is
rounded to the nearest integer
if necessary, and should then be
the number of a line in the
program containing a DATA
statement. Following RESTORE,
the next READ statement will
assign the values contained in
this DATA statement. If the
numbered line does not exist or
does not contain a DATA
statement, then READ goes to
the next DATA statement after
this line.

If RESTORE is followed by @
orno value, then the next READ
statement goes to the first
DATA statement in the
program.

Format
RESTORE [int-num-expr]

L S R .
RETURN

Keyboard location
Y

Statement/Command

RETURN is used to terminate a
subroutine and return the
computer to the main program
or a previous subroutine.

How to use RETURN

RETURN is normally used to
form a statement in a program.
Itis used alone at the end of a
subroutine, for example

1080 RETURN

On execution, the program
branches to the statement
following the last GOSUB
statement executed.

See GOSUB for further
details.

Format
RETURN

e ———=—_—]
RND ranDom number

Keyboard location
EXTEND MODE
il

Function
RND is used to generate a

random number.

How to use RND

RND is used alone in a
statement or command, for
example

60 LET x=RND

RND then returns a random
number less than 1 and greater
than or equal to @.

When the Spectrum is
switched on or reset, or NEW is
used, numbers are subsequently
returned by RND in the same
sequence. The sequence is
generated by taking the powers
of 75 (75, 75475, 75+75+75
and so on) dividing each power
by 65537 and using the
remainder only, then
subtracting 1 from the
remainder and dividing this
result by 65536.

If a more random sequence
or another fixed sequence is
required, then use
RANDOMIZE before RND.

Random whole numbers
Many of the Spectrum’s
statements and functions, such
as INK and CHRS, round
numbers to the nearest integer
and RND may be used with
them directly. INK RND=7, for
example, produces an ink
colour at random. Others
require integers and any whole
number from 1 to x is given by
INT (RND+x)+1. To generate a
random integer from 0 to x, use
INT (RND+x+0.5).

Format
RND

RUN

Keyboard location
R

Command/Statement

RUN makes a program run,
normally from the first line.

How to use RUN

RUN may be used as a direct
command or it may form a
statement in a program. It is
optionally foIIoweg bya
numeric value, for example

RUN 50

If no value follows RUN, then
the program runs from the first
line. If a value is included, it is
rounded to the nearest integer
if necessary and the program

then runs from this line. If the
line does not exist, the proEram
runs from the next line in the
program. Note that RUN
performs CLEAR before running
the program, so that variable
values are erased. To avoid this,
use GOTO followed by a line
number.

If a program has been saved
using LINE, then it runs
automatically on loading and
RUN is not required.

Format
RUN [int-num-expr]

I S U S S S TR
SAVE

Keyboard location
5

Command/Statement

SAVE sends a program to the
cassette player in order to store
it on tape.

How to use SAVE

SAVE is normally used as a
direct command but may forma
statement in a program. It is
followed by a filename which is
a string value, for example

SAVE “filename"

The filename may contain up to
ten characters. On execution,
the message

Start tape, then press any key

is displayed. On pressing an
key, the program is sent to the
cassette player and on
conclusion, the report @ OK, 0,1
appears.

Note that SAVE is used
differently when a Microdrive is
connected. See the Microdrive
and Interface 1 manual for
details.

Automatic running

If the stored program is to run
automatically on loading, then
SAVE should be used in
conjunction with LINE. The
program name is followed by
LINE and a numeric value, for
example

SAVE "filename" LINE 1

The value following LINE is
rounded to the nearest integer
if necessary, and should then be
either 1 or the number of a line
in the program. The program is
then sent to tape in the same
way as SAVE. On loading, the
program runs automatically

from the line having the defined
number or, if no such line exists,
from the next line in the
program. In practice, using LINE
1 causes the whole program to
run automatically.

Format
SAVE string-expr [LINE int-
num-expr]

SAVE CODE

Keyboard locations
S

EXTEND MODE
|

Command/Statement

SAVE CODE sends a section of
information in the memory to
the cassette player to be stored
on tape. The information can
then be placed back in the
memory using LOAD CODE.

How to use SAVE CODE

SAVE CODE may be used as a
direct command or to form a
statement in program. SAVE is
followed by a filename which is
a string value and then CODE,
which s in turn followed by two
numeric values separated by a
comma, for example

SAVE “picture” CODE
16384,6912

The filename following SAVE
may contain up to ten
characters. The two values
following CODE are each
rounded to the nearest integer
if necessary. The first then gives
the starting address (16384
above) of the information in the
memory, and the second value
(6912) gives the number of
bytes that are to be stored. The
information is then sent to tape
in the same way as a program
with SAVE.

The information saved by the
above command is the screen
display.

Format
SAVE string-expr CODE
int-num-expr,int-num-expr

RS e s
SAVE DATA

Keyboard locations
S

EXTEND MODE
D

Statement/Command

SAVE DATA stores an array on
tape. The array can then be
loaded using LOAD DATA.

How to use SAVE DATA

SAVE DATA may be used to
form a statement in a program
oras a direct command. SAVE is
followed by a filename, then
DATA, a letter or letter with §,
and finally by a pair of empty
brackets, for example

450 SAVE "numbers” DATA

n()
750 SAVE “names” DATA n$()

The array’s filename may
contain up to ten characters.
The letter or letter$ following
DATA is the name of the array
in the program that is to be
stored on tape. They array is
then sent to tape in the same
way as a program with SAVE.

Format
SAVE string-expr DATA letter
(810

S S S T T
SAVE SCREEN$

Keyboard locations
S

EXTEND MODE
SYMBOL SHIFT K

Command/Statement

SAVE SCREENS stores the
screen dispay on tape. It can be
loaded back into the computer
at a later date using LOAD
SCREENS.

How to use SAVE SCREENS
SAVE SCREEN$ may be used as
a direct command or to form a
statementin a program. SAVE s
followed by a filename which is
a string value and then
SCREENS, for example

SAVE “picture” SCREENS

The filename may have up to
ten characters. The display is
then sent to tape in the same
way as a program with SAVE.

Format
SAVE string-expr SCREENS

SCREEN$

Keyboard location
EXTEND MODE
SYMBOL SHIFT K

Function
SCREEN$ detects which

character appears at a particular
position on the screen.

How to use SCREENS
SCREENS is followed by two
numeric values separated by a
comma and enclosed in
brackets, for example

160 IF SCREENS (l.c)="X"
THEN PRINT “CRASH"

The values following SCREENS
are rounded to the nearest
integer if necessary. The first
value (| above) may then range
from @ to 21 and gives the line
number of a position on the
screen. The second value (c
above) may ran%e from @ to 31
and gives the column number
of the position. SCREEN$ then
returns the character displayed
at this position as a string
constant (the character in quote
marks, “X" above forexample).
If no character is present at the
position, SCREENS returns a
null (empty) string ("").

Note that SCREENS may also
be used with SAVE and LOAD
to store the screen display on
tape and load it from tape. See
SAVE SCREENS and LOAD
SCREENS for details.

Format
SCREENS (int-num-expr,
int-num-expr)

SGN sioN

Keyboard location
EXTEND MODE
F

Function

SGN indicates whether a
number is positive, negative or
zero.

How to use SGN
SGN is followed by a numeric
value, for example

50 LET x=SGNy

An expression must be enclosed
in brackets. SGN then returns 1
if the value of the argument (y
above) is positive, —1 if it is
negative and @ if it is zero.

Format

SGN num-const
SGN num-var
SGN (num-expr)

SIN sine

Keyboard location
EXTEND MODE
Q

Function

What SIN does
SIN gives the sine of an angle.

How to use SIN
SIN is followed by a numeric
value, for example

| 80 LET x=SINy

An expression must be enclosed
in brackets. The value following
SIN is the angle in radians, and
SIN returns the sine of the
angle. Degrees can be
converted into radians by
multiplying by P1/180.

Note that SIN returns a
gositive value for angles

etween @ and 180 degrees,

and a negative value for angles
between 180 and 360 degrees.

Example
The command

PRINT SIN (30+P1/180)

displays 0.5, the sine of 30
degrees.

Format

SIN num-const
SIN num-var
SIN (num-expr)

e e e e
SQR SQuare Root

Keyboard location
EXTEND MODE
H

Function

SQR gives the square root of a
number.

How to use SQR
SQR is followed by a numeric
value, for example

70 LET x=SQRYy

An expression must be ericlosed
in brackets. The value following
SQR (y above) must be greater
than orequal to zero, and SQR
returns its square root

Format

SQR num-const
SQR num-var
SQR (num-expr)

RS R = SR e S
STEP

Keyboard location
SYMBOL SHIFT D

See FOR
e e = =

STOP

Keyboard location
SYMBOL SHIFT A

Statement/Command

STOP halts a program at a
particular point. It may be
necessary to use STOP to end
the main section of a program in
order to confine subroutines to
a separate section. STOP is also
valuable in debugging a
program.

How to use STOP

STOPis normally used toforma
statement in a program. It is
used on its own, for example

650 STOP

On execution, the program
stops and the report

9 STOP statement

appears with the line and
statement number at which the
program halted.

Debugging procedures, such
as displaying and changing the
values of variables, may then be
undertaken. Entering
CONTINUE subsequently
causes the program to resume
at the next statement with the
new values.

Format
STOP

e e
STRS

Keyboard location
EXTEND MODE
'

Function

STR$ converts a number into a
string.

How to use STRS
STRS$ is followed by a numeric
value, for example

90 LET a$=STRS x

An expression must be enclosed
in brackets. STR$ then returns
the value of its argument (x
above) as a string constant. If x
were assigned the value of 65,
then the above statement
assigns a$ the value of "65".

Format

STRS num-const
STRS num-var
STR$ (num-expr)

s e s
TAB

Keyboard location
EXTEND MODE
P

See LPRINT, PRINT
RN i VT e

TAN TANgent

Keyboard location
EXTEND MODE
E

Function
TAN gives the tangent of an
angle.

How to use TAN
TAN is followed by a numeric
value, for example

130 LET x=TANYy

An expression must be enclosed
in brackets. The value followin
TAN is the anﬁle in radians, an
TAN returns the tangent of the
angle. Degrees may be
converted into radians by
multiplying by P1/180.
Note that TAN returns a

Bositive value for angles

etween @ and 90 degrees and
between 180 and 270 degrees.
For angles between 90 and 180
degrees and angles between
270 and 360 degrees, TAN
returns a negative value.

Format

TAN num-const
TAN num-var
TAN (num-expr)

THEN

Keyboard location
SYMBOL SHIFT G

See IF

TO

Keyboard location
SYMBOL SHIFT F

Function

TO has two different uses in
Sinclair BASIC. It is used in
conjunction with FOR to set up
a FOR NEXT loop (see FOR for
details) and it is also used in
string slicing (the splitting up of
strings into smaller substrings).

How to use TO for string slicin
TOis used to define the first an
last characters of a substring
within a main string. TO is
preceded by a string value, an
opening bracket, then an
optional numeric value. It is
followed by another optional
numeric value and then a
closing bracket, for example

80 PRINT a$ (4TO7)

Astring expression must also be
enclosed in brackets. The string
value (a$ above) is the string
that is to be sliced. The two
numeric values (4 and 7) define
the positions of the first and last
characters of the substring
within the string. TO then
returns the substring (characters
4to 7 of a$).

The first numeric value has a
default value of 1 and the
second has a default value
equal to the position of the last
character in the string. The first
value can therefore be omitted
if the substring begins with the
first character in the string, and
the second value can be omitted
if the substring ends with the
last character in the string.

Format

string-const ([num-expr] TO
[num-expr])

string-var ([num-expr] TO
[num-expr])

(string-expr) ([num-expr] TO
[num-expr])

USR User SubRoutine
Keyboard location

EXTEND MODE
L
Function

USR is used to call a machine
code subroutine that has been
placed in the memory at a
specific address. It is also used
toFIace the data for user-
defined graphics in the reserved
locations at the top of the
memory.

USR and machine code

To use machine code, USR is
followed by a numeric value, for
example

80 PRINT USR 65000
100 RANDOMIZE USR 65000

An expression should be
enclosed in brackets. The value
following USR is rounded to the

nearest integer and is then the
starting address in the memory
at which a machine code
subroutine has been placed.
Any statement containing USR
then calls the subroutine at this
address and USR returns the
value of the contents of the bc
register pair. RANDOMIZE USR
or RESTORE USR, for example,
runs the subroutine only,
whereas PRINT USR
additionally displays the bc
register value.

USR and user-defined graphics
To create user-defined graphics,
USR is used with POKE. Itis
followed by a string constant or
variable to return an address for
the POKE statement, for
example

50 POKE USR “a", 255

The string value following USR
may be a single letter ranging
from A to U or a to u, capital
letters not being distinguished
from lower-case letters.

USR then returns the starting
address of one of the 21 sections
of the memory reserved for
user-defined graphics. Each
section contains eight addresses
to which eight bytes are POKEd
to create one graphics
character. The bytes may be
Eiven in decimal form or in

inary form (see BIN).

Format

USR int-num-const
USR int-num-var
USR (int-num-expr)
USR string-const
USR string-var

VAL vaLue

Keyboard location
EXTEND MODE
J

Function

VAL changes a string with a
numeric value into a number.

How to use VAL

VAL is followed by a string
constant or variable, for
example

70 LETx=VALa$

The value of the string constant
or variable is stripped of its
quote marks, and must then be
a numeric value. VAL evaluates
this, returning it as a numeric
constant.

Examples

If a$ has the value "435", then
the above statement assigns a
value of 435 to x. However,
VAL can also evaluate
expressions, for example

10 INPUT a$ x
20 PRINT VAL a$§

The string value that is assigned
to a$ should be an expression
using x, for example “x=x". A
numeric value is then assigned
to x, for examﬂle 5. VAL strips
the quotes of the string value to
et x+x and evaluates it using
the value assigned to x,
displaying the result 25.

Format
VAL string-const
VAL string-var

L e i T e ey RS
VALS vALue (string)

Keyboard location
EXTEND MODE
SYMBOL SHIFT J

Function

VALS$ evaluates a string as a
string expression.

How to use VALS
VALS is followed by a string
variable, for example

130 PRINT VALS a$

The value of the string variable

is stripped of its quote marks,

and must then be a string

expression. VAL$ evaluates the
I:aression and returns the

ue as a string constant.

Examples
Try this program

10 INPUT a$,x$
20 PRINT VALS a$

The string value that is assigned
to a$ should be an expression
using x$, forexample "x$+x$".
A string value is then assigned
tox$, forexample “DO". VAL$
strips the quotes of the value of
a$ to get x§$+x$ and evaluates
it using the value assigned to
x$, displaying the result DODO.

ex
va

Format
VALS string-var

TR e e A A TR
VERIFY

Keyboard location
EXTEND MODE
SYMBOL SHIFT R

Command/Statement

VERIFY checks that a prog?am
has been correctly stored on
tape following SAVE.

How to use VERIFY

VERIFY is normally used as a
direct command in exactly the
same way as LOAD and is
followed by the program name,
for example

VERIFY “filename”

When the tape is started, the
name of every program found is
displayed and any program on
tape having the same name is
compared with the program in
the memory. If the two are
found to be the same, the report

0 OK, 0:1
is given.

VERIFY is used differently
when a Microdrive is connected.

See the Microdrive and
Interface 1 manual for details.

VERIFY CODE and VERIFY
DATA

VERIFY CODE can be used in
exacty the same way as LOAD
CODE to verify that a section of
memory information has been
stored on tape. VERIFY DATA
works in the same way as LOAD
DATA to check that an array has
been stored on tape. See LOAD
CODE and LOAD DATA for
further details.

Format

VERIFY string-expr

VERIFY string-expr CODE
[int-num-expr] [,int-num-expr]
VERIFY string-expr DATA
letter[$]()

TR e ey e
VERIFY CODE

Keyboard location
EXTEND MODE
SYMBOL SHIFT R
EXTEND MODE

|

See VERIFY

VERIFY DATA

Keyboard location
EXTEND MODE
SYMBOL SHIFT R
EXTEND MODE

D

See VERIFY

ZX SPECTRUM +
SCREEN REPORTS

When the Spectrum stops execution of
BASIC, areport appears at the bottom of the
screen. This indicates that a command or
program has been completed or that an
error has occurred. Each report consists of a
code number or letter followed by a brief
message and then the numbers of the line
and statement at which the computer
stopped. A command is shown as line @ and
within aline, statement 1 is at the beginning
of the line, statement 2 is after the first colon
or THEN, and so on. CONTINUE normally
causes the program to resume at the
statement specified in the report.

@ OK

Successful completion, or an attempt to jump toa
line number greater than any in the program.
CONTINUE disregards this report and resumes at
the statement specified in the previous report.

1 NEXT without FOR

NEXT has been encountered without a
corresponding FOR and a variable exists with
the same name as the control variable.

2 Variable not found

A simple variable has been used without assigning
it a value or loading the value from tape, ora
control variable has been used with NEXT without
first setting it up in a FOR statement, or a
subscripted variable has been used before
dimensioning the array with DIM or loading an
array from tape.

3 Subscript wrong
A subscript is beyond the dimensions of the array.

4 Out of memory
There is not enough memory space left to
complete the statement or command.

5 Out of screen

INPUT has generated more than 23 lines in the
lower part of the screen, or a line number of 22 or
more has been used with PRINT AT.

6 Number too big
The computer has tried to produce a number
greater than about 10°.

7 RETURN without GOSUB

The number of RETURN statements is one greater
than the number of GOSUB statements.

8 End of file

Microdrive file-handling report.

9 STOP statement
STOP has been used to halt the program.
CONTINUE will resume at the next statement.

A Invalid argument
A Tunction has been given a wrong argument or
value.

B Integer out of range :
A value has been rounded to the nearest integer
and is out of the range that can be accepted.

C Nonsense in BASIC
The text of the (string) argument does not form a
valid expression.

D BREAK — CONT repeats ;
BREAK has been pressed. CONTINUE will repeat
the statement at which the computer stopped.

E Out of DATA 7
READ has tried to read beyond the end of the final
DATA statement in the program.

F Invalid file name
SAVE has been used with a name containing
more than ten characters.

G No room for line
There is not enough memory space left to enter
the new program line.

H STOP in INPUT
STOP has been entered in response to INPUT or
began the data entered. CONTINUE repeats the
INPUT statement.

| FOR without NEXT

A FOR NEXT loop has not been carried out
because the limits or STEP value were wrong (for
example, FOR x=5 TO @ without STEP) and the
corresponding NEXT has not been found.

J Invalid 170 device
Microdrive file-handling report.

K Invalid colour

The value specified for INK, PAPER, FLASH,
BRIGHT, INVERSE or OVER or the corresponding
control character is out of range.

L BREAK into program

BREAK was pressed. The report specifies the last
statement to be executed and CONTINUE
resumes at the next statement.

M RAMTOP no good
The value srecified for RAMTORP is either too big
or too small.

N Statement lost
A jump has been attempted to a statement that
no longer exists.

O Invalid stream
Microdrive file-handling report

P FN without DEF
An FN statement has been used without the
corresponding DEF FN statement.

Q Parameter error

An FN statement contains the wrong number of
values to be passed to the function, or one of the
values is the wrong type (a string instead of a
number or vice versa).

R Tape loading error
The loading, merging or verification procedure
has failed.

BEYOND BASIC

BASIC is an all-purpose computer language
which works very well for most applications.
However, it is not the only computer
language that you can use on the Spectrum.
Software that provides other languages,
such as FORTH, micro-PROLOG and
LOGO, is available. These languages work
in a very different way to BASIC and open up
new possibilities for your computer.

Because BASIC s an all-purpose language,
it can be rather cumbersome in some
applications. It is also comparatively slow.
Other languages can give greater flexibility
combined with simplicity of programming
and faster running speed. FORTH, for
example, allows you to define your own
words and use them in the instructions that
the computer understands and which it
executes about ten times as fast as the
equivalent commands in BASIC. With micro-
PROLOG, the computer will understand
simple English phrases. It stores these in its
memory as a basis for dialogue with the
user. LOGO is a computer language
developed for educational use. It features
very simple commands which can be used in
a highly flexible way. However, if you want
to write really fast programs for your ZX
Spectrum +, you will need to understand
how to program in machine code.

language, meaning that it takes quite a time
to learn. Machine code programming is
outside the scope of this guide. However,
there are many books available which teach
Spectrum machine code to an advanced
level. To get just a taste of the speed of
machine code, key in and run this short
demonstration program.

INSTANT STRIPES

x
DATA 33,25%,63,1,1,24,22
CATA SS

@ DATA 35,11,120,177,200,114,

20
3@ NEXT
40
se

(=3
24

. 248
7@ RAMCOMIIE USR ESQQO0Q

Machine code

BASIC is used to enable you to give
instructions to the computerin a form thatis
easy for you to understand. The Spectrum's
CPU—the powerful Z8OA chip—does notin
fact understand BASIC. A section of the
memory contains a permanent program
called the BASIC interpreter that converts
your BASIC instructions into a sequence of
code signals. These codes actually drive the
Z80A to perform your instructions.

The interpreter takes some time to
translate your BASIC instructions into the
Z80A code or machine code, as it is called.
However, you can bypass the BASIC
interpreter if you wish and send machine
code directly to the Z8OA. Your program will
then be carried out very quickly. The price
that has to be paid for this is the extra time
needed to write the machine code program.
Unlike BASIC, it is a very ‘unfriendly’

M

Try changing 55in line 5@ to any value from
1 to 255 and see how the stripes change.
You can also produce coloured stripes by
using an INK command first. However, this
isnotthe point of the program. See how fast
the display is produced by using machine
code — it is virtually instantaneous. BASIC
takes over two seconds to fill the screen.

This program works because the DATA
statements contain 16 codes that are stored
at address 65000 onwards in the memory by
lines 10 to 30. Line 70 sends the codes to the
Z80A and the display is produced right
away. Note that the eighth code controls the
width of the stripes.

Many of the games that are available for
your Spectrum are written in machine code
to produce this ultra-fast action. To help you
write machine code, programs called
assemblers are available. These provide
instructions that you key in instead of just
numbers, which is what machine code itself
requires. The instructions are not English
words like the keywords BASIC, but
abbreviations or mnemonics which
represent the operations that the computer
must undertake. You must therefore have
an understanding of how the computer
works on a step-by-step basis before you
can use assembly language.

COMPUTER JARGON
— WHAT IT MEANS

Many words that are used in computing are
also used in everyday life but with different
meanings. Here are explanations of some of
these words that appear in this book,
together with special computing terms.
Words in italics have explanations
themselves. If there is a word or term in the
book that you can't understand and it is not
here, try looking it up in the index.

Address A single unit of the memory. There
are 65536 addresses in the ZX Spectrum +.

Argument A value that is used by a function
to get a result.

Array A group of related data that is held
together in one section of the memory.

Attributes Codes that give the colours of
characters.

BASIC The computer language used by the
ZX Spectrum + and most other home
microcomputers.

Binary code The kind of code that is used by
computers. It consists of sequences of on or
off states — for example, on-off electric
pulses.

Bit An on or off state in binary code. Short
for binary digit.

Byte A set of eight bits that represents a
number having a value from @ to 255. Each
address in the memory holds one byte.

Character Any single letter, numeral (0to 9),
sign or graphics unit that can be displayed or
printed.

Character set The complete set of preset
characters and certain control codes used by
the computer.

Command A single instruction thatis carried
out by the computer, or a direct command.

Concatenation The combining of strings by
adding them together.

Constant A number or a group of one or
more letters or any other characters.

CPU (Central Processing Unit) The central
part of the computer that does the

computing and controls the other units. The
ZX Spectrum + uses a Z80 microprocessor.

Cursor The position on the screen where
something is to be displayed next. It may be
marked by a flashing sign indicating the
mode that the computer is in.

Data Information that the computer either
gets from a program or that is fed into the
computer in order to produce results.

Direct command A set of one or more
instructions that is carried out immediately
it is given to the computer.

Edit To change details within a program.

Enter To give a completed instruction or
information to the computer.

Expression A combination of constants,
variables and keywords.

False Any state or result that the computer
decides is untrue or incorrect. False has a
numeric value of @.

Function An operation in which the
computer takes one or more values (or
arguments) and uses them to give a result
that is another value.

Graphics The production of images such as
pictures, charts or diagrams by the
computer.

Hardware The computer itself and any
associated devices or machines, such as
peripherals.

Information Words, numbers and signs in
any combination that the computer is
required to handle.

Input Programs and data fed into the
computer.

Interface A unit that connects the computer
and/or peripherals together and which
ensures that they can communicate with
each other.

K A measure of the memory capacity of a
computer. 1K is equal to 1 kilobyte or 1024
bytes. The memory capacity in K is equal to
the total number of addresses in the
memory, each of which can store one byte.
The ZX Spectrum + has a 48K RAM and a
16K ROM, giving a total of 64K.

Keyword A computer instruction in BAS/C. It
may require some values to work.

Line An instruction or set of instructions in a
program. Itis given a number so that it is
carried out at the correct pointin a sequence
of other lines,

Listing The lines of a program listed in order.

Load To feed a program or data into the
computer from a storage device such as a
cartridge or cassette.

Logic The process by which the computer
decides whether results are right or wrong,
or states are true or false.

Loop A section of a program that is repeated
one or more times.

Machine code The language that the ZX
Spectrum + understands. Programs in
BASIC are translated into machine code by
the computer as it runs them.

Memory The part of the computer that
holds the program and data when required,
and also the permanent operating
instructions.

Mode In the Spectrum, one of five states
which dictate which keywords and
characters can be produced by each key on
the keyboard. During programming, mode
is indicated by a flashing letter within the
cursor.

Nesting The arrangement of loops within a
program so that one or more loops are
carried out within another.

Numeric variable A variable that holds a
number. Numeric variables consist of one or
more letters.

Operator An instruction that performs
arithmetic or logic.

Output Results produced by the computer.

Peripheral Any device that is connected to
the computer.

Pixel The smallest dot of colour that can
appear on the screen. Short for ‘picture cell’.

Print Either to display results or graphics on
the screen or to print them on a printer.

Program A sequence of instructions to be
carried out by the computer.

RAM (Random Access Memory) The part of
the memory that can be given a program
and data, and other changing values. Also
known as volatile memory. RAM contents
are erased when poweris disconnected. The
ZX Spectrum + has a 48K RAM.

Register A small memory unit separate from
the main memory. Registers within the CPU
are used to carry out the process of
computing.

Report A message displayed by the
computer reporting its actions.

Resolution The degree of detail possible in
computer graphics.

ROM (Read Only Memory) The part of the
memory containing permanent programs
and instructions for the computer. The ZX
Spectrum + has a 16K ROM.

Save To store a program or datain a storage
device such as a cartridge or cassette.

Scroll The movement which enables a
display that exceeds the size of a single
screen to be viewed.

Software Any program, including
permanent programs in ROM or cartridges.

Statement Either a keyword that is used to
form an instruction in a program line, or the
instruction itself.

String A group of one or more characters
enclosed in quotes to distinguish them from
numbers and numeric variables.

String variable A variable that holds a string.
String variables always consist of a single
letter and the $ sign.

Syntax The correct sequence of keywords,
constants, variables and expressions
required to form a valid BAS/C instruction.

True Any state or result that the computer
decides is true or correct. True has a numeric
value of 1.

Value Any number or a string that may be
given or represented by a constant, variable
or expression.

Variable One or more units of the memory
that hold a particular constant for use by the
computer. Each is given a name or letter to
identify it easily. The ZX Spectrum +
distinguishes between numeric variables
and string variables.

INDEX

EEaee——————]
Page numbers in italic refer to
illustrations and captions

Aenal socket and leads 4-5
Altering programs 9
Amplifying sound 37
Animation 34-5

Arithmetic operators 22; 22
ATTR 35

Barcharts 25; 25

BASIC 18,49-73
BEEP36; 18

BIN 33

Binary code 44

Border colour 24-5; 6
Bouncing ball program 35
Brackets 23

BREAK 79

BRIGHT 31

Calculations 22-3; 22, 23
Capitals mode 21; 20
CAPSLOCK 21; 18
CAPSSHIFT8,21; 18
Cartridges, Microdrive 12, 46; 46
ROM12,47; 47
Cassette players, as amplifiers 37;
37
choosing 12
connections 5, 13,73
counters 14
loading programs 14-16
saving programs 38-40
tone controls 14, 15, 16
volume controls 14, 15, 16
Cassette tapes 12, 44, 45
careof 12
labelling 14
sound of 12
storage 12
Central Processing Unit (CPU)
43,44, 48,75, 43,45
Characters, creating 32-3
selecting 20
Characterset 57
Chessboard program 33
Chips42-3
CIRCLE 28
Collisions 34-5
Colon 23,51
Colour 24-5; 24-5
codes 24
control codes 33
combinations 25
display keys 19
mixed 32
testing 6; 24
Comma 23, 51
Commands 22, 50
Connections 5
cassette player 73
power 5

television 4
Cursor controls 79

DATA 33
DELETE 10
DRAW 28-9

EAR Socket 37; 5, 13
Edge connector 5, 43, 47
EDIT 18, 217

program lines 21
ENTERY, 70,11, 19
Entering programs 8-9
Errors, correcting 10, 21

screen reports 74
EXTEND MODEB8, 21; 18

extended mode 21; 20

FLASH 31

Flashing circles program 9

FOR NEXT 26-7, 29,30, 31,34
FORTH 75

Full stop 23, 51

Functions 50

GOTO 23
GRAPH 21;18, 26
Graphics, animation and, 34-5
colour 24-5
creating characters 32-3
filling in shapes 29; 29
high-resolution 26, 28-9
low-resolution 26-7
patterns 30-1
random effects 30
Graphics mode 21; 20
Gnd, high-resolution 28, 80
low-resolution 26, 80
Hardware, definition 12
High-resolution graphics 26,
28-9

IF THEN 29

Ink colour 24-5

INPUT 23, 29
Input-output pathways 45
Interfaces 45, 46-7
INVVIDEO 78

INVERSE 31

Joysticks 45,47

Keyboard 78-19
graphics characters 26
modes 20-1
Keyingin8,9
Keys 18-19; 18-19
operating 20-1; 20-1
Keyword mode 20; 20
Keywords 9, 18-19, 50, 52-73
20-1
selecting 19, 20

LET 23
Letter mode 21; 20
Lines 8
deleting 21
editing 21

LIST 21

Listings 8, 21

LOAD 14-16

Loading 13, 14-15; 14-16
Logic cﬁips 43

LOGO 75

Loops 26-7, 30

Loudspeaker 43
Low-resolution graphics 26-7

Machine code 75
Manic mosaic program 710
Memory 12; 42, 43, 44-8
Memory map 48
MIC socket37; 5, 73
Microdrives 46; 5, 46
cartnidges 12, 45
loading 46
Micro-PROLOG 75
Mistakes, correcting 10, 21
Modems 46
Modes 20-1
Multiplication table program 23
Music 36-7

Names program 8
NEW11,12; 18
New programs 11
9VDCsocket 5, 43
Number keys 79
Numbers 50

Paper colour 24-5

Patterns program 9

Peripherals 45, 46-7

Pictures, designing 30-17
low-resolution 26-7

Pitch, musical 36

Pixels 28

PLOT 28

Paint 23, 51

POKE 48

Polyhedra program 70

Power supply4,5; 5, 43

PRINT 22

Printers 45,47, 45, 47

Program lines, deleting 21
eglting 21

Programming 17-40

Programs, altering 9
beginning new 11
correcting mistakes 10
entering 8-9, 44
loading 12, 13, 14-15; 14-15
restarting 10
running 8-9, 44
saving 13, 38-40
verifying 39

Punctuation signs 23, 51

Pyramids program 317

Quote mark 23, 51

Radio interference 4

Rainbow program 26-7

RAM (Random Access Memory)
42,48;42,45

RAM packs 4

RAMTOP48

Random effects 30

READ 33

Ready-to-run software 12-13;

Sockets 5

Software 12
loading 14-16; 14-16
ready-to-run 12-13; 13

suitability 4
tuning 6, 6

Tone controls, cassette player
12,14,15

13 suitability 12 TRUEVIDEO 18
REM 39 types 12 Tuning television sets 6; 6
Resetbutton 11,12; 5 Sound effects 36-7 TVencoder 42
Restarting programs 10 Space bar 719
Ribbon cable 46 Squares program 30 Uncommitted Logic Array (ULA)
RND 26,30 Star program 28 42
ROM (Read Only Memory) 48; Stars and stripes program 77

43,45 Statements 22, 50 User-defined characters 80; 32-3
ROM cartridges 12,47, 46-7 STEP 29
RS232 interface 47; 45 Storage 44,45 Vanables 22-3, 50
Running programmes 8-9 Strings 22 Voltage regulator 43

Subroutines 30-1 Volume controls, cassette player

SAVE 38-9 SYMBOLSHIFT 8,21, 179 12,1415
Saving 13,38-40 Symbols, selecting 20
Screen reports 74 Symmetrical patterns program 30 | Z80 microprocessor 43, 75; 45
Scrolling 8 System variables 48 ZX Interface 145, 46-7
Semicolon 23, 51 ZX Robot program 27
Shapes, filling in 29; 29 Tapes 12,45 ZX16KRAM 4
Shimmering sunrise program 717 careof 12
Signs, calculations 22, 5% labelling 14,39

selecting 19 sound of 12
Sinclair BASIC 49-73 storage 12
Sketchpad program 29 Television, connecting 5

First published 1984 by Dorling Kindersley
Ltd, 9 Henrietta Street, London WC2E 8PS
in association with Sinclair Research Ltd,
25 Willis Road, Cambridge

Copyright ©) 1984 by Sinclair Research Ltd
and Dorling Kindersley Ltd, London
Illustrations copyright (€) 1984 by Dorling
Kindersley Ltd, London

Third printing 1984

All rights reserved. No part of this
publication may be reproduced, storedina
retrieval system, or transmitted in any form
or by any means, electronic, mechanical,
photocopying, recording, or otherwise,
without the prior written permission of the
copyright owners.

British Library Cataloguing in Publication
Data

Ardley, Neil
ZX Spectrum + User Guide
1. Sinclair ZX Spectrum + (Computer)
I. Title
001.64'04 QA77.8.5625

ISBN 0-86318-080-9

Editor David Burnie

Art Editor Peter Luff

Designer Debra Lee

Photographer Trevor Melton
Screen-shot photographer Vincent Oliver
Managing Editor Alan Buckingham

Typesetting by The Letter Box Company
(Woking) Ltd, Woking, England
Reproduction by A. Mondadori, Verona
Printed and bound in Italy by

A. Mondadori, Verona

sinclair ZX Spectrum +, ZX Microdrive
and ZX Interface are Trade Marks of
Sinclair Research Limited

The grid below shows coordinates for both
low-resolution and high-resolution graphics.
Although individual graphics keywords work
with either low- or high-resolution coordinates
only, you can use both low- and high-resolution
keywords when producing a display.

The low-resolution grid is divided into two
parts, the main display area and then two lines
at the bottom of the screen. PRINT AT will
produce characters in the upper part and
INPUT AT in the lower part. The coordinates for
the low-resolution screen are shown on the top

The low- and high-resolution screen

and left sides of the grid.

The high-resolution grid occupies only the
main display area. PLOT, DRAW and CIRCLE
are used to produce high-resolution graphics.
The coordinates for high resolution are shown
on the bottom and right sides of the grid.

In low resolution, each square on the grid is
treated as a single unit. In high resolution, each
of the 64 pixels that make up the square can be
separately controlled. The pixels can also be
programmed individually to make up a user-
defined graphics character (see bottom grid).

columns
0 1234567 8 910111213 14151617 1819 20 21 22 23 24 25 26 27 2829 30 31
0 | | | [‘ ‘ 5
11] | =
1
160
2 | |
T 1 ‘ 152
3 Il | ‘
! 144
4 | |
X 1 T 1 136
‘ - 128
6 | | [| - 120
7 | | 1] I
| 112
8 [| T 11 I
| 14
9 | | [| | |
10 | | | J‘ | o
| | o
1 ' [] [\ | \ 88‘5
$: At ‘ t 80
=12 | } | | [1 | ” g
13 ‘ | [] [] | g
14 [] ' [1 | B \ “%
| | | | | | 56 >
15 | [. ! : 148
16 - ! | | |
1
17 [| [| \ } -~
- muEEN -
| |
19 ‘ | Le
20 | | |
21 ‘ \ 2
i | | - 0
‘ [[\
! !
| | | | |

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248 255
horizontal coordinates

User-defined graphics grid

To define a character, pencil in a design on this
grid using whole squares only. Then, working
row by row, add together the numbers above
each square that you have filled in. Each row
total should then be noted in the column on the
right. Reﬁeat this until you have a total for each
row on the grid. Then, using the techniques on
pages 32—33, you can program the computerto
use these numbers to produce a character.

128 _64 32 16 8 4 2 1 Row total

PROGRAMMING SERIES

STEP-BY-STEP
PROGRAMMING FOR THE

Book One and Book Two

§(This) is for everyone...
The method of teaching is
foolproof, and is guaranteed
toincrease the value and
pleasure Spectrum-owners
will get from their
machines.”

NIGEL SEARLE
Managing Director
Sinclair Research Ltd
= e
Learn BASIC the easy way —
with this completely new
teach-yourself programming
course specially for the ZX

Spectrum+

o
Full-colour “screen-shot”
photographs show on the
page exactly what you see on
yourown TV screen.
[
Packed with techniques for
using colour, graphics, sound,
special effects and animation.

—

’ .
‘-:Oe

>R

Y%
\\y. »

Buy these books through any good bookshop, or by
completing the Order Form overleaf

S «0:/

FURTHER READING

Here is alist of books for all new

ZX Spectrum+ owners. We recommend
them for anyone who wants to learn more
about programming and wishes to
explore the full potential of the ZX
Spectrum +. You can order any of these
books by filling in the Order Form
opposite.

Note: Although most of these books are
written for the original ZX Spectrum, all
the programs they contain will run on
your new ZX Spectrum+.

Step-by-Step Programming for the

ZX Spectrum+

lan Graham

A complete teach-yourself programming
course — featuring exclusive full-colour
“screen-shot"” photographs. These are
the first books available on the new

ZX Spectrum+.

Book One

A practical guide to BASIC programming for
the complete beginner— covering everything
from your very first program to exciting colour
graphics and animation. lllustrated with over
150 “screen-shot" photographs.

£6.95inc. p&p

Book Two

Further techniques for the more experienced
programmer — packed with tips on sound and
special effects, creating graphs and charts,
advanced animation routines, and a guide to
writing arcade-style games.

£6.95inc. p&p

Very Basic BASIC — ZX Spectrum

Derek Ellershaw and Peter Schofield

For first-time users — an essential guide to the
first 15 hours on your ZX Spectrum.
£3.95inc. p&p

30 Hour BASIC — ZX Spectrum Edition

Clive Prigmore

A simple self-instructional course for learning
BASIC on the ZX Spectrum. A National
Extension College publication.

£7.95inc. p&p

The Spectrum Book of Games

Mike James, 5.M. Gee and Kay Ewbank

21 exciting, high-quality games — complete
with fully tested listings, instructions and
explanations.

£6.95inc. p&p

40 Educational Games for the Spectrum
Vince Apps

Learning is fun! A collection of programs
designed to help youngsters handle the
Spectrum—and improve their general
knowledge too.

£6.95inc. p&p

Spectrum Graphics and Sound

Steve Money

How to make the most of the Spectrum’s
graphics and sound capabilities — drawing
techniques, graphs, colour, animation, sound
effects, music and games.

£7.95inc. p&p

Spectrum Machine Language for the
Absolute Beginner

Edited by William Tang

A practical introduction to writing fast,
powerful, space-saving programs and
subroutines in machine code —including the
complete listing of an exciting machine-
language arcade game.

£7.95inc. p&p

Spectrum Machine Code

lan Stewart and Robin Jones

If you know nothing about machine code, but
want to learn —here's your chance! Find out
how to produce high-speed graphics, instant
colour-changes, fancy scrolling, rapid
searches, and much, much more.

£6.95inc. p&p

Make the Most of Your ZX Microdrive

lan Sinclair

Allyou need to know to get the best from your
ZX Microdrive and Interface — with many
practical examples and a complete, ready-to-
use database program.

£5.95inc. p&p

100 Programmes for the ZX Spectrum

lan McLean and John Gordon

Available both as a large-format paperback of
100 different listings and an optional extra of a
cassette containing all the programs. A unique
software library featuring games, business
applications, graphics, science and maths, and
various home uses.

Book: £7.95inc. p&p

Cassette: £12.50inc. p&p and VAT

SPECTRUM SOFTWARE
The entire range of software available for
Spectrum computers (including all existing
titles) is completely compatible with your
new ZX Spectrum+-.

ISBN 0-8kL318-080-9

DORLING KINDERSLEY LTD || “ l‘ ”ll

in association with
SINCLAIR RESEARCH LTD £4.95 08637180

Send to: Dorling Kindersley Bookshop, FREEPOST, 9 Henrietta Street, London WC2E 8BR

Qty | Title Code | Price* | Total
Step-by-Step Programming for ZX Spectrum+ Book One 1501 | £6.95
Step-by-Step Programming for ZX Spectrum+ Book Two 1502 | £6.95
Very Basic BASIC — ZX Spectrum 1503 | £3.95
30 Hour BASIC — ZX Spectrum Edition 1504 | £7.95
The Spectrum Book of Games 1505 | £6.95
40 Educational Games for the Spectrum 1506 | £6.95
Spectrum Graphics and Sound 1507 | £7.95
Spectrum Machine Language for the Absolute Beginner 1508 | £7.95
Spectrum Machine Code 1509 | £6.95
Make the Most of Your ZX Microdrive 1510 | £5.95
100 Programs for the ZX Spectrum Book 1511 | £7.95
100 Programs for the ZX Spectrum Cassette 2501 | £12.50

*All prices include VAT (where applicable) and postage and packing.
Please send me the titles listed above. | enclose my cheque/postal order for £ TOTAL £

made payable to Dorling Kindersley Ltd.
(BLOCK LETTERS PLEASE)

Mr/Mrs/Miss/Ms
Address

Postcode Signature

Please allow 28 days for delivery. Offer applies to UK and Eire only.

