

HOWTOUSE
THIS BOOK

This guide to your ZX Spectrum + contains four
colour-coded chapters. To turn to a chapter,
simply open the book at the section with the

right colour.

1 GET GOING
Setting up your ZX Spectrum + _ Tuning in your

TV _ Setting up troubleshooter - What your ZX
Spectrum + can do . How to use ready·to-run
software _ How to load a program - Software

loading troubleshooter

2 START PROGRAMMING
The keyboard - your computer's control panel - How

to operate the keys _ The television calculator
_ Colour and how to use it _ Simple DIY graphics
• The on-screen sketchpad - Design your own
patterns and pictures _ How to create your own

computer characters _ Animation _ How to make
music and sound effects - How to save your own

programs _ Software saving troubleshooter

3 lEARN ABOUT YOUR ZX SPECTRUM +
What's inside? _ How does your ZX Spectrum + work?

• How to connect peripherals - ZX Spectrum + memory map

4 lEARN ABOUT SINCLAIR BASIC
Programmer's reference guide to Sinclair BASIC

keywords _ Spectrum screen reports - Beyond BASIC
• Computer jargon - what it means

GET GOING
This chapter shows you how to start exploring the

potential of your ZX Spectrum +. You'll find out here
how to set up the computer so that it is ready to

spring into action whenever you wish . Then you have a
choice. You can key in several programs that put

the Spectrum through its paces and show off its colour
graphics and sound, or you can find out how to use

ready-to-run software, such as computer games.
Either way, you 'll soon be enjoying operating

your new computer.

SETIING UP YOUR
ZX SPECTRUM +
To get your Spectrum ready for acbon, first
go through the checklist below to make sure
t hat you have all the parts you need, then
follow the instructions on the opposite page

Checklist: Have ou got everything you need?
On unpacking. you
will lind;

, YourZX
Spe<trum +.
2 The IX Power
Supply - this produces
the 9· volt DC supply
reqUired by the
Spectrum.

3 The aerial lead · this
connects yoor
Spectrum to a
teleVision set.

4 The cassette lead·
thiS connects your
Spectrum to a cassette
player.

5 A guarantee card·
which you should
comple te and return.

6 The User GUide
Companion Cassette.

7 This manual.

You will need to supply:

, A television set.

2 A cassette player.

3 A mains plug.

ZX Power Supply

Settin up questions and answers

Must I have . colour TV?
No However, you Will not be able to see the
colours produced by the Spectrum on a black·
and·whlte set.

Will any TV do?
Your Spectrum should give a picture With any
teleVision set that you own if It does not, the
reason may be that the teleVIsion set and
computer have different picture systems . ThIS
could happen if the televislOO set is vef)'oId, or if
the teleVISion set and your Spectrum were
purchased in different coontnes If In doubt,
wnsult your telf'vlsion df'aler

for connecting and powering up. You do not
need to use a cassette player a l this stage.

Connect everything firmly. If you
aCCIdentally disconnect or switch off the
power supply when the Spect rum is in use,
you will then lose your program and all your
information or results.

When you have finished with the
computer, switch off at the power point on
the wall if i t has a switch and pull the mains
plug out of the power pOint.

Cion I use. monitor instead of a TV set?
Yes. Your dealer may be able to supply monitors
giving a superior picture for the Spectrum.

What mains supply is required?
The Spectrum requires a mains current of 1 4A
at 240V/50Hz. the standard U I(supply.

Does the Spectrum produce interference?
The Spectrum may interfere w ith a radio that IS
near the computer. This will not harm the radio
or the computer.

Can I use the ZX 16K RAM?
No. This RAM pad is only to be used with the
Sindair ZX81 computer.

Powering up your ZX Spectrum +
Begin by fitting a mains plug to
the two bared ends of the wire
from the powersupply. You will
then need to fit a 3A fuse to the
plug. Note that your Spectrum
does not require an earth
connection even if the mains
plug that you tit has three pins.

Next follow the sequence of
illustrations here to connect
your Spectrum to the mains
electricity supply and your
television set. Once you have
made aU the connections and
powered up the system, turn
over the page to find out about
tuning in.

Switch on the television set and
tum the volume control right
down.

Insert the aerial/ead into the
socket marked TV on your
Spectrum. Only one of the
plugs on the aerial/ead will fit .

Insert the small pluQ on the
power supply wire mto the
socket marked 9VDC on your
Spectrum.

The Spectrum 5 SOdcets iiid connectors

Power socket
The 9-volt DC
supply produced
by the ZX Power
Supply

=~= transformer is
connected
through this
socket.

Edge connector
A wide range of
hardware, including
Microdrives, printers
and modems can be
connected here .

2

Detach the aerial cable from
your television set. Insert the
other plug on the Spectrum's
aerial/eaa into the aerial socket.

Push the mains plug into a
power point and switch on if it
has a switch. Your Spectrum
does not have its own switch.

EAR socket
The earphone socket of a
cassette player is connected
here in order to load
programs recorded on
cassettes into the Spectrum.

TV socket
The aerial socket
of a television set
is connected here

so that the
Spectrum's

picture can be
seen on the

Reset button

TUNING IN YOUR TV
Your Spectrum puts out a colour television
video signal at the frequency of channel 36
in the UHF band, so your television set must
be tuned to this channel to display the
computer's picture.

When you have powered up your
Spectrum and plugged it into the television
set, adjuslthe tuning control on the set until
you get the Sinclair copyright message as in
the first screen below. When you can see
this, you will be ready to teslthe Spectrum's
colours and then begin computing. If you
can't get the copyright message, or if the
colours don't look right, check through the
chart opposite.

" A •• ' • L,

How to test the Spectrum's colours

To test the Spectrum's colours, simply press the
B key and then a number from 1 to 6. The
copyright message disappears; first the word
BORDER appears and then the number. Now
press the key marked ENTER. The 'border' area

==
9 10

=

• o •

Tuning controls

Variable tuning
A variable tuning
control selects any
channel. Just turn the
knob until you get the
copyright message.

Push-button tuning
Select a tuning button
which is to be used for
computing and then
adjust it until the
copyright message
appears. If possible,
use a spare button.
Then you will not have
to tune the set every
time you want to put
your Spectrum to
work.

Electronic tuning
With this system, the
set itself tunes in the
required channel. TV
sets with synthesized
channel selection but
no manual tuning
option may not tie
suitable for use with
this com utero

of the screen should change to the colour
marked on the number key. The screens below
show what happens when you key in BORDER 4
and ENTER and then BORDER 3 and ENTER.
BORDER 7 will return the border to white .

· Herringbone~

screen pattern

Fine tune
the television

NO

Ale you using
a colour television?

YES

START HERE

Tune in your television

Indistinct Sindair
copyright message

Connect aerial
/ replace fuse

and start again

Tune manually
or consult your

TV dealer

No colour
in display

NO

• Snowstorm ~
screen pattern

Is the aerial
connected? Is the
fuse functioning?

YES

OoesyOUf
televisiOn have

electronic tuning?

Consult your
Spectrum dealer

Poofcolours
in display

Adjust television colour
controls/fine tune

NO YES

Distinct Sindair
copyright message

Your system is
correct1y tuned. Now test

the colOlJr as shown
on the opposite page.

Colours all functioning

Consult your Has the ;t:::===~ television dealer colour improved? •

You're ready
to begin programmingl

WHATYOURZX
SPECTRUM+ CAN DO
First, experiment

Now that your Spectrum is powered up and
your television set is tuned in, try pressing a
few keys. You'll see words and letters
appearing on the screen, and maybe some
numbers too.

However, unless you know how to
program the Spectrum, it's unlikely that the
computer will respond by doing anything.
But don't worry - nothing can go wrong
with it, no matter which keys you press.

Now press the reset button on the left­
hand side of the computer, and you're ready
to set your Spectrum to work. The next four
pages will give you some demonstrations on
the TV screen of what the Spectrum can do.

How 10 key In
To key in any word o r letter, first note its
position on the key. Then use the same
sequence of selector keys shown here.

Top keyword Press
EXTENb MODE then
the key.

letter or number
(raised section) Press
the key. Hold down
CAPS SHIFT for capitals.

Lower keyword or sign
Press EXTEND MODE
then hold down
SYMBOL SHIFT and
press the key.

lower keyword or sign
(raised section) Halo
down SYMBOL SHIFT
and press the key.

You can find out full details on how to operate
the keys on pages 2~21 .

Next, program your Spectrum

Your Spectrum can do a lot of things. But to
make it work, you have to give it a set of
instructions called a computer program.

Here is a collection of short programs that
will put your Spectrum through its paces. All
you have to do is key in the program
instructions exactly as they appear here.
The panel marked How to alter a program
will show you how to experiment, while to
begin a new program, see the panel on
page 11 . Pages 74 and 76-77 may help if
you run into any problems.

How to enter and run a program

Each set of instructions is shown in a list
called a listing. You'll see that the program
listings contain several sections each
beginning with a number-10, 20 and so on.
Each section is called a line in the program
(even if it takes up two lines on the screen),

NAMES

l.e BORDER l. : :INK. RND .. ?
20 PAPER RNO.?
30 PR:INT .. ZX 5pectruf!I +";
4.0 GO TO l.0

The name ZX Spectrum + appears in many
colours all overthe screen. The computer then
stops and a message, scroll?, appears at the
bottom of the screen. To make the display
"scroll" up, press any key except N, SPACE,
BREAK or STOP. If you do stop the scrolling,
and press BREAK, then R (RUN) followed by
ENTER, the names will appear in a different
pattern of colours.

Try this
In line 30, change " ZX Spectrum +" to your
name in quote marks (") - for example

30 PRINT "John ",
Remember to include the semicolon (;). You'll
then see your name appear all over the screen .

and it contains one or more instructions for
the computer.

In each program line, you'll see whole
words or abbreviations containing two or
more letters, such as PRINT,lET, RND, PI,
PAPER and GOTO. These are called
keywords and you caMot key them
in letter by letter. Instead, find the key on the
keyboard bearing the keyword (PRINT is on
the P key, for example), and then follow the
instructions in the How to key in panel .

As you key in a line, it appears at the
bottom of the screen. When you get to the
end of the program line, press the ENTER
key. The line now appears at the top of the
screen. Then key in and enter each line in the
same way. If you press a wrong key by
accident, turn to the panel marked How to
correct mistakes on the next page.

When you have entered all the lines, press
R. The keyword RUN appears . Now press
ENTER and your Spectrum w ill spring into
action as it runs the program.

PATIERNS

A geometric pattern
screen when you run the program.
screen is full , the display stops with the scroll?
message. To see more of the same display,
press any key (except N, SPACE, BREAK or
STOP) to make the pattern move up. To see a
new kind of pattern in a different combination
of colours, press N when the scroll? message
appears. Then press BREAK, followed by R
(RUN) then ENTER.

Try this
In line 20, change 7 to another number to get
a different kind of pattern. Try 8, forexample.

See which
key in the
number, and press
will replace the old one.
ENTER and the new

FLASHING CIRCLES

A set i I
range of different colours
screen. Then suddenly the
computer produces a trilling
set of ejrcles appears.

Try this
Before listing the program (using the K key) ,
key in PAPER 7 and press ENTER. Then key in
line 20 again, missing out the two keywords
FLASH RNO; and the circles will no longer
flash .

MANIC MOSAIC

5 BORDER 0 CL~
1 0 LeT h_ 1 6 LET VA ll
20 LIET , .. I NT ' PND * .:}_ l' LET .~ .

INT fRNO + 3- 1 '
~0 INK. PNC.--:>
4 0 FOP :t"l TO 2121
50 PRINT AT v h C H P $ 1 4 3
150 LET n n.
7121 LET II " .,~
B 0 IF,., THEI l LET h:,3 1
90 IF 1-" 1 T~E II LET 1->:0

100 II"" " THE ! I L ET 11"'2 1
110 IF v 1 THEIl LET \1=0
1",0 NE _ T
130 GO T C

A coloured square dashes to and fro all over
the screen, building up a coloured pattern. A
different pattern is produced every time you
restart the program.

Try th is
In line 50, change 143 to 42 and you ' ll see
stars! Try other numbers from 33 to 142.
Consult the character set chart on page 51 to
check what will happen.

How to restart a program

Some of these programs -like STARS AND
STRIPES - come to an end and produce the
report e OK, and the last line number in the
program. This means that the whole program
has finished. To start again , simply press R
(RUN) and ENTER.

Other programs either keep on running, like
MANIC MOSAIC, or start again automatically,
like SHIMMERING SUNRISE.

To stop these programs, press BREAK.
Hold this key down until the program stops

and the BREAK report appears. To restart, just
press R (RUN) and ENTER.

How to correct mistakes

If you press a wrong key or do not press the
shift or EXTEND MODE keys properly, don 't
worry . Press the DELETE key, and the last
keyword, sign, letter or number will disappear.
Hold down DELETE to delete more.

If you have iii and then
you press ENTER, a flashing question mark
may appear. This precedes the mistake. Press
DELETE to delete the line up to and including
the mistake, then complete the line correctly
and press ENTER.

If you manage to enter an incorrect line, the
program may stop working, producing a
report that gIves the numberofthe wrong line
at the bottom of the screen. Key in the whole
of this line correctly, then press ENTER, R
(RUN) and ENTER. Now the program should
work .

POLYHEDRA

5 BOPDER 1 PRP~P e CL~
10 INPUT "
2 0 FOR r . ~~ T O B0 STEP 2
~5 LET . _ 1 2~ LET ~.S7
::1 0 LET hl,n_r LET v i .. ."
35 PLOT "1 , .. 1
40 FOR a_e TO 351 ~TEP ~e0 /n
50 LET h~=.-r~C05 'a .. P I / IS0 ,
60 LET v2_',f + r .. 5:IN (,;,~PI l e0)
7 0 ORR W "2_hl v2-V l
e0 LET hl~"2 LET vl%v2
es eEEP 0 . 02,r-20
90 NE"'T a

100 NI! · T r

At first, you see a blank screen. Key in 6, then
press ENTER. A six-sided shape builds up.
Restart the program when it has finished and
key in another number to get a shape with a
different number of sides.

Try this
In line 20, change 2 to another number. The
pattern builds more quickly if the number is
bigger, and the polyhedra (many-sided
f igures) are farther apart.

STARS AND STRIPES

,. 'NK 2 •• P AP!!: R , ,. CL ' •• . 0 0 K _28 TO H. $ T !!!P 2 • ,. ' O R Z =0 TO " •• PL O T 1 6 , Z . x ORAW 21.e. . 0 ,. Ne X T ,
•• NI! X T • •• PL O T 1 6 , 28 ORFHJ " , 1 3 1 , .. PL OT 232 , 48 D PR U 121 • .1 3 1 ". PAPeR , ,.. ,NK ,
" . "D O u , TO • $ TI!:P 2 ,.. PRINT RT , "
lS. P RINT OT .. , • . . .
, .. N EYT ". "'P INT OT

, . ,

The United States flag appears on the screen.

Try this
Change the colour numbers of the flag. The
stripe colour is at line 10, the stars at line 120
and the background to the stars at line 110.

How to begin a new program

When you have finished w ith a program and
want to enter a totally new program, wait unt il
it ends or stop it by pressing BREAK.

You then have a choice of two ways for
erasing the old proaram from the computer's
memory. One way IS to press two keys, A
(NEW) and then ENTER. The screen w ill go
black for a moment and then the copyright
message w ill appear.

Alternatively , and more easily, you can j ust
press the reset button. This has the same effect
as turning the Spectrum off and on at the
power socket.

SHIMMERING SUNRISE ,. eOR DI!R R N O _ 6

•• 'NK R ND .. ? ,. PRP!!:'" R No _6

•• CL ' ,. Ln l =RI'<I0 . 10.2

•• "00 ... TO ' '" $ TEP , ,. PLOT 1 &,8 , 0

•• ORRU - 1 28 , >C •• i!5I!:EP . 0 :1 , ~ '3 , .. N.>IT • ". "DO x.-:12 7 T O 1 .01 -:" ~TEP " . PLOT 1 28 , 0 ". DRRU >< , :1.75 ,.. e !!:!::p .0' •• lS. Ne XT "DO X " 1 74 T O 0 $ T EP .,
". P L O T ". • , .. O RI'I U '" • , .. e l!: l!:p .. , · 3

••• Ne XT , .,. P I'I U$I!: 2 ••
• 2 . GO T O ,.

A picture like a shimmering sunrise builds up in
different colours every few seconds. If the
screen goes blank, just wait. A new sunrise
soon dawns.

Try this
In line 210. change 200 to another number in
order to alter the time for which each sunrise
stays on the screen. 200 is equal to 4 seconds.

What next?

NOwyou have a choice. If you wanlto keep
any of these programs to run them again
later, you can record them on cassette tapes.
Turn to How to save your own programs on
page 38 to find out how to do thi s.

If you want to carry on experimenting
with your Spectrum, you can find out about
programming by turning to Chapter 2 Start
programming. So far you have just tried
programs out. without necessarily
understanding how they work. Chapter 2
will explain some of the features of Spectrum
programming.

If you want to try out some software
tapes. such as a computer game that you 've
bought, then turn the page to How to use
ready-to-run software.

HOW TO USE
Soflwlllquesllans 1IId __

What does 'software' mean?

READY·TO·RUN Software is the general name given to
programs that are fed into computers to make

SOFTWARE
them work. Hardware is the term for the
actual machinery - the computers themselves
and any other devices involved in computing.

Why is software produced on cassette tapes?

When you enter a program into the Cassette tapes are easy to use and do not
require special equi~ment. An inexpensive

Spectrum, you produce a sequence of cassette player is aJ that you need to load this
electronically coded signals as you press the kind of software.
keys. The codes go to the Spectrum's What do taped programs sound like?
memory, which stores them so that the Play one on your cassette player without
computer can use them when the program connecting it to the Spectrum. You'll hear a
runs. The codes stay in the memory until you high-pitched screech. This is caused by the
either remove them (by entering NEW or code signals 30in~ to the loudspeaker in the

pressing the reset button, for example) or playerinstea oft e computer. The signals are
sent from the cassette to the sr:ctrum at such

switch off your Spectrum. a hiSh speed that it is impossib e to distinguish
However, it's not always necessary to key the Individual sounds.

in a program when you want to use your Are there any other kinds of software?
Spectrum. Instead you can buy ready-to-run Yes. You can get programs on ROM cartridges
software, which contains programs that can instead of cassette tapes. The cartridges plug
be fed into the computer directly and into an interface which fits into the back of
automatically. Using ready-to-run software your Spectrum. A pro~ram on a ROM

not only saves you the trouble of keying in a cartridge loads instant y without any waiting
at all.

program every time you want to put your Software is also available on Microdrive
Spectrum to work, but italso enables you to cartridges. These contain programs recorded
have a library of programs ready for use that in magnetic form like a cassette tape. Several
would take days or even weeks to write prorams may be present on a cartridge and.
yourself. Software manufacturers produce unli e a cassette tape, any pro~ram can be

loaded within seconds rather t an minutes.
programs of all kinds written by the best Microdrive cartridges are used with the
programmers, and a wide range is available Microdrive unit (see page 46) .
for the Spectrum. Look at the Sinclair Which is the best cassette player?
Spectrum Software Catalogue to get an idea The Sgectrum is happy with an inexpensive
of the kind of programs you can enjoy and porta Ie cassette player, preferabl~ conneeted
use. Then whenever you want. you can run to the mains electriclt~ sUf.Ply rat er than
a particular program to suit your needs. driven by batteries. T e payer should have its

own volume control but a tone control is not
essential. Special computer cassette players

How programs are loaded into the Spectrum are also available. These are desi~ned to store

The code signals on a software tape consist
and load programs more reliably t an ordinary
machines.

of high and low bleeps recorded at the rate A cassette deck that is part of a sound
of about 1500 every second. When you play system is unlikely to be easy to connect up.

back a software tape in a cassette player, the Furthermore, the audio (line) output sockets
of cassette decks do not produce a sufficiently player produces the sequence of bleeps that strong signal for the Spectrum.

make up the program. You just connect the
cassette player to your Spectrum, and the Do taped programs need any special care?
codes go directly into the Spectrum's Like any form of ma~netic storage, programs

memo~. This is called loading a pro~ram . on cassette may be isrupted by strong
magnetic fields. So don't store your cassettes

On t ese two pages, you can see ow to near anything that uses a powerful eleetric
connect up your cassette player. Pages current. Software cassettes also need to be
14-15 will then show you how to use it. kept fairly free of dust.

Does any kind of software work?
No. Only software produced for the ZX
Spectrum or ZX Spectrum + will load.

How to connect your cassette player
The cassette lead supplied with your Spectrum is
intended to connect it to your cassette player.
This is the lead with a pair of small plugs at each
end. Place the cassette player beside your
Spectrum and plug in the lead as shown . The

cassette player and the Spectrum may be
switched either on or off as you do this, though
it's a good idea to take a cassette out of the
cassette player before switching it on or off. This
will safeguard programs stored on it.

Making the right connections

Push anyone of the four plugs
into the EAR socket on the back
of your Spectrum.

3

If the cassette player does not
have an EAR socket, connect
the plug to a headphone socket
if there is one. Otherwise try
connecting it to an external
loudspeaKer socket.

EAR and MIC Sockels
When loading programs, you
can have botn EAR and MIC
sockets connected, as shown
here. But when you are saving
programs (see page 38), you
must disconnect
the EAR lead.

Push the other plug of the same
colour into the EAR socket on
the cassette player if it has one.

4

If the plug on the cassette lead
does not fit the socket on the
cassette player, you 'll need an
adaptor or a special lead with
the right plugs from an electrical
dealer. The Spectrum EAR
socket requires a 3.5 mm jack
plug and an input signal of
abOut 1 volt.

Software tips

• The Spectrum's cassette
lead has colour-coded
plugs to prevent cross­
connections between
sockets on the computer
and the cassette player.
When you use a cassette
player with your Spectrum,
always try to keep to the
same system, with one
colour for the EAR sockets
and the other for the MIC
sockets .

• Some cassette recorders
may be affected by other
electrical equipment nearby.
Sometimes this can distort
signals sent between the
computer and cassette
player with the result that
programs will not load
properly. If your cassette
player occasionally does not
seem to work, try moving it
so that it is not alongside
either the television or
computer.

HOW TO LOAD A
PROGRAM
Now that you've connected a cassette
player to your Spectrum, you are ready to
load and run a program. You can use a
ready-ta-run software tape or your own
tape containing your programs. The
procedure is exactly the same in both cases.

Switch on the cassette player. Make sure

'1' Inse,rt t~e cassette and rewind it to the
L..!...J beglnmng.

I2l Set the volume and tone controls on the
L£J cassette player to the required levels. Try
the volume at about two-thirds maximum and if
there is a tone control, set it to maximum treble.

'3l Press J and LOAD should appear on the
~ screen. Then key in the program name in
quote marks, for example

LOAD "Prog 1"

••

Software loading tips

Here are some tips that will
help you to save time
when loading. .-

that the Spectrum is powered up, then insert
the cassette into the player. If there is already
a program in the computer, wait for it to end
or stop it by pressing the BREAK key. You
can then enter NEW or press the reset
button to remove the program from the
Spectrum's memory, but this is not essential
as loading a new program dears the memory
first. It is important to remember that if you
load a program. the previous program will
be erased from the memory.

Now follow the numbered instructions. If
anything goes wrong, consult the Software
loading troubleshooter on page 16.

W Press ENTER. The screen will go blank.

'5' Start the tape. The border of the screen
~ should go red or blue or flash red and blue.
This indicates that the Spectrum is searching for a
program.

1'6l After a few seconds, red and blue stripes
~ should begin to move up or down the
border. This indicates that the Spectrum has
begun to receive a signal.

'1' Label all tapes clearly so
L..!..J that you can find the
programs easily. If a tape
contains more than one
program, write the names of
the programs in order on the
label. Remember to spell the
program name exactly as the
computer will need to use it.

I2llf your cassette pJar.er
~ has a counter, use It to
find a program quickly on a tape
with more than one program

per side. Zero the counter at the
beginning of the tape, then
enter LOAD followed by any
program name (in quotes) that
IS not on the tape. Play the tape
and the Spectrum will display
the name of each program that
it finds without loading it. Write
the counter numbers on the
label beside the program names.
This lets you quickly reach the
program you want.

'?l The word Program: followed by the
Li...J program name, or Bytes: followed by a
name or letter, appears on the screen. This
indicates that the computer has successfully
located the program.

! 1 0 I Operations 7, 8 and 9 may repeat once or
several times if the program is split up into

sections.

f111 The program may begin automatically
~ when it has loaded. Remember to stop the

112111 the program does not begin
automatically when it has loaded, the

screen goes blank and the report e OK, 8 :1
appears. Stop the tape.

'8l The red and blue stripes appear again as
~ the computer waits to load the program. 00-.0'

'9l A pattern of yellow and blue lines appears
~ in the border. This indicates that the
Spectrum is loading the program. loading can
take several minutes if the program is very long.

'3' If the tape is at the
~ correct program or if you
do not know the name of the
program, enter LOAD " "

instead of LOAD followed by
the name in quotes. There must
be no space between the two
quotes. Your Spectrum w ill then
load the f irst program that it
finds on the tape. If the program
name that appears is not the
one that you want, press
BREAK, wind on and t ry again.

'4' Note the levels of the
~ volume and tone
controls that enable your

VOLUME TONE

~~

Spectrum to load. Set these
levels on the cassette player
befo re loading.

Switch on
c.usette p!l.yer!

"'" .. L _ _ "", connections secure
YES and correct?

NO NO

Fix connections

T&pe IoiIdinJ
"""..,,..

YES

~~===============~ Check tape volume/ tone.
Check battMes. tape,

assette he.d and spt'ed.

No chanse

Alterl'\i.tins blue/red
border {computer

5e,ilrchins for a program>

Insert computet tape Is tape
In player? In searching pattern

SHORT

Creak extra memory
area with CLEAR,

enter NEW and !old
program asain

Check tape is inserted
corre<tiy, arw:l is not

a recorded music Upe

Check correct
filtoname used

Is program
Jons or short?

LONG

Alternatin& blue/ red
border (wrong pro&ram

found ; computer
not IoiIding)

Out of memc:ny
error report

• OK. ' :1 report

START
PROGRAMMING

This chapter is an introduction to program writing on
the ZX Spectrum +. It tells you how to get to grips with
your Spectrum by showing you how to find your way

around the keyboard . Then you 'll see how you can begin
to put your Spectrum to work . The short programs for

you to try out here concentrate on the Spectrum's special
features so that when you come to writing programs of

your own you'll be able to make the most of all your
computer can do.

THE KEYBOARD­
YOUR COMPUTER'S
CONTROL PANEL

The ZX Spectrum + has Its own language,
the computerlanguage known as BASIC To
get it to obey your instructions, you have to
program the Spectrum by talking to It in
BASIC You do thIS by operating the
Spectrum 's keyboard Furthermore, the

GRAPH
This key IS used to select the shapes or graphics
characters on keys 1 to 8 If you press tFlIs key and
then press a number key with or without the CAPS
SHIFT key , a graphICs character will appear on the
screen

NEW
This key clears the
computer's BASIC
memory area, erasing
any program held In It.

DELETE
This key 15 used If you
press a wrong key and
wan t to remove a
keyword. letter,
number or sign - see
page 10

EDIT
This key is used to
change a Ime In a
program Without
completely rewntlng It
- see page 21

This key selects the
upper keyword above
the raised section of
anr. key. When
fol ow ed by SYMBOL
SHIFT and a key, It
selects the sign or
key work Immediately
above the raised
section of the key-see
pages 20-21

CAPS SHIFT
Press this key with a
letter key to produce a
capi tal letter If you
want a number of
letters to appear In
capitals . use CAPS
LOCK

keyboard allows you to control the computer
whIle it IS running your programs.

The dialect (version) o f BASIC tha t the
Spectrum understands IS a simple but
powerful form o f thIS language, It's deSigned
to be as much like EnglISh as pOSSible to
make It easy to use_ In addi t ion, the
Spect rum has one great feature that makes
programming much easier This is the single­
key keyword entry sys tem

Keys and keywords

Keywords are special words In BASIC that
instruct the computer to do something­
words like PRINT and INPUT On most

TRU E VIDEO and INV VIDEO
These keys insert control codes Into
program lines to produce normal or
Inverse colours

CAPS LOCK
Use th is key if you
want the letter keys to
produce capital
(upper-case) letters all
the time. Press It again
to get small (lower­
case) letters

BEEP
ThiS key produces the

keyword which
controls the

Spectrum 's sound
synthesizer

computers you have to key in each letter of
a keyword as you would on a typewriter,
and you must spell each word absolutely
correctly. But on the Spectrum. you simply
press a single key to get a whole keyword on
the screen .

Sinclair BASIC has over BO keywords.
accessed by a total of 36 keys (26 letter keys
and 10 number keys). Because the Spectrum
uses such a wide range of BASIC instructions,
many keys produce not one but several
keywords which the computer will
recognize. M ost keys actually give you
keywords as well as a letter, number, sign or
even a shape (graphi cs character) all of
which can be used in programs.

Colour display keys
These six keys produce keywords
that control colour on the
screen.

Selecting keywords and signs

On the Spectrum keyboard. there are two
keys which you will be using a lot. These are
EXTEND MODE and SYMBOL SHIFT. and
they are the keys which let you choose
which of the keywords and signs on the
other keys you want to appear on the screen .
You have already had a brief introduction to
keying in with these keys on page 8 . Now.
after you have familiarized yourself with the
keyboard layout, the next two pages will
show you exactly how to select anything
that appears on the computer's keyboard.
Once you know how to do this, you can
begin to write your own programs.

Number keys
As well as producing numbers, these
keys can put control codes In programs
for the colours shown- see page 33. The
keywords Immediately above the key-

from 4 to 0, except key 8, are used
I With ZX Microdrives

stops a
Ipro.,earn running. It

erase the

J:~~~~~::';'.,f~,~rom the _ memory.

ENTER
ThiS key tells the
computer that the
Information just
entered IS complete
and that It can go
ahead

SYMBOl SHIFT
Hold down and press a
letter or number to
select the lower
keyword orstgn on the
raised section of the
key . When used after
EXTEND MODE. ,t
selects the symbol or
keyword Immediately
above the raised
section - see pages
20·21

Space bar Cursor controls
ThiS produces a space
like the space bar on a
typewriter.

Pressing these keys makes the cursor
move In the same directIon as the arrows
These keys are often used by programs
to control the movement of shapes on
the screen They are also used when
editing programs

HOW TO OPERATE
THE KEYS
You can get as many as six different
keywords, letters, numbers or signs from
most keys on your ZX Spectrum +. However,
selecting a character or keyword on the
board is not complicated once you become
familiar with one of the Spectrum's special
features. If you press a key, the result that
appears on the screen depends upon the
mode that the computer is in at that
moment. The different modes each let you
key in different types of information , like
keywords, letters or graphics characters. The
advantage of this is that as you operate the
keyboard , the Spectrum actually helps you
in choosing keyboard modes so that you
enter instructions and information in the
right order. On these two pages you will f ind
out exactly what the modes do.

How to select a keyword, symbol or character

Keyword mode

Switch on or reset your Spectrum so that the
copyright message appears . Now press
ENTER. A flash ing K appears in the bottom
left-hand corner. The flashing square is
called the cursor. It shows you where
something is going to appear on the screen
and the K indicates that the computer is in
keyword mode. Press any letter key and the
top keyword on the raised section of the key
appears on the screen . Try Q , for example,
and the keyword PLOT appears. Press the
DELETE key to remove the keyword and try
other keys. Number keys will give numbers,
but as soon as you press a letter key, the top
keyword on the raised section appears.

Use DELETE again so that the K cursor
reappears. Now press either SYMBOL SHIFT
key, hold it down and press any letter key.
This time, the keyword or sign just above the
letter on the raised section appears. With a
number key, the sign to the right on the
raised section appears. So, keyword mode
relates to the raised section of the key.

You can see here how to select note where it is on the key, and change to the correct mode.
any keyword, sign or character then by using the two example Always look at the cursor on the
on either a letter or number key. keys here, decide which other screen first to see which mode
When selecting a key function, keys - if any - you will need to the computer is in.
~Le~tt~e~r~k~e~y--~--~------~--~----~ ~N~u~m~b~e~rCke~y~------~--~------------1

Keyword (K) mode

Key only BORDER

I
SYMBOL

1 iHlFT and key

Extended (E) mode

I~~I then key only BIN

IEXTINOlthenlsvMlOtI and BRIGHT
MOO£ SHIFT key

letter (l) mode

Key only

1 ~l andkey

Is=landkey

Capitals (C) mode

I ~ I then key only

I ~ I then I~~I and key

Graphics (G) mode

IC;AAPtt I then keys A to U only
user-defined graphic

b

B

B

Keyword (K) mode

Key only 3

ISVMIOtI SHIFT and key #

Extended (E) mode

=1 then key only magenta
paper

I~~~I then Is~1 and key LINE

Letter (l) mode

Key only 3

1~~1 and key #

Capitals (C) mode

I ~ I then key only 3

I ~ I then Isv:1 and key #

Graphics eG) mode

IGAAPtt I then key only ~

I,,"" I then 1 ~ I and key ..

Letter and capitals modes

Having produced a keyword or sign in
keyword mode, the computer automatically
changes the cursor to L. It is now in letter
mode. Press any letter key and the lower­
case (small) letter appears. Press a number
and the number appears. If you want to get
a capital letter, hold down CAPS SHIFT and
then press the letter key.

If you want all capital letters, then press
CAPS LOCK firs!. The cursor changes to C.
Your Spectrum is now in capitals mode and
you get a capital letter every time you press
a letter key. You still get numbers in capitals
mode. To return to letter mode (L) , press
CAPS LOCK again .

Extended mode

The next mode is called extended mode and
it is produced by pressing the EXTEND
MODE key. The cursor now changes to E.
Press any letter key, and the top keyword of
the pair of keywords above the raised section

Edltilll on the Spectrum

is given . For example, press B and you get
BIN. To get the bottom keyword or sign
above the raised section, press either
SYMBOL SHIFT key first and hold it down,
then press the letter key. On key B, for
example, you now get BRIGHT. So in
extended mode, you get the pair of
keywords above the raised section of the
key. After pressing a key (or EXTEND
MODE) in extended mode, the computer
automatically returns to letter or capitals
mode.

Graphics mode

The fifth mode is called graphics mode and it
is produced by pressing the GRAPH key. The
cursor changes to G. Press keys 1 to 8 and
see that the graphics characters marked on
these keys appear. Now press CAPS SHIFT
and any numberfrom 1 to 8 . The graphics
appear again, but this time black and white
are reversed. To leave graphics mode, you
must always press GRAPH again , as the
computer does not leave it automatically.

When you give commands or
when you come to writing
programs for your Spectrum,
you will want to correct
mistakes in commands or
program lines or to alter them.
You can easily do this by editing.

How to correct a mistake
If you try to enter a line or a
command that is wrong in
BASIC, the Spectrum will
display a flashing ? before the
error. To correct the mistake,
hold down the left or right
cursor control key to move the
cursor to the right of the error.
Then either derete the mistake
by pressing DELETE or add
whatever Keyword, letter,
number or sign is required.
Then press ENTER.

need to do is move the cursor
just to the right of the mistake.
then press DELETE to remove b.
Then press SYMBOL SHIFT and
B to get . and press ENTER to
make the computer obey the
correct command; you don't
need to move the cursor back to
the end of the line first. The
Spectrum carries out the
command and displays the
result.

How to edit a program line
When you write a program, you
build up a sequence of
numbered lines of instructions
called a listing. If, after writing a
program, you 'l ist' it by pressing
K (LiSn and ENTER. you may
see a > sign against one of the
program's lines. If not, press
and-hold either the up or down
key until the cursor appears. If
you then press EDIT, the line

For example, suppose you
want the computer to multiply
7 by 8 and you do not press
SYMBOL SHIFT to get the·
sign. You would in fact key in

PRINT 7b8
instead. The Spectrum cannot
obey this command, so on
pressing ENTER it displays a
flashing question mark before
the b, which is where the
mistake has occurred. All you

\,

- -

EDIT

is duplicated at the bottom of
the screen and can then be
changed as before with the
cursor and DELETE keys. Press
ENTER to place the new line in
the program. If you want to edit
another line, move the > sign
with the up or down cursor
control key to the line you wish
to change and then press EDIT.
If this takes too long, enter LIST
followed by the line number
and then press EDIT. In each
case, the line you require will
appear at the bottom of the
screen and can be changed.

To delete a complete line
from a program, simply key in
the line number alone and then
press ENTER. If you do run a
program that contains an error,
you will see a screen report.
These are explained on page 74.

THE TELEVISION
CALCULATOR
The ZX Spectrum + can make calculations
extremely quickly and with great accuracy.
All it needs are some numbers to work on
and signs such as + and - that tell it what to
do with the numbers.

First key in this instruction (you' ll find the
+ sign on the K key) :

PRINT 6+2

This is a command. When you press ENTER,
the command disappears and the answer,
the number 8, is printed on the screen.

Your Spectrum uses five signs known as
arithmetic operators for calculations. You
can see what they each do in the panel at the
bottom of this page. You can use them all in
just the same way with PRINT.

Entering commands such as PRINT 6 + 2
turns you r Spectrum into a calculator. But it
can do many t hings that an ordinary
calculator cannot. For a start, it can display
calculations and their results together. Enter
this command:

PRINT "6+2=";6+2

The computer responds by displaying

6+2=8

What happens is that PRINT causes
every thing between double quote marks (")
to be displayed on the screen, so 6+2=
appears. The characters between the quote
marks make up a string. The semicolon
instructs the Spectrum to the result
imlne,dia·tellv after the

The following signs or 'arithmetic operators '
are used by the Spectrum to carry out
mathematical operations. Note that the
computer does not use x or -;- signs.

Symbol Key Function Example

+ K Add two numbers 8+ 2= UI

J Subtract two numbers 8- 2=6
B Multiply two numbers 8·2=16
v Divide two numbers 8 / 2: 4

1 H Raise first number to
the power of the
second 8 1 2 ~64

Your ti rst program

When a command has been carried Qut,
your Spectrum forgets it. If you want the
computer to repeat the calculation , you can
write it as a program. Key in this instruction
and then press ENTER.

10 PRINT 6+2

This time, it is not obeyed straightaway. The
computer displays the instruction on the
screen instead. Next press R (RUN) and
ENTER. The result 8 now appears.

The whole instruction is now a computer
program. Putting a number at the beginning
makes your Spectrum place the instruction
in its memory, but not carry it out unti l told
to do so. Whenever you run a program by
pressing R (RUN) and then ENTER, t he
instruction is carried out. The instruction is
now called a statement instead of a
command. and it forms a numbered line in a
program. Program statements are a/ways
carried out in order of their line numbers,
and these usually go in tens so that extra
lines can be inserted later if necessary.

Next, get the Spectrum really working.
Enter this program. Remember to press
ENTER after keying in each line, and then
when you have finished , press R (RUN) and
ENTER. When you have run the program,
this is what you should see.

NUMBER CHART

.1m L~T " • .1
01 0 P~ZNT ,, ;.
3 0 LI!T ".,, +.1
40 GO TO 20

~ '" 3 ... 5 6 7 e 9 1a 11 1", 13 I'"
15 la 17 Ie lit :za 11:1 :z'" ",3 :z ... '"

!I ",a li7 lie lilt 3a 31 311: 33 3 ... 3S
3a 37 38 39 ... 0 ... 1 _a "'3 "'5 oO.l!i

... 7 .e ... 9 5111 51 Sli 53 15 155 56 S
7 sa S9 60 61 6a 63 a. as 66 67
6a 69 7 111 71 7a 73 7. 7S 76 77 7a

79 110 1111 e:z a3 III" as a6 87 1111 e
9 90 91 9.a 93 9. 95 9a 97 916 99
Utili Ull lea le3 10'" 11!1S le6 197
lea le9 lle 111 112 113 II. liS
116 117 lUI 119 la9 lal lli:Z U!3
la .. 1i15 lli6 la7 llia la9 13e 131
13a 1:33 13. 1315 136 137 13a 139
l ... e 1"1 l.:;t 1"'3 1 1"15 1"'6 1 ... 7
1"8 1 .. 9 15e 1151 lsa 153 115. 156
1156 1157 lsa 1159 111111 161 16:;t 163
16 ... 16'5 1116 167 16. 169 17Cl1 171
17:Z 173 17 ... 17S 176 1 77 1711 179

iii 11* ii! ill !!i !!i ~!; !!~

All the numbers from 1 to 203 are displayed .
Now press any key except N, the space bar,
STOP or 8REAK. A whole new set of
numbers appears.

This program uses a variable. In this case,
the variable is called n. Any letter or word
could be used - n here simply stands for

number. A variable is given a value that
changes as the program runs. In line 10, the
keyword LET is used to set the value to 1.
Line 20 displays the value followed by a
space. Then in line 30, LET is used again, this
time to increase the value by 1, so n becomes
2. Line 40 uses the (single) keyword GOTO
to send the program back to line 20, which
now displays 2. This is repeated over and
over again until the numbers fill the screen.

How to make a program ask for a number

Stop the program by pressing BREAK. Now
key in a new line

10 INPUT n
This line replaces the old line 10 in the
program. When you run it, the computer
now waits for you to enter a number. Key in
any number and press ENTER. Now the
numbers begin at the number you entered.
This is because INPUT n makes the value of
n equal to the number you enter. INPUT
instructs the computer to ask for information
during a program.

Programming a multipl ication table

Press the reset button to remove the old
program and enter the next one. This
program gets the Spectrum multiplying. Key
in any number and a multiplication table for
the number will flash up on the screen. Press
any key except N, BREAK or the space bar,
and the table continues. Press BREAK and
then run the program again to create a new
table. Here is the program and what you
should see if you key in 3 and next 146.

MULTIPLICATION TABLE

10 LET " .. 1
2 0 INPUT n
-3 0 PR INT n; . • . ; "- ; .. ,.. : n • X
-1-0 LET ,,~)(.. 1
5 0 GO TO 2'0

.1_3

.011.0

.3 .. 9

. .. · 1011

.5 .. U5

.e.10

.7.21
_6 _aol­
.9.a7
.10.30
.11 _33
• 12.36
.13 .39
.1. 2
.111 ... 11
.1& ... &
017 _ 151
010 · e ..
.19 _ 157
.0110 . &111
.0111. .. &3
.iliI.eo

1.Hi.l_1"e
l ... e ·a.alla
, .. e .3 38
1 ... e ·56 ...
1 ... 6 .15 _73 0
1"'6.e .. 8~e
1 ... 6 .. 7. 1 0011.
1 ... e . 8. 11eo
1 ... e .9 · 131",
1 ... e "1111 " 1"eO
1" e .11 _ 1 e06
1 .. e .1 •• 1 75.
1 .. e "1 3"lS9&
1 .. 05 .1 0
1 ... e . Hlia.1110
1 .. e ·1e •• 33e
1 .. 05 .17-... 0.
1 .. 05 01 0 • .016.6
1 .. e .1 9 •• 77 ...
1 .. e . c e •• 9.111
1"e • • 1_3I11 ee
1 .. 05 • ••• 3.1 .

Why you need to use brackets

You will sometimes need to use brackets in a
calculation . Enter these two commands and
compare the results :

PRINT 6+2 / 4
PRINT (6+2)/4

The first gives 6.5 and the second gives 2.
The reason for these different results is that
the computer has an in-built system of
priorities which it uses in calculations. It
carries out f first, then· or I, and finally +
or -, but it always carries out any
calculations in brackets first. So, in the first
command above, it first divides 2 by 4 and
then adds the result (0.5) to 6. In the second
command, the computer adds 6 and 2, and
then divides by 4.

The Spectrum uses a range of punctuation
sifns. They are very important because many
o them double up as instructions to the
computer, affecting the way it understands a
program line or produces a display.

"

Semicolon When used with PRtNT, tells
the computer to display the two items on
either side of it ned to each otheron the
screen.

Colon Signals the end of one statement
in a program line and the beginning of the
next.

Quote mar$(Any characters within
quotes are treated not as numbers or
variables but just as text. Quotes begin
and end a string .

Comma When used with PRINT,
tells the computer to display the following
item either in the centre of the line or at
the beginning of the next line. Do not use
to indicate thousands Of" millions.

Point Either a decimal point orfuU
stop.

COLOUR AND HOW
TO USE IT
Your ZX Spectrum + can produce eight
different colours, and each colour has a
colour code number. You can use each
colour in three different ways - as a border
colour, an ink colour and a paper colour.

ZX Spectrum + colour codes
This chart shows the colours and codes used
by the Spectrum. You don't have to remember
these codes; the number keys that produce
them are also marked with the colour names.
(These names are not keywords.)

Colour

The actual shades you get on your television
set will depend on the set and the adjustment
of the colour, contrast and brightness controls.
Remember that you need a colour set.

The Spectrum's three ways of using colour

You can control colour in three different
ways. The border colour is the colour of the
border around the central display area. The
ink colour is the colour in which characters
(letters, numbers, signs and graphics shapes)
and pOints or Jines appear. The papercolour
is the colour of the background, either over
the whole display area or in a square just
around each character.

When you turn the Spectrum on , it uses
the preset colours. The ink colour is black,
and the border and paper co lours are white.
You can change these colours instantly by
entering direct commands from the
keyboard. You have already seen this at
work on pages 6--7, where the BORDER
command was used to check that your
television and Spectrum were both properly

set up for colour. Now press the reset button
and key in and run this simple program.

COLOUR TESTER

10 ~RINT
20 GO TO 10

A pattern of stars builds up in black and
white. Now press BREAK and enter some
colour commands. Key in the keywords
BORDER, INK and PAPER each followed by
a number from 0 to 7, pressing ENTER after
each , and then run the program again. Here
are two displays, the first with BORDER 4,
PAPER 2 and INK 7, and the second with
BORDER PAPER 5 and INK 1.

How to write programs with colour

You can use the BORDER, PAPER and INK
keywords in a program to make text, tables,
patterns and pictures appear in all kinds of
colours , Using BORDER in a program line
makes the border colour change as soon as
the Spectrum reaches this line, INK in a line
on its own gives a new ink colour when any
characters or lines next appear on the screen .
PAPER in a line on its own changes the paper
co lour but only around any characters (this
includes any pOints or lines as well) . If you
want the whole background of the display
area to be a certain colour, you must follow
PAPER with CLS .

You can also use INK and PAPER after
PRINT. In this case, only the particular
characters displayed by PRINT have these
INK and PAPER colours. The next program
demonstrates all the border, ink and paper
colours. It also shows you how to use INK
and PAPER after PRINT.

COLOUR COMBINATIONS

10 FOJ:! b : 0 T O 7
20 B O RDER b P APER b CL~
3 0 PR INT AT 15. 12 , INK. SI; b
40 FOR ~ :0 T O 7
50 PJ:!INT AT p + 8,B, INK. ~, PRPE

R 9 , ~.
150 BEEP 0. 5 , b. P - 20+~
70 FOR • = 0 T O 7
B0 PRINT IN K. " P RPER p , ' "" ,
9 0 BEEP 0.01 " . 5

1.00 NE XT ,
11.0 NE XT ~
1.20 NE XT b

you run this program, you 'll see all the
combinations of border, paper and ink. - I he
program has three variables, b for the border
number, i for the ink number and p for the
paper number. BEEP produces the sound,
and the lines beginning with FOR and NEXT
mark the beginning and end of a program
loop that changes all the colour numbers
from 0 through to 7 in order. You 'll find out
more about using FOR and NEXT in program
loops on page 27. Note that INK and PAPER
can both have a value of 9. This makes the

ink or paper colour either black or white so
that it shows up against the background or a
character.

Programming coloured bar charts

The next program uses the Spectrum 's
colours to produce a bar chart . It shows
twelve daytime temperatures as yellow
columns wi th numbers . In line 60, enter two
spaces between the quote marks.

BARCHART

10 B O R OEP 0 ' PRPE P 1 CL S
2 0 L~T C", 4-
3 0 F O R ~= 1 TO 1 2
4-0 RERO l
5 0 F O R \"'2.1 T O 21- '. S T EP - 1
15 0 PR:INT P I=IPER 6 ; I=IT l . c;· ·
7 0 NE XT L
1!1 0 I=>RINT Ii'll' 2 . !=IT 2 C1 - t , C, '
90 LET ccc . 2

100 NE XT ~
110 D R T R 2 0 , 15 . 1 3 . 1 5 . 1Q , 20 , lS.1

1 , 12 , :1. 9 , 1 4- , 17

Now
new line 110 as shown . The chart now
appears in two colours. To find out about
READ and DATA, turn to page 33 .

DOUBLE BAR CHART

1!15 REFID l
I!I IS FO R \ _ 2 1 TO 2 1 - l ~TEP - 1
e 7 P RINT PRPEJ:! 3 . FIT l . C . ..
ae NE XT l
89 PR:INT IN K..1 PFlPER 5 , RT 2 0 -

l , C • t
1.10 DRTR 2 0 . 6 , 1 5 . 4- , 1 3, 5 , 1 6 , 6 , 1 9

. 10,20 , 6 . 1 6 , 6 11 . 4- . 14- , 6 , 1 9 . 6 . 1 4 .
9 , 1 7,7

SIMPLE DIY
GRAPHICS
Your ZX Spectrum + can give you low­
resolut ion and high-resolution graphics.
Both kinds can appear on the screen at the
same time. Low-resolution graphics displays
are made up of blocks of colour. On these
two pages, you will see how to produce
these blocks from the keyboard, and how
to position them on the screen.

The low-resolution screen

On the low-resolution screen there are 32
positions in which characters can be placed
across the screen and 22 positions in which
they can be placed down it. Each screen
position has a pair of numbers to identify it.
First comes the line number, which is the
number of lines down the screen to reach
the position . The top line is line 0 and the
bottom line is line 21 . Next comes the
colu mn number, which is the number of
columns across the screen to reach the
position . The left-hand column is column 0
and the right-hand column is column 31.
(On page 80 you can see the low-resolution
grid laid out.) The next program fills these
character positions with colours. The
keyword RND (on the R key) chooses a
random ink colour.

RANDOM SQUARES

I N I'< ~ND . 7

Here squares appear all over the screen. To
make a character appear at a particular
position, you need to use the keyword
PRINT together with AT. AT is placed after
PRINT and is followed by the line number, a
comma, the column number and a
semicolon. The command

PRINT AT 11 ,16;" · "

for example, displays a star at line 11 ,
column 16, which is the centre of the screen.

How to draw rainbow patterns

A good way of producing colou red patterns
is to use FOR NEXT loops in your graphics
programs. FOR NEXT loops are parts of a
program that repeat themselves a certain

Your ZX Spectrum + has a set of
keyboard graphics characters
that make low-resolution
graphics easy to program. You
can see them on keys 1 to B.

To produce the graphics
characters on the screen, press
the GRAPH key and then press
keys 1 to 8, using the space bar

between each one. The graphks
characters appear at the bottom
of the screen. The white part of
each character on the key is the
ink colour and the black part the
paper colour. Now press the
keys again, holding down CAPS
SHIFT at the same time. This
time the characters appear with

the ink and paper colours
reversed.

This is exactly how you put
graphics characters into
program lines. To leave graphics
selection and return the number
keys to normal, simply press
GRAPH again.

GRAPH
ThiS key is used to
switch the Spectrum
to graphics mode.

KeyS
This key is often
used with GRAPH
and CAPS SHIFT to
produce a solid
square of colour.

 number of times. In the line that begins a
loop, you can tell the computer how many
t imes you want the loop to be carried out. As
it does so, it can be used to place charaders
on the screen , for example.

You aren 't limited to programming just
one loop at a time. You can put one loop
inside another, often with very useful results .
The next program shows you how two FOR
NEXT loops (one 'nested ' inside the other)
can be used to change the colours and
positions produced by INK and AT. You can
see how to program these loops in the panel
at the end of this page .

RAINBOW

5 e O R DER 121 p~peR 5: CL ~
1121 LET . _ 1
~0 ~OR , . e TO 2 1
3 121 prOR C_ 1 T O 6
4 0 P R INT INI'(c; F'tT \ (. ~;". '
5 0 NE X T .:;
60 LET • • • • 1
70 NE X T l

Programming pictures

In low-resolu t ion graphics , you can 'paint'
pictures by working out the positions and
colours of the graphics characters . You can
plan your own picture by using the low­
resolution grid on page 80. Then , by
selecting the graphics characters in the way
shown on the opposite page, enter the
program lines one by one to build up the
picture .

The next program shows you the sort of
results you can produce. All the shapes in it
can be found on the number keys. You can
either wait until you have keyed in all the
lines before running the program , but if
instead you run it after entering each line,
you'll see how the different parts of the
robot are put together. (Remember that if
you key in the wrong graphics characters,
you can edit them just as you would edit
incorrect numbers or letters.)

ZXROBOT

5 e O RDEI'OI 2:
10 PRI NT I NK
15 PRlNT INK
., ., PRrNT I NK
3 03 PRINT INK

P APER 1. C L ~

2. RT ~' 15" i...... 2, AT 4 , 1 5," .
2. RT 5 , 1. 5 ,"
S. RT 6 . 1 3, "

4" F O R , .. 7 T O 1 0 PR INT I N K 5 ,
R T l. 1.3 . __ . ' NEXT l

.&. 5 PR I NT INK 6; PAPER 0 , RT e, l

5·. S~' ;; R I NT l l n (2 ;RT 11 . 1 3. ··.

603 F O R l= 11 TO 1 5 PRINT I N~ 6
, RT l, 14 ;' •• : NEYT I

7 0 PRHIT IHK :),RT 16 1 .3. _ "; T Ae 1 7' _
e0 F O R L_ 1 7 TO 2 1 ' FOR C% 0 T O

" 90 PI'IINT InK . R T l .C· •
100 ~jf! XT < H I!: X T t

A FOR NEXT loop always begins w it h a line
containing the keywords FOR and TO,
together with a variable and its beginning and
end value, for example

30 FOR c-1 TO 6

Here the variable is c. The loop that this begins
would then contain line(s) that make the
computer repeat an operation. They might
also use the variable c themselves. FOR NEXT
loops always end with the keyword NEXT and
the variable , for example

50 NEXT c
When the program is run , the whole loop

from FOR to NEXT repeats a set number of
times. The variable begins at the f irst value
before TO and increases by 1 each time until it
reaches the limit after TO. In this case, the loop
repeats six times, with c starting at 1 and then
becoming 2, 3, 4, 5 and finally 6.

In the first program on page 25, three loops
are used in a 'nest '. This means that for every
cycle of the 'outside' loop, the 'middle ' one
goes through all its cycles. The 'inside ' loop
goes around all its cycles most often, every
time the 'middle ' loop cycles once.

 -THE ON-SCREEN
SKETCHPAD
Graphics on the ZX Spectrum + are not
limited to chunky low-resolution patterns
and pictures. With its high-resolution
capability, you can use your Spectrum to
create detailed images with sharp outlines
and straight or curved lines and edges.

High-resolution graphics are made up of
many dots placed one after another to form
a line or to fill out a shape in solid colour.
Each dot is a sixty-fourth of the size of the
squares you use in low-resolut ion graphics.
If you enter this command

PLOT 128,87

you 'll see one in the centre ofthe screen .
The dots used in high-resolution graphics

are called pixels, which is short for picture
cells. Like a low-resolution character, each
pixel requires two numbers to specify its
position. These are not the same numbers as
those used in low-resolution displays.

The high-resolution grid

The high-resolution grid consists of 256
pixels across the screen and 176 down.
However, unlike in low-resolution displays,
the first number is the horizontal coordinate
- its position across the screen . These
position numbers go from 0 at the left-hand
edge to 255 at the right-hand edge. The
second number is the vertical coordinate,
butthe numbers go from 0 atthe bottom to
175 at the top. Position 0 ,0 is the bottom
left-hand corner, not the top left-hand
corner as in low resolution . See page 80 for a
chart of the high-resolution grid.

Plotting and drawing

You need only three keywords for producing
high-resolution graphics - PLOT, DRAW
and CIRCLE. PLOT is followed by the
horizontal and vertical coordinates
separated by a comma, and it places a pixel
at this position . DRAW is also followed by
two numbers separated by a comma, but
these are not the coordinates of a position .
Instead they are the distances in pixels from
one position to another position across and
up or down the screen, and DRAW then

draws a line between the two positions.
The first position is 0,0 if PLOT or DRAW

have not already been used in the program.
If they have been used , then this position is
the last PLOT position or the last position
reached by DRAW, whichever is most
recent. The DRAW statement then draws
the line to the new position . If the line is to
go to the left or down the screen, then the
horizontal or vertical distances must be
negative (minus) values. Try this program.

PLOT moves the start position to the top of
the screen. Then the five DRAW statements
draw the five red lines.

Now add these lines to the program.

4 BORDER 1 :PAPER 6:INK 1 :CLS
5 CIRCLE 128,87,87

Run the program again , and the red star
appears in a circle on coloured

CIRCLE needs three values. The first two
give the position of the centre of the circle,
and the third number is its radius. You can
also add a third value to DRAW statements.

 Try values between 2 and - 2 with the
program and see what happens.

How to fill in shapes

You can easily produce solid shapes in high
resolution by drawing many lines dose
together. This can be done with a FOR NEXT
loop that changes the DRAW positions so
that they increase by 1 each time.
SOLID TRIANGLE

18 BORDER 1 : PRPER Eo , INK Oil C
L.

20 ~OR x=- 100 TO 100
30 PLOT 1:018 , 150
40 ORFHJ x, - 1 2 0
sa NEXT x

you
lines apart. You can dothis by adding
the keyword STEP and a numbertothe FOR
statement. This technique is used in the
Shimmering sunrise program on page 11 . It
will work on the triangle program in the
same way. Enter a different line 20 and run
the program again

20 FORx=-100 TO 100 STEP 4

This time the fan-like shape shown below
emerges. The reason for this is that STEP
makes x increase in jumps of 4 instead of
increasing by 1 each time a line is drawn.

Your screen sketchpad

Your Spectrum is very versatile. You don 't
need to write a program every time you
want to produce a picture or pattern .
Instead, you can use a program that allows
you to build up a picture directly on the
screen. Here's a very simple program that
allows you to do this.

It starts by using the keyword INPUT to
ask you for an ink number. Then, using
INPUT again (this time with a S sign to label
a string), it makes the computer draw short
lines every time you press one of four
specified keys - u, d, I and r.

SKETCHPAD AND EXAMPLE

INPUT "INK "; .
BORDER 3: PApl!!:R '"' : 'INK i ; C

THEN DRFlU 0,)(
THEN DRFlU 0,-X
THEN DRFlU x, 0
THEN DRFlU -)t. 0

lines 60 to 90 in the Sketchpad program
contain IF THEN statements. These allow
yourSpedrum to make a decision. In this case,
the computer checks to see if the key you have
pressed is either u, d, lor r. IF any of these are
pressed, THEN the computer is told to draw a
line. It won't draw a line if a capital letter is
entered.

IF is always followed by something that the
Spectrum tests to see if it is true or if it is
happening-like certain keys being pressed. If
it is true or happening, then the action
following THEN is carried out. If not, then the
program goes to the next line.

Everything following THEN in a line is
subject to the decision. In this line

110 IF b=5 THEN PRINT"·" : GOTO 200
the computer will only go to line 200 if b is 5.

DESIGNING PATIERNS
AND PICTURES
You can produce all kinds of patterns and
pictures with your ZX Spectrum +, using
either low-resolution graphics, high­
resolution graphics or both . The best way to
tackle graphics is first to draw out your
design on a copy of the grids on page 80.
Then work out the program that will produce
the lines and shapes at the right positions.

To draw patterns and pictures, you can
often use FOR NEXT loops that repeat part
of a program a set number of times. Each
time, the positions and colours of the
characters or lines can change, usually in a
regular way. Here is a program which uses
this technique.
SQUARES

10 eORDE~ 0 PRPER 0 ' CL5
20 FOR ~ . 7 TO 0 5TEP - 1
::lI0 INK)<
40 FO'"! lal1 _ >(T O 11+,.
50 FOR (z 16 - x T O 16+,.
60 PRINT AT l,C' .
70 NEXT C
8e NEXT L
90 NEYT)(

program contains FOR NEXT
loops. The x loop changes the colour and
also the size of the big squares that are
produced, while the I loop and the c loop
change the line and column position of the
little square every time it is printed . Try
changing the square in line 60 to a star or
some other character on the keyboard .

Random effects and subroutines

Using loops need not give identical patterns
each time a graphics program is run . By
using the keyword RND (short for RaNDom)
in loops, you can make colours, positions

and other display features different every
time. Look at the mosaic program on page
10. It works because the ink colour is RND·
7, which means any number with a decimal
point from 0 to 7. INK changes this to the
nearest whole number. So each time a
square is displayed, its -:olour is any colour
from INK 0 to INK 7.

The next program draws symmetrical
patterns of graphics characters on the
screen. It uses RND to change these
characters and their positions. The variables
i and p give the ink and paper colours, and a
indicates how many patterns are drawn (in
this case four). The variable n gives the
number of characters in each pattern, while
x is a random number from 129 to 142.

The statement GOSUB 1000 in line 50
sends the computer to a subrautine.

10 80RO~R 4; P~PE~ 41: CL5
Ol e LET .i _4: L~T p_e
3 41 FOR ;I"' 1. TO 4
4 41 L~ .zRNO.1.3.1~9
s e FOR ns1 TO 40: GO SUB 1000 ·

NEXT 1"1
6 41 L~ i 1 : LET p=p+l
741 PRUSE 1041
ee NEXT a
941 STOP

1414141 LET lsINT (RNO.l1)
1010 LET C=INT IRNO.16)
141241 INK ;: PRPER p
141341 PRINT ~T l. e CHRS •
141441 PRINT RT l. 3 -e.CHRS •
leSe PRINT RT 21 - .e ; CHR$ •
141641 PRINT ~T 21- .31_e;CHR$ x
141741 BEEP 0.01. l + / 3
10841 RETURN

A subroutine is a group of lines that acts like
a program-within-a-program. In this
program the subroutine is at line 1000. It
displays a graphics character in four quarters
of the screen so that each one is the same
distance from the centre (position 11,16).
This distance is given by lines 1000 and
1010, I giving the distance in lines and c the
distance in columns. INT changes the
random numberto a whole numberso that I
is any whole numberfrom 0 to 10and c any
whole numberfrarn 0 to 15. Then lines
1030 to 1060 display the graphics character

whose code is x (see the character set table
on page 51) . BEEP makes a sound whose
pitch is related to the position, and then
RETURN in line 1080 sends the program
right back to the next statement after
GOSUB in line 50.

Line 60 changes the ink and paper colours,
then PAUSE 100 in line 70 delays the
program for 2 seconds before it loops back
to begin again . STOP is needed in line 90 to
stop the program running straight into the
subroutine after the fourth loop.

You can change this program by altering4
in line 30, and 40 in line 50 to other numbers.
If you make the range of x wider in line 40,
you'll get other characters appearing on the
screen . Do not allow i and p to be greater
than 7.

Using FOR NEXT loops in graphics

FOR NEXT loops can be used very effectively
in high-resolution graphics to create pictures
made up of regular shapes and lines. Key in
the following program and run it. Using only
PLOT and DRAW, the two FOR NEXT loops
first draw lines on the ground and then five
solid triangles or pyramids.
PYRAMIDS

10 e O R DI!!R " P R PER 1. I: N K eo
2 0 CL-5
3 0 ~OR ~=e TO 2 0 5TEP 2
4e P L.OT 0 ,1,1
S 0 DRRW 255, 0
60 NE XT 'J
7 0 ~OR n= 0 0 T O 220 5 T EP 3 0
8 0 F OR)c" 10 _n " 1 0 TO 1 0 . n" 10
90 P L OT n 35 + n ; 1 0

100 D RFl W x _n 4
110 NEXT x NEXT n

When you run it again, you'll find thata laser
beam continually shoots up into the night
sky, creating bursts of stars. It is drawn from
the corner of the screen to position x,y, the
variables x and y being random numbers.
These are then converted to low-resolution
star position numbers.

12ilJ . LET ", .. p~' r' . 2~5
1 30 L E T .,.=PNC*l04* 7 1
1 4.0 I.... E T t _ I NT ' 1 7'5-',11/8
150 LET (" I NT Ix e'
l60 P L OT ~.0 : CRRW OVER l ,x, I,I
1 70 aEEP C.01. X / 4.
l de PLOT ~.~ . DRRW OVER l ,X, 'oI
1 9 0 PR t NT AT t, C . "."
20 0 GO T O 12ol'

OVER 1 in lines 160 and 180 allows the
first line to draw the laser beam and the
second line to remove it without changing
the rest of the picture . Save this program
(see a e 38) as ou will need it later.

FLASH, BRIGHT and INVERSE

These three keywords can really make the
colours of the Spectrum work for you . Each
keyword is followed by either 0 or 1, and you
can put them in PRINT statements provided
you put a semicolon after the 0 or 1. FLASH 1
makes character positions flash between the
ink and paper corours, while BRIGHT 1 makes
the colours brighter. INVERSE 1 changes the
ink colour to the paper colour and vice versa.
Using 0 after these keywords restores the
display to normal.

Try making these changes to the programs
on these two pages to see how the keywords
work. In the Squares program, change the
square in line 60 to a star and then add

15 INVERSE 1

Now the stars appear in black (the paper
colour) against coloured bands (the changing
ink colours) . Enter INVERSE 0 before
continuing.

In the Symmetrical Patterns program, add
these lines to see how BRIGHT and FLASH
work.

15 BRIGHT 1
16 FLASH 1

Note how FLASH makes the pattern appear to
move to and fro. Enter FLASH 0 :CLS to stop
the display flashing.

All these changes affect the whole display
produced by each pro~ram. Using FLASH,
BRIGHT or INVERSE Within a PRINT statement
restricts the three keywords to whatever is
printed by that line.

HOW TO CREATE
COMPUTER
CHARACTERS
YourZX Spectrum + is notlimited justto the
graphics characters that you can key in at
the keyboard. In a special section of its
memory, it can store other characters that
you design yourself. These are called user­
defined graphics characters and each
program can have a maximum of 21 of
them.

Each character is made of up to 64 little
dots or pixels of ink colour. These are
arranged in eight rows of eight pixels each,
and each character occupies one character
position on the low-resolution grid - just like
the standard graphics characters on the
keyboard.

Designing a graphics character

First draw an 8 x 8 grid as shown below.
Then fill in some olthe squares to create the
character. These squares represent the
ink-coloured pixels. Then draw in orthink of
each full square as 1 and each empty square
as 0. Here is a design for a spider.

Each of the user-defined graphics
characters is identified by a letter from a to u
(or A to U - it makes no difference). To
program the character, you enter eight
POKE USR statements each ending with BIN
followed by a binary number consisting of
the eight 0s and 1 s in each row of the grid .
Let's call the spider character s.

,. PC'lK E L'S ~
•• 50 •• e, :t tl 0121 111 H !l 0

" P OKE I_'S ~ "S' 1 ,S I N 12111 1 111 0

" POKE use .. 50 "' 2. SIN lICll 0 ll
>0 1=' 0:>0<:1£ use " 50 "' 3.B 1:N 11111111 ,. PQKE us e ,- 5 .• B IN 112111111211

'" P"KE use •• 50 .. '5 , 8 1N 1 121 1121121101 ,. PO KE use " 1. " 6 , B]:N 1 0100101
P P 'J KE use "50 "' ?,B IN 00100100

Now run this program and then press
GRAPH and S. Instead of an S, the spider
appears! Next add the following lines,
obtaining the spider in line 30 in this way,
and run the rrogram. Spiders appear across
the whole 0 the screen .
SPIDERS

own
characters, you won't be
able to see them on the screen until you
have run a program that defines them. Until
then they will just appear in listings as letters.

How to 'mix' colours with speckled s uares

You can quite easily simulate mixed colours on
your Spectrum. To do this you need to create
a character which when printed gives a square
that is 50 percent ink colour and 50 percent
paper colour.

10 ~OR x . 0 T O 6 s rEP 2
:o! iil IP O t<.E V5 R " , e rN 1.121101010
3;/1 P O KE lJ5 R 1 , 81N 0112110 1 .,
... ;/1 NE)(T)(

All you have to do is define two
pixel lines and then instruct the computer to
use them alternately in a character.
When you run the program, you should see a
speckled square. If you use the same technique
in a program that contains colour keywords,
the specl<led square will produce a colour that
is a mixture of the program's paper and ink
colours.

Simplifying graphics with READ and ~TA
There is an easier way of creating your
computer graphics and that is to use decimal
numbers with READ and DATA. First change
the eight binary numbers made up of0s and 1 5
into decimal numbers. Do this by entering
PRINT BIN followed by the number, for
example

PRINT BIN 001 11 100
The Spectrum displays 60, the decimal
equivalent of 00111100. In the case of the
spider, the eight decimal numbers are 60, 126,
219,255, 189,165, 165 and 36.

Now you can use READ and DATA. These
two keywords provide you with an easy way
of feeding lots of values such as numbers into
the varia61es in a program. READ is followed
by a variable - one or more letters if you are
dealing with numbers. or a single letter
followed by S if you are dealing with strings.
As you want to READ decimal numbers here,
you need a numeric variable . Call it y.

When your Spectrum encounters READ, it
looks at the first DATA statement in the
program. This statement contains a list of
values separated by commas. The computer
takes the first value from the list and this is
given to the variable after READ. The next
time that the computer gets to READ, the
second value is given to the variable and so on,
strictly in order.

Here is the new program that will produce
the spider.

The program will actually store any eight
decimal numbers in the memory to create a
character. Just change s in line 30 to the letter
you want, and after DATA in line 50, key in the
eight numbers each separated by a comma.
Press GRAPH and the letter to get the
character after you have run the program.

Using colour control codes

Drawing a chessboard

Here is a program that displays a
chessboard on the screen and then lays
out the pieces ready for a game. You can
make colours appear in a listing by using
colour control codes - see the panel
below.
CHESSBOARD

1 0 FO~)(=:1 T O 6
2C! J:lERD ••
3 0 GO ~ue 500
4.0 Nl!XT)<
~0 ~OJ:lD E R 4. PRP E P:1 . CL~
60 FOR L =7 TO 14. ~T~P 2 : FO~ C

:l2 TO 1Q STEP 2
7~ PR i NT RT L,C;" "; AT l t1 , O: ;

0 0
gO , ..

11.
12.
13.
:'300
01.
5 ••
~30 •••

The pieces are defined by a subroutine
which be ins at line 500.

550 C·AT ""

4.5~0 ORT'::'
~12 4. , 0
570 OR TR

124. ,0
SB0 O R TFI

124. ,0
590 ORTFI

6 6: 0 DRTR
~12 4. , 0

·' p "~ 0,0.1e., 5 e., 5 6, 1 f!; . 1 C?

"~" ,0, ~ &,1 ~&,5~, 5 &,124

" " ,0, 1~. 5~ ,120 . 2 & . ~6~

" b ' ,0, 16 . 4.0,68 . 10e ,56 ,

" 1(' . 0, l E· , '=.E . • 1 e . S6 . >5 ~ .S

" q ' ,0. ~ 4. . &0 . 16.10~ , 1 2 4

Instead of using keywords such
as INK and PAPER, you can put
control codes in PRINT
statements after the first quote
mark. The characters to be

displayed then change colour in
the listing itself and w ill also
appear in these colours on the
screen . To get the codes, first
press EXTEND MODE and then

a number key with or without
CAPS SHIFT. Remember to
select black ink and white
paper afterwards or what you
type will still be in colour.

ANIMATION
computer graphics look their best when the
characters or lines move about the screen,
and producing animation on your Spectrum
is not diHicult. All you have to do is to keep
on changing the position at which a
character is printed or a line drawn. The best
way to make this happen is to use one or
more FOR NEXT loops.

Vertical and horizontal motion

Key in and run this program. If you have not
reset or switched off your Spectrum since
producing the spider graphics character on
page 32 , then don 't bother to enter lines 10
to 50. The graphics character will still be in
the memory under " s" .

FALLING SPIDER

~ eORDER 3 PRP~R 5: CL5
10 prOP x,., 0 T O 7
20 RERO ."
30 F'OKII!: U~R ··s·· .. x, ."
4.0 NE XT "
50 DRTR 60 . 12& ,219 , 255 , 169 . 165

, 165 , 36

o

60 FOR ,,:,.0 TO 7
70 RERO ."
e 0 POKE U~F' ·' t· · .><,."
90 NEXT)(

100 CRTR 16,16,16 , 16 , 1 6.16, 16 ,1

110 FOR l:0 TO ~0
120 PRINT RT t . :? , INK 0 . " 1'
1 30 PRINT RT t .. 1 .3 , INK 2 , •. __ ..
14.0 NEXT l

You'll see the spider fall down the screen on
its thread every time you run the program.

In the program , lines 60 to 100 produce
another graphics character ("t") for the
thread . The animation occurs in lines 110 to
140, which make up a FOR NEXT loop in
which I (the line number) changes from 0 to
20. Each time the loop repeats, a length of
thread is printed at one position and the
spider is printed at the next position below.
The next time round, the spider is replaced
by another length of thread and again
appears below. In this way, the spider rapidly
descends on its thread until it reaches line
21, which is the bottom of the display area.

Your Spectrum can calcu late the new
positions very fast, so the spider drops
quickly . To slow down the action, insert this
line.

135 PAUSE 10

This makes the computer wait for a fifth of a
second each time before printing the spider
at the next position . Try changing 10 to
other values and see how the speed varies.

Now add these extra lines to the program
and run it again. You'll see animation but in
a different direction .

SCUTILING SPIDER

i races to one as soon
as it touches down. The extra lines form
another FOR NEXT loop that controls the
column position c. Note that a space is
printed first and then the spider is displayed
at the next column position . This causes the
spider to disappear from one position and
appear at the next, moving it to the right. It
is always better to delete a character before
printing it althe next position , rather than to
print the character first and then delete it at
the old position. This helps to avoid or
reduce flicker in moving graphics.

Target practice

In many computer games, action often
occurs when two moving shapes collide or
an object is hit by a beam. How does the
computer know when a crash or explosion
should happen?

Detecting collisions is not difficult. If two
characters are printed at position I,c (for line
and column) and position v,h (for vertical
and horizontal), then if I=v and c=h, they
must be at the same position . You can write
this as a statement, for example

160 IF I= v AND c=h THEN PRINT
"CRASH! "

Another way of checking for collisions is
to use colour. Remove the spider program
by entering NEW. Then enter the complete
Pyramids program on page 31, or load the
program if you have saved it on tape. You
can now upgrade it and combine it with your
spider (still in the memory unless you have

reset or switched off) to produce another
program.

First add the following lines, which create
an explosion graphic called "e" .

Now delete line 190 and add or change the
following lines.

The bursts stars
Instead spiders fall thnDu.,h the sky and eat
away the pyramids and ground. What you
have done is to add a FOR NEXT loop in
which v and h give the position of the spider.
The variable h is random, so the spiders start
their vertical fall at different places across
the screen . Next add these lines.

190 IF RTTR (\I+1,hl _ 14 T H EN GO
TO see

see PRINT AT v+l,h, FLRSH 1. PR
PER 2 , "IE "

51.0 P AUSE 11210
520 GO TO 11.4

When the laser beams hit the spiders, they
briefly turn yellow. When the line produced
by DRAW enters a spider's character
position, the ink colour changes to the same
colour as the line, which is yellow. In line
190, ATTR detects if the spider goes yellow
and sends t he computer to the explosion
subroutine at line 500.

Bouncing a ball

Many graphics programs feature shapes
t hat bounce off the edges olthe screen. This
program shows you how it is done. The
variables v and h work in the same way as in
the exploding spiders program, but + 1 or
- 1 is added to v or h to make t he ball go
down or up, and right or left. SCREENS
checks whether t here is an X at position v, h.

10 eo~olE,", .1
20 FOR zz1 TO 1121
3121 LET h ",tNT (F;!NC>*2S1 LET .,,_1

NT (RNO+211
4121 PRINT INK 2, PRPER 6. ~L~~H

1 , t:=IT ... ,h; "X"
50 NEXT z
6121 LET X= l LET ~=1
7121 PRINT FIT v, ·· ..
8121 LET y V+~ LET h=h+ X
9121 IF h= OR h:31 THEN LET x =-

x BEEP.2 24
1121121 IF y= OR v=2 1 THEN LET ~=­

'J BEEP. 2 12
11.121 rF !!Ie e:ENS {v . hl:a ')(" THEN P

FlINT INI". 1. PAPER 5, FIT v , h , "' . ' ..
I ··. ~TOP
. 12121 PRItlT v .h, "0"

13121 PRUSE
140 GO TO

The keyword ATTR detects the' attributes' at a
particular position on the screen. The
attributes are the ink and paper colours and
whether or not the position is flashing or
bright. In the Exploding Spiders program,
ATTR ensures that the spider is destroyed if it
goes yellow. This is then its ink colour (number
6). The paper colour is blue (number 1) and
the spider is not bright or flashing. This means
that its attributes total 14. The ATTR entry in
the Programmer's Reference Guide will show

how these numbers are arrived at.

-

~ - sound like clicks. This is because these notes

HOW TO MAKE
extend beyond the range of the human ear.

The chart at the bottom of this page

MUSIC AND SOUND
shows the pitch values of a range of notes so
that with it you can transform a piece of

EFFECTS
sheet music into a Spec.trum program.

1- Sound effects

The ZX Spectrum + possesses a sound You can get all kinds of sound effects out of
synthesizer that can make your programs your Spectrum, usually by placing BEEP
spring to life with a great variety of musical inside a loop that rapidly changes the pitch
sounds and special sound effects. It is simple value. Try these programs and experiment
to use , even if you have little or no with them to develop your own sounds.
knowledge of music. The synthesizer Note that the duration values are very short,
produces a sound signal that goes to the being as little as a hundredth of a second.
Spectrum 's internal loudspeaker. Press BREAK to end the looped programs.

BUBBLING
Programming sounds

To produce sound on your Spectrum, you 10 LET . ~ l~T l AND ••• ' _ ~e
~e BEe p • . 0 5 , p; aee p 0 . 0 5,p . 7;

B E EP • • II"5,P ."
use only one keyword - BEEP. It is followed 30 GO T O 18

by two numbers or variables representing
This program plays a group of three notes over numbers. The first tells the computer how

long (in seconds) to make the sound last, and over again at random pitches. The pitch
range is w ide, but ~ou can change the values

and the second informs it how high or low in line 10 to alter t e range.
the sound is in pitch. Pitch is measured in
semitones. The pitch values are 0 for middle MACHINE C, 1 for C# , -1 for B (Cb) and so on .

To hear the complete range of sounds ,. ... o~ M_ 12 TO ~e

that your Spectrum can produce, run this •• e~~p . 0 1.,. 3. ell!:lI!:p . 0 1.2;0,->1 •• N~)(T M
program. •• GO TO 10

[lill "'O~ P _ 69 TO - 51!! ~T~~ - , ThiS program produces two sounds, one going
0i!1lI 8f:E:P 0.2,P up in pitch as the other goes down. This is ~I!! P~ I NT AT 0.0;" "j AT O,0; p
"' I!! Ne)(T p because the two BEEP statements make two

The Spectrum runs through its complete notes sound over and over again only a
hundredth of a second apart at different

range of notes from the highest pitch (69) to pitches.
the lowest (-60). You'll find that the highest
notes are almost inaudible and the lowest

Pitch values for making music
Here are the Spectrum's pitch I top of the bass and treble I a sharp note; deduct 1 for a f lat
values from the bottom to the staves. Add 1 to pitch value for note.

I •

1'- I. • I-0

• ~ .1-Note c 0 E , G A , C 0 E , G A , C 0 E , G A , C 0 E , G A , c
Pitch
value -14 -22 20 19 17 1 -13 -" 10 -8 -, -5 -3 -, 0 2 • , , , " " " " " 19 21 23 14

This program is similar to the machine
program, but now the two notes go up
together six semitones apart. In addition, the
pitch values change by 0.2 - a fifth of a
semitone - each t,me. This makes the sound
rise slowly in pitch. Try other small pitch
changes by changing the STEP value.

KEYBOARD CONVERTER

10 LeT p zcooe I NKev s
1 5 IF p K0 TH eN GO T O 10
~0 S E EP . 0 4 , (p-30) / 2
3 0 GO T O .10

This program waits for you to press any letter
or number key . When you do, each one gives
out a different sound. Pressing CAPS SHIFT
while holding down a key makes the sound
lower. CODE INKEYS gives a different value
to p every time a new Key is pressed. line 20
stops the computer making a sound if no key
is pressed. You can see the values that CODE
returns in the character set table on page 51 .

Sound and vision

The sound effects that your Spectrum can
produce go best with action on the screen.
To demonstrate how you can add sound to
programs, return to the complete scuttling
spider program on page 34.

Remember that you inserted a PAUSE
statement at line 135 to slow down the
action . Instead of delaying the program in
this way, you can program a pause that
produces sound. Change line 135 to

135 GOSUB 500
Now add the following lines to the program.

2 111111 STOP
SIIIIII ~OR P = ~0 - l TO 3 8-l STEP - 1
510 BEEP 0 . 0.2 . p
520 NII!!:XT P
530 RETURN

Run the program and the spider now makes
a warbling sound as it falls . The subroutine
plays three notes very quickly that get lower
every time the spider descends to the next
position on the screen . Try adding more
notes by changing line 500 and speeding up
or slowing down the notes by changing 0.02
in line 510.

To make the sound of your
Spectrum louder, you can
connect either the EAR socket
to headphones orto an amplifier
and loudspeaker. The amplifier
w ill have a volume control that
you can adjust to make the
sounds as loud as you want.

The simplest way to do this is
to use the Spectrum cassette
lead to connect the EAR

(REVERSE) or FAST FORWARO
(CUE). Adjust the cassette
player's volume control and you
should hear the computer's
sound coming from the
loudspeaker in the player.
Alternatively, you can connect
headphones with the cassette
player if you want.

You can also connect your
Spectrum to a hi·fi or music
centre if you want a really full
sound. You will need a special
lead with a 3.5mm jack plug to
fit the Spectrum and a plug to
insert into the input socket of

the hi·fi amplifier or the music
centre. The Spectrum produces
a line signal similar to that
output by cassette decks and
tape recorders , so the REPLAY
or LINE IN socket on the
amplifier should work. If you
have any problems, consult a
shop that sells sound
equipment.

socket to the MIC socket of a
cassette p'layer. Take out the
cassette If necessary, switch on
the cassette player and then
press PLAY, REWINO I I I I I I I

I [I g;

~

HOW TO SAVE YOUR
OWN PROGRAMS
Before long, you 'll want to store your own
programs on cassette tape. To do this,
connect a cassette

L1 First connect your Spectrum to a
su itable cassette player uSing the

cassette lead as described on page 14, but
ma ke sure that only the Spectrum 's MIC
socket is connected to the cassette player.

12' If the cassette player has a record level
~ or volume control, adjust it to about
two-thirds maximum. If not. don't worry as
the recording level will be set automatically.

Ijl Key in SAVE followed by the name of
~ the program in quote marks, for
example _

SAVE "~g2"

SAUl!: ""1"0,:1""

Any combination of up to ten letters and
numbers can be used. Now press ENTER. The
SAVE line will disappear and then you will see
the cassette operating instruction from the

and save the program that is in the
computer. The Spectrum sends the program
to the cassette player in a form that it can
record on tape. Then whenever you need to
use the program, you load it from the
cassette tape back into the computer using
the loading procedure described on pages
14-15. On these two pages, you can see
how to save programs and also how to check

Set the cassette player to record ,
usually by pressing RECORD and PLAY

together. Then press any key on the Spectrum.

i 5 I Now wait as your Spectrum saves the
program. First you sho uld see blue and

red bands moving slowly up the screen .

----_.--

Then you get a short burst o f blue and yellow
stripes. This happens as the Spectrum sends
the name of the program to the tape.

I6l Next comes a short gap and then more
~ blue and red bands. This is followed by
the blue and yellow stripes again as the

now sends the program to the tape.
take some time.

I7l When the program has been sent to
l.{"J the tape , the report 1 OK, 1 :1 appears.
Stop the tape. The program has now been

If you want, you can now check or
. it.

Now verify your program

Although the computer has sent the
program to the cassette player, you cannot
be sure that the program has been
successfully recorded on the tape.
Fortunately, your Spectrum is able to check
this for you.

This procedure is called verification. First
rewind the tape to the start of the program,
then connect the Spectrum EAR socket to
the cassette EAR socket. (You can leave the
M IC sockets connected.) Next key in VERIFY
followed by the program name in quotes.
Then press ENTER and start the tape . The
same sequence of blue and red bands and
blue and yellow stripes should be seen . The
program name will appear and remain until
verification is completed .

the I I
shown below ends the report

o OK, 0:1

should appear. This means that your
Spectrum has checked the program on the
tape with the program in its memory and
found that they are the same. The
UII'." '" has been verified .

1. Write the name of a program on the
cassette label orcard when you save it. Use the
same capital or small letters as appear on the
screen. If the cassette player has a counter, use
it to locate the program and write the counter
number by the name.

2. Before saving, place the program name in
the program by using a REM statement, for
example

5 REM SPIDER program Version 3

The computer ignores all REM statements
when the program runs, and you can use REM
to put remarks and reminders in the program
wherever you like.

If you do not get this report, then
something has gone wrong. First check the
Software loading troubleshooter on page
16 as the fault could be that the program is
safe on tape but is not loading back into the
computer for verification . If you find
something wrong here, correct the fault,
rewind the tape and verify the program
again. If the computer still does not verify
the program, consult the Software saving
troubleshooter on the next page. Don 't
press NEW, reset or tu rn off the computer
because you will then lose the program in
memory, without having a reliable copy on
tape.

Automatic program start

You can follow SAVE by the program name
and then LINE 1, for example

SAVE "SPIDER" LINE 1

The saving procedure is no different from
before but when you verify, do not include
LINE 1 after VERIFY and the program name.
Programs saved with LINE 1 will start
automatically when you load them . There is
no need to use RUN (but remember to stop
the tape when the program starts).

What happens is that the program begins
at line 1 and if there is no line 1, the computer
sk ips to the first line in the program.
Changing 1 to another number makes the
program begin automatically at the line
having this number.

Saving CODE, SCREENS and DATA

SAVE may also be used with CODE or
SCREENS to store a section of Spectrum's
memory and with OAT A to store an array. See
the entries in the Programmer's Reference
Guide.

~ Software saving troubleshooter

START HERE
SAVE "filename "

J L
~

When savin§ is completed,
VERIFY · f ilename"

I I

~ J L
No I OK. 8:1 Veri fication display. ~ The Corrte! verif ication

report then e Ok, 8:1 procedure (same as

H correct loading
procedure) has occurred

VerificatIOn has reported
a fault

YES
Is Ihe fa ult p,o,,: ,,,;1;,,) Check the Sofhure a Ioad in~ fautl -

loading troubleshooter for t llamp e cassette
(p.1~e 16) and remedy EAR socket not

t e loading fa ult. connected?
Rewind tape

NO

Was the
YES You have a loading NO cassette EAR NO

fa ult - for example

~
') socket connected 10

volume 100 low appear? the Spectrum during
SAVE?

""" YES

YES

l' Is the program name
correct?

NO
T~ gro~m was not recorded

proba Iy ause the cassette Mk
socket was not connected to the

~
Spectrum. the cassette record lel/el

was too low, you recorded the
Use the correct name DISConnect EAR be£nning of the program over the
(spelling and use of socket from cassette lea r ta~. or the cassette player was

capital Of lower-case player SWItched off
letters mus t be correct)

l

SAVE "filename" again

J

Remedy the recording
fault

 LEARN ABOUT
YOUR ZX SPECTRUM +

This chapter takes you inside your ZX Spectrum +,
explaining how the various components beneath the

keyboard work and how they link together to
make the computer function . It also shows you how you

can use 'peripherals' - add-on devices that let you
upgrade your Spectrum into a full computer system.

Finally, you'll find out here more about the
technical side of your computer - including the way in

which memory is organized up, together with
the Spectrum's technical specification.

WHAT'S INSIDE?
Read on to find out-and do nott ry to open
up your ZX Spectrum + in order to find out
how it works. You will invalidate your
guarantee if you do and you could do serious
damage.

Inside the case are two ribbon connectors
that link the keyboard to the rest of the
Spectrum's components. These are all
mounted on a single printed circuit board.
The board carries standard electrical
components such as resistors and capacitors,
but the most prominent items are the black
rectangular microchips, arranged either
singly or in blocks.

Inside a chip

The functioning part of a microchip is
actually much smaller than the plastic
package that contains it. The casing is
primarily designed to support all the
connections that the chip requires, allowing
it to be plugged Into sockets on the circuit
board . The chip itself is a thin silicon wafer
that contains many thousands of electrical
junctions. Each junction acts as a switch to
stop, pass or store electric signals reaching it.
Although this is a simple procedure, there
are so many Junctions acting together that
they can produce signals that store or
process information with astonishing speed
and accuracy. The ZX Spectrum + contains a
number of different chips, each designed to
playa partICular part in the running of the
computer.

How the chips link up

So overall, your Spectrum is an electric
circuit of enormous complexity . Code signals
consisting of pulses of electricity constantly
flash along the pathways inside and between
the chips and components to make the
computer work.

How is everything kept in order so that
the right signal arrives in the right place at
the right lime? Hidden away inside one of
the chips is the computer's clock . It ticks by
emitting pulses of electriCity - 3.5 million of
them every second. These pulses move
regularly through the circuits to produce the
code signals that control the action of each
part and keep everything in step.

The interior of your
IX Spectrum +
In thiS Vlew of the
Spectrum's circuit
board, the two
ribbon connectors to
the keyboa rd have
been removed

Uncommitted logic
Array (ULA)
This chip generates
the display from
mformatlon held in
RAM and also acts as
a systems controller.

Keyboard connector
point
One of the ribbon
connectors to the
keyboard is attached
here.

TV encoder
This changes Signals

produced by the
computer's Circuits

Into colour television
Signals.

When the Spectrum
is In use, pressing a
key brings a palr of
wires under the
keyboard into
contact. This sends a
code signal to the
CPU

TV output
ThiS produces the

Signal that Boes to
the televiSion set.

Random Access
Memory (RAM)
These chips contain
the program that is
fed Into the
computer and any
particular
information needed
by the program, such
as values held by
variables. The
contents of the 48K
of RAM can be
changed from the
keyboard, and can
be erased altogether
by resetting or
turning offthe
computer.

Cassette sockets

These are used to
send Information

and programs from
the memory to a
tape and to feed

them back Into the
memory from the

tape.

Central Process ing
Unit (CPU)

Logic ch ips

The 'brains ' of the
computer. The CPU
IS a 180
microprocessor. It
carries out all the
computing
calculations and
controls the overall
operation of the
Spectrum. These chips act as an

interface In the
exchange of
information between
the CPU and the
RAM.

Rei d Only Memo<y
(ROM)

The 16)(section of
the memory holding

the permanen t
operating

inswuctions needed
by the CPU. Among

other things, these
Intruclions convert

BASIC programs Into
a form that the CPU
can understand. The

contents o f these
memory chips cannot

be altered from the
keyboard

Keyboard connector
point
One of the ribbon
connectors to the
keyboard is attached
here.

loudspeaker
This produces sound

when required .

9 VOC socket
This connects to the

power supply.

'dge connector
This connects the
Spectrum to external
devices such as a
printer.

Voltage regulator
This component

prevents any
changes In voltage
from affecting the

computer.

HOW DOES YOUR
ZX SPECTRUM +
WORK?
The operating ZX Spectrum +, like other
microcomputer systems, consists of four
main parts. These are the input units, such as
the keyboard, which put information or a
program into the computer; the temporary
and permanent memories, which store
information, programs and operating
instructions; the Central Processing Unit
CPU, which carries out the program
instructions on the information, and the
output units, which give the result.

Entering and running a program

What happens inside the Spectrum when
you enter and run a very simple program?
Here's a one·line example

10 PRINT 6+2

First, you operate the keyboard. Beneath the
keys is a grid of criss-cross wires. Every time
you press a key, a pair of wires makes contact
and sends a code signal to the CPU. The
CPU in turn sends the code to RAM, where
it is stored .

When ou run the

Bina codes

All the codes that make your
Spectrum work are in binary form.
They are called binary because they
are all composed of lust two types of
signal . They can be represented as
binary numbers. that is numbers
which contain only two numerals - 0
and 1. The binary number for 6 for
example is 00000110.

InSide rour Spectrum. the codes
consist 0 sequences of rapid pulses
of electricity. If a pulse arrives at any
point. this represents a 1 in binary. If
a pulse does not arrive within a set
period. this represents a 0. In
computer codes therefore. 6 is
off-off-off-off -off-on -on -off.

DeCimal
number

B!nary
number

Binary code
Signal
mOYlng In
compuler

Binary code
510red ,n
memory cells

Binary code
Signal
sent 10 or

takes the stored codes from RAM one by
one in the order of the program. It first
receives the code for PRINT, which tells it to
get a particular operating code from ROM.
This operating code goes to the CPU and the
CPU gets ready to perform the actions that
display a value on the screen. The CPU next
gets the value of 6 from RAM. This too is in
the form of a code, and the CPU stores it in
a small internal memory called a register.
Next comes the code for addition , and the
CPU again gets the necessary operating
code from ROM. Finally, the CPU takes the
code for2 from RAM. It adds thiscodeto the
value in the register to get the result (8) . The
CPU then converts the result into another
set of codes and sends them to the display
file . This is the section of RAM that holds
codes for everything you see on the screen ,
and the number 8 appears on the screen.

Storing a program

If you ask the Spectrum to save the program
on tape, the CPU again takes the codes from
RAM . But instead of acting on them, it sends
the codes to a converter unit which changes
them into sound signals. These signals are
then sent to the cassette player and recorded
on tape.

When you load the program later, the
sound signals from the cassette player are
changed back into computer codes by the
converter. The CPU sends them back to
RAM, where the are stored until re uired .

6

send 10
memory

"""'"""T'"-'-""""
gel from
memolY

pulse off pulse 0 • • charge charge
off on ••

The Spectrum handles eight codes
simultaneously. got from tape =~""_"""':..II-"""".;.,.j

"0" record replaY .o-You can see in this diagram how
different types of binary coding are
used by the computer to move
information from one place to
another.

Binary code
recorded
on tape •

,-

Spectrum Input-to-output pathways ~
This diagram shows how coded information

I
Single -headed arrows ind icate pathwa~s that

passes from input units like the keyboard. operate in one direction only. Double- eaded
through the Spectrum 's processing system, and arro ws indicate pathways that can operate in
then to output units like the television screen . both directions.

INPUT UNITS PERMANENT MEMORY

I Keybo,ud
Produces program and Information C ,.....,~ ROM

Holds operat ing instructions for CPU I

I Jo,."",
1

I ROMartri' " I Produces control slgnal~ PermAnently prO&Tlmmed chip
Overwrites computer s ROM

J[JL
I lnterllCe ...

~ I "I links Input peripherals to edge Interbet

connector lmh ROM cartridge to edgt" connector

L...=:

TEMPORARY MEMORY

M icrodriye stor~e
~ , , l,. Stores program and

Information for as long as

CE;;';'RAL PRO CESSINGU NIT (CPU) " ' "" •• ",'dom "':i'[
lSO mlcroprocenof - the heart of the
computer. Uses operatmg Instructions to

IX Interf.ce 1 follow program and con trol Slsn. 15 ,n order

Essentl.l Interlace fo r to compute results from Ifl fofmallOll Also

Mlcrodnve operallon
~

conlrois output units and pe:flp~raJs
I" :,-t: -,-".

RAM
Holds program and mfolm.tlon
In computer when need~

It:
TI.I)e storAge '" Stores program and
~~~~rmallon for as long as 
Ie ulted S!ouentlal access 

, 'z. 
OUTPUT UNITS EXTERNAL COMMUNICATION 

.. 
Television set IL I Spectnlm netwo", IX Interlace 1 I 
Displays results on screen Communicat ion With otntr ii' "0'" " ",rt" I\- computers 

loudspeaker 
Produces sound I'l-

~ frJ 
'r- Standard mterl.ce Unit ('n 

ZX I teriac! 1) 

C. ] 
Printer "'-Produces pnnted copy of I Pnnter v ~pheral S I 
programs and results }r- Produces punted copy of Communica tion With . 

programs and resuUs standard penoheraJ umts 

II 



 

HOW TO CONNECT 
PERIPHERALS 
You can upgrade your ZX Spect'um + into a 
complete and powerful computer system by 
u">Ing Sinela r and other Spectrum­
coTipatible :>enphera s. Central ia th is 
system is the ZX Interface 1, which enables 
you to i..ulllleLl Mil:rudrivn 101 fbi. dod 
simple hilndling of program. and dat~ . Mid 
which also connects with a wide range 01 
different peri pherals, includng other 
~pectrum5 . With thiS Interlace, you can 
(coned. YOLI Spectrum to standard pmtcrs, 
and hoolt the computer up to a modem, 
allow n~ you to transmit and recei'le 
programs and data Vi3 tElephone I nes. 
Other interfaces are available that link 
plug-in ROM cartridges to tne computer for 
instant program loading. Through these, 
yOU can also attach joysticks to make games 
easier to control. 

Spectrum.compatible printers 

SOme pnnter.; plug directly Into Ihe 
Spectrum's edge conned.or. If you .dread,. 
~.1I1f'.1 <iind.1ir 7X prmtf'f, fnf f'Xilmplf', yOLl 

can connect t up to the computer witholJt 
usmg an i'lteriace. This kind of printer wil 
also plug I1to the backof the IX Interlace I . 
HoweYer, t o u~ printers that requit"e an 
RS2320utput, you must IJse the 0 socket on 
the ZX Interlace 1, 

ZX Interlace 1 

The ZX Interlace 1 unit is atlached to the 
rear and base of the Spectrum, It links your 
Spectrum to as maoy as eght Mlcrodnves, 
JP to 63 other Spectrum computcrs Md. 
throueh its RS212 ~tandard interlace unit. a 
lIast range of standard peripherals . 

Microdrives and M lcrodrive cartridj" 
replacc the cassette player and tapes or 
storing progfLlms and d.lu . By in~erting 
Microdrive carhidges. you can save. verify 
and load programs in seconds. Each 
ca rtridge can store up to 851< 01 data and. 

Connecting pelipherals 

L06ding" Miaodri ..... 
~J\lO'oarve cartndges afe 
nserted ,nto the slot rt front of 
the dove 

Plu"ing in a ROM cartridgt 
Th .. r A rtnne" " ,nsertt'd ,"to the 
Interface socket WhI!n the 
computer is powered up, the 
flfOerAm,~ A"lom~"calfy 
loaded. bypasslOg thl! ROM 
inside the (ompulef. 

Uuring opefabon. lhe l X Interlace 1 is plugged 
,nto ;he edge connector SO that il is benUlli and 
behind the corrputer. The illustration here shows 
tile sys tem before Ihe compute, IS coonected 

foot' note 

MicrodriYf units 
Up 10 eIght oflh_ 
~tOfagt unts (an be 

iltlil t trd 10 one 
5pe<tfum 

Ribbon cable 
Tho< rnnnH1~ the 
Moc,odnve to the 

compute! via the zx 
Inl .. ,fAre 1 

The ZX Spectfum-+ has two bullt" nfect whICh 
can be I6ed to bit thoe keylu.u:! Theloe feet do not 
reC'<! to be ~ when a ZX Interace 1 i$ fitted 



 

usmg t'le max.mUfT of eight MlCrodn~ . ~ 
your Spectrum w.11 nave up to 680K on-line 
storage capaCi ty! Any program .~ Iocat!'d 
oIutorm.tically with .. typicaloccess lime of 
] 5semnds 
Usm~ the netwolk lead provided w.:h the 

.., terface un.l you can linkyo.Jr cOfTpu:erto 
another one - either a ZX SpectlUm or 
.. nother ZX Spectrum , ThiS network can 
thpn he plClp.l1ded to a ma)imum of 63 other 
Spectrums. InformatlO'l isexchangM 
between them at a rate of 10,000 characters 
a ~~lund 

The ZX Interlace 1 umt also Includes an 
RS232 In terlolce With a 9--Nay 0 SQ(k~ print~ "~ fl)n'\N"'~ Itlfn"lP , ... 1)( 

through whICh pnnters, other standard 1 
penpheralS, f'lOdems and olrer compL.ters 
can be linked to your Spedn.m A stardard 
nterlace cab e IS also avaiable ROM cartridBes and joysticks 

Interfaces like the ZX Interlatt 2 ~t yo..l 
connect up ROM cartndges and Jo)wcks_ 
ROM cartndges bad .mmed.ately on power­
I.Ip to give you p'ogra.n~ tlldt wuuld litke <I 

Ions time to loae from t.ape 

Edee conllKtof 
J)enpher.lk.lle I,nked to 
the cOTIputer ...... th/S 
CO/Ine.:tor 

Wammg 
Pen:merak should ....... 01)'\ 
be connecwd before polIO'" 
" S ..... ,tChed on 



 - - Memory map 

THE ZX SPECTRUM+ 
MEMORY MAP 
If you look at the photograph of the interior User-defined 
of the Spectrum on pages 42 -43 , you will graphics 

see that there is one ROM chip, and 16 
smaller RAM chips. These chips give the 
Spectrum its memory. The memory consists 
of 65536 storage units that each con tain 
one byte (a number from 0 to 255). Each RAMTOP 
unit is identified by a number called its 

GOSUB stack address. 
ROM means Read Only Memol}'. This 

part of the memory contains operating 
instructions for the Central Processing Unit. 
It is a 16K ROM, meaning that it contains Spare 
16 X 1 024 (16384) bytes or addresses. The 

STKEND bytes can only be read from th is memory, so 
that they cannot be changed . (If they could, Calculator stack 

the computer would stop working.) You can STKBOT 
obtain the byte at any address by using Temporary 

PEEK. work space 

RAM means Random Access Memol}' INPUT data 
and it contains the programs and 
in formation that are fed into the computer. WORKSP A 

Command or '" The Spectrum has a 48K RAM, that is it '" line being edited 
~ contains 48 x 1024 (49152) bytes or E-LiNE 

addresses . Random access means that a ;: 
byte at any address can be changed, and this 

Variables 

can be done by using POKE. VARS 

The memory addresses extend from 0 to BASIC program 

65535, the first quarter being ROM and the PROG 
remainder RAM. Channel 

information 
CHANS 

System variables Microdrive maps 

The column opposite shows how the 23734 
memory of the Spectrum is organized. On it System variables 
you can see where the various sections that 23552 
control the computer are located. Several of Printer buffer 
these may change position, and their 
boundaries are given by system variables. 23296 

The Spectrum's system variables are not Attributes 

variables like those used in BASIC. They are 2252B 
simply names for certain useful values that Display file 
are located at particular addresses or 16384 
locations in the memory. The purpose ofthe 
name is to help you remember the 
significance of the particular val ue stored at 16K ROM 
the location. For example, the system 
variable RAMTOP is the top address in 
RAM. This area of memory holds a BASIC 
program and the values of its variables. The 
address of RAMTOP is 23730. 



 LEARN ABOUT 
SINCLAIR BASIC 

This chapter describes Sinclair BASIC in full. In it, you will 
find a summary of the way every keyword is used, 

and further details of how Sinclair BASIC works. The 
information given ranges from that needed for the 

simplest to the most advanced BASIC programming. This 
is not a chapter to be read through from 

beginning to end. Instead, it's a programmer's dictionary 
that will enable you to make the fullest use of 

the Spectrum 's abilities. 



 
~ 

@ This guide contains full descriptions of all the 

PROGRAMMER'S BASIC keywords available on the ZX 
Spectrum +. Each entry features 

REFERENCE GUIDE • Keyword location 

• Keyword class 

TO SINCLAIR BASIC • Keyword purpose 

• Keyword use 

KEYWORDS • Programming format 

The details given for location , purpose and 
use are self-explanatory. Class and format 

Keyword classes 
are more complex, and to make the 
most effective use of the guide, 

Keywords fall Into one or more of four classes. you should first read carefully the 
Command information on th is page . 
A keyword which causes an action to occur 
and which can be used to form a direct Numbers and variables command. It is carried out on being entered. 
Examples - RUN, LOAD. 

Numbers 
Statement Stored to an accuracy of 9 or 10 digits. 
A keyword which causes an action to occur Number handling ran ge is about 1038 to 
and which can be used In a program line. It IS 4 . 10-19 

carned out only when the program IS run . 
Examples - DRAW, INPUT Variables accepted 
Funct ion Number Any length, starting with a letter. 
A keyw ord which p roduces a value of some Spaces are ignored and all letters converted 
kind. It forms part of a command or statement. t o lower*case letters. Cap ital and lower*case 
Examples - RND, INT. letters are not d ist ingu ished. 

logical operator 5trinro Any single letter followed by S. Capital 
A keyword which IS used to express logic in a and ower-case letters are no t d ist inguished. 
statement or command It can determine or Array For array variables and subscripts, see 
change the truth of certain condItions. The the entry on D IM. 
Spectrum has three logICal operators - AND. 
ORand NOT 

Keyword format 

The keyword format expresses the syntax of 
each key w ord - that is, the correct combination 
of the keyword and other factors such as values 

I and var;ables. The follOWing abbrev;at;on, are 
used In giVing the format. 

Abbreviation Exelanation Examele 
num-const A numeric constant (a number) ,. 5 
num-var A numeric vanable(a variable that ma~ contain a number) "m 
num-e)(pr A numeriC e)(presslOn (any vahd combination of sum · 245 

numenc constants variables and keywords that gives RND· 7 
a number) 

Int-num-const A numeric constant. vanable or e)(presslon whose value 
Int-num-var IS rounded to the nearest Integer 
Int-num-e)(2

' string-canst A stflng constant or stnng (any combination of characters .. ZX Spectrum + ., 
wlthm guote marks) 

stflng-var A sttlng vanable (a vaflable that ma~ con tam a string) as 
stflng-expr A string e)(presslon (any vahd combination of sttlng as .. ~ ZX Spectrum + " 

constants. variables and ke~words that gives a sttlng) as (6 T0 8) 
letter An~ cae:ltal or lower-case letter Y , 
JetterS An~ cae:,tal or lower-case letter followed b~ S BS as 
cond A condition or sub-condlhon Within a condition )(_10 AND 1<10 
statement Any BASIC statement that IS vahd when IFt>10 THENSTOP 

used With another statement PRINT INK 2,x 
II An ophonalltem that may be repeated 
NOTE The terms numeflc value and stflng value are used In the text for numeriC or stflng Items respectively 



 
Signs in Sinclair BASIC 
SiS" location Action/ Use Sil" Location Action/ Use 
S 4 Stnng: variable L Is egual to 

7 Beg;ins new line Z Separates statements in 

8 O~en bracket E!rog:ramtine 

9 Close bracket V Division 

<= Q Is less than or egual to 8 Multi~licatjon 

<> W Isnotegualto Own kel Decimal Eoint 

>= E Is greater than oregual to Own key Displays at ne)(tcoJumn 

< R Is less than Separates statements 

> T Is g:reater than 
within program statement 

Own ker: 0een and close strins 
H Raise to e:ower 

Own key Displays at column 0 
J Su bt ractioni ne s:ative or16 

+ K Addition / posit ivel Separates values 
string concatenation following keywords 



 
52 Not " AND NOT 

A BS ABSolute value AND correct) + "Correct " 

I<e~board location Keyboard location If the two conditions in line 60 
EX END MODE SYMBOL SHIFT Y are true, then the numeric 
G logical Operator/ Function 

variable correct is assigned a 
value of 1. Then score is 

Function AND acts as a logical operator increased by 10 and as becomes 
ASS gives the absolute to test the truth of a " Correct" . If either of the 
magnitude of a numeric value , combination of conditions. conditions is false, then corred 
that is the value without a Only if all conditions are true is has a value of 0; score is 
positive or negative sign . the overall combination true. unchanfed and as becomes 

AND also acts as a function to " OutO Time Or Not Correct" , 
How to use ABS perform binary operations on 
ASS is followed by a numeric two numeric or string values. Format 
value. An expression must be 

How to use AND 
cond AND cond 

enclosed in brackets, for num-expr AND num-expr 
example As a logical operator, AND links string-expr AND num-expr 

two conditions in a statement 
50 LET x~ ABS (y-,) where the truth of the whole is 
ABS returns the absolute value to be tested, for example ASN ArcSINe 
of the numeric value. 90 IF x=y+z AND lime< 10 

Ketboard location 
Example THEN PRINT "Correct" EX END MODE 
The command Only if both conditions (x=y+z SYMBOL SHIFT Q 

PRINT ABS - 34.2 and time<10) are true will the 
Function computer display Correct. If 

displays 34 .2. either or both conditions are ASN calculates the value of an 

Format false, then the whole angle from its sine. 
ASS num-const combination is false and in this How to use ASN 
ASS num-var example, the program proceeds ASN is followed by a numeric 
ASS (num-expr) to the next line. value. An expression must be 

AND as a function enclosed in brackets, for 

A CS Arc CoSone As a function , AND can operate example 
on two numeric values, for 60 LET x~ ASN (y " ) 

Kzboard location example 
E END MODE 50 LET x~ AND z 

The value followinr ASN (y .z 
SYMBOL SHIFT W above) is the sine a the required 

Function 
AND returns the first value (y) if an~le and it may range from-1 
the second (z) is not equal to 0, to . ASN then returns the value 

ACS calculates the value of an and returns 0 if the second of the angle in radians. To 
angle from its cosine. value (z) is 0. convert radians to degrees, 

How to use ACS 
AND may also operate on a multigly the value returned by 

ACS is followed by a numeric 
string value providing it ASN Y 180/PI. 
precedes AND. A numeric value Example value. An expression must be must always follow AND, for enclosed in brackets, for example 

The command 
example PRINT 180/P1 · ASN 0.5 
60 LET x~ ACS (y " ) 

50 LET aS~bS AND , 

AND returns the first value (bS) 
displays 30, the ante in degrees 

The value following ACS (y . z if the second (z) is non-zero and 
that has a sine of .5. 

above) is the cosine of the a null string (" tI ) if the second Format 
required angle and may range value (z) is 0 . ASN num-const 
from -1 to 1. ACS then returns Note that the ZX Spectrum + ASN num-var 
the value of the angle in radians. 
To convert radians to degrees, 

assigns a value of 1 to a true ASN (num-expr) 
condition and 0 to a false 

multiG'ly the value returned by condition, and recognizes any 
ACS y 180/ PI. non-zero value as true and 0 as AT 
Example false. It does not evaluate 

Keyboard location The command combinations of numeric values 
in accordance with standard SYMBOL SHIFT I 

PRINT 180/PI • ACS 0.5 truth tables. See INPUT; LPRINT; PRINT 
displays 60, the an~le in degrees Examples 
that has a cosine 0 0.5. 

Format 
60 LET correct=(x=y+z) AND ATN Arc TaNgent 

ACS nurn-const 
time<10 

ACS num-var 
70 LET score=score+10- (1 Keyboard locat ion 

A CS (nurn-exEr) 
AND correct) EXTEND MODE 

80 LET aS~("Out Of Time Or SYMBOL SHIFT E 



 
Function Bright 64 BIN turns a binary number into 53 

Flashing 128 a decimal number. 
ATN calculates the value of an Example How to use BIN angle from its tangent. If a character at Cosition 11 ,16 BIN is followed by a binary 
How to use ATN is displayed in in colour 3 number consisting of up to 
ATN is followed by a numeric (magenta), gaper colour 6 sixteen 1s and 05, for examele 
value. An expression must be ~ellow) an is bright but not 50 POKE USR " a" , BIN 1010 
enclosed in brackets, for ashing, then the command 

1010 
example PRINT ATTR (11,16) 
60 LET x=ATN (yo, ) BIN returns the decimal value of 

displays 115 (3 + 8x6 + 64 + the bina~ number. It is 
The value following ATN (y · z 0) . common y used in conjunction 
above) is the tan~ent of the A TIR in binary form with POKE and USR as above 
required angle. A N returns the A DR returns one byte in which for creating user-defined 
value of the angle in radians. To bit 7 (most si~nificant) is 1 for graphics cl1aracters, with 1 
convert radians to degrees, flashing or 0 or normal, bit 6 is signifying a Fixel of ink colour 
multicly the value returned by 1 for bright or 0 for normal, bits and 0 a pixe of paper colour. 
ATN y 180/ PI. 5 to 3 are the paper colour (in 
Example binary) and bits 2 to 0 are the 

Example The command ink colour. 
The command 

PRINT 180/ Plo ATN 1 Format 
PRINT 81N 11111110 

displays 45, the angle in degrees 
ADR (num-expr, num-expr) 

that has a tangent of 1. displays 254 , the decimal value 

Format BEEP of the binary number. 

ATN num-const Keyboard location 
Format 

ATN num-var EXTEND MODE 
BIN [1) [0) 

ATN (nurn-expr) SYMBOL SHIFT Z 

Statement/Command 
BORDER 

A TIR A ITRibutes BEEP makes the loudspeaker Keyboard location 
B 

K~board locat ion 
produce a single note of a given 

E END MODE duration and pitch . Statement/Command 
SYMBOL SHIfT L How to use BEEP BORDER specifies the colour of 

Function 
BEEP may be used to form a the border around the screen 
statement in a program or a display area. 

A TTR gives the attributes of a direct command. It is followed 
How to use BORDER s~ecified charader position on by two numeric values 

t e screen. These are the ink separated by a comma, for BORDER may be used as a 
and flaper colours, brightness exa'.!!.ple direct command or as a 
and lash status of the character statement in a program. It is 
at the position. 80 BEEP x,y followed by a numeric value, for 

How to use A TTR The f irst value (x) may ran~e example 

ATTR is followed by two from 0 to 10 and defines t e 30 BORDER RNDo7 
numeric values separated by a duration of the note in seconds. 

The value following BORDER is 
comma and enclosed in The second value (y) max ran~ 

rounded to the nearest i nte~er 
brackets, for example from -60 to 69 and de ines t e 

and specifies the colour of t e Citch of the note in semitones 
150 IF ATTR (v,h) = 115 THEN elow middle C if negative or border as follows : 

GOSUB 2000 above middle C if positive. 0 Black 
The first value following ATTR Example 1 Blue 
(v above) ma~ range from 0 to The command 2 Red 
23 and is the ine number of a 3 Magenta 
position on the screen . The BEEP 0.5,1 4 Green 
second value (h above) ma~ causes the note C"# above 5 Cyan 
range from 0 to 31 and is t e middle C to sound for half a 6 Yellow 
column number of the position. second. 7 White 
ATTR then returns a number 

Format Note that BORDER also sets the 
from 0 to 255. This number is 
the sum of the attributes at the BEEP num-expr, num-expr paper colour of the lower part 

specified position, and is made 
of the screen . Unlike INK and 
PAPER, a BORDER statement 

up as follows : BIN BINary number cannot be embedded (inserted) 
Ink colour Colour code (0 to 7) 

Keyboard location 
in a PRINT statement. 

Paper colour 8 times EXTEND MODE Format 
colour code B BORDER int-num-expr 



 

54 used in a composite string 
BRIGHT C H RS CHaRacterstring together with CHRS followed 

by a colour code value from 0to Kef board location Keyboard location 7 forCHRS 16 (INK control) and EX END MODE EXTEND MODE CHRS 17 (PAPER control), or by SYMBOL SHIFT B U o or 1 for CHRS 18 to CHRS 21 
Statement/Command Function (FLASH, BRIGHT, INVERSE and 
BRIGHT causes characters to be The characters and keywords 

OVER controls) . The command 
displayed in brighter colours available on the keyboard plus PRINT CHRS 16+CHRS 
than normal. 

any user-defined gra~hics 3+ CHRS 17+CHRS 6+ CHRS 
How to use BRIGHT characters make up t e 18+CHRS 1+ " ZX 
BRIGHT may by used as a direct Spectrum character set. By SPECTRUM+ " 
command but IS normally used using CHRS and a code number, displays ZX SPECTRUM + 
to form a statement in a each one can be obtained as a flashing in red and yellow. 
program. It is followed by a string. The character set also Alternatively, as above, each 
numeric value, for example contains several control codes glus (+) sign may be replaced 
80 BRIGHT 1 that affect the display of y a semicolon. 

characters. These codes can be CHRS 22 (AT control) is 
The value following BRIGHT is brought into operation and followed by two CHRS values 
rounded to the nearest integer characters displayed tJ,>; using to indicate the line and column 
if necessary and may then be PRINT before CHRS. he numbers. The command 
either 0, 1 or 8. A value of 1 complete character set and 

PRINT CHRS 22+ CHRS 11 + causes all characters code numbers can be found on 
subsequently displayed by page 51. CHRS 16+CHRS 42 
PRINT or INPUT statements to How to use CHRS displays a star in the centre of 
appear in a brighter ink and CHRS is followed by a numeric the screen. 
paper colour, and a value of 8 

value, for example CHRS 23 (TAB control) is also 
causes bright character followed by two values in the 
positions to remain bri~ht and 80 PRINT CHRS x same way. The second value is 
normal character positions to 

An expression must be enclos.ed normally 0 and the tirst value 
remain normal when new in brackets. The value following gives the TAB position. The 
characters are printed there. CHRS (x above) is rounded to command 
BRIGHT followed ~ 0 cancels the nearest integer. If it is in the PRINT CHRS 23+ CHRS 16+ both BRIGHT 1 an BRIGHT 8 
so that all characters range 32 to 255, CHRS returns CHRS 0+ CHRS 42 
subse~ently displayed are a keyboard character, user-

displays a star halfway across defined jraphiCs character or a norma . keywor as a string. The the screen. 
BRIGHT may also be Spectrum uses the ASCII code Note that only these controls 

embedded (inserted) within for values from 32 to 95 and 97 are available. Using PRINT 
displt: statements formed by to 126. lf x is assigned a value of CHRS with a keyword value 
PRI N , INPUT, PLOT, DRAW 

65, the above statement ~eater than 164 simply displays 
and CIRCLE. BRIGHT follows displays A, for example. t e keyword and does not bring 
the keyword but precedes the 

CHRS control codes 
it into operation . 

data or disp la~ parameters; it is 
Format followed by t e same values Values from 1 to 31 either 
CHRS int-num-const (;) [+) and a semicolon, for example return control codes or are not 

used. CHRS 6 (PRINT comma), CHRS lnt-num-var [;) [+ J 
50 PRINT BRIGHT 1; 8 (back-space) and 13 (new line CHRS (int-num-expr) [;1 [+1 

"WARNING" or ENTER) affect displays on the 
The effect of BRIGHT is then screen if included in a PRINT 

CIRCLE local and applies only to the statement. CHRS may be 
characters displayed, ~oint followed by the code value and 

Kz board location plotted or line drawn y the a semicolon, for example 
E END MODE display statement. Note that 60 PRINT " A"; CHRS 6; "B" SYMBOL SHIFT H BRIGHT 1 brightens the paper 

colour of the whole character This statement displays Statement/Command 
position of 8x8 pixels if any A B CIRCLE draws a circle on the pixel in the position is plotted in 

Another way of using CHRS screen. an ink colour. 
How to use CIRCLE Format control codes is to form a 

composite string containing CIRCLE is followed by three BRIGHT int-num-expr [;1 them. The statement numeric values each separated 
60 PRINT "A"+ CHRS 6+"B" by a comma, for example 

CAT CATalogue 
has exactly the same eHect as 80 CIRCLE x,y,z 

Microdrive file-handlins the previous example. Each of the three values is 
command. See Microdnve and Codes 16 to 23 aHect colour rounded to the nearest integer 
Interface 1 manual. and position and each may be if necessary. CIRCLE then draws 



 
a circle on the high-resolution 
graphics grid in the current ink 
colour. The first two values (x,y) 
define the horizontal and 
vertical coordinates of the 
centre, and the third value (z) 
defines the length of the radius. 
The dimensions must be such 
that the circle does not extend 
beyond the display area. 

CIRCLE is affected by colour 
statements or commands and 
may include embedded colour 
statements with the same 
effects as PLOT and DRAW. 

Example 
The command 

CIRCLE 128,88,87 

draws a circle taking up most of 
this display area. 

Format 
CIRCLE [statement;] int-num­
expr, int-num-expr, int-n um­
expr 

CLEAR 
Keyboard location 
X 
Statement/Command 

CLEAR deletes the current 
values of all variables, freeing 
the memory space that the 
values occupied and space as 
far as RAMTOP, the top address 
of the BASIC system area. 
CLEAR may also be used to 
reset RAMTOP. 

How to use CLEAR 
CLEAR may be used as a direct 
command or it may form a 
statement in a program . It 
requires no parameters, for 
example 

50 CLEAR 

CLEAR then deletes the values 
that are currently assigned to all 
variables, including arrays. It 
also executes CLS and RESTORE 
to clear the screen and restore 
the data pointer to the first item 
of data. In addition , the PLOT 
position is reset to the bottom 
left-hand corner of the display 
area and the GOSUB stack is 
cleared. 

Note that CLEAR is not 
required before re­
dimensioning arrays as DIM 
deletes an existing array of the 
same name. Note also that RUN 
executes CLEAR. 

CLEAR and RAMTOP 

a numeric value , for examele 

CLEAR 65267 

CLEAR then executes CLEAR as 
above and also sets RAMTOP, 
the highest address of the 
BASIC system area, to the &iven 
value. RAMTOP is set at 5367 
in the ZX Spectrum +, and lies 
below the area reserved for 
user-defined graphics. NEW 
clears out the memory as far as 
RAMTOP so USing CLEAR to 
lower RAMTOP ( y 100 bytes 
in the above example) provides 
more memory that is immune 
from NEW. Raisin~ RAMTOP 
~ves more space or BASIC at 
t e expense of user-defined 
graphics. Note that the GOSU8 
stack is then located at 
RAMTOP. 

The current RAMTOP 
address can be located by using 
the following command 

PRINT PEEK 23730+ 256· PEEK 
23731 

Format 
CLEAR [num-exprJ 

CLOSE # 

Microdrive file-handling 
command. See Microdrive and 
Interface 1 manual. 

CLS Clear Screen 

Keyboard location 
V 

Statement/Command 

CLS clears all text and ~raph i cs 
from the display area, eaving it 
blank in the current paper 
(background) colour. 

How to use ClS 
ClS may be used as a direct 
command or it may form a 
statement in a program. It 
requires no parameters, for 
exam~le 

250 IF aS ~"NO" THEN CLS 

The display area (but not the 
border) is then cleared to the 
colour selected by the previous 
PAPER statement or command 
orto the default paper colour of 
white . 

Note that CLS must be used 
after PAPER and before PRINT 
or any other disrclay statement 
to produce a co oured 
background over the whole 
dis la area. CLEAR may also be followed by p y 

Format 55 
CLS 

CODE 
Keyboard location 
EXTEND MODE 
I 

Function 
CODE gives the code number 
of a character in the Spectrum 
character set (see page 51) . 

How to use CODE 
CODE is followed by a string 
value , for exa"'!:!yle 

90 IF CO DE a$< 65 OR CODE 
a5> 90 THEN GOTO 80 

A string expression must be 
enclosed in brackets. CODE 
returns the code number of the 
first character in the strin~. If 
this is a null string (" "), t en 
CODE returns 0. 
SAVE/ LOADIVERIFY CODE 
CODE is used in a different way 
with SAVE, LOAD and VERIFY. 
See respective entries. 

Format 
CODE string-const 
CODE string-var 
CODE (string-ex~r) 

CONTINUE 
Keyboard location 
C 

Command 

If a program stops, CONTINUE 
can be used to restart the 
program from the point at 
which it sto~ped. If an error has 
occured to alt the pr03ram, 
then it must be rectifie before 
CONTINUE will allow the 
program to resume. 

How to use CONTINUE 
CONTINUE is used as a direct 
command when a program has 
stopped. It requires no 
parameters. After CONTINUE a 
pro~ram then normally resumes 
at t e same statement at which 
it stopped. If the cause was an 
error, then a command can be 
entered to rectify the error and 
CONTINUE will allow the 
program to continue from the 
statement. If the program 
stopped at a STOP statement 
~jving report 9 or jf it halted 

ecause the BREAK key was 
pressed giving report L, then 
CONTINUE causes the program 



 

56 to resume from the next value. for example variables in the READ 
statement. A rect ifying 

140 LETx~COS Y statement. The list of data may 
command can be entered first if be split up into several 
necessary. An expression must be enclosed successive DATA statements if 

If CONTINUE is used to in brackets. The value following there are too many items to fit 
resume a direct command, then COS is the angle in radians. into one statement. 
it will go into a lo~ if the COS then returns the cosine of Example command st0h,pe at the first the angle. Degrees may be The following program statement in t e command. The converted into radians by 
display disappears, but control multiplying b6 PI/1S0. 10 FOR n ~ 1 TO 2 
can be regained by pressing Note that as returns a 20 READ x,aS 
SREAK. CONTINUE gives negative value for antes from 30 PRINT as,x;" days" 
report 0 if the command 90 to 270 de~rees an a pOSitive 40 NEXT n 
stopped at the second value for ang es from 0 to 90 50 DATA 31 , "JAN", 2S, "FES" 
statement and report N at the and 270 to 360 degrees. displays third or subsequent statements. Example JAN 31 days Format The command FES 2S days CONTINUE 

PRINT COS (60- PI/ 1S0) 
USin~ DATA with variables 

COpy displays 0.5, the cosine of 60 The i ems of data in a DATA 
degrees. statement may consist of 

Keyboard location Format 
numeric or stnng variables or 

Z COS num-const expressions provided the 

Command COS num·var variables have previously been 

COPY makes Sinclair-type COS (num-expr) assigned values . In the above 
example. the DATA statement 

printers produce a copy of the may be cha~..Bed to 
screen display. DATA 50 DATA d ,mS,d-3, "FEB " 
How to use COPY K~board location If d is previousl assigned a COPY is used as a direct E END MODE 
command when a program has value of 31 an mS a value of 

been completed or stopped. It 
D " JAN", then the same display is 

requires no parameters. After Statement given. 

COPY, and providing the DATA provides a list of items of LOAD DATA, SAVE DATA and 
printer is connected , a copy of data within a program. These VERIFY DATA 
the first 22 lines of the screen items may be values of variables DATA may also be used with 
displa~ is then printed. Note or strin~s to be displayed, for LOAD, SAVE and VERIFY to 
that a I ink (foreground) colours examp e. Each item is aSSigned store arrays on tape. See LOAD 
are printed in black; paper to a variable by a READ DATA, SAVE DATA and 
(background) colours are not statement. VERIFY. 
printed. The printer can be Assi~nment is carried out in Format stopped by pressing SREAK. the or er in which items of data DATA num-expr [,num-expr] If a program listin\appears appear in the program, but [,string-expr] on the screen , it can e printed RESTORE can be used to begin DATA string-expr Lnum-exprJ by using COPY provided it was assignment at the first item in a (,string-exprJ produced by a LIST command given DATA statement . 
or statement. Note that a listing 

How to use DATA w ill appear on the screen on DEF FN DEFine FuNction ~resslOg ENTER after a program DATA can only be used to form 
as been completed or stopped, a statement in a program. It is Kefboard location 

but this 'automatic ' listing normally followed by a list of EX END MODE 
cannot be printed with COpy. numeric or strint constants SYMBOL SHIFT 1 

each sefearated r a comma, for 
Format exampe Statement 
COPY 

50 DATA 31 , " JAN", 2S, DEF FN enables the user to 
" FES" define a function that is not 

COS COSIn' Each constant is then assigned 
available as a keyword . A 
variety of parameters can be 

Kef-board location to a variable by a READ passed to the function in an FN 
EX END MODE statement that reads the DATA. statement, which calls the 
W The DATA statement ma~ be function and may return either 

Function 
positioned anywhere in t e a numeric or string value as a 
program . The number, kind result. 

COS gives the cosine of an (numeric or string) and order of 
angle. the constants must correspond How to use DEF FN 

to the number of t imes the DEF FN may only be used as a 
How to use COS READ statement is executed statement in a program. If a 
COS is followed by a numeric and the kind and order of numeric function is to be 



 
defined, DEF FN is followed by 
any si ngle letter and then by 
one or more numeric variables 
each separated by a comma and 
enclosed in brackets, for 
example DEF FN r(x,y) . This is 
followed by an equals sign and 
then a numeric expression 
containing the variables, for 
example 

1000 DEF FN r(x ,y)= 
SQR (x t 2+y t 2) 

The letter following DEF FN (r 
above) is a name tflat identifies 
the function . The variables may 
also only be single letters. Note 
that in both cases, the Spectrum 
does not distinguish between 
capital and lower-case letters. 

The expression that follows 
the equals sign uses the 
variables (x and y above) to 
define the function . 

A DEF FN statement may be 
placed anywhere in a program. 
To call the function that it 
defines. a FN statement is used. 
This is then followed by the 
function name letter and a list of 
numeric values each separated 
by a comma and enclosed in 
brackets, for example 

50 PRINT FN r(3.4) 

The values within the brackets 
are passed to the function in the 
same order as the variables in 
the DEF FN statement. Thus, in 
this example, x is assigned a 
value o f 3 and y a value of 4 . FN 
evaluates the expression and 
returns the value. 

DEF FN may also be followed 
by a letter and a pair of brackets 
only, for example 

1000 DEF FN r O= INT (x+0.5) 

The value currently aSSigned to 
the variable (x above) is passed 
to the function when it is called 
by FN. In this case, FN rO 
returns the value currently 
assigned to x rounded to the 
nearest integer. 
DEF FN and strings 
DEF FN and FN may also be 
used in the same way to define 
and call a strin~ function ~ In this 
case, the function name .s a 
single letter followed by Sand 
one or more of the variables in 
the statement is a letter 
followed by S. A corresponding 
string expression forms the 
definition, for example 

1000 DEF FN as(bS,x,y)= 
bS(x TO y) 

The string expression followin~ 
the equals sign in this example IS 
a string slicer, and x and yare 
the first and last characters of a 
section of bS. FN must be 
followed by the function name 
and, in brackets, a string value 
together with any other 
parameters that are to be 
passed to the function . In this 
case, the command 

PRINTFN aS 
(" FUNDAMENTAL", l ,3) 

displays FUN , and the command 

PRINT FN as 
("FUNDAMENTAL", 5,8) 

displays AMEN . 

Format 
DEF FN letter ([letter] LletterJ) 
= num-expr 
DEF FN letterS ([letterS] [letter] 
Lletter] (,letterS})=string-expr 
FN letter ([num-exprJ Lnum­
exprJ) 
FN letterS ([string -expr] [num­
expr] Lnum-expr] Lstring ­
expr» 

DIM DiMension 

Keyboard location 
D 

Statement 

DIM is used to dimension (set 
up) an array of a given number 
of numeric or string variables. 
An array is a list of 
variables of the same name that 
are distinguished by subscripts 
(values that identify each 
variable or element in the array) . 

How to use DIM w ith numeric 
arrays 
DIM is used to form a statement 
in a program. It is followed by a 
single letter that names the 
array, and one or more numeric 
values each separated by a 
comma and enclosed in 
brackets, for example 

20 DIM x (10) 
80 DIM , (20,5) 

In the first case, a one­
dimensional numeric array is 
created containing ten elements 
with subscripts from 1 to 10. 
The array has the name x and 
the subscripted variables are x 
(1) to x (10) inclusive. Any 
exist ing array of the same name 
is deleted, and the variables are 
each assigned a value of 0. Note 
that in dimensioning an array, 

the Spectrum does not 
distinguish between names 
with capita l and lower-case 
letters - variable x (2) is the 
same as X (2) . However, simple 
numeric variables having the 
same letter as an array name (x 
or X) can coexist and may be 
used separately if required . 

The number of values in 
brackets equals the number of 
dimensions created in a numeric 
array. The second example sets 
up a two-dimensional array of 
100 elements with 20 elements 
in the first dimension and 5 in 
the second . These elements are 
numbered ,(1,1) up to , (20,5). 

Arrays of any number of 
dimensions may be created. 

The elements of a numeric 
array may subsequently be 
identified by the array name 
followed by a value in brackets, 
for example 

70 PRINT x (a) 
160 PRINT , (7,b) 

DIM and string arrays 
DIM is used in the same way as 
with numeric arrays except that 
a Single letter followed by S is 
used for the array name, 
Furthermore, an extra value 
must be added to the dimension 
values in brackets in order to 
define the length of each string, 
for example __ _ 

30 DIM as (20,5) 
90 DIM bS (20,5,10) 

The first statement creates an 
array of 20 elements, each of 
which contains a strins of 5 
characters . The subSCripted 
variables are named as (1) to as 
(20) inclusive, and they are 
initially assigned a null (empty) 
string (" " ), Any existing array 
of the same name is deleted 
and, unlike numeric arrays, a 
simple string variable of the 
same name cannot coexist. 

The second example creates 
a two-dimensional string array 
of 100 elements with 20 
elements in the first dimension 
and 5 in the second. All 
elements have a length of 10 
characters. 

When string values are 
subsequently assigned to a 
string array, they are padded 
out with spaces at the end of 
the string or truncated to the 
defined fength if necessary. 

The elements of a string array 
are identified by the array name 



 

5B followed, in brackets, by one or commences at position 0,0 (the Example 
more numeric values ~jVi ng the bottom left-hand corner of the The command 
subscript number(s). or screen) . 

PRINT EXP 1 example, element as(2) may be DRAW is affected by colour 
"SMtTH" and elementbS(12.4) statements or commands and displays 2.7182818, the value 
may be "DERBYSHIRE" . may include embedded state- of e. 
However, an extra value mar. ments with the same effects as Format be added to define a particu af with PLOT and CiRCLE. exp num-const character in the string . In these DRAWing curved lines EXP num-var examples, a$(2 ,2) would be DRAW may be followed by a EXP (num-expr) "M" (the second character in third value to produce a curve "SMITH "), and bS (12.4,5) 

that is a part of a circle . for would be "y". example FLASH 
Zero-d imension string arrays 40 DRAW x,y,z Keyboard locat ion it is possible to create a zero-

The third value (z above) EXTEND MODE dimension string array by using 
SYMBOL SHIFT V only one value in brackets, for defines the angle (in radians) 

example through which the line turns as Statement/Command 

10 DIM eS (15) 
it is drawn . The line turns to the FLASH causes character posj-
left if this value is positive, and tions to f lash, making the ink 

This array has only one element, to the right if it is negative. and paper colours alternate at a 
which is cS, and its lenfu:h is Values of PI or -Pi produce a constant rate . 
fixed at the defined va ue (15 circle. 
characters) . 

Example How to use FLASH 
FLASH mat; be used as a direct Format The following program draws a 
command ut it is normally DiM letter (num-expr Lnum- triang~ 
used to form a statement in a exprD 10 PLO T 127,150 program. it is followed by a DIM letterS (num-expr Lnum- 20 DRAW 70,-100 numeric value, for example exprJ) 

30 DRAW -140,0 
40 DRAW 70,100 50 FLASH 1 

DRAW Adding, 1 or, -1 to the DRAW The value following FLASH is 

Keyboard locat ion statement causes the sides to rounded to the nearest integer 

curve in or out respectively . if necessary and may then be 
W either 0 , 1 or 8. A value of 1 
Statement/ Command Format causes all characters 

DRAW is used to draw straight DRAW (statement;] int-num- subsequentl~ displa~ed by 

lines and curves on the screen. 
expr , int-num-expr Lint-num- PRINT or IN UT to lash. A 
expr] value of 8 causes flashing 

How to use DRAW character positions to remain 
DRAW is normally used to form 

ERASE 
flashing and normal character 

a statement in a program. If a positions to remain normal 
straight line is requ ired , it is 

Microdrive file-hand ling com-
when new characters are 

followed bb two numeric values crinted there . FLASH followed 
separated r a comma, for mand. See Microdrive and y 0 cancels both FLASH 1 and 
example Interface 1 manual. FLASH 8 so that all characters 

40 DRAW x,y subse~uently displayed are 
norma . 

A strai~ht line is then drawn on EXP EXPon.nl FLASH may also be 
the hig -resolution gr~hics 

Keyboard location embedded (inserted) within 
fid from the position efined EXTEND MODE display statements. formed by 

y the previous PLOT statement 
X PRINT, INPUT, PLOT, DRAW 

or the position reached by the and CiRCLE. FLASH follows the 
previous DRAW statement, Function keyword but precedes the data 
whichever is last. Both values 

EXP is a mathematical function or displ~ parameters ; it is 
following DRAW are rounded 

that raises the exponent e to a followe by the same values 
to the nearest integer if neces- and a semicolon, for example 
sa~. The first value (x above) given power. 

de ines the horizontal distance How to use EXP 120 PRINTFLASH 1; INK 2; 

from this position , and the EXP is followed by a numeric 
PAPER 6; "WARNI NG " 

second value (y) the vertical value for example The effect of FLASH is then local 
distance. These values are 

60 LET y~ EXP x and applies onl~ to the 
negative if the line is to ~o to the characters disp ayed, goint 
left or down respective y, and An expression must be enclosed plotted or line drawn y the 
the position reached must be in brackets. EXP then returns display statement. Note that 
within the display area. the exponent e raised to the FLASH 1 causes the whole 8x8 

If there is no previous PLOT power of the argument (x pixel position to flash if an~ 
or DRAW statement, DRAW above). pixel is plotted in an ink co our. 



 
Format 
FLASH Int-num-expr[;) 

FN fuNction 

Keyboard location 
EXTEND MODE 
SYMBOL SHIFT 2 

Function 

FN calls a user-defined function . 
It is always used in conjunction 
with OEF FN , which defines the 
function to be called. 

How to use FN 
If a numeric function is to be 
called, FN is followed by a letter 
and then a pair of brackets. If 
any parameters are to be passed 
to the function , then these are 
each separated by a comma and 
enclosed in the brackets, for 
example 

170 LET x= FN r (3.4) 

The parameters (3 and 4 above) 
are then passed to the function 
called r. FN then returns the 
result. If no parameters are to 
be passed, the pair of brackets 
must still be included, for 
example 

70 PRINT FN rO 

In this case, the function uses 
the values currently assigned to 
its variables. 

FN calls a string function in 
the same way, except that S 
must be added after the letter 
(see OEF FN) . 

FN does not work recursively~ 

Format 
FN letter «(num-exprJ 
[,num-expr» 
FN letterS {(string-expr] 
(num-expr][,num-expr][,string­
exprJ) 

FOR 
Keyboard locat ion 
F 

Statement/ Command 

FOR is always used with the 
keywords TO and NEXT to 
create a FOR NEXT loop. This 
structure enables a section of 
the program to repeat a given 
number of t imes. 

How to use FOR 
FOR always forms a statement 
with TO. FOR is followed by a 
letter, an equals sign, and then 
two numeric values separated 

by TO, for example 

60 FOR a=1 TO 9 

The letter (a above) forms a 
control variable. The statements 
that are to be repeated follow, 
and one or more of these 
normally makes use of the 
control variable . The loop then 
ends with a NEXT statement, in 
which NEXT is followed by the 
control variable, for example 

90 NEXT a 

On execution, FOR deletes any 
variable of the same name as 
the control variable and assigns 
it an initial value equal to the 
value before TO (1 above). The 
statements are then executed 
with the control variable having 
this value. On reaching NEXT, 
the value of the control variable 
is increased by 1. If this value is 
less than or equal to the value 
after TO (the limit value of 9 
above), the program returns to 
the FOR statement and the 
fOR NEXT loop is repeated . If 
the control variable has a 
greater value than the limit 
value, then the loop ends and 
the program continues with the 
statement after NEXT. 

In the above example, the 
loop is repeated nine times with 
the control variable a increasing 
from 1 to 9. On leaving the 
loop, a has a value of 10. 

Note that the Spectrum does 
not distinguish between capital 
and lower-case letters when 
naming the control variable. 

Using STEP in a FOR NEXT loop 
STEP is a keyword that can be 
incorporated in a FOR 
statement if the control variable 
is to increase by a value other 
than 1 or to decrease. STEP 
follows the limit value and is 
followed by a numeric value, for 
example 

60 fOR a=1 TO 9 STEP 2 

The control variable is increased 
by the step value (2 above) until 
it is greater than the limit value. 
The control variable a has 
successive values of 1, 3 , 5, 7 
and 9 and leaves the loop with a 
value of 11 . 

A negative step value causes 
the value of the control variable 
to decrease. In this case, the 
initial value must be greater 
than the limit value and the loop 
ends when the value of the 
control variable is less than the 

limit value, for examyle 

60 FOR a=9 TO 1 STEP -1 

The value of a decreases from 9 
to 1 and leaves the loop w ith a 
value of 0 . 

Nesting loops 
One or more FOR NEXT loops 
may be placed inside each 
other, a procedure called 
'nesting ' loops. The order of the 
contror variables in the NEXT 
statements must be the reverse 
of the order of the control 
variables in the FOR statements. 
FOR NEXT loops may be nested 
to any depth, that is as many 
loops as required may be placed 
inside each other. 

Format 
FOR letter=num-expr TO 
num-expr (STEP num-expr] 
NEXT letter 

FORMAT 
M icrodrive file-handling 
command. See Microdrive and 
Interface 1 manual. 

GOSUB 
Keyboard location 
H 

Statement/Command 

GOSUB causes the program to 
branch to a subroutine, which is 
a separate section of the 
program. This is useful if a 
subroutine is required several 
times in a program. 

How to use GOSUB 
GOSUB may be used as a 
statement or direct command 
and it is followed by a numeric 
value, for example 

GOSUB 1000 -,-_,--_ 

On execution, the value 
following GOSUB (1 000 
above) is rounded to the nearest 
integer, and the program 
branches to the line number 
having this value. The use of a 
vanable or expression enables 
the pro$ram to branch to a 
subroutine at a calculated line 
number. Note that jf the line 
number does not exist, the 
program still branches and 
continues with the first 
statement that is then 
encountered. 

A subroutine ends with 
RETURN, and the program then 
branches back to the statement 



 
following the GOSUB 
statement. Subroutines may be 
nested so that one is reached 
from another, in which case 
RETURN sends the program 
back to the statement following 
the last GOSUS statement 
executed. 
The GOSUB ,tack 
Whenever GOSUB is executed, 
its line number is placed on the 
GOSUB stack in the memory. If 
two or more GOSUBs are 
executed before RETURN , their 
line numbers stack up 50 that 
the last number is on top of the 
stack. RETURN always takes the 
top line number from the stack 
and goes to this line to continue 
the program. 

Note that error 4 (Out of 
memory) can occur if there are 
not enough RETURN 
statements. 

Format 
GOSUS int-num-expr 

GOTO 
Keyboard location 
G 
Statement/Command 

GOTO makes a program 
branch to a particular line. 

How to use GOTO 
GOTO may be used as a direct 
command to run a program 
from a given line number 
without fi rst dearing the screen. 
It may also be used to form a 
statement in a program. GOTO 
is followed by a numeric value , 
for example 

60 GOT0 350 

On execution, the value 
following GOTO is rounded to 
the nearest integer and the 
program branches to the line 
number having this value . The 
use of a variable or expression 
allows the program to branch to 
a calculated line number. Note 
that if the line does not exist, 
then the program still branches 
and continues with the first 
statement that is then 
encountered . 

Format 
GOTO int·num-expr 

IF 
Keyboard location 
U 

Statement/Command 

IF is always used with the 
keyword THEN to prompt a 
decision that affects subsequent 
action. To do this, the computer 
tests something to find out 
whether or not it is true . If it is 
true, then one course of action 
follows. If it is untrue, another 
occurs . 

How to use IF and THEN 
IF normally forms a statement 
with THEN. IF is first followed 
by a numeric value or by a 
condition , and second by THEN 
and one or more valid BASIC 
statements, for example 

80 IF x THEN GOTO 250 

240 IF as=" NO" THEN PRINT 
"TH E END" : STOP 

A constant, variable or 
expression (such as x above) is 
considered to be true if it has a 
non·zero value . In this case, the 
statement following THEN and 
any more statements in the 
same line are executed. The 
program then proceeds to the 
next line. If the value is 0 , then 
the constant, variable or 
expression is considered to be 
false. The following statements 
are then not executed and the 
program skips to the next line. 
In tile example, the program 
will not go to line 250 if x is 0. 

If a condition (as= "NO") 
following IF is true, then the 
statements following THEN are 
executed . If the condition is 
false , then the program moves 
to the next line. In this example, 
if as has the value "NO" then 
" THE END " is displayed and the 
program stops. If as has any 
other value, the program 
continues from the next line. 

The Spectrum gives a true 
condition a value of 1 and a 
false condition a value of 0. It 
recognises any non·zero value 
as true and 0as false. A variable 
can be assigned the value of a 
condition by a statement such as 

70 lET x=aS= "NO" 

Note that, unlike in some other 
BASICs, THEN cannot be 
omitted before GOTO . 

Format 
IF num·expr THEN statement 
[ : statement] 
IF cond THEN statement 
[ : statement] 

IN 
Keyboard location 
EXTEND MODE 
SYMBOL SHIFT I 

Function 

IN checks the status of the 
keyboard and other input and 
output devices. It reads a byte 
from a given port address that 
indicates the status of the 
device connected to the port. 

How to u se IN 
IN is followed by a numeric 
value, for example 

150 lET x= IN y 
The value following IN may 
range from 0 to 65535 and 
specifies the port address that is 
to be read . IN then returns the 
byte read from this port. 

Keyboard addresses 
The keyboard has eight 
addresses, each of which may 
contain one of five different 
bytes depending on which key 
is pressed. The addresses are 
65278, 65022, 64510,634B6, 
6143B, 57342 , 49150 and 
32766. Byte values at these 
addresses may be 175, 183, 
1B7, 1B9 or 190. 
Format 
IN num-const 
IN num-var 
IN (num-expr) 

INK 
Keyboard location 
EXTEND MODE 
SYMBOL SHIFT X 

Statement/Command 

INK specifies the foreground 
colour in which characters are 
displayed, points plotted and 
lines and curves drawn . 

How to use INK 
INK may be used as direct 
command but is normally used 
to form a statement in a 
program . It is followed by a 
numenc value, for example 

70 INK x 

The value following INK is 
rounded to the nearest integer 
and may then range f rom 0 to 9. 
The following foreground 
colours are then given. 

o Black 
1 Blue 



 
2 Red 
3 Magenta (Purple) 
4 Green 
5 Cyan (Blue-green) 
6 Yellow 
7 White 
8 Transparent 
9 Contrasting black 

or white 
INK 8 specifies that the existing 
colour remains unchanged at 
any position on the screen 
where INK 8 is used. INK 9 
causes the ink colour to be 
either black or white so that it 
shows up against the paper 
(background) colour. 

Global and local Ink colours 
When INK forms a statement 
alone. as above, the colour is 
global and all subsequent 
displays occur in this foreground 
colour. INK may also be 
embedded (inserted) in display 
statements formed by PRINT, 
INPUT, PLOT, DRAW and 
CIRCLE, INK follows the 
keyword but precedes the data 
or display parameters; it is 
followed by the same values 
and a semlc%n, for example 

60 CIRCLE INK 4; 128, 88, 87 

The effect of INK is then local 
and applies only to the 
characters displayed, point 
plotted or line drawn by the 
display statement, this example 
drawing a green circle . 
Thereafter the ink colour reverts 
to the global colour or default 
colour of black. 

Format 
INK int-num-expr [;] 

INKEY$ INput KEY stnng 

Keyboard location 
EXTEND MODE 
N 

Function 

INKEYS is used to detect the 
pressing of the keys on the 
keyboard . 

How to use IN KEYS 
INKEYS requires no argument 
and is generally used to assign a 
character to a string variable or 
to test for a particular character, 
for example 

70 LET aS~ INKEYS 
130 IFINKEYS~"N" THEN 
STOP 

On execution, INKEYS returns 

the character given by the key 
that is being pressed at that 
instant. If no key is being 
pressed, then INKEYi returns a 
null (empty) string ( " " ). Note 
that IN KEYS distinguishes 
between capital and lower-case 
letters and other shifted and 
unshifted characters . (Use IN to 
detect any key without 
distinguishing characters .) 

Unflke INPUT, INKEYS does 
not wait but goes immediately 
to the next statement. It is 
therefore normally placed 
inside a loop that repeats until 
the required key is pressed. 

Example 
This line suspends operation 
until the Y key is pressed 
(without CAPS SHIFT or CAPS 
LOCK), 

60 IF INKEYS<> "y" THEN 
GOT0 60 

Format 
INKEYS 

INPUT 
Keyboard location 
I 

Statement/Command 

INPUT enables data to be 
entered during the running of a 
program. 

How to use IN PUT 
INPUT normally form s a 
statement in a program and is 
used in a very simirar way to 
PRINT. In its simplest form, it is 
followed by a numeric or string 
variable , for example 

60 INPUT x 
90 INPUT as 
The computer then waits until 
either a number or a string is 
entered. The value is disprayed 
at the beginning of the bottom 
line as it is keyed in. On pressing 
ENTER, the value is assigned to 
the named variable and the 
program continues. 

An INPUT statement may 
include more than one variable 
and will display characters to 
form a prompt. This is done in 
exactly the same way as with 
PRINT, using quote marks to 
enclose the prompt characters 
and semicolons or commas as 
necessary to separate items. 
Display statements such as INK, 
FLASH and PAPER mar. be 
embedded, for examp e 

80 INPUT IN K2 ; "Whatisyour 
name? "; nS, ("Howald are 
you , " +nS+"7 ") ; age 

Note the following differences 
to PRINT. INPUT waits when it 
comes to a variable, so all 
variables and expressions (such 
as that including nS above) 
which are to be included in 
prompts must be enclosed in 
brackets. Display begins at the 
start of the bottom line and 
then scrolls up if more than one 
line is used. AT may be used in 
an INPUT statement in the 
same way as with PRINT. AT 
0,0 displays at the start of the 
line above the bottom line and 
the display scrolls up if more 
than two lines are displayed. 

How to halt INPUT 
If INPUT is followed by a 
numeric variable and STOP is 
entered, then the program 
stops. With a string variable, the 
first quote mark that appears 
may be deleted and then STOP 
entered to halt the program. 

Using INPUT w ith LINE 
INPUT LINE may be used with 
stTlng variables only . Normally, 
INPUT with a string variable 
causes a pair of quotes to be 
displayed. As the string is keyed 
in, it appears between the 
quotes. To remove these 
quotes. use INPUT LINE 
followed by the string variable. 
If a prompt is required , it is 
placed between INPUT and 
LINE, for example 

70 INPUT " What is your 
name? "; LINE nS 

Format 
INPUT (prompt][ ;][,][ '] 
num -var 
INPUT (prompt][ ;]L][ '] 
string-var 
INPUT (prompt][;][']rJ LINE 
string-var 
(prompt] = [string-canst] 
[(string-expr)](AT 
int-num-expr,int -num-expr] 
(statement] (;][,][ '] 

INT INTeger 

Keyboard locat ion 
EXTEND MODE 
R 

Function 

INT changes non-integers 
(numbers that are not whole) 
into integers or whole numbers. 



 

How to use INT 
INT is followed by a numeric 
value for example 

70 LETx ~ INT Y 

An expression must be enclosed 
in brackets. INT then returns the 
value rounded down to an 
integer. 

Example 
The command 

PRINT INT 45.67, INT -7 .66 

displays 

45 

Format 
INT num-const 
INT num-var 
INT (num-expr) 

INVERSE 
Keyboard locat ion 
EXTEND MODE 
SYMBOL SHIFT M 

Statement/Command 

-8 

INVERSE causes colours to be 
inverted at character positions 
so that the ink colour becomes 
the papercolour and vice-versa. 

How to use INVERSE 
INVERSE is normally used to 
form a statement in a program. 
It is followed by a numeric 
value, for example 

70 INVERSE 1 

The value following INVERSE is 
rounded to the nearest integer 
and may then be either 0 or 
1. INVERSE 1 causes all 
subsequent displays made by 
PRINT and INPUT to be 
produced in inverse colours . 
INVERSE 0 restores the ink and 
paper colours to normal. 

Note that INVERSE can be 
embedded (inserted) within 
display statements in the same 
way as INK. However, if used 
with CIRCLE, PLOT or DRAW, 
INVERSE 1 causes a line or point 
to be plotted in the paper colour 
so that it disappears. 

Format 
INVERSE int-num-expr 

LEN LENgth of string 

Keyboard locat ion 
EXTEND MODE 
K 

Function 

LEN gives the length of a string. 

How to use LEN 
LEN is followed by a string 
value, for example 

50 LET x= LEN as 

An expression must be enclosed 
in brackets. LEN returns the 
number of characters in the 
string. 

Example 
The following line 

120 INPUT as: IF LEN 0$> 9 
THEN GOTO 120 

passes only strings containing 
up to nine characters. 

Format 
LEN string-canst 
LEN string-var 
LEN (string-expr) 

LET 
Keyboard locat ion 
L 

Statement/Command 

LET is used to assi~n a value to a 
variable. In Sinclair BASIC, LET 
cannot be omitted in an 
assignment statement. 

How to use LET 
LET normally forms a statement 
in a program but may be used as 
a direct command. It is followed 
by a numeric or string variable, 
an equals sign , and then a 
value. The va lue may be 
numeric or string, depending on 
the variable preceding LET, for 
example 

60 LET x= x+1 
80 LET as = " Correct " 

The value is then assigned to 
the variable . 

Note that simple variables are 
undefined until assigned values 
by LET, READ or INPUT. Array 
variables however are initialized 
to 0 or a null string (see DIM). 

Format 
LET num-var= num-expr 
LET string-var=string-expr 

LINE 
Keyboard location 
EXTEND MODE 
SYMBOL SHIFT 3 

see INPUT, SAVE 

LIST 
Keyboard location 
K 

Command/ Statement 

LIST produces a listing of the 
program currently in the 
memory. 

How to use LIST 
LIST is normally used as a direct 
command but may form a 
statement in a program. To !ista 
complete program, it is used 
alone. After the direct command 

LIST 

the first page of the listing 
appears and subsequent pages 
will scroll up the screen at the 
touch of any key except N, the 
space bar, STOP or BREAK. 

LIST may also be followed by 
a line number, in the form of a 
numeric value , for example 

LIST 100 

The value following LIST is then 
rounded to the nearest integer 
if necessary, and the listing 
commences at this line. If there 
is no line w ith this number, the 
listing commences at the next 
line. 

Format 
LIST [int-num -expr] 

LLiST Line printer LIST 

Keyboard location 
EXTEND MODE 
V 

Command/ Statement 

LliST makes Sinclair-type 
printersrroduce a print-out 
listing 0 the program currently 
in memory. 

How to use LliST 
LliST is used in exactly the same 
way as LIST (see LIST for further 
details) . Note that the screen 
display does not change as the 
listing is printed. 

Format 
LliST [int-num-expr] 

LN Loganthm (Natural) 

Keyboard locat ion 
EXTEND MODE 
Z 



 
Function 

LOAD CODE 
Format I·~ 

LN gives the natural logarithm LOAD string-expr CODE 

(the logarithm to base e) of a Keyboard locations [int -num-expr] Lint-num-expr] 

value. It acts as the inverse of J 
EXP. EXTEND MODE LOAD DATA 
How to use LN I 

LN is followed by a numeric Command / Statement Keyboard locations 
J value, for example LOAD CODE is used to load a EXTEND MODE 

60 LET x~ LN y section of the memory with D 
An expression must be enclosed 

information that has been 
stored on tape. The information Statement/Command 

in brackets. The value following consists of a set of bytes, and LOAD DATA is used to load LN must be greater than 0. LN these are sent to a set of arrays from tape. The arrays are then returns the natural addresses in the memory. 
logarithm of this value. LOAD CODE can be used to 

recorded using SAVE DATA. 

load a displat, or to load How to use LOAD DATA 
Format information or user-defined LOAD DATA may be used to 
LN num-const graphics, for example. form a statement in a program 
LN num-var or as a direct command. LOAD 
LN (num-expr) How to use LOAD CODE is first followed by a filename, 

LOAD CODE may be used as a 
which is a string value, direct command or it may form 

a statement in a program. followed by OAT A and a letter 

LOAD LOAD is followed by a filename, or a letter and S, and finally by a 

which is a string value, and then pair of empty brackets, for 
Keyboard location 

CODE, for example example 
J 

LOAD " data " CODE 270 LOAD " numbers " 
Command / Statement The filename following LOAD is 

DATA nO 
300 LOAD "names" DATA 

LOAD loads a complete the name of the information to nSO 
program into the memory from be loaded and is subject to the 

The filename following LOAD is a tape. same restrictions as program 
names (see LOAD) . LOAD the name that iSliiven to the 

How to use LOAD CODE then searches for the array on tape an it is subject to 
LOAD is normally used as a named information and when the same restrictions as pro~ram 
direct command, but it may found , displays Bytes: followed names used with LOAD. T e 
form a statement in a program by the name. The Spectrum letter or letterS following DATA 
in order to load a new ~rogram . then loads the bytes into the is the name to be given to the 
LOAD is followed b~a ilename, memo~ at the addresses from arrd; in the proNram when it is 
which is a string va ue up to ten which t ey were saved. Any loa ed and use . 
characters long, for example existing information is On execution. the ~ectrum 

LOAD "filename" overwritten. searches for the name array on 
CODE may also be followed tape. When found, the message 

On execution, the program by one or two numeric values , Number array: or Character 
currently in memo~, and all the separated by a comma, for array: followed by the name 
values of its variab es, are example appears and the array is loaded. 
deleted. The Spectrum then 

LOAD "picture " CODE 
Any array currently in memory 

searches forthe named program having the same letter name (n 
and loads it when it is located. 16384.6912 or nS above) is deleted, and a 
Note that the computer The values following CODE are new array havin~ this letter 
distinguishes between capital rounded to the nearest integer name and the va ues stored on 
and lower-case letters in and then define the startin!l, tape is created. Note that with 
prof,ram names. address (16384 above) at w ich character arrays, any string 

I a null string follows LOAD, the named information is to be variable currently in memory 
as in this command loaded , and the number of having the same letter name is 
LOAD .... bytes (6912) that are to be sent also deleted. 

then the sreectrum loads the 
to locations beginning at this 

Format address. If the number is wrong, 
first comp ete program that it the tape loading error reh0rt is LOAD string-expr DATA 
locates. ~iven . If only one value ollows letter[S]O 

Note that LOAD is used ODE. it defines the starting 
differently when a Microdrive is address from which aI/the bytes 

LOAD SCREENS connected. See the Microdrive are to be located. 
and Interface 1 manual for The above example can also 
details. be carried out bl the keywords Keyboard locations 

LOAD SCREEN . J 
Format For details on storing bytes, EXTEND MODE 
LOAD string-expr see SAVE CODE. SYMBOL SHIFT K 



 

64 Statement/Command them to be displayed on the Command/ Statement screen. An LPRINT statement or 
LOAD SCREENS enables a command may also include TAB NEW clears the BASIC memory 
screen display to be loaded statements, certain CHRS area (the area as far as 
directly from tape. It sends controls. INVERSE and OVER RAMTOP) removing any 
information from the tape to statements and control codes program currently in this part of 
the section of the memory with the same effect as PRINT. the memory. 
controlling the screen display in An AT statement may also be How to use NEW order to produce the picture. included, but the line number is NEW is normally used as a direct 
How to use LOAD SCREENS ignored and the item of data command but may form a 
LOAD SCREENS may be used printed at the given column statement in a program. It is 
to form a statement in a position in the same line. used alone. On execution , the 
program or as a direct 

Format 
program and variables are 

command. LOAD is followed by 
LPRINT [TAB int-num-expr;)J deleted. The memory is cleared 

a filename, which is a string as far as RAMTOP so that 
value, and then SCREENS, for [AT int-num-expr,int-num-

user-defined ~raphics 
example expr;] [CHRS (int-num- characters , w ich are stored 

LOAD " picture " SCREENS 
expr); 1 [statement;] [num- above RAMTOP, are not exprJ [string-ex prJ [;JLJ [,J affected. 

The filename following LOAD is 
the name that is given to the MERGE Format 
screen information on tape, and NEW 
it is subject to the same Keyboard location 
restrictions as proram names EXTEND MODE NEXT used with LOAD. he Spectrum SYMBOL SHIFT T 
then searches for the named keyboard location 
information and when found, Statement/Command N 
loads it first into the display file MERGE allows two programs to 
and then the attributes section be merged together. 
of the memory. The picture Statement/Command 
slowly builds up in the current How to use MERGE NEXT is always used in 
ink and caper colours and then MERGE may be used to form a 

coiunction with FOR to create 
the attri utes (true colours and statement in a program or as a a F R NEXT loop. 
so on) are added. direct command. It is followed 

For details on storing screen by a filename in the form of How to use NEXT 
information, see SAVE string value, for example NEXT is normally used to form a 

SCREENS. 500 MERGE " prog2 " statement in a profam to 
complete a FOR N XT loop. It is 

Format The filename following MERGE followed by a letter that is the 

LOAD string-expr SCREENS is the name of the program to control variable in the loop, for 
be mer~ed with the pro~ram example 
current y in memory. This name 90 NEXT a 

l PRINT line pnnler PRINT is subject to the same 
In Sinclair BASIC, the control restrictions as program names 

Keyboard location used with LOAD. MERGE then variable must be included. 
EXTEND MODE loads the new program without See FOR for further details of 
C first deleting the existing FOR NEXT loops. 

Statement/Command 
program. However, the new 
program overwrites any lines in Format 

LPRINT makes Sinclair-tylae the existing program that have NEXT letter 
printers print an item of ata in the same line numbers as lines 
the same way that PRINT in the new pro~am , and 

NOT causes the item to appear on variables with t e same name 
the screen . are also overwritten. 

keyboard location 
How to use LPRINT Format SYMBOL SHIFT S 
LPRINT may form a statement MERGE string-expr Logical Operator/ Function in a program or a direct 
command . It is followed by NOT is used to reverse the truth 
items of data that may be MOVE of a condition so that a false 
separated by semicolons, condition becomes true and 
commas or apostrophes, for Microdrive file-handling vice versa . 
example command. See the Microdrive 

How to use NOT 
60 LPRINT " Number "; x' 

and Interlace 1 manual. 
NOT is followed bt a condition 

"Name "; nS, "Age ";a 
NEW 

or by a numeric va ue, for 

When output to the hrinter, the example 

items are printed in t e same keyboard location 90 IF NOT x~y+z THEN 
format as PRINT would cause A PRINT "Wrong" 



 
90 LET correct =x=y+z: IF 

NOT correct THEN PRINT 
"Wrong" 

When NOT is followed by a 
condition (x=y+z above), the 
Spectrum first assigns a value of 
1 to the condition if it is true and 
o if it is false. NOT then acts as a 
function, reversing the value 
produced, so that the reverse of 
the condition can be tested . 
Note that a condition should be 
enclosed in brackets if it 
contains AND or OR. 

If NOT is followed by a 
numeric value. it returns 0 jf the 
value following is non-zero and 
1 if the value following is 0 . 
Thus in the above examples, the 
Spectrum prin ts "Wrong " if 
x<>y+z or if correct has a 
value of 0 . 

Format 
NOT cand 
NOT num-expr 

OPEN# 
Microdrive file-handling 
command. See the Microdrive 
and Interface 1 manual. 

OR 
Keyboard location 
SYMBOL SHIFT U 

logical Operator/ Function 

OR acts as a logical operator to 
test the truth of a combination 
of conditions. If one or more 
conditions are t rue, then the 
overall combination is true . OR 
also acts as a function to 
perform binary operatIons on 
two numeric values. 
How to use OR 
As a logical operator, OR links 
two conditions in a statement 
where the truth of the whole is 
to be tested , for example 

70 IF INKEYS ~ "W OR 
I NKEYS ~ " n " THEN STOP 

If any or both of the conditions 
is true, then the overall 
combination is true. In the line 
above, one of the conditions 
(INKEYS~ " N" and 
INKEYS="n H) becomes true as 
soon as the N key is pressed, 
regardless of whether CAPS 
SHIFT or CAPS LOCK is 
operating or not. The whole 
combination is then true and 
the program stops. 

OR as a fu nction 
The ZX Spectrum + assigns a 
numeric value of 1 to a true 
condition and 0 to a false 
condition. It recognizes any 
non-zero value as t rue and 0 as 
false . OR may therefore be 
preceded or followed by a 
numeric value , for example 

40 lET x~y OR z 

The variable x is then assigned a 
value of 1 if z is non-zero or a 
true condition , or a value of y if 
z is 0 or a false condition. 

This is useful in arithmetic. In 
the following example, the fare 
is halved if the age is less than 
14. 

60 PRINT fare· (0.5 O R 
age>13) 

If the age is less than 14, the 
condition age> 13 is false, so 
the fare is multiplied by 0.5. If 
age> 13 is true, then the fare is 
multiplied by 1. 

Note that the Spectrum does 
not evaluate combinations of 
numeric values in accordance 
w ith standard truth tables. 

Format 
cond OR cond 
num-expr OR num-expr 

OUT 
Keyboard location 
EXTEND MODE 
SYMBOL SHIFT 0 

Statement/Command 

OUT sends a byte to a given 
input/output port address in 
order to drive an output device. 

How to use O UT 
OUT may be used to form a 
statement in a program or as a 
direct command. It is followed 
by two numeric values, 
separated by a comma, for 
example 

40 OUT254,3 

Both values are rounded to the 
nearest integer. The first value 
(254 above) may then range 
from 0 to 65535 and is the port 
address. The second value (3) 
may range from 0 to 255 and is 
the byte to be sent to this 
address. 

Bits 0 to 2 of the byte output 
to port address 254 set the 
border colour; the above 
example therefore turns the 

border magenta. Bit 3 at this 
address drives the M IC socket 
and bit 4 the loudspeaker. Port 
address 251 drives the!rinter 
and ports 254, 247 an 239 are 
used with other peripherals . 

Format 
OUT int-num-expr,int-num­
expr 

OVER 
Keyboard location 
EXTEND MODE 
SYMBOL SHIFT N 

Statement/Command 

OVER is used to overprint one 
character on another. Itcan also 
be used to plot points or draw 
lines or curves in a paper colour 
instead of an ink colour. 

How to use OVER 
OVER is normally used to form 
a statement in a pro~ram . It is 
followed by a numeriC value , for 
example 

80 OVER 1 

The value follow ing OVER is 
rounded to the nearest integer 
and may then be either 0 or 1. 
OVER 0, which is the default 
(preset) state, causes any 
character to obliterate a 
previous character at the same 
character position and replace 
ii. OVER 1 causes any two 
characters displayed at the 
same character position to be 
combined. 

OVER may be embedded 
(inserted) in a PRINT or INPUT 
statement in the same way as 
INK so that it affects only the 
characters displayed by the 
statement. This statement for 
example, underlines a word 

60 PRINT AT 11 ,15 , " YES ", 
OVER 1, AT 11 ,15 ,"_" 

However, note that 
characters are combined so that 
the paper colour is given where 
the ink colou rs overlap. 

OVER in high resolution 
OVER may be used with PLOT, 
DRAW and CIRCLE. Without 
OVER, lines and curves can 
overlap each other, but they 
must have the same ink colour 
otherwise the ink colour in the 
whole character position 
changes where they cross. If 
OVER 1 is used, lines or curves 
produce the paper colour where 



 

66 they overlap or meet characters. occurred since the Spectrum 
Plotting points or drawing lines PAUSE was last switched on is stored at 
or curves again in exactly the addresses 23672 to 23674. As 
same position with OVER 1 Keyboard location the frames are produced at a 
causes them to disappear. M regu lar rate, PEEKing these 

Format 
locations gives a method of 

Statement/Command measuring time. The following 
OVER int-num-expr line displa~s the time in seconds 

PAUSE can be used to suspend since the pectrum was last 
a program for a definite or powered up (less any time spent 

PAPER indefinite time. in producing sound and 

Ke~board location How to use PAUSE operating peripherals such as 

EX END MODE PAUSE is normally used to form the cassette player and printer) . 

SYMBOL SHIFT C a statement in a program. It is 10 PRINT (PEEK 23672+256-
followed by a numeric value, for PEEK 23673+65536- PEEK 

Statement/Command example 23674) /50 

PAPER is used to select the 130 PAUSE 100 Note If the mains frequency is 
paper or background colour The value following PAUSE is 60 Hz and not 50 Hz (the UK 
used for the screen display. This rounded to the nearest integer standard), change 50 to 60. 
may be either the colour of the and may then ran~e from 0 to 
background over the whole 65535 . It defines t e delay that Format 
display area, or the colour occurs as this number of frames PEEK int-num-const 
behind individual characters, of the television picture, so that PEEK int-num-var 
points or lines that appear in a value of 50 produces a pause PEEK (int-num-expr) 
single character positions. of 1 second in the UK and 
How to use PAPER Europe where the frame PI PAPER may be used to form a frequency is 50 Hz. 
statement in a program or as a However, note that any Keyboard location 
direct command. It is followed pause may be cut short by EXTEND MODE 
by a numeric value, for example pressing any key and that M 

80 PAPER x 
PAUSE 0 gives an unlimited 

Function pause that lasts until a key is 
The value following PAPER is pressed. PI gives the value of pi (rr) for 
rounded to the nearest integer 

Format 
use in calculations. PI is the ratio 

and it may then range from 0 to of the circumferen ce of a circle 
9. The paper colours that are PAUSE int-num-expr to its diameter. 
then given are the same as 
those given by INK. Paper PEEK 

How to use PI 
colours may also be global or PI requires no values or variables 
mat be made local by Keyboard location 

when used in a statement or 
em edding (inserting) them in EXTEND MODE command, for example 
display statements in exactly 0 DRAW 255,0,- PI 
the same way as ink colours . 

PI returns a value of 3.1415927, See INK for further details. Function 
Whenever characters are PEEKtves the value of the byte 

so that the above command 
printed followin~ a PAPER store at a particular address in 

draws a large semicircle on the 
statement, whet er global or the memory. 

screen. 
local, the back~round over the 
whole of the c aracter position How to use PEEK Format 
affected changes to the selected PEEK is followed by a numeric PI 
colour. This is also true when value, for example 
points are plotted or lines or 
circles drawn with an embedded 

B0 LET x= PEEK (256 - y) PLOT 
PAPER statement but not Note that an expression must Keyboard location 
following a global command or be enclosed in brackets. The Q 
statement. value following PEEK is rounded 

To produce a coloured to the nearest integer if Statement/Command 
background over the whole necessary, and may then range 

PLOT is used in high-resolution display area, it is necessary to from 0 to 65535 to give an 
use CLS after a PAPER address in the memory. PEEK graphics to plot a pixel ordotof 

statement. The entire display is then returns the value of the colour ata particular position on 

cleared to this colour, which byte (a number from 0 to 255) the screen. 

then remains the overall at the address specified. How to use PLOT 
background colour. PLOT is used to form a 

Example statement in a program or as a 
Format The number of frames of the command. It is normally 
PAPER int-num-expr[;] television display that have followed by two numeric values 



 separated by a comma, for 
examele 

50 PLOT 128,87 

Both values followlng PLOT are 
rou nded to integers if necessary. 
The first value may then range 
from 0 to 255 and defines the 
horizontal coordinate of a 
position on the screen. The 
second value may range from 0 
to 175 and defines a vertical 
coordinate . A pixel is then 
normally plotted in the current 
ink colour at the defined 
position - in the above example 
at the centre of the screen . 

Note the following effects of 
colour statements or commands 
on PLOT. After OVER 1, an 
existing dot at the same position 
is changed to the paper colour. 
Following INVERSE 1, the dot is 
ploUed in the current paper 
colour. After BRIGHT 1 or 
FLASH 1, the whole character 
position on the low-resolution 
screen In which the pixel is 
plotted will be bright or flash . 

These four keywords and INK 
may also be embedded 
(inserted) within a PLOT 
statement in the same way as 
with PRINT, for example 

160 PLOT INK 2;x,y 

Their eHect is the same but is 
then local and limited to the 
pixel plotted by the statement. 
If PAPER is embedded in a 
PLOT statement , the paper 
colour of the whole character 
position around the pixel 
changes to the given colour 

Note that PLOT also defines 
the starting posi tion of the next 
DRAW statement. 

Format 
PLOT [statement,] 
int -num -expr, int -num-expr 

POINT 
Keyboard locat ion 
EXTEND MODE 
SYMBOL SHIFT 8 

Function 

POINT is used to find out 
whether the colour at a 
particular position on the 
high-resolution screen is either 
an ink colour or a paper colour. 
POINT does not check the 
actual colour itself. 

How to use POINT 

POINT is followed by two 
numeric values separated by a 
comma and enclosed in 
brackets, for example 

240 IF POINT (x ,y)~1 THEN 
GOSU8 600 

The two values following 
POINT are rounded to integers 
if necessary. The first value may 
then range from 0 t.o 255 and 
defines the horizontal 
coordinate of a pixel on the 
screen. The second value may 
range from 0 to 175 and defines 
a vertical coordinate . POINT 
then returns 1 if the pixel at the 
defined position is ink colour or 
o if it is paper colou r. 

Format 
POINT (int-num-expr, int-num­
expr) 

POKE 
Keyboard location 
o 

Statement/Command 

POKE is used to change the 
value of the byte at a particular 
address in the memory. Values 
are normally POKEd to memory 
locations in order to produce 
actions not given by the BASIC 
keywords. 

How to use POKE 
POKE is used to fo rm a 
statement m a program or as a 
command. It is followed by two 
numenc values separated by a 
comma, for example 

POKE 23609,255 

The two values followmg POKE 
are rounded to the nearest 
Integers if necessary The fi rst 
value may then range from 
16384 to 65535 and IS an 
address 10 RAM The second 
value may range from -255 to 
255 and IS the byte to be 
w ri tten to the defined address 

In the above example, 255 is 
POKEd to address 23609, 
which controls the sound 
produced when a key is pressed. 
A value of 255 gives a long beep 
instead of the normal click, 
other values producing a shorter 
beep. 

Format 
POKE int-num-expr, 
int-num-expr 

PRINT 
Keyboard location 
p 

Statement/ Command 

PRINT displays data on the 
screen. The data may be any 
single character or sequence of 
characters. A PRINT statement 
may incorporate other 
keywords to define the position 
and colour of the data. 

How to use PRINT 
PRI NT may be used alone or it 
may be followed by data. This 
data may be in the form of any 
numeric or string expressions, 
or a mixture of these. 

When using PRINT with data, 
two or more separate items 
must each be separated by a 
semicolon, comma or 
apostrophe. 

Certain other keywords may 
be inserted in any order 
between PRINT and the data, 
provided each statement 
formed by the keyword ends in 
a semicolon. These keywords 
are CHRS, TAB. AT, INK, 
PAPER, FLASH, 8RIGHT, 
INVERSE and OVER. 

PRINT with strings 
PRINT alone or followed by a 
null string C ") displays a blank 
line and moves the cursor to the 
beginning of the next line. 

PRINTToliowed by a string 
constant (any characters within 
double quote marks) displays 
the characters as they appear 
between the quote marks. The 
command 

PRINT " 3/ 542176121 " 

for example displays 

3/ 542 / 76/ 21 

PRINT followed by a string 
variable or expression displays 
the string or strings they 
represent. 

PRINT w ith numbers 
PRINT followed by any numeric 
expression displays the 
expression's value. Numbers 
are displayed in decimal 
notation with up to eight 
significant digits and no trailing 
zeros after the decimal point. 

Very large and very small 
numbers are displayed in a 
shorter scientific notation, as 
two figures separated by the 
letter E. This indicates a number 



 
In which the first part (the 
mantIssa) is multiplied by 10 to 
the power of the second part 
(the exponent) , The command 

PRINT 3/ 542 / 76/ 21 

for example displays 

3.468079BE-6 

PRINT formatting with 
punctuation signs 
PRINT followed by items of 
data separated by a semicolon 
displays the items placed next 
to each other without a space, 
The command 

PRINT 1 ;2;3 

displays 

123 

PRINT followed by items of 
data separated by a comma 
displays each item at the 
beginning or in the middle of a 
line depending on the positIon 
of the first item. The command 

PRINT 1,2,3 

displays 

1 
3 

2 

PRINT followed by items of 
data separated by an 
apostrophe displays the item 
after the apostrophe at the 
beginning of the next line. The 
command 

PRINT 1 '2 '3 

displays 

1 
2 
3 

If a PRINT statement or 
command ends with a 
semicolon, comma or 
apostrophe, then the item 
dISplayed by the next PRINT 
statement is affected In the 
same way. 

PRINT and other keywords 
PRINT may be followed by TAB, 
a numeric value . a semicolon 
and then an item of data, fo r 
example 

60 PRINT TAB x; as 

The value following TAB (x 
above) is rounded to the nearest 
integer if necessary and is then 
divided by 32 and the remainder 
returned to give a value 
between 0 and 31 The item of 
data is then displaved at this 

column position in the same or 
the next line. 

PRINT may be followed by 
AT and then two numeric 
values separated by a comma, a 
semicolon and an item of data, 
for example 

50 PRINT AT I,e; "Data" 

The first value (I above) may 
range from 0 to 21 and defines 
the number of the line or row in 
which the data will be displayed. 
The second value (c) may range 
from 0 to 31 and defines the 
number of the column in which 
the first character or digit of the 
data will be displayed. Non­
integer values are accepted and 
rounded to the nearest integer. 
The command PRINT AT 
11 ,16;" · " displays a star in the 
centre of the screen. 

PRINT may also be followed 
by one or more CHRS functions . 
See CHRS for further details. 

PRINT and colour keyword s 
The display produced by PRINT 
is affected by colour statements 
or commands given by INK, 
PAPER, FLASH, BRIGHT, 
INVERSE and OVER that are 
currently in operation. PRINT 
may also be followed by one or 
more of these six statements 
each followed by a semicolon 
before the item of data. for 
example 

50 PRINT AT11 ,16; IN K2 ; 
FLASH 1;" ·" 

The item of data is then 
displayed with the attributes 
specified by the colour 
keyword (s) . These attributes 
are local and apply only to the 
item displayed . Following 
execution of the PRINT 
statement, they revert to their 
default or previously declared 
global values . PRINT will also 
obey local colour control codes 
inserted with the data (see 
page 33). 

Format 
PRINT [TAB int-num-expr;] 
[AT int-num-expr, 
int -num-expr ;] 
[CH RS (int-num·expr); ] 
[statement;] [num-expr] 
[stnng -expr] [;] Ll [' ] 

RANDOMIZE 
Keyboard location 
T 

Statement/Command 

RANDOMIZE, which appears 
on the keyboard as RAND, is 
used in conjunction with RND 
to produce sequences of 
numbers that are either random 
or predictable. 

How to use RANDOMIZE 
RANDOMIZE is used either to 
form a statement in a program 
or as a command. It is optionally 
followed by a numeric value , for 
example 

RANDOMIZE 1 
10 RANDOMIZE 

The value following 
RANDOMIZE is rounded to the 
nearest integer if necessary and 
may then range from 0 to 
65535. A value greater than 0 
sets the system variable SEED to 
this value. following which RND 
always generates tfle same 
sequence of numbers (see page 
48 for information on system 
variables) . The actual sequence 
depends on the value of 
RANDOMIZE. 

If RANDOMIZE is followed 
by 0 or no value. then SEED is 
given the value of another 
system variable called FRAMES, 
which counts the frames 
displayed on the television since 
the Spectrum was switched on . 
As SEED changes 50 or60 times 
a second, the sequence of 
numbers generated by RND 
follOWing RANDOMIZE or 
RANDOMIZE 0 is high ly 
random. 

If RANDOMIZE is not used, 
RND generates the same 
sequence of numbers from 
power up and after using the 
reset button or NEW. 

Format 
RANDO M IZE [int-num-expr] 

READ 
Keyboard location 
EXTEND MODE 
A 

Statement/Command 

READ is used in conjunction 
with DATA to assign values to 
variables using the values in a 
DATA statement. 

How to use READ 
READ is normally used to form a 
statement in a program. It is 
followed by one or more 



 numeric variables or string 
variables each separated by a 
comma, for example 

20 READ as,x 

When READ is first executed, it 
takes the same number of 
values as there are variables 
from the start of the first DATA 
!istand assigns the values to the 
variables in order. When READ 
is next executed, the next set of 
DATA values is assigned to the 
variables named in the READ 
statement and so on. 

For further details. see DATA. 

Format 
READ num-var Lnum-var] 
r.string -var] 
READ string-var Lnum-var] 
r,string-var] 

REM REMark 

Keyboard location 
E 

Statement 

REM is used to put remarks or 
reminders into a program. 
These may be the titre and 
author of the program, and 
explanations of lines in the 
program such as the purpose of 
a variable . The remarks play no 
part In the running of the 
program and can be seen only 
in the listing. 

How to use REM 
REM forms either a line of Its 
own in a program or the last 
statement in a line. It is followed 
by any remark that can be 
keyed in as required, for 
example 

80 INPUT nS : REM nS is name 

When the computer encounters 
REM, It Ignores everything that 
follows REM In that line. 

Format 
REM any characters' 

RESTORE 
Keyboard location 
EXTEND MODE 
S 

Statement/Command 

RESTORE is used in conjunction 
with READ and DATA to make 
READ take values from a 
particular DATA statement 
instead of the first or next DATA 

statement in the program. 

How to use RESTORE 
RESTORE normally forms a 
statement in a program. It is 
optionally followed by a 
numeric value, for example 

160 RESTORE 800 

The value following RESTORE is 
rounded to the nearest integer 
if necessary, and should then be 
the number of a line in t he 
program containing a DATA 
statement. Following RESTORE, 
the next READ statement will 
assign the values contained in 
this DATA statement. If the 
numbered line does not exist or 
does not contain a DATA 
statement, then READ goes to 
the next DATA statement after 
thiS line. 

If RESTORE is followed by 0 
or no value, then the next READ 
statement goes to the first 
DATA statement in the 
program. 

Format 
RESTORE [int-num-exprJ 

RETURN 
Keyboard location 
y 

Statement/Command 

RETURN is used to termmate a 
subroutine and return the 
computer to the main program 
or a previous subroutine. 

How to use RETURN 
RETURN is normally used to 
form a statement in a program. 
It is used alone at the end of a 
subroutine, for example 

1080 RETURN 

On execution, the program 
branches to the statement 
following the last GOSUB 
statement executed 

See GOSUB for further 
details 

Format 
RETU RN 

RND RaNDom number 

Keyboard location 
EXTEND MODE 
T 

Function 

RND is used to generate a 

random number. 

How to use RND 
RND is used alone in a 
statement or command, for 
example 

60 LET x~RND 

RND then returns a random 
number less than 1 and greater 
than or equal to 0. 

When the Spectrum is 
switched on or reset, or NEW is 
used, numbers are subsequently 
retu rned by RND in the same 
sequence. The sequence is 
generated by taking the powers 
of 75 (75, 75-75,75 - 75-75 
and so on) dividing each power 
by 65537 and using the 
remainder onlr.' then 
subtracting 1 rom the 
remainder and dividing this 
result by 65536 . 

If a more random sequence 
or another fixed sequence is 
required, then use 
RANDOMIZE before RND. 

Random whole numbers 
Many of the Spectrum's 
statements and functIons, such 
as INK and CHRS, round 
numbers to the nearest integer 
and RND may be used with 
them directly. INK RND · 7, for 
example, produces an ink 
colour at random. Others 
require integers and any whole 
number from 1 to x is given by 
INT (RNO " x)+1 . To generate a 
random integer from 0 to x, use 
INT (RND-x+0.5) 

Format 
RND 

RUN 
Keyboard location 
R 

Command/ Statement 

RUN makes a program run , 
normally from the first line. 

How to use RUN 
RUN may be used as a direct 
command or it may form a 
statement in a program _ It is 
optionally followed by a 
numeric value, for example 

RUN 50 

If no value follows RUN, then 
the program runs from the first 
line. If a value is included, it is 
rounded to the nearest Integer 
if necessary and the program 



 
then runs from this line. If the 
line does not exist, the program 
runs from the next line in the 
program. Note that RU N 
performs CLE AR before running 
the program, so that variable 
values are erased. To avoid this, 
use GOTO followed by a line 
number. 

If a program has been saved 
using LI NE. then it runs 
automatically on loading and 
RUN is not requi red. 

Format 
RUN [int-num-expr] 

SAVE 
keyboard location 
S 

Command / Statement 

SAVE sends a program to the 
cassette player in orde r to store 
it on tape. 

How to use SAVE 
SAVE is normally used as a 
direct command but may form a 
statement in a program. It is 
followed by a filename which is 
a string value , for example 

SAVE " f ilename" 

The filename may contain up to 
ten characters. On execution, 
the message 

Start tape. then press any key 

is displayed. On pressing any 
key. the program is sent to the 
cassette player and on 
conclusion . the report 0 OK. 0,1 
appears. 

Note that SAVE is used 
differently when a Microdrive is 
connected. See the Microdrive 
and Interface 1 manual for 
details. 

Automatic running 
If the stored program is to run 
automatically on loading, then 
SAVE should be used in 
conjunction with LINE. The 
program name is followed by 
LINE and a numeric value . for 
example 

SAVE "filename" LINE 1 

The value following LINE is 
rounded to the nearest integer 
if necessary, and should then be 
either 1 or the number of a line 
in the program . The program is 
then sent to tape in the same 
way as SAVE. On loading, the 
program runs automatically 

f rom the line having t he defined 
number or, if no such line exists. 
from the next line in the 
program. In practice. using LI NE 
1 causes the w hole program to 
run automatically. 

Format 
SAVE string-expr [LINE int­
num-expr] 

SAVE CODE 
keyboard locations 
S 
EXTEND MODE 
I 

Command/ Statement 

SAVE CODE sends a section of 
information in the memory to 
the cassette player to be stored 
on tape. The info rmation can 
then be placed back In the 
memory using LOAD CODE. 

How to use SAVE CODE 
SAVE CODE may be used as a 
direct command or to form a 
statement in program. SAVE is 
followed by a filename which is 
a string value and then CODE. 
which is in turn followed by two 
numeric values separated by a 
comma, for example 

SAVE "picture" CODE 
16384,6912 

The filename follOWing SAVE 
may contain up to ten 
characters . The two values 
follOWing CODE are each 
rounded to the nearest integer 
if necessary. The first then gives 
the starting address (16384 
above) of the information in the 
memory. and the second value 
(6912) gives the number of 
bytes that are to be stored. The 
Information is then sent to tape 
in the same way as a program 
with SAVE. 

The information saved by the 
above command is the screen 
display. 

Format 
SAVE string-expr CODE 
int -num-expr. int -n um-expr 

SAVE DATA 
keyboard locations 
S 
EXTEND MODE 
D 

Statement/Command 

SAVE DATA stores an array on 
tape. The array can then be 
loaded using LOAD DATA. 

How to use SAVE DATA 
SAVE DATA may be used to 
fo rm a statement in a program 
or as a direct command. SAVE is 
followed by a filename, then 
DATA. a letter or letter with S, 
and fi nally by a pair of empty 
brackets , for example 

450 SAVE "numbers" DATA 
nO 

750 SAVE "names" DATA nSO 

The array 's filename may 
contain up to ten characters . 
The letter or letterS following 
DATA is the name of the array 
in the program that is to be 
stored on tape. They array is 
then sent to tape in the same 
way as a program with SAVE. 

Format 
SAVE string-expr DATA letter 
[SJO 

SAVE SCREENS 
keyboard locations 
S 
EXTEND MODE 
SYMBOL SHIfT K 

Command / Statement 

SAVE SCREENS stores the 
screen dispay on tape. It can be 
loaded back into the computer 
at a later date using LOAD 
SCREENS. 

How to use SAVE SCREENS 
SAVE SCREENS may be used as 
a direct command or to form a 
statement in a program. SAVE is 
followed by a filename which is 
a string value and then 
SCREENS, for example 

SAVE " picture " SCREENS 

The filename may have up to 
ten characters. The display is 
then sent to tape in the same 
way as a program with SAVE. 

Format 
SAVE string-expr SCREENS 

SCREENS 
keyboard location 
EXTEN D MODE 
SYMBOL SH IFT K 

Function 

SCREENS detects which 



 
character appears at a particular 
position on the screen. 

How to use SCREENS 
SCREENS is followed by two 
numeric values separated by a 
comma and enclosed in 
brackets. for example 

160 IF SCREENS ( I , c)~ " X" 
THEN PRINT "CRASH " 

The values following SCREENS 
are rounded to the nearest 
integer if necessary. The first 
value (I above) may then range 
from 0 to 21 and gives the line 
number of a position on the 
screen. The second value (c 
above) may range from 0 to 31 
and gives the column number 
of the position . SCREENS then 
returns the character displayed 
at this position as a string 
constant (the character in quote 
marks, .. X" above for example) . 
If no character is present at the 
position , SCREENS returns a 
null (empty) string (" " ). 

Note that SCREENS may also 
be used with SAVE and LOAD 
to store the screen display on 
tape and load it from tape. See 
SAVE SCREENS and LOAD 
SCREENS for details. 

Format 
SCREENS (int· num-expr, 
int -num-expr) 

SGN SIGN 

Keyboard location 
EXTEND MOOE 
F 

Function 
SGN indicates whether a 
number is positive, negative or 
zero . 

How to use SGN 
SGN is followed by a numeric 
value, for example 

50 LET x ~ SGN y 

An expression must be enclosed 
in brackets. SGN then returns 1 
if the value of the argument (y 
above) is positive, - 1 if it is 
negative and 0 if it is zero. 

Format 
SGN num -const 
SGN num· var 
SGN (num-expr) 

SIN SINe 

Keyboard location 
EXTEND MODE 
Q 

Function 

What SIN does 
SIN gives the sine of an angle. 

How to use SIN 
SIN is followed by a numeric 
value, for example 

80 LET x~ SIN y 

An expression must be enclosed 
in brackets. The value following 
SIN is the angle in radians, and 
SIN returns tne sine of the 
angle. Degrees can be 
converted into radians by 
multiplying by P1I180. 

Note that SIN returns a 
positive value for angles 
between 0 and 180 degrees, 
and a negative value for angles 
between 180 and 360 degrees. 

Example 
The command 

PRINT SIN (30· PI / 180) 

displays 0.5, the sine of 30 
degrees. 

Format 
SIN num-const 
SIN num-var 
SIN (num-expr) 

SQ R SQuare Rool 

Keyboard locat ion 
EXTEND MODE 
H 

Function 

SQR gives the square root of a 
number. 

How to use SQR 
SQR is followed by a numeric 
value. for example 

70 LET x~SQR y 

An expressIon must be enclosed 
In brackets. The value follOWing 
SQR (y above) must be greater 
than orequal to zero. and SQR 
returns ItS square root 

Format 
SQR num-const 
SQR num-var 
SQR (num-expr) 

STEP 
Keyboard location 
SYM BOL SHIFT D 

See FOR 

STOP 
Keyboard location 
SYMBOL SHIFT A 

Statement/Command 

STOP halts a program at a 
particular point. It may be 
necessary to use STOP to end 
the main section of a program in 
order to confine subroutines to 
a separate section . STOP is also 
valuable in debugging a 
program. 

How to use STOP 
STOP is normally used to form a 
statement in a program. It is 
used on its own, for example 

650 STOP 

On execution, the program 
stops and the report 

9 STOP statement 

appears with the line and 
statement number at which the 
program halted. 

Debugs:ing procedures, such 
as displaymg and changing the 
values of variables , may then be 
undertaken. Entering 
CONTINUE subsequently 
causes the program to resume 
at the next statement with the 
new values . 

Format 
STOP 

STRS 
Keyboard location 
EXTEND MODE 
Y 

Function 

STRS converts a number into a 
string. 

How to use STRS 
STRS is followed by a numeric 
value, for example 

90 LET aS ~STRS x 

An expression must be enclosed 
in brackets. STRS then returns 
the value of Its argument (x 
above) as a string constant. If x 
were aSSigned the value of 65, 
then the above statement 
assigns as the value of "65" . 

Format 
STRS num·const 
STRS num-var 
STRS (num-expr) 



 

72 How to use TO for strinf slici n~ nearest integer and is then the 
TAB TO is used to define the irst an starting address in the memory 

Keyboard location 
last characters of a substring at which a machine code 
within a main strin g. TO is subroutine has been placed. 

EXTEND MODE preceded by a string value, an Any statement containing USR 
P openin5 bracket. then an then calls the subroutine at this 

See LPRINT. PRINT optiona numeric value. It is address and USR returns the 
followed by another optional value of the contents of the be 
numeric value and then a register pair. RANDOMIZE USR 

TAN TANgenl closing bracket. for example or RESTORE USR, for example, 

Keyboard location 80 PRINT as (4 TO 7) 
runs the subroutine only, 
whereas PRINT USR 

EXTEND MODE A string expression must also be additionallh displays the be 
E enclosed in brackets. The string register va ue. 

Function 
value (al above) is the string USR and user-defined graph ics 
that is to be sliced. The two 

TAN gives the tangent of an numeric values (4 and 7) define To create user-defined graphics, 

angle. the positions of the fi rst and last 
USR is used with POKE. It is 

How to use TAN characters of the substring 
followed by a string constant or 

TAN is followed by a numeric within the string. TO then 
variable to return an address for 
the POKE statement. for 

value, for example returns the substring <characters example 
4 to 7 of as). 

130 LET x ~ TAN Y The first numeric value has a 
50 POKE USR .. a ". 255 

An expression must be enclosed default value of 1 and the The string value following USR 

in brackets. The value followin~ second has a default value may be a single letter ranging 

TAN is the an~le in radians, an equal to the position of the last from A to U or a to u, capital 

TAN returns t e tanient of the character in the string. The first letters not being distinguished 

angle. D~rees may e value can therefore be omitted from lower-case letters. 

converte into radians by if the substring begins with the USR then returns the starting 

multiplying by Pli 180. first character in the string, and address of one of the 21 sections 

Note that TAN returns a the second value can be omitted of the memory reserved for 

bositive value for angles if the substring ends with the user-defined graphics. Each 

etween 0 and 90 degrees and last character in the string. section contains eight addresses 

between 180 and 270 degrees. 
Format 

to which eight bytes are POKEd 

For angles between 90 and 180 to create one graphics 

de~rees and angles between string-canst ([num-expr) TO character. The bytes may be 

27 and 360 degrees, TAN [num-expr)) ~iven in decimal form or in 

returns a negative value. string·var ([num-expr) TO inary form (see BIN) . 
[num-expr]) 

Format (string-expr) ([num-expr] TO Format 

TAN num-const [num-expr]) USR int-num-const 

TAN num-var USR jnt-num-var 

TAN (num-expr) 
USR UlerSubRoutine 

USR (int-num-expr) 
USR string-const 

Keyboard location 
USR string-var 

THEN EXTEND MODE 

Keyboard location 
L VAL VALue 

SYM80l SHIFT G Function Keyboard locat ion 

USR is used to call a machine EXTEND MODE 

See IF code subroutine that has been J 
placed in the memory at a Function 
specific address. It is also used 

TO to hlace the data for user- VAL changes a string with a 
de ined graphics in the reserved numeric value into a number. 

Keyboard locat ion locations at the top of the How to use VAL 
SYMBOL SHIFT F memory. VAL is followed by a string 

USR and machi ne code constant or variable, for 

Function 
To use machine code, USR is example 

TO has two different uses in 
followed by a numeric value, for 70 LETx ~ VAL aS 
example 

Sinclair BASIC. It is used in 80 PRINT USR 65000 The value of the string constant 
conjunction with FOR to set up 100 RANDOMIZE USR 65000 or variable is stripped of its 
a FOR NEXT loop (see FOR for quote marks, and must then be 
details) and it is also used in An expression should be a numeric value. VAL evaluates 
string slicing (the splitting up of enclosed in brackets. The value this, returning it as a numeric 
strings in to smaller substrings). follOWing USR is rounded to the constant. 



 
Examples 
If as has the value "435", then Command / Statement 73 

the above statement assigns a VERIFY checks that a program 
value of 435 to x. However, has been correctly stored on 
VAL can also evaluate tape following SAVE. 
expressions, for example How to use VERIFY 
10 INPUT as,x VERIFY is normally used as a 
20 PRINT VAL as direct command in exactly the 

The string value that is assigned 
same way as LOAD and is 
followed by the program name, 

to as should be an expression for exame!e 
using x, for exam~le " x·x " . A 
numeric value is t en assigned VERIFY " filename" 
to x, for exam~le 5. VAL strips When the tape is started. the 
the quotes of t e string value to name of every program found is 
~t x.x and evaluates it using displayed and any program on 
t e value assigned to x, tape having the same name is 
displaying the result 25. compared with the program in 

Format 
the memory. If the two are 

VAL string-canst 
found to be the same. the report 

VAL string-var o OK, 0:1 

is given . 

VAL$ VAlue (rtringl 
VERIFY is used differently 

when a Microdrive is connected. 
Keyboard location See the Microdrive and 
EXTEND MODE Interlace 1 manual for details. 
SYMBOL SHI fT J VERIFY CODE and VERIFY 

Function DATA 
VERIFY CODE can be used in 

VALl evaluates a string as a exacty the same way as LOAD 
string expression. CODE to verify that a section of 
How to use VAL$ memory information has been 
VALl is followed by a string stored on tape. V ERIFY DATA 
variable. for example w orks in the same way as LOAD 

130 PRINTVAlS aS 
DATA to check that an array has 
been stored on tape. See LOAD 

The value of the string variable CODE and LOAD DATA for 
is stripped of its quote marks. further details. 
and must then be a string 

Format expression , VALl evaluates the 
exFtression and returns the VERIFY string-expr 
va ue as a string constant. VERIFY string-expr CODE 

Examples 
[int-num-expr] [.int-num-exprJ 
VERIFY string-expr DATA 

Try this program letter[SJO 
10 INPUT aI,xI 
20 PRINT VAlS as 

The string value that is assigned VERIFY CODE 
to as should be an expression keyboard location 
usingxS. for example " XS + XS ", EXTEND MODE 
A strinfc value is then assigned SYMBOL SHIFT R 
toxl. o rexample " DO " . VALS EXTEND MODE 
strips the quotes of the value of I 
as to get xS+ xS and evaluates 

See VERIFY it using the value assi~ned to 
XS . displaying the resu t DODO. 

Format VERIFY DATA 
VALl string-var 

keyboard locat ion 
EXTEND MODE 

VERIFY SYMBOL SHIFT R 
EXTEND MODE 

keyboard location D 
EXTEND MODE 

See VERIFY SYMBOL SHIfT R 



 

ZX SPECTRUM + 
SCREEN REPORTS 
When the Spectrum stops execution of 
BASIC, a report appears at the bottom of the 
screen . This indicates that a command or 
program has been completed or that an 
error has occurred . Each report consists of a 
code number or letter followed by a brief 
message and then the numbers of the line 
and statement at which the computer 
stopped . A command is shown as line 0 and 
w ithin a line, statement 1 is althe beginning 
of the line, statement 2 is after the first colon 
or TH EN , and so on. CONTINUE normally 
causes the program to resu me at the 
statement spedfied in the report . 

o OK 
Successful completion. or an attempt to jump to a 
fine number greater than any in the program. 
CONTINUE disregards this report and resumes at 
the statement specified in the previous report. 

, NEXT without FOR 
NEXT has been encountered w ithout a 
corresponding FOR and a variable exists with 
the same name as the control variable. 

2 Variable not found 
A simple variable has been used without assigning 
it a value or loadIng the value from tape, or a 
control variable has been used with NEXT without 
first setting it up in a FOR statement, or a 
subscripted variable has been used before 
dimensioning the array with DIM or loading an 
array from tape. 

3 Subscript wrong 
A subscript is beyond the dimensions of the array. 

4 Out of memory 
There is not enough memory space left to 
complete the statement or command. 

5 Out of screen 
INPUT has generated more than 23 lines in the 
lower part of the screen, or a line numberof 22 or 
more has been used with PRINT AT. 

6 Number too big 
The computer has tried to produce a number 
greater than about 1038 . 

7 RETURN without GOSUB 
The numberof RETURN statements is one greater 
than the number of GOSUB statements. 

8 End of file 
Microd rive file -handling report . 

9 STOP statement 
STOP has been used to halt the program. 
CONTINUE will resume at the next statement. 

A Invalid argument 
A function has been given a wrong argument or 
value. 

B Integer out of range 
A value has been rounded to the nearest integer 
and is out of the range that can be accepted. 

C Nonsense in BASIC 
The text of the (string) argument does not fo rm a 
valid expression. 

D BREAK - CONT repeats 
BREAK has been pressed. CONTINUE will repeat 
the statement at which the computer stopped. 

E Out of DATA 
READ has tried to read beyond the end of the final 
DATA statement in the program. 

F Invalid file name 
SAVE has been used with a name containing 
more than ten characters. 

G No room for line 
There is not enough memory space left to enter 
the new program line. 

H STOP in INPUT 
STOP has been entered in response to INPUT or 
began the data entered. CONTINUE repeats the 
INPUT statement. 

I FOR without NEXT 
A FOR NEXT loop has not been carried out 
because the limits or STEP value were wrong (for 
example, FOR x= 5 TO 0 without STEP) and the 
corresponding NEXT has not been found . 

J Invalid I/O device 
Microdrive fi le-handling report . 

K Invalid colour 
The value specified for INK, PAPER, FLASH, 
BRIGHT, INVERSE or OVER or the corresponding 
control character is out of range. 

L BREAK into program 
BREAK was pressed. The report specifies the last 
statement to be executed and CONTINUE 
resumes at the next statement. 

M RAMTOP no good 
The value specified for RAMTOP is either too big 
or too small. 

N Statement lost 
A jump has been attempted to a statement that 
no longer eX ists. 

o Invalid stream 
Microdrive file -handling report 

P FN without OEF 
An FN statement has been used without the 
corresponding DEF FN statement. 

Q Parameter error 
An FN statement contains the w rong number of 
values to be passed to the funct ion, or one of the 
values is the wrong type (a string instead of a 
number or vice versa) . 

R Tape loading error 
The loading, merging or verificat ion procedure 
has failed . 



 

BEYOND BASIC 
BASIC is an all-purpose computer language 
which works very well for most applications. 
However, it is not the only computer 
language that you can use on the Spectrum. 
Software that provides other languages, 
such as FORTH, micro-PROLOG and 
LOGO, is available . These languages work 
in a very different way to BASIC and open up 
new possibilities tor your computer. 

Because BASIC is an all·purpose language, 
it can be rather cumbersome in some 
applications. It is also comparatively slow. 
Other languages can give greater flexibility 
combined with simplicity of programming 
and faster running speed. FORTH, for 
example, allows you to define your own 
words and use them in the instructions that 
the computer understands and which it 
executes about ten times as fast as the 
equivalent commands in BASIC. With micro­
PROLOG, the computer will understand 
simple English phrases. It stores these in its 
memory as a basis for dialogue with the 
user. LOGO is a computer language 
developed for educational use. It features 
very simple commands which can be used in 
a highly flexible way . However, if you want 
to write really fast programs for your ZX 
Spectrum +, you will need to understand 
how to program in machine code. 

Machine code 

BASIC is used to enable you to give 
instructions to the computer in a form that is 
easy for you to understand . The Spectrum 's 
CPU - the powerful Z80A chip - does not in 
fact understand BASIC. A section of the 
memory contains a permanent program 
called the BASIC interpreter that converts 
your BASIC instructions into a sequence of 
code signals. These codes actually drive the 
Z80A to perform your instructions. 

The interpreter takes some time to 
translate your BASIC instructions into the 
Z80A code or machine code, as it is called . 
However, you can bypass the BASIC 
interpreter if you wish and send machine 
code directly to the Z80A. Your program will 
then be carried out very quickly. The price 
that has to be paid for this is the extra time 
needed to write the machine code program. 
Unlike BASIC, it is a very 'unfriendly' 

language, meaning that it takes quite a time 
to learn . Machine code programming is 
outside the scope of this guide. However, 
there are many books available which teach 
Spectrum machine code to an advanced 
level. To get just a taste of the speed of 
machine code, key in and run this short 
demonstration program. 

Try any I 
1 to see how stripes change. 
You can also produce coloured stripes by 
using an INK command first. However, this 
is not the point of the program. See how fast 
the display is produced by using machine 
code - it is virtually instantaneous. BASIC 
takes over two seconds to fill the screen . 

This program works because the DATA 
statements contain 16 codes that are stored 
at address 65000 onwards in the memory by 
lines 10 to 30. Line 70 sends the codes to the 
Z80A and the display is produced right 
away . Note that the eighth code controls the 
width of the stripes. 

Many of the games that are available for 
your Spectrum are written in machine code 
to produce this ultra·fast action. To help you 
write machine code, programs called 
assemblers are available. These provide 
instructions that you key in instead of just 
numbers, which is what machine code itself 
requires. The instructions are not English 
words like the keywords BASIC, but 
abbreviations or mnemonics which 
represent the operations that the computer 
must undertake. You must therefore have 
an understanding of how the computer 
works on a step-by-step basis before you 
can use assembly language. 



 

COMPUTER JARGON 
- WHAT IT MEANS 
Many words that are used in computing are 
also used in everyday life but with different 
meanings. Here are explanations of some of 
these words that appear in this book, 
together with special computing terms. 
Words in italics have explanations 
themselves. If there is a word or term in the 
book that you can't understand and it is not 
here, try looking it up in the index. 

Address A single unit of the memory. There 
are 65536 addresses in the ZX Spectrum +. 
Argument A value that is used by a function 
to get a result. 

Array A group of related data that is held 
together in one section of the memory. 

Attributes Codes that give the colours of 
characters. 

BASIC The computer language used by the 
ZX Spectrum + and most other home 
microcomputers. 

Binary code The kind of code that is used by 
computers. It consists of sequences of on or 
off states - for example, on-off electric 
pulses. 

Bit An on or off state in binary code. Short 
for binary digit. 

Byte A set of eight bits that represents a 
number having a value from 0 to 255 . Each 
address in the memory holds one byte. 

Character Any single letter, numeral (0to 9), 
sign or graphics unit that can be displayed or 
printed . 

Character set The complete set of preset 
characters and certain control codes used by 
the computer. 

Command A single instruction that is carried 
out by the computer, or a direct command 

Concatenation The combining of strings by 
adding them together. 

Constant A number or a group of one or 
more letters or any other characters. 

CPU (Central Processing Unit) The central 
part of the computer that does the 

com puting and controls the other units. The 
ZX Spectrum + uses a Z80 microprocessor. 

Cursor The position on the screen where 
something is to be displayed next. It may be 
marked by a flashing sign indicat ing the 
mode that the computer is in . 

Data Information that the computer either 
gets from a program or that is fed into the 
computer in order to produce results. 

Direct command A set of one or more 
instructions that is carried out immediately 
it is given to the computer. 

Edit To change details within a program. 

Enter To give a completed instruction or 
information to the computer. 

Expression A combination of constants, 
variables and keywords. 

False Any state or result that the computer 
decides is untrue or incorrect. False has a 
numeric value of 0. 

Function An operation in which the 
computer takes one or more values (or 
arguments) and uses them to give a result 
that is another value. 

Graphics The production of images such as 
pictures, charts or diagrams by the 
computer. 

Hardware The computer itself and any 
associated devices or machines, such as 
peripherals. 

Information Words, numbers and signs in 
any combination that the computer is 
required to handle. 

Input Programs and data fed into the 
computer. 

Interface A unit that connects the computer 
and/ or peripherals together and which 
ensures that they can communicate with 
each other. 

K A measure of the memory capacity of a 
computer. 1K is equal to 1 kilobyte or 1024 
bytes. The memory capacity in K is equal to 
the total number of addresses in the 
memory, each of which can store one byte . 
The ZX Spectrum + has a 48K RAM and a 
16K ROM, giving a total of 64K. 



 
Keyword A computer instruction in BASIC. It 
may require some values to work. 

line An instruction or set of instructions in a 
program. It is given a number so that it is 
carried out at the correct point in a sequence 
of other lines. 

listing The lines of a program listed in order. 

load To feed a program or data into the 
computer from a storage device such as a 
cartridge or cassette. 

logic The process by which the computer 
decides whether results are right or wrong, 
or states are true or false. 

l oop A section of a program that is repeated 
one or more times. 

Machine code The language that the ZX 
Spectrum + understands. Programs in 
BASIC are translated into machine code by 
the computer as it runs them . 

M emory The part of the computer that 
holds the program and data when required, 
and also the permanent operating 
instructions. 

Mode In the Spectrum, one of five states 
which dictate which keywords and 
characters can be produced by each key on 
the keyboard. During programming, mode 
is indicated by a flashing letter within the 
cursor. 

Nesting The arrangement of loops within a 
program so that one or more loops are 
carried out within another. 

Numeric variable A variable that holds a 
number. Numeric variables consist of one or 
more letters. 

Operator An instruction that performs 
arithmetlc or logic. 

Output Results produced by the computer. 

Peripheral Any device that is connected to 
the computer. 

Pixel The smallest dot of colour that can 
appear on the screen . Short for 'picture cell' . 

Print Either to dISplay results or graphics on 
the screen or to print them on a printer. 

Program A sequence of instructions to be 
carried out by the computer. 

RAM (Random Access Memory) The part of 
the memory that can be given a program 
and data , and other changing values. Also 
known as volatile memory. RAM contents 
are erased when power is disconnected. The 
ZX Spectrum + has a 48K RAM . 

Register A small memory unit separate from 
the main memory. Registers within the CPU 
are used to carry out the process of 
computing. 

Report A message displayed by the 
computer reporting its actions. 

Resolution The degree of detail possible in 
computer graphics. 

ROM (Read O nly Memory) The part of the 
memory containing permanent programs 
and instructions for the computer. The ZX 
Spectrum + has a 16K ROM. 

Save To store a program or data in a storage 
device such as a cartridge or cassette. 

Scroll The movement which enables a 
display that exceeds the size of a single 
screen to be viewed . 

Software Any program, including 
permanent programs in ROM or cartridges. 

Statement Either a keyword that is used to 
form an instruction in a program line, or the 
instruction itself. 

String A group of one or more characters 
enclosed in quotes to distinguish them from 
numbers and numeric variables. 
String variable A variable that holds a string. 
String variables always consist of a single 
letter and the 5 sign . 

Syntax The correct sequence of keywords, 
constants, variables and expressions 
requ ired to form a valid BASIC instruction . 

True Any state or result that the computer 
decides is true or correct. True has a numeric 
value of 1. 

Value Any number or a string that may be 
given or represented by a constant, variable 
or expression. 

Variable One or more units of the memory 
that hold a particular constant for use by the 
computer. Each is given a name or letter to 
identify It easily. The ZX Spectrum + 
dis tinguishes between numeric variables 
and string variables. 



 
television 4 UST21 

INDEX Cursor controls 19 llstln8s8,21 
LOA 14-16 

DATA 33 loadln~ 13, 14-15; 14-16 
DELETE 10 logic c IpS 43 

Page numbers In Italic refer to DRAW 28-9 LOGO 75 
Illustrations and captions Loops 26-7, 30 

EAR Socket37; 5, 13 loudspeaker 43 
Aenal socket and leads 4-5 Edge connector 5, 43, 47 low· resolution graphiCS 26-7 
Altenng programs 9 EDIT 18, 21 
Amplifying sound 37 program lines 21 Machine code 75 
Ammatlon 34-5 ENTER9, 1O, 11, 19 ManiC mosaic program 10 
Anthmetlc operators 22; 22 Entenng programs 8-9 Memory 12, 42, 43, 44-8 
ATIR35 Errors, correcting 10, 21 Memory map 48 

screen reports 74 M IC socket 37, 5, 13 
Barcharts 25; 25 EXTEND MODE 8, 21 , 18 Mlcrodnves 46; 5, 46 
BASIC 1 B, 49-73 extended mode 21 , 20 cartridges 12, 45 
BEEP 36,18 loadln~46 
BIN 33 FLASH 31 Mlcro-P OlOG 75 
Binary code 44 Flashing CIrcles program 9 Mistakes, correcting 10, 21 
Bordercolour 24-5; 6 FOR NEXT26-7, 29, 30, 31 , 34 Modems 46 
BounCing ball program 35 FORTH 75 Modes20-1 
Brackets 23 Fulislop23, 51 Multiplication table program 23 
BREAK 19 Functions 50 Muslc36-7 
BRIGHT31 

GOT023 Names program 8 
Calculattons22-3, 22, 23 GRAPH 21 , 18, 26 NEW11 , 12; 18 
Capitals mode 21 ,20 GraphiCS, animation and, 34 -5 New programs 11 
CAPS LOCK 21 , 18 colour 24-5 9VDC socket 5, 43 
CAPSSHIFT8, 21,18 creating characters 32-3 Number keys 19 
Cartndges, Mlcrodnve 12, 46, 46 filling In shapes 29; 29 Numbers SO 

ROM12,47, 47 hlgh-resolubon 26, 28-9 
Cassette players, as amplifiers 37; low-resolution 26-7 Paper colour 24-5 

37 patterns 30-1 Patterns program 9 
chOOSing 12 random effects 30 Penpherals 45, 46-7 
connechons5, 13,13 Grahlcs mode 21 ,20 Pictures, designing 30-1 
counters 14 Gn , high-resolution 28, 80 low-resolution 26-7 
loading programs 14-16 low-resolution 26, 80 Pitch. musical 36 
saving programs 38-40 Hardware, definition 12 Pixels 28 
tone controls 14. 15, 16 High-resolution graphiCS 26, PLOT 28 
volume controls 14. 15. 16 28-9 POint 23, 51 

Cassette tapes 12, 44, 45 POKE48 
care 01 12 IF THEN 29 Polyhedra program 10 
labelling 14 Ink colour 24-5 Powersupply4, 5; 5, 43 
soundof 12 INPUT 23 , 29 PRINT 22 
stora~e 12 Input-output pathways 45 Pnnters 45, 47; 45. 47 

Centra Processing Unit (CPU) Interiaces45,46-7 pro~ram lines, deleting 21 
43 ,44,48, 75, 43, 45 INVVIDEO 18 e Itlng 21 

Characters, creating 32 -3 INVERSE 31 Programming 17 -40 
selecting 20 Programs, altering 9 

Character set 51 Joystlcks45,47 beginning new 11 
Chessboard program 33 correcting mistakes 1O 
Ch.ps42 3 Keyboard 18-19 entering 8-9. 44 
CIRCLE 28 graphiCS characters 26 loading 12, 13, 14-15; 14-15 
ColliSions 34-5 modes 20-1 restarting 10 
Colon 23 , 51 KeYing In 8, 9 running 8 -9, 44 
Colour24-5 . 24 ·5 Keys 18-19, 18-19 saving 13. 38 -40 

codes 24 operating 20-1 .20· 1 ventylng39 
control codes 33 Keyword mode 20. 20 Punctuation SIgns 23, 51 
combinations 25 Keywords918-19, 50. 52 -73 Pyramids program 31 
dlspld' keys 19 20-1 
mlxe 32 selecting 19, 20 Quote mark 23, 51 
testing 6; 24 

Comma 23 , 51 LET23 RadiO Interference 4 
Commands 22, 50 letter mode 21 , 20 Rainbow program 26-7 
ConnectIons 5 llnes8 RAM (Random Access Memory) 

cassette player 13 deleting 21 42, 4B, 42, 45 
power 5 ed!tlng 21 RAM packs 4 



 
Sockets 5 
Software 12 

RAMTOP 48 
Random effects 30 
READ 33 
Ready-ta -run software 12 -13 . 

13 
REM 39 

loading 14·16; 14· 16 
ready- ta-run 12 ·13,13 
sUitabihty 12 

sUitability 4 
tumng6.6 

Tone controls, cassette player 
12,14,15 

TRUE VIDEO 18 
types 12 

Reset button 11, 12 . 5 
Restarting programs 10 
RIbbon cable 46 
RND26,30 

Sound effects 36-7 
Spacebar 19 
Squares program 30 
Star program 28 

Tuning teleVISion sets 6; 6 
TV encoder 42 

Uncommitted LogiC Array (UtA) 
42 

ROM (Read Only Memory) 48, 
43,45 

Stars and stopes program 11 
Statements 22 . 50 User-defined characters 80; 32-3 

ROMcartndges 12. 47 , 46-7 
RS232mterface 47; 45 
Running programmes 8·9 

STEP 29 
Storage 44, 45 
Stnngs22 
Subroutines 30-1 

Vanables22 -3. 50 
Voltage regulator43 

SAVE 38·9 
Saving 13. 38-40 
Screen reports 74 
Scrol lingB 

SYMBOL SHIFT 8, 21; 19 
Symbols, selecting 20 
Symmetrical patterns program 30 
System vanables 48 

Volume controls. cassette player 
12,14,15 

l80 mtcroprocessor43. 75: 45 
lX Interface 1 45. 46-7 

SemlCoron23.51 
Shapes, filling in 29: 29 
Shimmering sunnse program 11 
Signs. calculations 22. 50 

selecting 19 

Tapes 12,45 
care of 12 
labelling 14, 39 
sound of 12 
storage 12 

lX Robot program 27 
ZX 16K RAM 4 

Sinclair BASIC 49-73 
Sketchpad program 29 Television, connecting 5 

First published 1984 by Darling Kindersley 
Ltd, 9 Henrietta Street, London WOE 8PS 
in association with Sinclair Research Ltd , 
25 Willis Road, Cambridge 

Copyright © 1984 by Sinclair Research Ltd 
and Darling Kindersley Ltd, London 
Illustrations copyright © 1984 by Darling 
Kindersley Ltd, London 

Third printing 1984 

All rights reserved. No part of this 
publication may be reproduced, stored in a 
retrieval system, or transmitted in any form 
or by any means, electronic, mechanical, 
photocopying, recording, or otherwise, 
without the prior written permission of the 
copyright owners. 

British Library Cataloguing in Publication 
Data 

Ardley, Neil 
ZX Spectrum + User Guide 
1. Sinclair ZX Spectrum + (Computer) 
I. Title 
001.64'04 QA77.8.5625 

ISBN 0·86318·080·9 

Editor David Burnie 
Art Editor Peter Luff 
Designer Debra Lee 
Photographer Trevor Melton 
Screen·shot photographer Vincent Oliver 
Managing Editor Alan Buckingham 

Typesetting by The Letter Box Company 
(Waking) Ltd, Woking, England 
Reproduction by A. Mondadari , Verona 
Printed and bound in Italy by 
A Mondadori, Verona 

sinclair ZX Spectrum +, ZX Microdrive 
and ZX Interface are Trade Marks of 
Sinclair Research Limited 



 

The low- and high-resolution screen 
The grid below shows coordinates for both 
low-resolut ion and high-resolution graphics. 
Although individual graphics keywords work 
with either low- or high-resolution coordinates 
only, you can use both low- and high-resolution 
keywords when producing a display. 

The low-resolution grid is divided into two 
parts, the main display area and then two Jines 
at the bottom of the screen . PRINT AT will 
produce characters in the upper part and 
INPUT AT in the lower part. The coordinates for 
the low-resolution screen are shown on the top 

and left sides of the grid. 
The high-resolution grid occupies only the 

main display area. PLOT, DRAW and CiRCLE 
are used to produce high-resolution graphics. 
The coordinates for high resolution are shown 
on the bottom and right sides of the grid. 

In low resolution, each square on the grid is 
treated as a single unit. In high resolution, each 
of the 64 pixels that make up the square can be 
separately controlled. The pixels can also be 
programmed individually to make up a user­
defined graphics character (see bottom grid). 

columns 
o 1 2 3 4 5 6 7 8 9 10 l' 12 1l 14151617 18 19 2021 22 2324 25 26 27 2829 3031 75 

1 
o 
1 

2 

l 

5 

6 

7 

8 

9 

10 

1 

2 

l , 
5 

6 

7 

8 

9 

0 

2 1 

1 

1 

1 

1 , 
, 
, 

" OJ 

52 

" .. 
n 
20 

11 , 
'" 96 

88 ., 
7 

~ 

~ , 

1 
1 6 

o 

8 '6Ma.~~~nW~%."1'm'n,~*m~~m_m~~1~gm_m_ 

horilonul coordinilltes 

User-defined graphics grid 
To define a character, pencil in a design on this 
grid using whole squares only. Then, working 
row by row, add together the numbers above 
each square that you have filled in . Each row 
total should then be noted in the column on the 
right. Repeat this until you have a total for each 
rowan the grid. Then, using the techniques on 
pages 32-33, you can program the computer to 
use these numbers to proauce a character. 

128 " II 16 8 , 2 1 Row tota l 



 

"(This) is foreveryone ... 
The method ofteaching is 

foolproof, and is guaranteed 
to increase the value and 

pleasure Spectrum-owners 
will get from their 

machines." 

NIGEL SEARLE 
Managing Director 

Sinclair Research Ltd 

• 
Learn BASIC the easy way­
with this completely new 

teach-yourself programming 
course specially for the LX 

Spectrum + 
• 

Full-colour "screen-shot" 
photographs show on the 

page exactly what you see on 
your own TV screen. 

• 
Packed with techniques for 

using colour, graphics, sound, 
special effects and animation . 

or by 



 



 



 



 

~ 
~ o 
LL 
~ 
w o 
~ o 

Send to: Dorling Kindersley Bookshop, FREEPOST, 9 Henrietta Street, London WC2E 8BR 
Qty Title Code Price· Total 

Step-by-Step Programming for ZX Spectrum+ Book One 1501 £6.95 

Step-by-Step Programming for ZX Spectrum + Book Two 1502 £6.95 

Very Basic BASIC - ZX Spectrum 1503 £3.95 
30 Hour BASIC - ZX Spectrum Edition 1504 £7.95 

The Spectrum Book of Games 1505 £6.95 

40 Educational Games for the Spectrum 1506 £6.95 

Spectrum Graphics and Sound 1507 £7.95 

Spectrum Machine Language for the Absolute Beginner 1508 £7.95 

Spectrum Machine Code 1509 £6.95 
Make the Most of Your ZX Microdrive 1510 £5.95 

100 Programs for the ZX Spectrum Book 1511 £7.95 

100 Programs for the ZX Spectrum Cassette 2501 £12.50 

*AII prices include VAT (where applicable) and postage and packing. 

Please send me the titles listed above. I enclose my cheque/postal order for £ ___ _ TOTAL £ IL..--_---' 
made payable to Darling Kindersley Ltd . 
(BLOCK LEITERS PLEASE) 

Mr/Mrs/Miss/Ms ____ _ __________ _ 

Address _______________ _ 

________ Postcode Signature __________ _ 
Please allow 28 days for delivery. Offer applies to UK and Eire only. 


