

Dragondata.co.uk

An Introduction to
BASIC programming

using the DRAGON
 Data Ltd

micro computer

By Richard Wadman

First printing 1982

ISBN 0 95 08079 0 7

(C) 1982. DRAGON Data Limited

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means electronic, mechanical,
 photocopying, recording, or otherwise; without the prior permission of the
publisher.

This book is sold subject to the condition that it shall not by way of trade or
otherwise, be lent, resold, hired out, or otherwise circulated without the
publisher's prior consent in any form of binding or cover other than that in
which it is published and without a similar condition being imposed on the
subsequent purchaser.

Acknowledgements
The author and DRAGON Data Ltd wish to thank Professor A. G. Hawkes of
University College Swansea for his assistance, and Mrs. Dianne Mowat for
typing a difficult manuscript.

OPERATING INSTRUCTIONS

Having opened the box and found this manual you should also have found:
 1. Your Dragon 32 computer
 2. A mains power unit
 3. A TV connection cable.

In addition to these items you will also need an ordinary home television set.
Your Dragon 32 Computer will work with either a colour, or black and white
TV. However, to obtain the full colour graphic ability of your Dragon 32, you
will have to connect to a colour TV. This is all that is required to get your
Dragon 32 working.

You can, however, improve the capabilities of your machine by adding the
following options:
 1. A cassette recorder to store programs and data
 2. A printer
 3. Joysticks for games playing
 4. Disc drives for mass storage of programs and data.

None of these options are necessary, but a cassette recorder will save you
a lot of repetitive typing.

i

KEY

1. TV SOCKET
 Connection to standard television serial socket.

2. RESET BUTTON
 Used to reset computer to initial state. Stops running program, or
 input/output operations, immediately. Any program currently in memory
 is still present after pressing reset.

3. LEFT JOYSTICK

4. RIGHT JOYSTICK
 For both 3. and 4. 5 pin DIN sockets used for connecting joysticks,
 available as optional accessories.

5. CASSETTE INPUT/OUTPUT SOCKET
 5 pin DIN socket for connection of cassette recorder. Connection lead
 available as accessory.

6. PARALLEL PRINTER PORT
 Connection for a centronics type printer via a standard centronics cable.

7. PROGRAM CARTRIDGE SLOT
 Used for games cartridges. Cartridge must be inserted with the computer
 switched off.

8. POWER PACK SOCKET
 For connection of supplied mains power unit.

9. MONITOR SOCKET
 For connection of colour monitor.

10. ON/OFF SWITCH
 Controls mains power supply to computer.

ii

iii

CONNECTING YOUR DRAGON 32

1. Connect the TV connection cable to the serial socket of the Television and
 to the TV socket 1 on the Dragon 32.

2. Connect the mains power unit to the power pack socket 8 on Dragon.
 The other wire from the mains unit should be plugged into a 3 pin wall
 socket.

3. Switch on the TV and computer.

4. Using a spare channel on the TV set, adjust the tuning until the screen
 shows a green square with a black border, (or light grey square with a
 black border if the TV is a black and white set).

 In the green square will be a message as follows:-

 (C) 1982 DRAGON DATA LTD
 l6K BASIC INTERPRETER 1.0
 (C) 1982 BY MICROSOFT

 OK

 Your computer is now ready to use.

USING PROGRAM CARTRIDGES

Connect your Dragon 32 to the TV as above. Before switching on the computer,
insert the cartridge with the label facing upwards, into the Program Cartridge
slot 7

Please ensure that before inserting or removing a program cartridge the
computer is switched off. Failure to do so many damage both the cartridge and
your computer.

USING GAME JOYSTICKS

Various types of joysticks are available as option accessories. The joysticks
for use with your Dragon computer should be of the potentiometer type.
To connect the joysticks just plug into the joystick sockets 3 and 4.

USING A CASSETTE RECORDER

Any reasonable quality cassette recorder can be used to store programs and
data from your Dragon 32. The cassette recorder must have sockets for
remote control, earphone, and auxiliary input. Connection leads are available

iv

as accessories for most standard cassette recorders. The connection to the
computer is at socket 5. The connections to the cassette recorder will depend
on the type of cassette. See chapter 4 of the Programming Manual for
instructions on how to use the cassette recorder.

TAKING CARE OF YOUR DRAGON

1. Keep all liquids well away from your computer. Your Dragon does not
 work as well on tea and coffee as you do.

2. Ensure all loose wires are kept out of harms way. An accidental trip
 could be expensive.

3. Make sure all plugs are firmly in their sockets before switching on.

4. Switch off everything and disconnect the machine when not in use.

5. To clean the case and keyboard, first disconnect unit completely from the
 power supply. Using a slightly damp cloth, wipe the case and keyboard.
 Do not use any spirit based cleaners.

v

CONTENTS

CHAPTER

 1. GETTING STARTED.
 The keyboard � Use as a calculator � Arithmetic Rules OK �
 Printing words. (1)

 2. WHAT'S IN A NAME.
 Constants � Variables � Naming Variables � Assigning values
 to variables � Strings and numbers do not mix � Command
 summaries. (9)

 3. A PROGRAM AT LAST.
 Putting in a program � Step by Step � Making changes �
 Program construction � A programming example. (15)

 4. GOOD HOUSEKEEPING.
 Setting up the recorder. Storing a program on tape � Loading
 programs into memory � Saving more than one program �
 Hints on reliable recording � The Editor � Moving down the
 line � All change � More system commands. (35)

 5. GOING PLACES.
 Selecting options � Decisions � Do it again, and again �
 Wheels within wheels. (47)

 6. NEW DIMENSIONS.
 Lists and Tables � What's its function � D. I. Y. functions �
 Alterations to Input � Pause for Reflection. (63)

 7. GETTING THE POINT ACROSS.
 Printing pictures � Moving pictures � A new resolution. (81)

 8. MOVING TO A HIGHTER PLANE.
 In the mode � Familiar Friends � Draw the line, somewhere �
 A splash of colour � Going round in circles � Turning the
 page. (91)

 9. SOUNDS ELECTRIC.
 Adding a sound track � Play that thing! (109)

10. FURTHER GRAPHICS.
 Drawing � Get the picture. (117)

vii

CHAPTER

11. THE FINISHING TOUCH.
 Print extras � Cassette Input and Output � A bit more. (127)

Appendix A ASCII character codes. (136)

Appendix B Print and Graphic screens. (139)

Appendix C Error codes. (143)

Appendix D Trigonometric functions. (145)

viii

INTRODUCTION

This book is designed for those who wish to learn to program their DRAGON
32 computer using the BASIC language.

The BASIC language is an extremely powerful programming language, but at
the same time is very easy to learn. It is made up from less than 100
statements, which is less than 1 % of the average individual's vocabulary.

While programming may appear to be difficult at first, as with any new skill,
it is really solving a problem in a logical number of steps. The secret is
to take your time and make sure you understand the last step before trying the
next one. Do not be worried by the fact that you will make mistakes, this is
part of the learning process. You will not break your computer by making a
programming error, just find the mistake, correct it and carry on. Try your
own ideas � the "what if I do this" approach can be a very quick way of
finding out just what your machine is capable of. Enter and run each example,
not only to see what it does, but why it does it.

With time and patience you will find your computer is not just a
cartridge-playing games machine. Programming can become an absorbing and
enjoyable activity in itself, apart from the fun the results of it may give.

To aid beginners in understanding and developing BASIC programs, a small
Dragon is printed in the margin next to items that should be noted carefully,
as these rules are particularly important to remember.

lf you have used BASIC before then you should look out for the twin Dragon
symbol; these indicate special features of Dragon BASIC.

ix

CHAPTER ONE

GETTING STARTED

THE KEYBOARD

You have set up the computer according to the instructions and are now ready
to start. So switch on, your TV screen should show a GREEN square with a
message. (lf it does not, switch off and check all the connections again). The
message will depend on the type of machine, whether or not disk drives are
connected etc. � so we will not worry about it. The last line, however, is
always the same.

OK

OK is the computer's "prompt", telling you it is ready to receive instructions.
You have to wait for the prompt to appear before you can type anything.
Below the OK is a flashing square � this is called the cursor. It shows you
where you are on the line.

Now look at the keyboard: it looks like a typewriter with some extra keys. It
behaves like a typewriter too, just press a few keys and you will see the letters
appear on the screen. Notice how the cursor moves over after each letter to
show you where you have got to. If you press [SHIFT] and 0 (zero) together
and carry on typing you will see that the letters on the screen have changed to
green on a black background. Throughout the book we will use 0 to represent
zero, to distinguish it from the letter O. The computer is very fussy about the
difference. These are lower case letters (i.e. small a, b, c, d); BUT they will
only appear as lower case on a PRINTER. ALL your commands or
instructions to the computer must be in UPPER CASE leters (capital) � so
press [SHIFT] and 0 together again and type some more. You should now be
back to black letters on a green background.

Now try the [�] key. This is the backspace key, as you press it the cursor
moves back along the line and the letter immediately to the left of it
disappears. This is useful for correcting mistakes, just backspace to the wrong
letter and retype.

To clear the screen completely press [CLEAR]; everything is cleared from
the screen and the cursor moves to the top left hand comer. [CLEAR] only
clears the screen, information stored in the computer is not affected.

1

Practise using the keyboard for a while to get used to the position of the
keys and how to correct mistakes. Then clear the screen and make sure you
are in upper case mode.

DRAGON THE CALCULATOR

Your computer will work in two different modes � immediate, it will obey the
command at once, and deferred, it will store a set of instructions and then
run them as a program. In the immediate mode the computer behaves like a
calculator.

The computer understands a language called BASIC. In BASIC there are a
number of special words to tell the computer to do certain things. For
instance, PRINT, this not surprisingly means print what follows on the
screen.

Try it, type PRINT 12 + 7 then press the [ENTER] key; the screen should show

19
OK

Try another, type PRINT 12 + 8/2 then press [ENTER]

16
OK

If you made a typing mistake you probably got a message �

? SN ERROR

This means a 'syntax error', that is the computer does not recognise
something, usually because it has been spelt wrongly. The computer will
give error messages when it does not understand the command, and sometimes
when it does understand the command, but feels that what it has been asked
to do is illogical or impossible.

Type PRINT 3/0 then press [ENTER]

The message will be

?/0 ERROR

which means an attempt to divide by zero has been made � which is
impossible.

The error messages are rather terse to save space, but a full list with
probable causes is given in Appendix C.

2

To return to syntax errors, the computer is very fussy about the spelling of
its special words in BASIC, if you spot the mistake before you press the
[ENTER] key you can use the back�space [ß] key to go back and correct it.
Otherwise there is no alternative but to retype the line correctly, for the
moment.

ARITHMETIC RULES. OK?

So far our examples have asked the computer to perform only 2 'arithmetic
operations', these are add (+) and divide (/). The word 'operation' means
something we are asking the computer to do. There are six simple operations
the computer can do in arithmetic and it has strict rules as to how these
are camed out. In the example above

PRINT 12 + 8/2

it is not clear whether the answer should be 16 or 10.

12 plus 8 divided by 2 is 10, or 8 divided by 2 is 4, plus 12 is 16.

The answer given by the computer is 16 because of the order it chooses to do
its arithmetic. The operations and the priority they are given are as follows:

1. Unary Minus

This is when a minus sign is used to indicate a negative number

PRINT �3 + 2

The computer will first apply the minus sign to the number.
So � 3 + 2 evaluates as � 1. If the computer did the addition first
� 3 + 2 would evaluate to � 5, but it doesn't.

2. Exponentiation

Exponentiation means raise to the power. 5 raised to the power 4, (54) is
5 Î 5 Î 5 Î 5.

After applying all minus signs the computer then does all exponentiations.

PRINT 4 + 3 á 2

is evaluated by squaring three (3 x 3 = 9) then adding 4 to give at otal of
13. If there is more than one exponentiation they are evaluated from left to
right. Try an example

 3

PRINT 2 � 3 � 2 �3 (the [�] key on the left of the keyboard is used for
 the exponentiation operation).

this is evaluated by multiplying 2 by itself 3 times (2 x 2 x 2 = 8) then
multiplying that result by itself (8 x 8 = 64) then multiplying that result
by itself 3 times (64 x 64 x 64 = 262144).

3. Multiplication

The sign the computer uses for multiplication is * so as not to cause
confusion with the letter x. This is obtained by the [SHIFT] and [*:] keys.

e.g.
PRINT 5 * 2 + 3

is evaluated as 13 (5 x 2 = 10 plus 3 = 13).

4. Division

The sign the computer uses for division is / so 3 ./. 2 is written as 3/2.

PRINT 5/2 + 3

is evaluated as 5.5 (5 / 2 = 2.5 plus 3 = 5.5).

Multiplication and division have equal precedence, that is the same priority.
When arithmetic operators have equal precedence they are evaluated from
left to right.

PRINT 5/2 * 3 + 4/2

is evaluated as 13 (2 x 3 = 6, 4 / 2 = 2, 5 + 6 + 2 = 13).

5. Addition

The sign for addition is +

6. Subtraction

The sign for subtraction is �

Addition and subtraction have equal precedence, so they also are evaluated
from left to right after all the higher priority operations have been done.

To summarize the computers order of precedence for carrying out
mathematical operations.
4

FIRST � (minus sign is used to indicate negative numbers)
SECOND � (exponentiation, from left to right).
THIRD * / (multiplication and division, form left to right)
FOURTH + � (addition and subtraction from left to right)

Below are some arithmetic expressions to evaluate. With each one first do it
in your head (or with a pencil and paper) and then try it on the computer. If
your answer is different to the computer try to find out why. Unless you have
a lot of experience with the way computers evaluate expressions, you should
actually do these examples. The majority of so�called 'computer errors' are
caused by the programmer following a different set of rules to the computer.
No answers are given. If typed in exactly as written, the computer will give
the correct answer.

PRINT 3 + 2
PRINT 4 + 6 � 2 + 1
PRINT 8 * 4
PRINT 4 � 2 + 1
PRINT 5/4 �1
PRINT 5 � 4/2
PRINT 6 * � 2 + 6/3 + 8
PRINT 4 + � 2
PRINT 2 * 2 + 3 * 4
PRINT 8/2/2/4
PRINT 20/2 * 5
PRINT 8 * 2/2 + 5 * 3 * 2 � 2

It is not necessary to type PRINT each time, there is a shorthand symbol
available [?]. If you type

? 3 + 2 this is the same as PRINT 3 + 2

By now you should be used to pressing the [ENTER] key at the end of each
line.
The OK prompt tells you that the computer is ready.
The [ENTER] key tells the computer you are ready.

After all this heartache about precedence, it is possible to modify the
priority. This is done by using parentheses or brackets. Suppose you want to
divide 14 by 4 plus 3, if you write �
14/4 + 3 the answer will be 6.5, because you will get 14 divided by 4 with 3
added on. But this is not what you wanted. To accomplish this you can write

14/(4 + 3) the answer will be 2.

5

The parentheses modify the precedence, the rule is simple, do what is in
parentheses first. If there is more than one set then work from the
innermost outwards �

12/(3 + (1 + 2) � 2) is evaluated as follows

a) 12/(3 + 3 � 2) (1 + 2) done first
b) 12/(3 + 9) 3 � 2 next
c) 12/12 (3 + 9) next
d) 1 division last.

Here are some more expressions to evaluate. Again, if you are not
familiar with the way computers work, the few minutes you spend working
them out will enable you to use your computer more effectively.

? 44/(2 + 2)
? (44/2) + 2
? 4 + (�5*2)
? 100(200(2*(9�5)))
? 42/((9/3) + 1.75 + (5/4))

PRINTING WORDS

So far we have only used numbers in our PRINT command. The layman often
sees the computer as a 'number cruncher', but this is not the only function
of a computer. A computer may also be used to manipulate characters. By
characters we mean the letters A to Z, the digits 0 to 9, punctuation marks
and other special characters we shall be meeting later. BASIC allows us to
manipulate groups of characters called strings.

A string can be any mixture of characters � even a space can be an important
character in a string. To tell the computer that it is dealing with a string,
rather than a number, the string is enclosed in quotes ("") Some examples of
strings are �

"THE TITLE", "Z+*?!", "MR J.P.SMITH"

"AXY 479W", "01�479�6172"

The last two strings could be a car number and a telephone number, and
though they both contain numeric characters, we would not use this collection
of digits to do any serious arithmetic. As far as BASIC is concerned a
collection of digits enclosed in quotes is not a number, the string "12345" is a
completely different thing to the number 12345. In fact, strings and numbers
are stored in completely separate places in the computers memory.

6

Try PRINT "2 + 5 = "; 2 + 5

The first part of the PRINT statement appears on the screen exactly as
written in the string. (The quotes are used to enclose the string, they
are not part of it). The second part of the statement is evaluated as a
numeric expression, so the screen should show �

2 + 5 = 7

As we have seen above, the space can be an important character in a string. In
the BASIC statements, spaces do not make any difference, they only make
the line easier to read. In strings, however, they do make a difference, as
when a string is printed on the screen it is copied exactly as the group of
characters appearing between the quotation marks. Throughout the book if
we feel a space is necessary we will indicate it by a s symbol. This is not a
keyboard symbol, it means that a space should be typed. It will only appear in
strings, as all other spaces are optional.

You should now be able to use your computer to solve simple problems, like
those at the end of this chapter. Again, if you are not familiar with computers at
least try some of them.

7

1) Jim is 168 cms tall. What is his height in inches?
 (1 ins = 2.54 cms).

2) A recipe requires 0.75 kgs of flour. How many pounds of flour do you
 need?
 (1 kg = 2.2 lbs).

3) Your car uses 22.8 gallons of petrol on a journey. At the start the
 mileage on the clock was 10346 and at the end of the journey it was
 11193. What is the m. p. g. for the trip?

4) You put 15 into a savings account which pays interest at 11 % per year
 How much will you have after 5 years?
 (A = P(1 + R/100)�N P = Principal R = Interest rate per year
 N = Number of years A = Amount after N years).

5) How many turns does a 26 inch bicycle wheel make in one mile?
 (1 mile = 5280 ft Circumference = PI x diameter PI = 3.14159).

ANSWERS

1) 66.14 inches
2) 1.65 lbs = 1 lb 10 ozs
3) 37.149 m.p.g.
4) 25.27
5) 775.69

8

CHAPTER TWO

WHAT'S IN A NAME

CONSTANTS

All the examples we have used so far have only contained constants. A
constants is exactly what it says �something which does not change. 3.145 is a
constant, changing it to 3.146 just makes a different constant. Constant are
useful in computer programs, but not as useful as variables.

VARIABLES

A variable is something which may change in value. In the equation.

X + 5 = Y

X and Y are variables as both may take many values which still make the
equation true. Variables in a computer are places in the computer memory �
rater like a set of pigeonholes or boxes. To identify these it is necessary to
label them (or give them a name like X or Y). The variables in your computer
come in two flavours � numeric or string, and in two sizes, simple or array.
We already know the difference between numeric and string constants � so
numeric variables hold numeric constants (numbers) and string variables hold
string constants (characters). For the moment we will only consider simple
variables, array variables will be dealt with later.

NAMING VARIABLES

To name a numeric variable you may use any combination of a letter and a
letter or number.

N, AA, X, TI, Y, Z9, L5, BZ, PQ, K9

are all examples of valid numeric variable names.

Actually your computer allows a variable name to be any length but will only
recognise the first two characters of the name; so though it will accept names
such as

BIRD BIRTHDAY BIGNUMBER

they will be considered as the same variable BI. The same applies to string
variables

9

NUMERIC VARIABLE NAMES

A numeric variable can only store numbers.

The name of a numeric variable can consist of any combination of letters and
numbers, but must start with a letter.

As the computer only recognises the first two characters of a name, names
like:�

STAR, STATE, STEAMER

will be considered to he the same (ST).

Variable names that are longer than two characters are useful to remind you
of the contents,

NUMBER, COUNTER, SUM

will all be accepted but will take up more memory than NU, CO, SU.

10

FRED$ FRESHWATER$ FRIVOLOUS$

are all considered as FRS.

To name a string variable the same combinations may be used but the name
must have a $ sing on the end.

A$, P7$, MNS, Z0S, FPS

are all examples of valid string variable names.

ASSIGNING VALUES TO VARIABLES

How do we use these variables? Type in the following example:

A = 5 remember to press the [ENTER]
B = 2 key after each line.
C = A + B
D = D + 3
PRINT A,B,C,D (make sure you type the commas.)

Your screen should show

5 2
7 3

The first line means store the value 5 into a variable called A, the next line
stores 2 into variable B. (The computer decides exactly where these places are
in its memory, you only have to supply the name). The third line says find the
values stored in variables A and B, add them together then put the results
 into a variable called C. After the computer has done this the variables A and
B still contain the original values (5 and 2 in this case) and C contains the sum
(7). The fourth line may seem a bit confusing to those of you who know
algebra. This is because the equals sign (=) in the BASIC language does not
mean the same thing as it does in mathematics. The = in BASIC means assign
to, or take the expression on the right hand side of the equals sing, (evaluate
it if necessary), and place it into the variable on the left hand side of the equals
sign.

This sort of line is called an assignment statement, and the left hand side of the
assignment statement must always be a variable. Something like 2 = B + C
may make sense in algebra, but does not in the BASIC language.

To return to the statement D = D + 3, this means take the current content of
the variable D (which happens to be 0 because we didn't put anything there),
add 3 to it and then put it back into variable D (or equivalently �

11

increase variable D by 3). This may seem a little confusing but it is a very
useful (and a very common) type of statement in computer programs. It also
demonstrates another feature of variables � they can only hold one value at a
time. If you assign a value to a variable (i. e. it appears on the left hand side of
an assignment statement) the value over-writes the old value and the old
value is lost. You may, however, copy the value in a variable (either into
another variable, or by using it in an expression as in C = A + B) as many
times as you like without changing it.

If you now type

A = B remember to press [ENTER]
B = 17 after each line.
D = D + 2
PRINT A,B,C,D

Your answer will be

2 17
7 5

Variable A now holds a copy of B from the last example, variable B holds a
new value (17), and the previous contents of both A and B have been lost.
Variable C is unchanged. Variable D is now 5, because it held 3 from the
previous example, to which has been added another 2.

String variables behave in exactly the same way (except you must remember
the name must end with a $ sign). Try this example

A$ = "'THIS s IS s A s " remember to press the [ENTER]
B$ = "VERY s" key after each line.
C$ = "LONG STRING"
D$ = A$ + B$ + B$ + B$ + BS + B$ + B$
D$ = D$ + Cs
PRINT D$

Your screen will show

THIS IS A VERY VERY VERY VERY VE
RY VERY LONG STRING

In lines 1, 2 and 3 we have assigned values to the string variables A$, B$ and
C$. In line 4 we add six copies of B$ to A$. With string variables the plus sign
(+) does not mean the same as it does with numeric variables. It means add to
end of the first string. (For those who like long words it is called

12

concatenation). In line 5 we add C$ to the end of the newly
constructed D$. This is one method of using a computer to construct
sentences.

STRINGS AND NUMBERS DO NOT MIX

Please remember to keep numeric and string variables separate, only
numbers can be stored in numeric variables and only strings can be stored in
string variables; statements of the form �

D = "STRING"
A$ = 6
B = A$ * 2

will give you the error message ?TM ERROR (Type mismatch error).

The plus sign (+) is the only, arithmetic operator that can be used with
strings variables, all the others (�, * , / , �) will give an error message.

COMMAND SUMMARIES

Throughout the rest of the book we will place pages in boxes. These will give
details of each command as we introduce them. At the end of most boxes is a
small example program to demonstrate the use of the command. Study them
carefully, work through them and see if you can find out what will happen
before you get the computer to run it. These programs are intended to show
how a particular statement operates, but often include useful tips you may
wish to include in your own programs later.

13

STRING VARIABLE NAMES

A string variable can only contain strings.

A string variable name can consist of any combination of letters and numbers,
but must start with a letter, and end with the $ sign.

As with numeric variable names the computer will only recognise the first two
characters so that,

ANSWERS$, ANI$, AN2$

will be considered to be the same (AN$).

14

CHAPTER THREE

A PROGRAM AT LAST

So far your computer has done little more than echo the line you have just
entered. We will now start to construct a computer program.

A program is a set of instructions which tell a computer to do something. A
BASIC program consists of a number of lines. A line has two parts: first,
a line number and second, one or more statements. If there is more than one
statement on a line, each statement must be separated by a colon (:). A
statement is a command line such as we have already been using.

PRINT A$: A= 47

Here is a BASIC program: �

10 CLS0
20 PRINT"WHAT IS YOUR NAME?"
30 INPUT NAME$
40 I=RND(255):J=RND(9)�1
50 CLSJ
60 PRINT @ 200+J,NAME$
70 SOUND I,2
80 GOTO 40

As you can see this program contains some new BASIC commands. Do not
worry about these for the moment, we will explain them later. Notice the
form of a BASIC program � a sequence of lines, each line consisting of a
line number and at least one statement (line 40 as two).

PUTTING IN A PROGRAM

To put a program into the computers memory, first we must clear the
memory of anything that may be there. To do this type NEW then press
[ENTER]. Then enter each line exactly as above pressing the [ENTER] key
at the end of each line. You will notice that after you press the [ENTER] key
nothing happens. A line starting with a number is not carried out
immediately, it is just stored. When a program is run, it starts with
lowest line number, carries out that line, then moves to next highest line
and so on. Because the sequence of the program depends on the line number,
you can enter the lines in any order you want, the computer will order them
into the correct sequence.

15

Try typing the program into the computer. If you make a mistake before
pressing the [ENTER] key, use the backward arrows key [�] as before. If
the mistake becomes obvious after pressing the [ENTER] key, then retype the
line again. The computer will only store the latest version of the line.

After you have entered all the program, to see the lines you have just
entered as the computer has stored them, type LIST and press [ENTER]. Note
there is no number before LIST. Without a number the computer will carry
out the command immediately. Check the program to make sure it is correct
(if not retype the lines that are wrong).

Now, at last, we are ready to get a program going. To do this type RUN and
press [ENTER].

The screen will clear and a message will appear at the top of the screen
asking for your name. Type in your name and press [ENTER]

The computer will spring into action �

The screen will flash different colours, and your name will appear jumping
about in the middle of the screen. Strange noises will accompany all this
activity (if you remembered to turn up the volume control on your TV).

This will carry on forever unless you stop it. One way to stop the program is to
switch off the power, but this is not very satisfactory � you will lose the
program. The best way to stop this program is to press the red BREAK key.

STEP BY STEP

Now you have seen what the program does, we will now explain how it does
it, a line at a time.
10 CLS

As this is the lowest numbered line, it is the first to be obeyed. The
command CLS means clear the screen, and set the background to the usual
colour (which is green).

20 PRINT "WHAT IS YOUR NAME"

This is the PRINT statement we have seen before. This line prints the
message at the top of the screen.

30 INPUT NAME$

The command INPUT tells the computer to stop and wait for you to type
something in, which it will put into the variable following the command.

16

LIST

The LIST command displays the current program in memory, on the screen.
It is not preceded by a line number.

If the program is too long to fit on the screen, the listing can be stopped
by pressing the [SHIFT] and [@] keys together, (but you have to be quick).
The listing can be restarted by pressing any other key on the keyboard.

To LIST only part of the program you can use

LIST n1 � n2

where n1 and n2 are two line numbers (n2 must be greater than n1).

LIST 40 � 100

will display all the program lines between line number 40 and line number 100

LIST � 80

will display all program lines from the start of the program to line number 80.

LIST 120 �

will display all program lines from line number 120 to the end of the program.

17

RUN

The RUN command is used to start a program.

It does not have a number in front of it.

lf you wish to start a program from any place other than the beginning you
may do so by typing

RUN line number

where line number is the number of the line at which you wish to start.

RUN 250

NEW

The command NEW clears the memory, and sets all variables to zero.

Note that it does not have a line number.

It is a good idea to type NEW before entering a program to ensure that none
of the old program is left to interfere with the current program.

18

ASSIGNMENTS STATEMENT

The assignment statement is used to place a value into a variable.

The form of the assignment statement is:-

LET Variable = expression

The LET part of the statement is part of standard BASIC, but it is not
necessary on your computer, so it will not appear in any of the program
listings in this book.

The variable part of the statement can be any variable name.

The expression part of the statement can be a constant, another variable or a
mixture of both connected by operators (+ , � , * , etc.). As string and numeric
variables cannot be mixed, both the variable and the expression must be of the
same type.

The equals sign (=) does not mean the same as the equals sign in algebra, it is
better to interpret it as 'assign to'. This means the same variable can appear
on both sides of the assignment, as in

40 X = X + 1

which tells the computer to add 1 to the current value of X and put it back into
X.

10 S = 0:N = 0:CLS5
20 PRINT @ 72,"ENTER A NUMBER";
30 INPUT X:CLS5
40 S = S + X:N = N + 1
50 PRINT @ 194, "YOU HAVE ENTERED";N;"NUMBERS.";
60 PRINT @ 262,"THE AVERAGE IS";S/N;
70 GOTO 20

19

(Remember the computer will call the variable in this case NA$, and ignore
any other letters. It is, however, often useful to use a variable name that
is longer to make it more understandable to people. A longer name also acts
as a reminder of what the variable is being used for).

40 I = RND(255):J = RND(9) � 1

line 40 shows how more than one statement may appear in a line. (Note the
colon (:) separating them). This line also introduces another new command,
RND. This command generates a random number. A random number is like
picking a number out of a hat. The number in brackets after the RND tells the
computer which range of numbers to select from. In the first statement I =
RND(255),RND(255) means select a random whole number from the range
1 to 255 and then place this number into a variable called I. In the second
statement the range for the random number is from 1 to 9, however, after the
number has been selected, 1 is subtracted before it is put into J. This means
that J will be a number between 0 and 8.

50 CLS(J)

This line clears the screen. This time however, the background colour will
depend on the value of J. There are nine colours available, which are
numbered from 0 to 8. This is the line that makes the screen flash different
colours.

60 PRINT @ 200 + J,NAME$;

This is a more sophisticated version of our old friend the PRINT statement. It
instructs the computer to print the value of NAME$ (in this case your name),
starting at a specified position on the screen. The position in this case is 200 +
J, which is somewhere between 200 and 208. Position 200 is at line 7 and 8
spaces in. (Read the PRINT @ box to see how the screen is divided up).
Because the value of J changes, your name appears to be jumping about on
the line.

70 SOUND I, 2

This is the line which makes the strange noises. The SOUND command tells
the computer to use its tone generator to make a sound; which sound, and
how long to make it are decided by the two numbers following the command.

80 GOTO 40

The GOTO command simply means go to the line number following the
command (40 in this program).

20

PRINT

The PRINT command is used to display output

It can be used to output constants, the value of variable, strings and also
to evaluate expressions.

If more than one item is included in a PRINT statement, the items should be
separated by either a comma (,) or a semi-colon (;).

The comma will cause the output to be printed in two columns, each fifteen
characters wide. (If the length of the first item is more than 15 characters it
will he printed in full. The next item will appear on the next line).

The semi-colon causes the output to be compressed� Strings will be printed
next to each other, and numeric items will have a space either side. The
semi-colon holds the print head at its last position ready to continue printing
when the program reaches the next PRINT statement.

A PRINT statement with no items prints a blank line.

10 CLS
20 PRINT
30 PRINT "ssssssssTHE PRINT COMMAND"
40 PRINT "sssssssssA DEMOSTRATION"
50 PRINT
60 PRINT"COLUMN ONE","COLUMN TWO"
70 PRINT 14.2,13.7
80 PRINT 1,2,7,11
90 PRINT
100 A$ = "COMPRESSED": B = 3
110 PRINT;"SECOND LINE"
130 PRINT A$;"OUTPUT ON LINE";B
140 PRINT
150 PRINT "THIS WILL APPEAR";
160 PRINT "AS ONE LINE"
170 PRINT "DEMOSTRATION",
180 PRINT "FINISHED"

21

INPUT

When a program comes to an INPUT statement, it stops and waits for
something to be entered from the keyboard. Following the INPUT command
must be one or more variable names separated by commas.

25 INPUT A,B,F$,H7

The above statement required you to enter 4 items. This can be done one at
a time by pressing the [ENTERI key after each one, or as a list separated by
commas, e.g.

146.2, 78.1, STRING,3[ENTER]

It is always a good idea to print a message before an INPUT statement, to
remind you what is needed. This can be done with a PRINT statement, or
included in the INPUT statement as follows:�

35 INPUT "TWO NUMBERS PLEASE";N1,N2

Note the semi-colon separating the string from the input list.

You must ensure that the correct type of entry is made (strings to string
variables, numbers to numeric variables), or else the program will halt with a
?REDO, and you will have to re-enter.

It is not necessary to enclose strings in quotes when inputing to a string
variable both "STRING" and STRING are acceptable.

In the following demonstration program note: �

a) lines 100 and 170. Uses the INPUT command to stop the program until
 ready. A$ will not contain anything.

b) the use of string variables (C$, P$ and T$) to avoid typing the same
 message more than once.

10 CLS:T$ = "THIS IS AN INPUT DEMOSTRATION"
20 P$ = "PRESS THE ENTER KEY TO CONTINUE"
30 C$ = "ENTER 4 NUMBERS"
40 PRINT:PRINT T$:PRINT
50 PRINT C$;"PRESS THE"
60 PRINT "ENTER KEY AFTER EACH ONE"
70 INPUT A,B,C,D
80 PRINT:PRINT "YOU INPUT THESE VALUES"
22

90 PRINT A;B;C;D:PRINT
120 PRINT "NOWs";C$;"sSEPARATED"
130 PRINT "'BY COMMAS AND PRESS ENTER."
140 INPUT A,B,C,D
150 PRINT: PRINT"THIS TIME THE NUMBERS WHERE:�"
160 PRINT A;B;C;D
170 PRINT: PRINT P$:INPUT A$:CLS
180 PRINT: PRINT T$:PRINT
190 INPUT "ENTER A STRING AND A NUMBER";B$,N
200 PRINT: PRINT "THE STRING YOU ENTERED WAS:-";PRINT
210 PRINT B$
220 PRINT: PRINT"AND THE NUMBER WAS:-";N
230 PRINT: PRINT"DEMOSTRATION ENDED."

23

So the program returns to line 40 where it selects a different random number
for 1 and also for J. As the background colour is decided by J, that changes
when the program reaches line 50. And as 1 is also different the sound
changes in line 70. When the program reaches line 80 again it goes back to
line 40 where it selects (forever, or until you press the BREAK key).

MAKING CHANGES

That was the first program, it didn't do very much but it's a start. It got us
going and introduced some new commands. A more detailed explanation of
the commands can be found in the 'boxes' throughout the text. (Each box also
contains a small program to demonstrate the command, you should try
running these).

If you were not very impressed with the first program, you may like to make
some changes. To change a program you have already typed in is simple.
Because a BASIC program sequence is decided by the line number, a line can
be changed by typing a line with the same number as the one in the program.
The new line replaces the old. Try entering a new line 70.

70 SOUND I,K

A new line can be inserted into the program by giving it a number that will
place it in the correct order.

Try typing

45 K = RND(20)

As this line is numbered 45 it will come between line 40 and line 50.

(When you write your own programs you can number lines with any number
between 0 and 63999. It is usually a good idea to number lines in 10's, i.e. 10,
20, 30, so that you have room to insert extra lines if necessary).

Try running the changed program (type RUN), the new line 45 selects
another random number, this time between 1 and 20. The changed line 70
uses this random number, (in variable K), to change the duration of the
sound.

PROGRAM CONSTRUCTION

Though it is easy to sit at the keyboard and type in program lines, the
difficulties tend to appear afterwards, especially when programs start to get
longer. Typing in the program should be the last part of creating a new
program.
24

RND

The command RND generates random numbers.

RND is a function. A function, in BASIC is something that takes one or more
numbers and performs some operation on them which results in a single
value. The numbers used by the function are called arguments and are always
put in brackets after the function name. The result of a function is said to
be returned to the program.

The RND function returns a random number, which depends on the value of
the function argument.

If the value of the argument is 0 (RND(0)) the function returns a value
between 0 and 1.

If the value of the argument is greater than 0 (RND(6)) the function
returns a value that is an integer (whole number) between 1 and the value
of the argument. (RND(6 will return either 1, or 2, or 3, or 4, or 5, or
6, you don know which because it is random!)

10 CLS
20 PRINT @ 8,"ENTER A NUMBER";: INPUT N
30 CLS: PRINT @ 194,"3 RANDOM NUMBERS FOR N = ";N
40 PRINT @ 270,RND(N)
50 PRINT @ 302,RND(N)
60 PRINT @ 334,RND(N)
70 GOTO 20

25

CLS

The command CLS is used to clear the screen, and set the background colour.
The normal background colour is green. If you use CLS on its own this is
the colour that will be set.

To change the background colour add a number between 0 and 8 after the
CLS command, (CLS 2).

The available colours are:-

 0 � Black 1 � Green 2 � Yellow
 3 � Blue 4 � Red 5 � Buff
 6 � Cyan 7 � Magenta 8 � Orange

The actual hue of these colours will depend upon your television set.

You will notice, however, that whatever the background colour, the
computer will print all text as black or green.

10 CLS
20 PRINT @ 0,"BACKGROUND COLOUR DEMOSTRATION.";
30 PRINT @ 192,"ENTER NUMBER BETWEEN 0 and 8";
40 INPUT C
50 CLS C
60 PRINT @ 288,"THIS IS BACKGROUND COLOUR:-";C
70 GOTO 20

26

Start with a pencil and paper, then write down what you intend to do. Break
the problem into distinct different sections. Many problems to be done on a
computer tend to divide easily into at least three parts,

1) Preparation, titles, instructions and data entry,
2) Calculations,
3) Displaying the results.

Now tackle each section separately, further dividing into sub-sections until
you are left with a simple action like 'add 1 to counter'. Order these actions
into a sensible sequence, write them out in full, then start with the next
section. When you have finished you have a series of steps (some of which
may be very primitive) inside each section. Anyone reading through the result
should be able to solve the problem, whatever it may be, by using only simple
arithmetic. (This plan of action is called an algorithm in computerese). All
that is left now is to convert your plan into a language the computer can
understand. Ideally, each step in your plan should translate into one line in a
BASIC program.

After the translation you should test each section separately and ensure that it
does what it is supposed to before you assemble the complete program. When
the program is running successfully, do not celebrate by having a bonfire of all
the pieces of paper lying around. Keep the final plan, parts of which may be
useful in other programs, also some errors may not appear until long after you
have forgotten what it was that you did. It is also useful to put comments into
the program itself to remind yourself of what is going on. To do this BASIC
has the REM statement. This statement does not actually do anything.
BASIC ignores anything after the REM command, so if more than one
statement appears on a line make sure the REM statement is last. There is a
shortened version of the REM statement which uses the single quote ('), (this
is obtained by [SHIFT] and 




7
').

10 REM PROGRAM TO FIND AVERAGE
140 A = B * C:GOTO 15: REM RETURN TO START
48 K = K + 1:'INCREMENT COUNTER

While REM statements do take up some of the memory, it is unwise to do
without them completely. Trying to understand your own programs a year
after you have written them can be a frustrating experience if there are no
comments at all.

All this section may seem terribly pedantic, but it is a well known fact in
computer circles that more time is spent on debugging (locating errors in a

 27

Print @ Grid

480

448

416

384

352

320

288

256

224

192

160

128

96

64

32

0 �

 � 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1

 1 1

 1 1

 1 1

 1 1

 1 1

 1 1

 1 1

 1 1

 1 1

 0 2

 1 2

 2 2

 3 2

 4 2

 5 2

 6 2

 7 2

 8 2

 9 2

 0 3

 1 3

28

PRINT @

The PRINT @ command is used to place output at a specified place on the
screen.

For this purpose the screen is divided into a 16 Î 32 grid, giving 512
positions. See the diagram opposite to show how the grid is numbered.

The form of the PRINT @ command is

PRINT @ expression, print list

The expression can be a number, a variable or an arithmetic expression, as
long as the value is between 0 and 511.

The print list is the same as used in the PRINT command, it can be numbers,
variables, strings or expressions, separated by commas or semi�colons.

lf you considered your screen as having 16 lines ruled on it, then the
statement,

PRINT @ 32 * (LINE � 1), A

will print the value of A at the beginning of the imaginary line on your screen.
Each line will depend on the value of the variable LINE, (a number from 1 to
16)

The following example is a deliberately confusing way of producing a fairly
simple result. Try and sort out what it is doing, run the program, then
write a more straightforward version to produce the same result.

Note the use of the semi-colon at the end of the statements to stop the
rest of the line being erased. (If you don't believe it, try entering line
1 lo without the semi-colon on the end).

10 CLS: P$ = "PRINT @ ":N = 1
20 ROW = 12:A$ = "ON THE SCREEN"
30 PRINT @ 32 * (ROW� 1)+19, "TO PLACE";
40 PRINT @ 448 + 9, "ANYWHERE"
50 PRINT @ 262,"THIS";: PRINT @ 267,"SHOWS";
60 PRINT @ 32*(ROW�1)+11,"BE USED";:PRINT @
 13,"PAGE";
70 PRINT @ 448 + 18, A$:
90 PRINT @ 273, "HOW's"; P$

29

80 PRINT @ 32*(ROW�1)+7,"MAY"
100 PRINT @ 134,P$;"sDEMOSTRATION"
110 PRINT @ 451,"ITEMS"
120 PRINT @ 18,N
130 GOTO 130

The last line (130) puts the computer into an endless loop, which doesn't do
anything. This stops the OK prompt appearing when the program has
finished. Press the BREAK key to stop the program.

30

SOUND

The SOUND command generates a tone or specified pitch and duration. It
requires two arguments:�

50 SOUND P,D

P is a number between 1 and 255. The lowest tone is i, the highest 255.
Middle C on the piano is P = 89.

D can be any number between 1 and 255. D = 16 gives a tone of about 1
second duration

10 CLS
20 PRINT @ 6,"SOUND DEMOSTRATION."
30 PRINT @ 64,"ENTER A NUMBER BETWEEN 1 AND 255";
40 PRINT @ 96,"FOR THE PITCH OF THE NOTE";:INPUT P
50 PRINT @ 192,"ENTER A NUMBER FOR THE DURATION OF
 NOTE.";
60 INPUT D: CLS(RND(9)�1)
70 SOUND P,D
80 GOTO 10

GOTO

The GOTO command has the form �

GOTO line number

The line number must be a number (not a variable), and must exist
somewhere in the program. If the line number is not found the program will
stop with an ?UL ERROR (undefined line).

The GOTO statement is executed immediately, there is therefore no point in
putting another statement on the same line, after a GOTO statement. The
program will never reach it.

20 CLS
30 GOTO 60
40 PRINT "AT LINE 40"
50 GOTO 80
60 PRINT "AT LINE 60'
70 GOTO 40
80 PRINT "END OF PROGRAM"

31

program) than on writing the program. If you work as suggested there is less
chance of errors getting into the program, and if they do, they are easier to
find.

A PROGRAM EXAMPLE

PROBLEM:� Use the computer to simulate the throw of 2 dice.

SECTION 1 � Display titles and instructions.

a) Clear the screen
b) Print the title
c) Print instructions
d) Print headings, 1st dice, 2nd dice.

SECTION 2 � Find the values for two dice.

(When you roll a dice any of the 6 sides appear randomly)
a) First dice is a random number between 1 and 6
b) Second dice is a random number between 1 and 6

SECTION 3 � Print answer.

a) Print the value of 1st dice, 2nd dice

SECTION 4 � Halt the program and repeat if needed.

a) Stop program
b) Ask for another roll
c) Repeat sections 1,2 and 3 as necessary

Translating into BASIC (with added comments) we get:�

10 ' DICE SIMULATION PROGRAM
20 '
30 ' FIRST SECTION
40 CLS: REM CLEAR THE SCREEN
50 PRINT"DICE SIMULATION":'TITLE
60 PRINT
70 PRINT "USE BREAK KEY TO END PROGRAM":'INSTRUCTIONS
80 PRINT
90 PRINT "1ST DICE","1ND DICE":'HEADINGS
100 PRINT
110 REM END OF FIRST SECTION
32

REM

The REM command is used for inserting comments into a program. The
computer ignores anything following a REM (or its shorthand form ') on that
line.

10 REM THIS IS A COMMENT LINE
35 D = B*B�4*A*C: 'FIND DETERMINANT

33

120 REM
130 REM SECOND SECTION
140 D1 = RND(6): ' ROLL 1ST DIE
150 D2 = RND(6): ' ROLL 2ND DIE
160 'END OF 2ND SECTION
170 '
180 'THIRD SECTION
190 PRINT D1,D2: ' DISPLAY RESULT
200 'END OF 3RD SECTION
210 '
220 'FOURTH SECTION
230 INPUT"PRESS ENTER TO ROLL DICE"; A$
240 GOTO 40: ' RETURN TO START
250 'END OF 4TH SECTION

This program does not really need ali the comments, write your own version
of the program.

There is no 'correct' version of a program, the correct version is one that
works. There may be more elegant or efficient ways of doing the same
problem. Generally, a shorter program is faster and uses less memory.

We finish this section with a 'fancier' version of the same program, note how
breaking the problem into sections sometimes allows the program to be
assembled in a different order but with a similar result.

10 ' DICE SIMULATION PROGRAM
20 '
30 ' FIRST SECTION
40 CLS0: PRINT @ 8,"DICE SIMULATION";
50 PRINT @ 167,"FIRSTs";:PRINT @ 178,"SECOND";
60 PRINT @ 200,"DICE";:PRINT @ 211,"DICE";
70 PRINT @ 450,"USE THE BREAK TO END PROGRAM";
80 ' FOURTH SECTION
90 PRINT @ 358,"PRESS ENTER TO ROLL";
100 INPUT A$
110 ' SECOND SECTION
120 D1 = RND(6):D2 = RND(6)
130 ' THIRD SECTION
140 PRINT @ 265,D1;:PRINT @ 276,D2;
150 GOTO 90

34

CHAPTER FOUR

GOOD HOUSEKEEPING

SETTING UP THE RECORDER

Some of the programs are beginning to get quite long and it is a nuisance to
have to type in a program every time you want to run it. However, it is fairly
simple to store your programs on tape and call them back into memory when
needed. To do this you need a casette recorder and a connection lead.

Any cassette recorder of reasonable quality can be used, provided it has
the ability to

a) record from an outside source (a jack socket usually marked AUX, or

LINE IN)
b) output to a loudspeaker or earphone (a jack socket marked EAR, or

MONIT, or L/S, or SPKR)
c) stop and start by remote control (a small jack socket usually marked
 REM and next to the microphone socket).
d) operate from mains power, This is not essential, but weak batteries can

seriously affect your success in storing and retrieving programs.

To connect the recorder to the computer, put the DIN plug into the socket
market TAPE on the left side of the computer.

The three plugs on the other end of the lead are connected to the recorder as
follows:

1) The smallest jack fits into the socket marked REM (the remote on/off

switch)
2) The large jack with the grey wire goes into the socket marked AUX
3) The other large jack with the black wire goes into the socket marked
 EAR (the earphone socket)

Turn on the recorder, insert a tape and rewind back to the beginning of the
tape. Now set the volume control at 6 (or just over halfway between ON and
FULL). You are now ready to store your programs.

35

STORING A PROGRAM ON TAPE

Type in a program and run it to ensure that it works correctly. Then
proceed as follows: �

1) Press the PLAY and RECORD buttons together until they lock.
2) Type the command

CSAVE "PROGRAM 1" press [ENTER]

The name 'PROGRAM1' can be replaced with any name you like, (it must
begin with a letter and not be larger than 8 characters). When you press
[ENTER] the cassette motor will start and the program will be recorded.
After a while the OK prompt will return to the screen, and the cassette
motor will stop.

The program will still be in the computers memory, only a copy has gone on
to the tape. You have saved a program called PROGRAM 1, (or whatever
you called it) onto the tape.

LOADING PROGRAMS INTO MEMORY

To return a saved program into the computer, first type NEW to clear any
existing program from memory. The process is as follows:�

1) Rewind the tape to the beginning.
2) Press the PLAY button until it locks.
3) Type the command.

CLOAD "PROGRAM1" press [ENTER]

The cassette motor will start and a letter S will appear in the top left hand
corner of the screen. This indicates the computer is searching for the
program. When found the S will change to

F PROGRAM 1

When the OK prompt appears, and the cassette motor stops, the program has
been loaded into the computer memory. To check it is there, type LIST

If the program is not there, or I/O ERROR appears on the screen, maybe
your cassette recorder requires a different setting. Check the connections are
correct, then repeat the saving and loading sequence with different settings of
the volume control until successful.

36

 CSAVE
CLOAD
SKIPF

The command CSAVE saves a program onto cassette tape. The program
name must be eight characters or less

CSAVE "PROGRAM"

To save data onto cassette use the extra parameter A, the information will
then be stored in ASCII format. It may then be read by an INPUT#�1
command.

CSAVE "DATA",A

The CLOAD command loads a specified program file from cassette into
memory.

CLOAD "PROGRAM"

The SKIPF command skips to the next program file after the program
specified, or to the end of the specified program.

SKIPF "PROGRAM"

37

SAVING MORE THAN ONE PROGRAM

To save more than one program on tape, you want to avoid recording on top
of those already there. This requires the tape to be positioned past the
last program. This is done as follows: -

1) First rewind the tape to the beginning.
2) Press PLAY until it locks.
3) Type the command

SKIPF "PROGRAM 1"

The motor will come on, the computer will search (S) for the program, find
(F) it, read past it, then stop the motor and give the OK prompt.

4) Press the STOP button.
5) Press PLAY and RECORD buttons together, name the new program, then

CSAVE it.

After saving this program, you are past the end of it, so may type in and
save others if you want.

HINTS ON RELIABLE RECORDING

1) Operate the recorder on mains power to ensure constant speeds.
2) Use new, high quality cassettes. While longer playing cassettes (C120)

may appear to be more convenient, it is better to use shorter lengths (C30
or C12).

3) Always start the search at the beginning of the tape, do not rely on the
tape counter.

4) Do not leave the PLAY or RECORD buttons down, press STOP after
 you finish saving or loading.
5) Rewind cassettes before putting away.
6) Label cassettes, immediately after saving, and remove the erase protect

tab from the back of the tape for important programs.

Even if you are careful, accidents can happen! Some programs can be a
considerable investment of your time and effort � so make another copy on
another cassette.

THE EDITOR

As the program lines get longer, there is more chance of typing errors. Up to
this point the only remedy has been to retype the whole line. This is no longer

38

necessary, as we are going to introduce the EDITOR. The EDITOR
allows you to move backwards and forwards along a line, changing, deleting
or inserting characters. To call the EDITOR type,

EDIT linenumber [ENTER]

where linenumber is the number of the program line you wish to work on. The
line will be displayed on the screen in full. Then the line number will be
printed with the flashing cursor next to it.

MOVING DOWN THE LINE

The cursor is now at the start of the line. To move forward along the line press
the spacebar. The cursor will move, displaying the characters it has passed
over. To move backwards we can use the backspace [�] key. You can speed
up the movement by typing a number followed by the key, (i.e. [5] [SPACE]
will move the cursor 5 forward, and [3] [�] will move it 3 back). Using these
two keys you can position the cursor over any character in the line. You will
not see the character because the cursor will be flashing over it. Two other
commands allow you to jump directly to a particular place in the line. To add
to the end of a line type [X], for extend. The cursor will jump to the end of
the line, and you just type in the characters you wish to append. By using the
search facility you can move directly to a target character. TYPE [S] followed
by the character you wish to move to. ([S][A] will move the cursor to the first
occurrence of the letter A in the line). If there is more than one A in the line
and you want to move to the third A, then [3][SI[A], means search for the
third occurence of A.

ALL CHANGE

Once the cursor has been positioned by using the spacebar, backspace or [S]
key, you can:�

a) Delete a character by typing [D]. This will delete the character under the
cursor. To delete more than one character, [5][D] will delete the next five
characters starting from the cursor position.

b) Change a character by typing [C], followed by the new character. ([C][F]
will change the character under the cursor to F). As with delete [3][C]

 will change the next three characters to the three typed in.

c) Insert characters by typing [I] followed by the characters you wish to
insert. Once you type [I], the editor goes into its insert mode. In this

39

EDIT

The EDIT command is used to alter the contents of the specified line.

EDIT linenumber

Once in the EDIT mode any of the following editor commands may be used.

 L List the current state of the line
 C character Changes the current character
n C character Changes the next n character to

new characters
 I Inserts characters
 D Deletes current character
n D Deletes next n characters
 H Deletes rest of line from current position, and goes into
 insert mode
 X Extends the line, moves to end and goes into insert

mode
 S character Searches for first occurrence of character
n S character Searches for nth occurrence of character
 K Deletes rest of line from current position
n K character Deletes line to nth occurrence of character
n [SPACEBAR] Advances cursor n spaces. If n omitted 1 is assumed
n [�] Backspaces cursor n spaces. If n omitted 1 is assumed
 [SHIFT][�] Leave insert mode and return to edit mode
 [ENTER] Leave editor, store line and return to keyboard

40

mode everything that is typed is inserted into the line. To leave the insert
mode and return to the normal editor mode you must type [SHIFT] and
[�] together.

List the current state of the line by typing [L]. The line will be displayed
with any changes you have made so far. After displaying the line the
cursor returns to the beginning.

Leave the editor by pressing the [ENTER] key. This will place the
altered line back into the program in memory and then give the OK
prompt. You can leave the editor at any time or in any mode just by
pressing [ENTER].

Here is an example of an editing session. It may look a little complicated at
first, but you will be surprised how quickly you can become proficient with
very little practice. The keys you press are in square brackets.

[E] [D] [I] [T] [1] [0] [ENTER]

10 PRINTs "THEIR s ARE s MANY s MISTOOK s IN s LINE

10 � (� denotes cursor position)

[1] [0] [SPACE] move ten forward, (or [21 [S] [1])
[C] [R] [C] [E change I to R and R to E
[S] [M] move to start of MANY
[2] [D] delete M and A
[SPACE] [C] [0] skip over N and change Y to 0
[S] [O] move to first 0 in Mistook
[D] [C] [A] delete first O and change second O to A
[SPACE] [1] [E] [S] pass over K and insert ES
[SHIFT] [�] leave insert mode
[S] [L] move to L in LINE
[I] [T] [H] [I] [S] [SPACE] insert THIS and a space before LINE
[SHIFT] [�] leave insert mode
[X] move to the end of line (you are now in
 insert mode)
[SPACE] [N] [O] [W] ["] add NOW and quotation mark to close string
[SHIFT] [�] leave insert mode
[L] list the current state of the line

10 PRINTs "THERE ARE NO MISTAKES IN THIS LINE NOW"
10 �
[ENTER] store the line and leave EDITOR.

41

There are two other editor commands, which should be used with care,

a) The kill character. Typing [K] deletes the rest of the line from the cursor
position. [K] followed by a character will delete everything from the cursor
to the first occurrence of that character. [3] [K] [A] will delete up to the
third occurrence of A.

b) The hack character. Typing [H] deletes the rest of the line from the cursor
position and then goes into insert mode. It is useful for retyping the end
part of a line.

If your typing is perfect and you never make programming mistakes, you may
ignore this section. For the rest of us, the EDITOR will make life much easier
from now on. Type in one of the examples you have been given, save it on
tape if you like, then turn into a different program by using the EDITOR.

MORE SYSTEM COMMANDS

Commands like LIST and RUN are system commands. They are not part of
the program but a direct command to your computer to do something now.
Here are some others which make the business of programming easier.

DELeting program lines

To remove a line from a program we have been typing the line number
followed by [ENTER]. This is alright for one or two lines, but what about 30
or 40 lines?

DEL linenumber � linenumber

will delete a whole block of lines starting with the first line-number up to and
including the second linenumber.

DEL 100 � 250

will remove all lines from 100 to 250, inclusive, from the program currently in
memory.

The DEL command can be used in other forms as well,

DEL 20 will delete line 20 only
DEL 30� will delete all lines from 30 to the end of the program.
DEL�200 will delete all lines from the start of the program up to

and including 200
DEL� will delete the entire program.

 RENUMbering program lines
42

DEL

The DEL command is used to delete specified lines from the program
currently in memory.

DEL linenumber1 � linenumber2

The command will delete all lines from linenumber 1 up to and including
linenumber 2. Both linenumbers are optional and the command can be used
in any of the following forms:�

DEL � Delete the entire program
DEL �100 Delete from the start to line 100
DEL 300� Delete from the line 300 to the end
DEL 40 Delete line 40 only
DEL 100�200 Delete all lines between 100 and 200

RENUM

The RENUM command allows all or part of the program line numbers to be
changed. The RENUM command also changes the line numbers in branching
Statements (GOTO etc.) to ensure that program flow continues at the same
place.

RENUM newline, starline, increment

The command will remember all lines from startline beginning with newline
and a gap between the lines of increment. All parameters are optional and
the statement can be used in any of the following forms:

RENUM Renumber entire program. Lines will be numbered
 10,20,30
RENUM 100 Renumber entire program. Lines will be numbered
 100,110,120
RENUM 100,50,5 Renumber starting at old line 50. Lines will be
 numbered 100,105,110
RENUM,,20 Renumber entire program. Lines will be numbered
 10,30,50

Note that if a parameter is omitted and a following parameter is to be used,
the comma must he present. RENUM cannot be used to alter the line
sequences.

43

The RENUM command will remember all, or some of, the line numbers in
your program. It will also change the line number in GOTO, GOSUB, IF
THEN, ON GOTO, and ON GOSUB statements to make sure they still
branch to the same place, we will meet these statements later.

RENUM newline, startline, increment

Newline is the new line number of the first line to be renumbered.
Startline is where you want to start renumbering from, and increment is the
increment to be used between each renumbered line. Any, or all, of these
parameters can be omitted. If you omit newline, 10 is assumed. Omitting
startline causes the entire program to be renumbered, and omitting increment
will cause the line numbers to increase in tens.

RENUM will number the entire program as 10, 20, 30....
RENUM 100,50,5 will number the lines from 50 as 100, 105, 110 ... All
 the lines before 50 will be unchanged.
RENUM 110,,2 will renumber the entire program as 110, 112, 114
RENUM,,5 will renumber the entire program as 10, 15, 20

Note that if you omit a parameter, but wish to use one that comes after it
in order, you must include the comma.

TRacing a program flow

Sometimes when you have difficulty with a program it is useful to know where
it is going to. The trace facility allows you to do this. By typing TRON before
you run the program, you switch the trace on. The line number will now be
printed on the screen as the program comes to it. This enables you to see if
the program is branching to the correct place. To switch the trace off, type
TROFF.

STOPing and starting

A program can be halted during a program run by including a program line
containing the STOP command

185 STOP

This line will cause the program to halt when it reaches line 185. A message is
printed on the screen telling you the program has stopped and which line it
sopped at. You can now look at the contents of any variable by using PRINT
or ? To restart the program type CONT (means continue) and the program
will carry on from the next line after the STOP.
44

You can now renumber programs, delete unwanted lines, change the contents
of any line, and save the result into a cassette tape. As we are now in a postion
to maintain our programs, we will now start to construct some that do
something more interesting than flash screens and made weird noises.

45

TRACE

The program flow may be followed by using the trace. As each line is
reached the line number is printed on the screen. The trace must be
switched on before the program is run.

TRON switches on the trace
TROFF switches off the trace

Both are direct commands and do not require a line number.

END
STOP
CONT

The END command terminates program execution and returns control to the
keyboard.

The STOP command halts execution of the program at the line containing the
STOP. A message BREAK AT N appears on the screen to indicate the halt
has taken place at line number N. To restart the program use CONT
(continue), without a line number. The program will continue operation at
the next line after the STOP. A program will not continue after an END
statement, it must be rerun.

46

CHAPTER FIVE

GOING PLACES

At the end of chapter 3, we were discussing how to construct a program by
considering it as a number of separate sections. Next we shall cover how to
direct the path the program takes to join up these sections. This is called
branching. We have already met the branching statement, GOTO. This is an
unconditional branch, because as soon as the program reaches the GOTO
statement it jumps immediately to the specified line number and continues
from there. The program has no choice in the matter, GOTO means go to at
once, not maybe or sometimes. So far we have mainly used the GOTO to
return to the beginning of the program. While the ability to repeat part of a
program over and over is extremely useful, it is unlikely we would want to do
so forever. (It is also not a good practice to have to rely on the BREAK key to
stop the program). Fortunately, the BASIC language provides us with a
number of statements that allow us to control the flow of the program.

SELECTING OPERATIONS

The first of these statements is an extension of our old friend the GOTO
statement. It is the ON... GOTO statement and has the following form: �

ON numeric expression GOTO list of line numbers

The numeric expression is evaluated and, if necessary, truncated to a whole
number (i.e. the numbers after the decimal point are dropped). Control is
then transferred to one of the line numbers in the list. If the expression
evaluates to 1, it goes to the first line number, if 2, the second, and so on. If
the value of the expression is less than 1, or greater than the number of line
numbers in the list, the computer will ignore the statement completely and
carry on at the next line. A negative value for the expression, however, will
cause the program to halt with an error message. It is usually a good idea to
check that the value is within the intended range before reaching the ON. . .
GOTO statement. Here are some examples of the statement.

140 ON P GOTO 200,300,400
210 ON X � 4 GOTO 20,40,700,10,690
185 ON B*C/D � E GOTO 115,285,900,40

The ON... GOTO statement is a useful way of selecting from a number of
options and can be considered as a conditional branch. We will use it this way
in the example in the next section.

47

ON. . .GOTO

The ON GOTO command performs a multiway branch to specified line
numbers.

ON expression GOTO line number list

The expression is evaluated (and truncated if not an integer). The program
then branches to the number in the list with a position equal to the value
of the expression. If the expression value is four, the ON GOTO command
will select the fourth item in the line number list. The value of the
expression must not be negative, an error wili result. If the expression
value is zero or greater than the number of line numbers in the list, the
statement will be ignored and the program will continue on the next line.

10 CLS: PRINT"SOLUTION OF QUADRATIC EQUATION"
20 INPUT "A,B,C"; A,B,C:IF A = 0 THEN 20
30 R = �B(2*A):D = B*B�4*A*C:S = SGN(D)
40 P = SQR(D*S)/(2*A)
50 ON S + 2 GOTO 80, 60, 70
60 PRINT "PERFECT ROOTS": PRINT R,R:END
70 PRINT "REAL ROOTS": PRINT R+P, R�P:END
80 PRINT "COMPLEX ROOTS": PRINT R,R: PRINT P, �P: END

48

DECISIONS

A much more useful form of a conditional branch is available using the
IF ... THEN statement. This is probably the single most powerful statement
in the BASIC language, and as such can range from very simple to extremely
complex. In its simplest form:

IF condition THEN linenumber

it has the meaning IF the condition is true THEN, go to line number,
otherwise continue on the next line.

120 IF D > 9 THEN 250
180 IF A$ = "YES" THEN 600

In line 120, above, the program will transfer control to line 250 if, and only if,
the value of D is greater than 9. If D is less than, or equal to, 9 the program
will continue at the next line. In line 180 the branch to line 600 will occur only
if the string variables A$ contains the characters YES. The match in this case
must be exact. YESS, YEH, YEA, YEP, Y, OK, (or even 'yes', remember
lower case characters), will cause the program to ignore the branch.

In its full form the IF ... THEN statement appears as follows:�

IF condition THEN action 1 ELSE action 2

which has the meaning IF the condition is true THEN perform action 1, if
the condition is not true then perform action 2.

210 IF P = 3 THEN PRINT "TRUE" ELSE PRINT "FALSE"

In this example TRUE will be printed only if P is equal to 3, if P has any other
value, FALSE will be printed. In both cases the program will continue on the
next line. It is possible for both action 1 and action 2 to consist of more than#
one statement.

210 IF P = 3 THEN PRINT "TRUE": R = R + 1:GOTO 560
 ELSE PRINT"FALSE":L = L + 1

If P is equal to 3 the computer will print TRUE, add 1 to variable R and
continue the program at line 560. For any other value, it prints FALSE, adds
1 to L and continues on the next line.

The computer will accept for action 1 and action 2 any legitimate BASIC
statements, including other IF ... THEN statements, if you wish. The only
constraint is that the complete IF ... THEN statement must fit onto one line.
(One line may contain a maximum of 256 characters including the line
number).

49

Up to this point we have only considered what happens after the condition
has been evaluated. The decision part of your computation lies in testing the
condition. A condition can be TRUE or FALSE, nothing else. (The
computer gives TRUE the value 1, and FALSE the value 0). A simple
condition has the form

expression1 relation expression2

expression 1 and expression 2 are the usual BASIC expressions, such as
appear in the assignment statement. Both expressions must be of the same
type, (both numeric, or both string). A relation can be any of the following:-

MEANING SYMBOL EXAMPLE

Equal to = 60 IF X=Y+2 THEN 100
Less than < 110 IF A*B+2<C/2 THEN 20
Greater than > 185 IF A$>B$ THEN PRINT A$
Less than or equal to <= 220 IF 4*W9<=B/Z9 THEN A = A � 1
Greater than or equal to >= 415 IF B7>=0 THEN X = 0
Not equal to <> 80 IF A$<>"'YES" THEN 999

Note that a relation can be applied to strings as well as numeric expressions.
When strings are compared each character is checked in turn, and so IF. . .
THEN statements can be used to compare for alphabetic order.

The condition "A" < "B" is true, because the letter A comes before the
letter B in the alphabet. The condition "AAA" < = "AA" is false, because
AAA would appear after AA in a dictionary, for instance.

Conditions can be extended by combining two or more conditions using the
operators AND, OR

270 IF A = 4 AND B = 7 THEN 500

The AND operator means both conditions must be true at the same time for
the whole conditional expression to be true. In the example, if A is equal to 4
and B has any other value but 7, the whole will be false and the program will
continue on the next line.

The OR operator means that if any one of the conditions is true, the whole
expression is true.

320 IF D<3 OR F+G>25 THEN 100

The program will branch to line 100 if D is less than 3, no matter what the
value of F+ G may be. Alternatively, it will branch to line 100 if F+ G is
greater than 25, irrespective of the value of D.

50

IF. . .THEN. . .ELSE

The full form of the IF command is,

IF condition THEN action1 ELSE action2

The statement tests the condition which will be either TRUE or FALSE. lf
TRUE then action 1 is carried out, if FALSE then action 2.

A condition is made up of an expression, a relation and an expression. The
expressions may be any BASIC expressions of the same type (i.e. both
numeric or both string). A relation is any of the following operators,

= Equal to <> Not equal to
> Greater than < Less than
>= Greater than or equal to <= Less than or equal to.

Conditions may also be combined by the logical operators AND, OR, NOT.

condition AND condition only TRUE if both conditions are true
condition OR conditionTRUE if either condition is TRUE
NOT condition TRUE if condition is FALSE.

Action 1 and action 2 may be any BASIC statement including another IF
statement.

The ELSE part of the command is optional and may be omitted, in which case
the program continues on the following line if the condition is FALSE.

10 CLS: PRINT @ 9,"GUESSING GAME":N=RND(100):T=0
20 INPUT "GUESS MY NUMBER";G: T = T+1
30 IF G = N THEN PRINT "CORRECTIN";T;"TRYS":END
40 IF G > N THEN PRINT "NO IT'S SMALLER" ELSE PRINT
 "NO IT'S LARGER
50 GOTO 20

51

INKEY$

The INKEY$ command is a function. It checks the keyboard to see if a key is
being pressed, if so returns the string character of the key.

It can be used to place a single character into a string variable, and does
not require the [ENTER] to follow the entry.

10 CLS0:PRINT @ 5,"PRESS ANY KEY AND I WILL";
20 PRINT @ 38,"TELL YOU WHAT IT WAS. s"
30 B$ = "YOU ARE NOT PRESSING A KEYss"
40 C$ = "THE KEY YOU PRESSED WAS:� s"
50 A$ = INKEY$
60 IF A$="" THEN PRINT @ 193,B$; ELSE PRINT @ 193,C$;A$
70 FOR D = 1 to 600: NEXT D: GOTO 50

52

The program which follows is a simplified form of a common educational
program. The comments in the program indicate what each section is doing.
Note the use of ON ... GOTO to select the option and IF . . . THEN statements
to check the arithmetic. At line 800 we introduce another new word,
INKEY$. This command scans the keyboard to see if a key has been pressed.
If it has the character pressed will be stored in A$. lt does not require the
[ENTER] key to be pressed after the input. See the box marked INKEY$.

The program looks a lot longer than it really is, as over half of it is comment
lines. To save space in the future we will not be quite so liberal with
comments.

10 REM ARITHMETIC PRACTIQUE PROGRAM
20 REM
30 REM ZERO COUNTERS & FIND DIFFICULTY LEVEL
40 REM
50 R = 0:W = 0:CLS
60 T$ = "ARITHMETIC PRACTICE"
70 PRINT @ 6,T$
80 PRINT @ 64,"ssENTER LEVEL OF DIFFICULTY"
90 PRINT @ 128,"ssA NUMBER BETWEEN 1 AND 10":INPUT
 L:L1 = 10*L�1
100 REM
110 REM DISPLAY OPTIONS
120 REM
130 CLS:PRINT @ 6,T$
140 PRINT @ 71,"1. sADDITION."
150 PRINT @ 103,"2.sSUBTRACTION."
160 PRINT @ 135,"3.sMULTIPLICATION."
170 PRINT @ 167,"4. sDIVISION."
180 REM
190 REM SET PRINT POSITION
200 REM
210 P = 224: Q = 352
220 REM
230 REM SELECT OPTIONS
240 REM
250 PRINT @ P,"ssWHICH DO YOU WANT TO TRYs";:INPUT A

260 REM
270 REM SELECT 2 NUMBERS FOR PROBLEM
280 REM

53

290 N1 = RND(L1):N2=RND(L1)
300 REM
310 REM BRANCH TO OPTION
320 REM
330 ON A GOTO 390,460,530,600
340 REM
350 REM OPTION WRONG � TRY AGAIN
360 REM
370 CLS: SOUND 160,3:GOTO 130
380 REM
390 REM ADDITION SECTION
400 REM
410 PRINT @ P," ssssssssssssADDITION."
420 PRINT @ Q,"ssWHAT IS";N1;"PLUS�";N2;:INPUT N4
430 N3 = N1 + N2
440 IF N4 = N3 THEN 690 ELSE 730
450 REM
460 REM SUBSTRACTION SECTION
470 REM
480 PRINT @ P,"ssssssssSUBTRACTION."
490 PRINT @ Q,"WHAI IS";N1;"TIMES";N2;:INPUT N4
500 N3 = N1 � N2
510 IF N4 = N3 THEN 690 ELSE 730
520 REM
530 REM MULTIPLICATION SECTION
540 REM
550 PRINT @ P,"sssssMULTIPLICATION."
560 PRINT @ Q,"WHAT IS";N1;"TIMES";N2;:INPUT N4
570 N3 = N1*N2
580 IF N4 = N3 THEN 690 ELSE 730
590 REM
600 REM DIVISION SECTION
610 REM
620 PRINT @ P,"ssssssssDIVISION."
630 PRINT @ Q,"WHAT IS2;N1;"DIVIDED BY";N2;:INPUT N4
640 N3 = N1/N2
650 IF N3 = N4 THEN 690 ELSE 730
660 REM
670 REM CORRECT ANSWER
680 REM
54

690 R = R+1:PRINT @ P,"sssssssssCORRECT.":GOTO 770
700 REM
710 REM WRONG ANSWER
720 REM
730 W = W + 1:PRINT @ P,"sssssssssssWRONG.":
 PRINT
 @ P+32," sssssTHE ANSWER ISs";N3:GOTO 770
740 REM
750 REM CHECK FOR REPEAT & CLEAR LINES
760 REM
770 FOR D=1 TO 600:NEXT D
780 PRINT @ P," s":PRINT @ P+32," s":PRINT @ Q,"�"
790 PRINT @ P,"DO YOU WANT TO TRY ANOTHER?(Y/N)"
800 A$=INKEY$:IF A$="" THEN 800
810 IF A$="Y" THEN 130
820 REM
830 REM GIVE RESULTS AND FINISH
840 REM
850 CLS: PRINT @ 128,"YOU GOT";R;"CORRECT
 AND";W;"WRONG"
860 END

DO IT AGAIN, AND AGAIN, DRAGON

Often a program needs to repeat a sequence of lines a number of times. The
next type of branching statement allows us to do this. Enter this small
program and RUN it.

10 CLS
20 FOR I=1 TO 50
30 PRINT @ 198,"COUNTER I="
40 PRINT @ 214,I
50 NEXT I
60 PRINT @ 396,"LOOP ENDED"

It is far too fast to see what is going on, so add the line,

45 FOR J = 1 to 100: NEXTJ

As you can see, the program counts from 1 to 50. The lines that are being
repeated are lines 30,40 and 45. A repeat sequence like this is called a
'loop', because the program loops back, in this case to line 20. The

55

statements which control the loop are at line 20, (the top of the loop) and at
line 50 (the bottom of the loop). Line 20 translates as 'FOR all values
between 1 and 50 in steps of 1, do all the following statements until the NEXT
statement is reached'. The variable 1 is acting as the counter and has values
1,2,3,. . . .50. We added the line at 45, because it was counting so fast. This
loop has no statements to perform, so the counter (variable J this time) just
counts from 1 to 100. The pause is sufficient to slow down the other loop, to
enable us to read the numbers on the screen. If we now change line 20 to,

20 FOR 1 = 1 TO 50 STEP 2

the counter will now count on from 1 in twos (1,3,5,7, 49). The addition
of the STEP allows us to decide on the counter increment, or how much to
count on by. If the STEP word is left off, the counter assumes you want to
count on in ones. Change the example by typing in the following lines,

15 INPUT "START,FINISH,STEP";A,B,C
20 FOR I = A TO B STEP C
70 PRINT @ 428,"AND I = ";I

RUN the program with various values for start, finish and step. Try some of
the following values

START FINISH STEP

 50 1 1
 �50 50 5

 1 10 0.5
 2.6 3.9 0.1
 1 �2 1

You will notice that you can count forwards or backwards in any step you
like. The only rule is if the step is positive the start must be less than the
 finish, or if the step is negative the start must be larger than the finish. From
the last example given above (1, �2, 1) you can see that even if you break the
rule, (it is not possible to count from 1 to �2 in steps of + l) the loop will still
be performed once.

Loops can be 'nested' inside another loop (the loop at line 45 is nested
inside the other loop starting at line 20). You must make sure that the
loops are closed in the correct order.

56

20 FOR I = 1 TO 10
30 FOR J = �2 TO 4 STEP 0.6
40 FOR K = 1 TO 0 STEP �0.1
.
.
.
.
.
.

100 NEXT K
110 NEXT J
120 NEXT I

Every FOR statement must have its corresponding NEXT statement, the
variable after the NEXT indicating which FOR it belongs to. The loops
should be closed in the opposite order to that which they were opened in. If
the last three lines above were,

100 NEXT J
110 NEXT K
120 NEXT I

the program will stop and give an error message, because loop J and loop K
overlap.

If all the loops end in the same place, the NEXT statements can be combined
as,

100 NEXT K,J,I

but the order of the variables must still be as before.

The variables used to set up a loop, (in the example I,A,B, and C), can be
used inside the loop. But you will not be allowed to alter the start, finish or
step size. The counter can be changed by appearing on the left hand side of an
assignment statement, but this is not a good practice.

Other branching statements, like GOTO or IF ... THEN, can be used inside a
loop to leave it before it is finished. You cannot jump into the middle of a
loop, however, you must start a loop with a FOR statement.

The following program demonstrates the use of nested loops. It simulates a
digital timer. To make it really accurate you may have to adjust the delay loop
at line 220. Note the use of INKEY$ to stop and start the clock at lines 90, 150
and 170.

10 CLS0: PRINT @ 10,"DIGITAL TIMER";
20 ' PRINT POSITIONS

57

FOR…NEXT…STEP

The FOR ... NEXT command consists of two statements,

FOR numeric variable = expression TO expression
 STEP expression

and,

NEXT numeric variable

The FOR ... NEXT statements work together to control the number of times a
section of program is executed. The technique is called looping.

The expressions are evaluated and the loop counts from the value of the first
expression TO the value of the second expression with an increment given by
the third expression. The current value of the counter is held in the numeric
variable. The loop will be performed at least once, even if the range and
increment are not possible. If the STEP part of the statement is omitted + 1 is
assumed.

Loops can be nested inside each other, but must be in the correct order.

You may branch out of a FOR ... NEXT using GOTO, IF ... THEN or similar
statement, you cannot however branch into the middle of a loop.

10 CLS: CLEAR: DIM L(1000)
20 INPUT"ENTER A NUMBER"; N:IF N > 1000 OR N < 2 THEN 20
30 CLS: PRINT "PRIME NUMBERS BETWEEN 2 AND"; N
40 FOR I=2 TO N:IF L(I)<0 THEN 80
50 PRINT I;
60 IF I>SQR(N)THEN 80
70 FOR J = I TO N STEP I: L(J)=�1:NEXT J
80 NEXT I

58

30 P = 261: Q = 196
40 ' INSTRUCTION BLOCK
50 PRINT @ 386"PRESS SPACEBAR TO STOP & START";
60 PRINT @ 424,"AND 'R' TO RESTART2;
70 ' PRINT DISPLAY AND WAIT FOR START
80 PRINT @ Q,"HOURS";:PRINT @ Q+10,"MINS";:PRINT @
 Q+22,"SECS";
90 A$ = INKEY$:IF A$<>"s" THEN 90
100 ' START LOOP FOR HOURS MIN & SECS
110 FORH=0 TO 23:FOR M = 0 TO 59:FOR S = 0 TO 59
120 SOUND 220,1
130 ' TENTHS OF SEC LOOP
140 FOR T = 0 TO 9
150 A$ = INKEY$:IF A$<>"s" THEN 200
160 ' CHECK FOR KEYPRESS
170 A$ = INKEY$:IF A$="R" THEN 110
180 IF A$<>"s" THEN 170
190 ' PRINT TIME
200 PRINT @ P,H;:PRINT @ P+10,M;:PRINT @ P+19,S;
 ".";T;
210 ' TIMER ADJUSTMENT LOOP
220 FOR D=1 TO 13:NEXT D
230 NEXT T
240 ' END OF TENTHS LOOP
250 NEXT S,M,H
260 ' END OF SECS, MINS & HOURS LOOPS
270 PRINT @ 448,"STOPPED"
280 END

WHEELS WITH WHEELS

By now you should be aware that programs have an overall structure and are
assembled from smaller blocks. Some of these blocks may be required many
times in different places in the overall program. The structure of the program
can often be simplified by treating these situations as subroutines. A
subroutine, as the name implies, is a subsidiary part of a program, or a
program within a program. The main feature of a subroutine is that when
called it carries out its sequence of lines and then returns to the place it was
cared from. To call a subroutine, you use the statement,

GOSUB line number

59

where line number is the number of the program line where the subroutine
starts. As a subroutine must come back, each subroutine ends with the
statement,

RETURN

The GOSUB behaves in a similar way to the GOTO statement. The
difference being with GOTO the program branches to a line and continues
from there, it does not come back unless it meets another GOTO statement.
Type in the following example and RUN it,

10 CLS: PRINT "IN MAIN PROGRAM"
20 GOSUB 50
30 PRINT "BACK IN MAIN PROGRAM"
40 END
50 PRINT "IN FIRST SUBROUTINE"
60 GOSUB 90
70 PRINT "BACK IN FIRST SUBROUTINE"
80 RETURN
90 PRINT "IN SECOND SUBROUTINE"
100 RETURN
The program line number sequence is as follows:

10,20,50,60,90,100,70,80,30,40

Note how the first subroutine (lines 50�80) calls the second subroutine (lines
90,100). The END statement we have slipped in means exactly what it says. It
is used to indicate where the program actually finishes. Try taking out line 40
and running the example again. You should get ? RG ERROR IN 80. This is
because the program encountered a RETURN statement without being told
to go to a subroutine. The program 'fell' through the bottom into the first
subroutine. You must always protect subroutines and ensure the only way in
is by a GOSUB statement, and the only way out is by a RETURN. You can
use GOTO, IF ... THEN, and similar branching statements inside a
subroutine, but they must not cause a branch to a line number outside the
routine.

As with the ON ... GOTO statement, a multiple branch is also available for
subroutines, and has a similar form,

ON expression GOSUB list of line numbers

Most experienced programmers keep a library of subroutines, so many new
programs can be constructed from stock, so to speak. It is usually a good
60

idea to number subroutines with large line numbers, 10000�, so that they
can fit into a program without renumbering.

Many examples of subroutines will appear in following chapters. so we will
not give specific examples now.

61

GOSUB
RETURN

ON ... GOSUB

The GOSUB command transfers program control to the beginning of a
program subroutine. The RETURN transfers control back to the line
following the GOSUB statement.

The GOSUB is followed by a line number, which is the first line of the
subroutine.

GOSUB 1600

A subroutine must contain at least one RETURN statement.

The ON ... GOSUB command allows a multiple branch to subroutines in a
similar way to the ON ... GOTO command.

ON expression GOSUB list of line numbers

lf the expression is negative the program will stop with an error message. If
the expression is zero or greater than the number of items in the list of line
numbers, the statement will be ignored and the program will continue on the
next line.

10 CLS:INPUT"ENTER ANY TWO NUMBERS";A,B
20 INPUT"NOW ENTER A NUMBER FROM 1 TO 4";C
30 ON C GOSUB 100,200,300,400
50 PRINT C;"IS NOT BETWEEN 1 AND 4":GOTO 20
100 PRINT"ADDITION";A;"PLUS";B;"IS";A+B
110 RETURN
200 PRINT "SUBTRACTION.";A;"MINUS";B;"IS";A�B
210 RETURN
300 PRINT"MULTIPLICATION.";A;"TIMES";B;"IS";A*B
310 RETURN
400 PRINT"DIVISION";A;"DIVIDED BY";B;"IS";A/B
410 RETURN

62

CHAPTER SIX

NEW DIMENSIONS

In chapter 2 when we were discussing variable types, we said that variables
came in two sizes, simple and array. Up to now we have only used simple
variables.

If you decided to use your computer to keep an index of all your books, or
records, it would not take long to run out of variables to store them in. It
would also be a very difficult program to write, keeping track of all those
different names! Your computer comes to the rescue with array variables.

LISTS AND TABLES

Array variables are especially useful for dealing with lists of items, so we
could set up a list of books as follows:

1. Title 1
2. Title 2
3. Title 3
.
.
.

To refer to our books now, we could ask for number 8 on the list. In our
program we give a name to this sequence of variables (the titles), and refer to
a single value in the list by giving the index number. So first we must give our
list a name.

An array variable name follows the same rules as for simple variables. The
computer recongnises the difference between the two, because array
variables are always followed by brackets containing the index number.

A(5) refers to the 5th item in a numeric array (list called A)
D7$(28) refers to the 28th item in a string array called D7$

The index number is called a subscript. To set up an array you have to tell
the computer what it is called and what size it is. This is done with the
DIM statement,

DIM arrayname (number). arrayname (number, number)

DIM stands for dimension, the statement not only names the array, but sets
the maximum size it may take. The number can be any positive number, or a

63

simple variable, provided the simple variable has already been given a value.
Only set up the size you need as very large arrays take up a lot of the memory
available..

10 DIM A(22), NA$(40)

The above line tells the computer to set up an array called A of length 22 and
a string array called NA$ of length 40. (Actually the lengths are 23 and 41,
because the index numbers start with 0).

To refer to an array element in an expression, you just include the index
number, or subscript, in brackets after the name.

25 A(4) = 7.0
32 A(M) = B*C/A

Line 25 will set item 4 in array A to 7.0. Line 32 will evaluate the expression
and put the result into item M of array A, (note that the A on the right hand
side of line 32 is a simple variable called A, and has nothing to do with the
array A on the left hand side).

Arrays can also have two dimensions, the line,

10 DIM T(10,5), TB$(12,4)

will create a numeric array, T, which will be a table with 10 rows and 5
columns. The string array, TB$, will have 12 rows and 4 columns. For
instance, a teacher may wish to enter the examination scores for 25 students
on 6 different subjects. An array EXAM(25,6) would do for this purpose. To
refer to an element in the table you would need two subscripts.

25 PRINT EXAM(10,3)

would display the mark for the loth student on the 3rd subject. Of course, the
subscripts must refer to an element which exists. Trying to use EXAM(30, 7)
will cause an error because you did not set up an array of that size.

Time for an example using arrays. The following program is short, but will
require a little thought on your part as to how it works. lt is used for shuffling
a pack of cards. Each card is given a number from 1 to 52, in array X. Items
are selected at random from X, and put into array Y. When the program
ends, Y contains the numbers 1 to 52, but in random order (i.e. Shuffled).
You cannot use the random number generator to produce the shuffled pack
directly, because you can have only one number per card. The RND function
could draw the same number more than once. Line 50 is printing out the
shuffled array, note how it uses an expression as an array subscript.
64

DIM

The DIM command is used to dimension arrays. Arrays may be one or two
dimensional and he either numeric or string. Array names follow the same
rules as for simple variables.

DIM arrayname (n), arrayname (n,n)

If the maximum size fo the array does not exceed lo the DIM statement is not
necessary.

To refer to an array element in an expression, the name must be followed by
the subscript in brackets.

A(14,K) N9(B) L$(14,4)

65

10 DIM X(52), Y(52):CLS
20 FOR I = 1 TO 52: X(I) = 1:NEXT I
30 FOR I = 52 TO 1 STEP � 1
40 J = RND(I): Y(I) = X(J): X(J) = X(I):NEXT i
50 FOR I = 1 TO 13: FOR J = 1 TO 4: PRINT Y(4*(I�1)+J);: NEXT
 J,I:END

The elements of a string array can be moved about in the same way. One of
the most common applications to strings is sorting a list into alphabetical
order. In the following example a list of words is sorted by the subroutine
starting at line 200. Many books have been written about sorting on
computers and the method used here is called the exchange sort. It is not
necessarily the best method, but it is the simplest. If you are not familiar with
the method, work through by hand just using the list D, B, A, E, C.

10 CLS: DIM W$(50)
20 INPUT "HOW MANY WORDS";N
30 CLS: PRINT"ORIGINAL"
40 FOR I = 1 TO N: PRINT I;".ss";
50 INPUT W$(I): NEXT I
60 GOSUB 200
70 PRINT @ 18,"SORTED"
80 FOR I = 1 TO N
90 PRINT @ 18+32*I,I;".ss";W$(I)
100 NEXT I: END
200 M = N
210 F = 0:FOR I = 1 TO M�1
220 IF W$(I)<=W$(I+1) THEN 240
230 T$=W$(I): W$(I) = W$(I+1): W$(I+1) = T$:F = 1
240 NEXT I: IF F = 1 THEN M = M � 1:GOTO 210
250 RETURN

WHAT'S ITS FUNCTION

Remember RND, and how we keep calling it a function? Well, it is not alone.
A function, in the computing sense, is a special subprogram which when given
a set of arguments, returns a single value. A function in the BASIC language
has the form,

Function name(arguments)

and can be used in an expression in the same way as other arithmetic
operators (� , *, /, +, �). Functions, however, take priority over all other
operators, except brackets.

66

The arguments of a function are the values to be given to the function, which
then returns the result. Arguments may be constants, variables or
expressions.

RND(10), RND(X) or RND(A*2+F)

are all acceptable arguments. Note that the argument is always enclosed in
brackets.

Your computer supplies you with a number of functions, like RND, which are
part of the BASIC language. The available 'built-in' functions can be
considered as belonging to one of five different classes. We will take each
class in turn, give a list of the functions, a short explanation, and an
example line. They will appear in programs from now on, so we will not give
example programs for each one, there are far too many.

CLASS I functions

These are numeric functions, mostly for mathematical use. They have a
numeric argument and return a numeric value. Class 1 functions can only be
used in numeric expressions. For those of you not familiar with trigonometric
functions see Appendix D.

Function
Name

Operation Example

ABS(X)

The absolute of X

100 A = ABS(D*2�C)

ATN(X)

Arctangent of X, in radians.
The inverse of TAN (X).

110 PRINT "ANGLE=";
ATN(R3)

COS(X)

Cosine of X, where X is an
angle measured in radians.

510 F7 = COS(X+4)

EXP(X)

Raise the base e, (natural
logarithms) to the power x,
(ex). The inverse of LOG (X)

215 Q=EXP(�A*A)

FIX(X)

Returns the integer part of X,
(i.e. truncates all digits
 after the decimal point).

172 N = FIX(Z*.05)

INT(X)

Truncates if X is positive, as
for FIX. If X is negative, it
rounds downwards (i.e. INT
�12.001 is 13)

280 P = INT(100*X)

67

Function
Name

Operation Example

JOYSTK(X)

Returns the current
horizontal, or vertical position
of the left or right joystick as
follows:
X = 0, horizontal left joystick
X = 1, vertical left joystick
X = 2, horizontal right joystick
X = 3, vertical right joystick

1040 A = JOYSTK(0):
B=JOYSTK(1)

LOG(X)

Natural logarithm of X. The
value of the argument must he
greater than zero. The inverse
of EXP (X).

617 L1 = 5.2*LOG(W4)

PEEK(X)

Returns the contents of the
memory location whose
address is X.

55 P = PEEK (65280)

POINT
(X,Y)

Test whether a low resolution
graphics cell is on or off. X
must be in the range 0 � 63
(horizontal), Y in the range
0 � 31
(vertical). Returns the value
 0 if cell is off
 � 1 if in text mode
1 to 8 if on, the number of
colour.

50 IF POINTS (5,A)=C
THEN 210

POS(X)

Returns the current print
position. The only arguments
are,
0 for screen display
1 for printer.

168 IF POS (0) > 30 THEN
PRINT A$

PPOINT
(X,Y)

Tests high resolution graphic
cell. Returns 0 if cell is off,
otherwise returns colour code
of cell.

115 C = PPOINT(A1,A2)

68

Function
Name

Operation Example

 (X in range 0 � 255, Y from 0
�191)

RND(X)

Returns random whole
number between 1 and X. X
equal zero (0) returns random
number between 0 and 1.

220 PRINT @ RND(510);
"*";

SGN(X)

Returns the sign of the
argument
X negative returns �l
X zero returns 0
X positive returns + 1

412 Y = RND (ABS
(N))*SGN(N)

SIN(X)

Sine of X, where X is an angle
in radians.

205 S=SIN(K*PI/180)

SQR(X)

Square root of argument
(x), X should not be
negative. If X is negative then
function returns �
� ABS(X)

330 C=SQR(A*A + B*B)

TAN(X)

Tangent of X, where X is an
angle in radians. The inverse
of ATN (X)

840 R5=B/TAN(EQ�5)

Class II functions

The class II functions have a numeric argument, but return a string value.
They can only be used in string expressions.

Function
Name

Operation Example

CHR$(X)

Returns the character for the
code given by X. X must be
from 0 to 255. See Appendix
A for list of codes.

20 M$=CHR$ (143) + CHR$
(128)

69

Function
Name

Operation Example

HEX$(X)

Computes the hexadecimal
value for a decimal number X

42 PRINT HEX$(30)

STR$(X)

Converts a numeric
expression into the string
equivalent

175 A$ = STR$(12,49)

Class III functions

Class III functions are string functions. The arguments (there are usually
a least two), are a string and a number. They all return a string value and
therefore must be part of a string expression.

Function
Name

Operation Example

LEFT$
(X$,N)

Returns the first N characters
of string X$

114 A$ = LEFT$(B$,7)

MID$
(X$,M,N)

Returns the N characters of
string X$, starting at position
M. If N is omitted the entire
string to the right of M is
returned. M must be greater
than 0.

760 K$ = MID$(W$,I,4)

RIGHT$
(X$,N)

Returns the last N characters
of string X$

340 T$ = RIGHT$(Q$,B+7)

STRING$
(N,C)

Returns a string of length N
consisting of the character
defined by C. The argument C
can be, either a number, (the
ASCII code for the character)
or, the character itself,
enclosed in quotes.

400 A$ = STRING$(5,67)

410 PRINT STRING$(32,"*")

70

Class IV functions

These are a mixed function similar to class II. They have a string argument
and return a numeric value, and so only appear in numeric expressions.

Function
Name

Operation Example

ASC(X$)

Returns the ASCII code
number of the first character
of the string argument.

715 P = ASC(F$) � 64

INSTR
(P,S$,T$)

Searches the string S$ for the
target string T$, starting from
position P of the search string.
Return 0 if not found,
otherwise the position of the
target string.

212 F = INSTR(N,X$,"AB")

LEN(X$)

Returns the length of the
string X$. All characters are
counted including spaces. lf
the string is empty returns 0.

845 N = LEN(N$)

VAL(X$)

Converts the character
representation of figures into
a number. If the string starts
with alphabetic character it
returns 0
 .

92 Z = VAL(AB$)

Class V functions

Class V are system functions. They have no arguments

Function
Name

Operation Example

INKEY$

Checks the keyboard and
returns key being pressed
any). Returns a string so must
be used in a string expression.

146 P3$ = INKEY$

 71

Function
Name

Operation Example

MEM

Computes the hexadecimal
value for a decimal number X

PRINT MEM

TIMER

Returns contents of the timer,
a value in the range 0 � 65535.
To reset use TIMER

62 T1 = TIMER � T
65 TIMER = 0

D.I.Y FUNCTIONS

Apart from the functions supplied hy the system, it is possible for you to
create up to another 26 numeric functions of your own. The form of the
statement is

DEF FN letter(dummy variable) = formula

The letter is any letter from A to Z. The dummy variable is a letter, which
will be replaced by the function argument when the function is called. The
formula is a BASIC expression written in terms of the dummy variable
and/or other variables. Other functions, both built in or user-defined, may
be present in the expression, but a function cannot call itself.

The equation y = ((x � 3) 2 + (x � 4)4)/x3, will translate directly into
a defined function as,

25 DEF FN Y(X) = ((X � 3) � 2 + (X � 4) � 4) X � 3

The X here is the dummy variable, not a variable name. When the function is
called later in the program it will be replaced by the argument. To use the
function, just include it in an expression in the same way as a 'built-in'
function.

150 Y(I) = FN Y(X) + FN Y(W)

Functions can also be used to supply 'service routines', (commonly used
operations). You may have noticed that the numbers output to your screen as
results, tend to be a bit untidy. The computer is trying to be helpful by
printing the number to the maximum accuracy. Sometimes this accuracy is
not necessary and at other times a nuisance, printing cash amounts for

72

instance. The following function can be used to print to the required
number of decimal places, (D)

10 DEF FN D(X) = INT(X * 10 � D + 0.5)/10 � D

Note that the X is a dummy variable, the D is not a dummy variable, the
value for D must be supplied from outside the function, possibly by an
INPUT statement. To use the function.

205 PRINT FN D(A) etc.

As all trignometric functions require the argument to be in radians, a
function to convert degrees to radians could be useful.

10 DEF FN R(X) = X/57.295779

will do this. A more accurate result can be obtained by using instead,

10 DEF FN R(X) = X * ATN(1.0)/45

The constant PI can be created by,

20 DEF FN P(X) = 4.0 * ATN(1.0)

Note that in this case the dummy variable has no effect at all, it is only
there because an argument is required.

As you cannot call a function that has not yet been defined, it is a good
practice to place your function definitions at the start of the program.

ALTERNATIVES TO INPUT

The only way we have been able to get values into variables has been by
using an INPUT statement. This is very convenient, but you may have noticed
that the INPUT statement will not accept certain characters. If you start a
string with spaces they are lost, and if you type a comma you lose
everything after it. There is an alternative, the LINE INPUT statement,

LINE INPUT "prompt"; string variable

The LINE INPUT behaves in a similar way to INPUT, except that it will
accept everything, including spaces and commas. The prompt is the same as
for INPUT, and string variables can be any string variable. You can only
have one variable in each LINE INPUT statement.

25 LINE INPUT "TYPE IN A LINE OF TEXT";L$

Often in a program it is necessary to set up a number of constants before the
program really starts work. You could, of course, enter these every time the

73

DEF FN

The DEF FN command is used to define a user numeric function

DEF FN name(dummy variable) = formula

The name may be any letter from A to Z.

The dummy variable may be any letter, it is replaced by the argument when
the function is used. Only one dummy variable may be used.

The formula describes the operation in terms of the dummy variable and/or
other variables.

User defined functions must be contained in one program line. A defined
function may use other functions, (either defined or 'built in') in the
formula, but must not call itself.

A function must be defined before it is used, it should therefore appear at
the beginning of a program.

Other mathematical functions can be defined as user functions as follows:

10 DEF FN S(X) = 1/COS(X):' SECANT
20 DEF FN I(X) = �ATN(X/SQR(�X*X+1))+1.5708
30 DEF FN H(X) = �EXP(X)/(EXP(X)+EXP(�X))*2+1
40 DEF FN M(A) = INT((A/B�INT(A/B))*B+0.5)*SGN(A/B)
50 B = 8:PRINT FN M(13)

74

LINE INPUT

The LINE INPUT command enters an entire line into a string variable,
including commas and leading spaces not accepted by the INPUT command

LINE INPUT "prompt"; string variable

The prompt is any prompt message included in quotes. lt is optional and if
included must be separated from the string variable by the semi�colon (;).
The string variable may be any string variable. only one variable may
appear in the LINE INPUT statement. The maximum length of the line stored
by a LINE INPUT command is 255 characters.

10 CLEAR 500:CLS
20 LINE INPUT"ENTER YOUR FULL NAME";N$
30 LINE INPUT"AND ADDRESS";A$

75

program is run with INPUT statements. There is, however, a more convenient
method using the READ and DATA statements. They are always used together
and have the form,

READ list of variables
DATA list of values

The READ statement behaves in the same way as the INPUT statement, except
instead of halting the program and waiting for you to enter a value, it
looks for the value in a DATA statement which is part of the program. The
DATA statement may be included anywhere in the program. If there is more
than one DATA statement, the READ starts with the lowest numbered
statement
and works through in order.

10 DATA 1,2,3,4,5
20 FOR I = 1 TO 3
30 READ A: PRINT A: NEXT I
40 READ D,G: PRINT D,G

The above example will read the first item in the DATA list (1), print it out,
read the second (2), and so on. As each item is read the pointer moves to the
next item. Line 40 will read the last two items. If you now add the line,

50 READ X: PRINT X

and run the program again, you will get ?OD ERROR IN 50. This means the
READ has no more items in the DATA list and is therefore out of data
(OD). Add another line,

45 RESTORE

When you run the program this time it is alright, and X has the value 1. The
RESTORE statement sets the pointer back to the beginning of the first
DATA statement. Strings can also be included in DATA statements. You
must take care that any mixture of variables in a READ statement are
matched in order by values of the same type in the DATA list.

If you have written a program using a lot of strings, you may already have had
an ? OS ERROR. This means you have run out of memory reserved for string
storage. To allocate memory for strings use the CLEAR statement.

10 CLEAR 1000

This statements reserves 1000 bytes of memory to store strings. As CLEAR
also sets all variables to zero, only use at the beginning of the program.

76

READ
DATA

RESTORE

The READ command reads the next item in a DATA line and assigns to the
specified variable in the list.

READ list of variable names

The DATA line stores data within the program and may be a numbered line
anywhere in the program.

DATA list of values

Both string and numeric variables may be used in READ and DATA
provided the sequence is correct. A string must be assigned to a string
variable, etc.

The RESTORE command sets the data pointer back to the first item in the
lowest numbered DATA line.

RESTORE

10 CLS: PRINT: PRINT: PRINT
20 READ A,B: IF A = �9999 THEN RESTORE:GOTO 2O
30 PRINT A;" s+s5�sISs";:INPUT C
40 IF C = B THEN PRINT"CORRECT" ELSE PRINT "WRONG"
50 FOR D = 1 TO 600: NEXT D: GOTO 10
60 DATA 8,13,12,17,5,10,27,32,14,19,3,8
70 DATA 7,12,6,11,1,6,�9990,9999

77

CLEAR

The CLEAR command erases all variables and reserves space for string
storage.

CLEAR 500

will reserve 500 bytes of storage for string variables.

The CLEAR command can also be used to set the highest BASIC address in
memory to reserve space for machine language routines.

CLEAR 200,14000

will reserve 200 bytes for string storage and set the highest address for BASIC
to 14000. Machine language routines may now be stored from 14001 onwards.

If CLEAR is not used 200 bytes of string space are automatically reserved.

78

PAUSE FOR REFLECTION

The contents of this chapter, together with those of Chapters 1, 2, 3 and
5, constitute the core of the BASIC language. Though there are still more
statements to come, they are to some extent icing on the cake.

All the material we have covered so far will be used frequently in the
following chapters, as they are essential parts of any program. While you may
be eager to get into drawing pictures with your computer, some time spent at
this point ensuring you understand exactly what is going on, will make using
graphics so much easier.

Check back through the examples, try to adapt them to suit your own ideas.

We finish this section with two more examples. The first extends the
shuffling example of the last chapter. The program 'deals' a hand of cards.
Note the following points,

a) the shuffle now appears as a subroutine at line 90,
b) the use of READ and DATA to set up the arrays at the start,
c) lines 130 and 140 to find the suit and which card within the suit.

10 DIM X(52), PACK(52), CARD$(13), SUIT$(3)
20 FOR I = 1 TO 3: READ SUIT$(I): NEXT I
30 DATA SPADES, DIAMONDS, CLUBS, HEARTS
40 FOR 1 = 1 TO 13: READ CARDS(I): NEXT 1
50 DATA ACE, TWO, TREE, FOUR, FIVE,SIX, SEVEN
60 DATA EIGHT, NINE,THEN, JACK, QUEEN, KING
70 CLS: INPUT"HOW MANY CARDS TO DEAL";N
80 GOSUB 190
90 ST = 1
100 EN = ST + N � 1:IF EN>52 THEN GOTO 80
110 CLS:PRINT @ 10,"YOUR HAND":PRINT:PRINT
120 FOR 1 = ST TO EN
130 S = INT((PACK(I)�1)/13)
140 C = PACK(I) � S*13
150 PRINT TAB(8);CARD$(C);"OF";SUITS(S)
160 NEXT I:ST = ST + N
170 PRINT @ 448,"ANOTHER HAND. YES OR NO";:INPUT A$
180 IF A$ = "YES" THEN 100 ELSE END
190 FOR I9 = 1 TO 52: X(I9) = I9:NEXT I9
200 FOR I9 = 52 TO 1 STEP �1
210 J9 = RND(I9):PACK(I9) = X(J9):X(J9) = X(I9)
220 NEXT I9: RETURN

79

The second example uses nearly all the available string functions. The
program checks through the entered text and reports the number of
occurrences of each letter. This type of program is often used for deciphering
coded messages. With little effort it can be adapted to search for words or a
sequence of characters.

10 CLEAR 100,0: CLS: READ A$
20 DATA ABCDEFGHIJKLNlNOPQRSTUVWXYZ
30 PRINT "TYPE IN ANY LINE OF TEXT":PRINT
40 LINE INPUT L$
50 FOR I = 1 TO LEN (A$): CLS
60 T$ = MID$(A$,I,1): C = 0: P = 1: P$ = L$
70 F = INSTR(P,L$,T$)
80 IF F>0 THEN C=C+1 ELSE 140
90 P$ = LEFT$(P$,F�1) + STRING$(LEN(T$),CHR$(128))
100 IF F>LEN(L$) THEN 120
110 P$ = P$ + RIGT$(L$,LEN(L$)�F)
120 P = F + LEN(T$)
130 IF P<= LEN(L$) � LEN(T$) + 1 THEN 70
140 PRINT P$
150 PRINT @ 354,"FOUND";C;"OCCURRENCES OF";T$
160 PRINT @ 416,"PRESS SPACEBAR TO CONTINUE, N TO STOP"
170 Z$ = INKEY$:IF Z$ = "" THEN 170
180 IF Z$ = "N" THEN 200
190 NEXT I
200 CLS:END

80

CHAPTER SEVEN

GETTING THE POINT ACROSS

When your computer displays anything on a TV screen, what it is doing is
setting points in the TV tube either on or off, to build up the image. If the
point is set on it appears as a coloured dot, if off as black. All the letters we
have been printing are made up from these dots of light. The size of the dot
you can control determines the resolution you are working in. A large area is
a low resolution, a small dot area is a high resolution, (because the smaller the
dot, the higher the number of points available on the screen).

Your computer has the ability to work in five different resolutions, ranging
from 512 points on the screen up to 49152 points. This gives you a large
amount of flexibility in the amount of detail you can put into your pictures.
We will start by creating images in the lowest resolution and working
upwards. The methods used to put drawings and movement onto the screen
are much the same, irrespective of the resolution you are working in.

PRINTING PICTURES

You remember from chapter 3 when we introduced the PRINT @ statement,
we described how the screen was divided into a 16 x 32 grid. This allowed us
to print a character anywhere on the screen by giving the appropriate
position. Using the CHR$ function (see chapter 6 for functions), we can
generate special graphic characters. The following program will display all the
characters available from CHR$.

10 FOR I = 1 TO 255:CLS 0
20 PRINT @ 100,"CHR$(";I;")";
30 PRINT @ 120,CHR$(I)
40 FOR D = 1 TO 600: NEXT D,I:CLS

The numbers from 1 to 31 are used for control characters, so not much
happens. From 32 to 127, the keyboard characters appear. The codes from
128 to 255 are the special graphics characters. (A complete list of the available
characters is given in Appendix A). These graphics characters are patterns of
colour blocks which can be assembled into simple shapes. The simplest
pattern is a rectangle of colour. For instance, CHR$(143) gives a rectangle of
green, which is colour 1. Add 16, and CHR$ (159) gives a rectangle of yellow,
colour 2, and so on. There are sixteen patterns from CHR$ (128) to CHR$
(143), these are made up from green and black. To obtain the same pattern,

81

but in a different colour, just add the appropriate number of 16's to the code.

+16 yellow +32 blue +48 red
+64 buff +80 cyan +96 magenta
 +112 orange

The following program shows the effect of increasing the code by sixteen (it
can also be used for adjusting the colour balance on your TV set, use C =
143).

10 CLS0: INPUT"ENTER CODE FROM 128 TO 143";C
20 FOR I=1 TO 14: FOR J = C TO 255 STEP 16
30 FOR K=1 TO 4: PRINT CHR$(J);: NEXT K,J,I
40 GOTO 40

As you can see from the above, the CHR$ characters can be printed directly
onto the screen. But as they are characters they can also be placed in string
variables. This is more convenient, as they can be manipulated much more
easily.

We will now start to construct a picture. We will draw a castle � one, because
it is a simple shape and two, because it shows how starting from a simple base,
you can add increasing detail. Enter and run each section as we give it, so you
can see the steps the picture goes through.

First we need to build a wall across the screen, so it will be 32 blocks wide,
and we will make it 6 blocks high.

10 CLEAR 500: CLS0
20 FOR I=1 TO 6:FOR J=1 TO 32
30 WALL$ = WALL$ + CHR$(207): NEXT J,I
40 PRINT @ 256, WALL$
200 GOTO 200

The first line reserves space for the strings we are going to use. Lines 20 and
30 'build' the wall out of buff coloured blocks, CHR$ (207), and store it in a
string called WALL$. Line 40 prints WALL$ which appears on the screen as
a solid block of colour. The last line (200) is just to hold the picture on the
screen.

Next we add the battlements, this is done with alternative blocks of buff
and black. We only need one row this time.

50 FOR I = 1 TO 16: B$ = B$ + CHRS(128) + CHRS(207): NEXT I
60 PRINT @ 224,B$;

82

Line 50 constructs the battlements and 60 prints them on top of the wall.

Now we need a tower. The tower is built from the same material as the wall,
so let us take some bricks from WALL$.

70 P = 11
80 FOR I = 1 TO 3:PRINT @ 128+32*I+P,LEFT$(WALL$,10);
 : NEXT I

Line 80 takes 10 bricks from WALL$ and builds 3 rows in the middle of the
wall. The value of P places the tower in the middle. If you want to try the
tower in another place, change P. The tower is 10 blocks wide, so P can be
any number from 0 to 22.

We now do the same with the battlements for the tower.

90 PRINT @ 128+P,LEFT$(B$,10)

That completes our basic, (BASIC?) castle. We can add arrow slits by using
a different character and overprinting.

100 FOR I = 2 TO 32 STEP 4:PRINT @ 288+I,CHR$(206);: NEXT I

We also need a gate, so we print black blocks in the appropriate place.

110 G$ = CHR$(128) + CHR$(128) + CHR$(128)
120 FOR I=353 TO 417 STEP 32:PRINT @ I+P+5,G$;:NEXT I

The gate is stored in G$ and printed in line 120 (using the P in the PRINT @
expression to keep the gate in line with the tower).

A castle with an ever open gate is not much use, so now we need a portcullis,
using another character, (142+112) we can construct something similar.

130 P$ = CHR$(254) + CHR$(254) + CHR$(254)
140 FOR I = 353 TO 417 STEP 32:PRINT @ I+P+5, P$;
150 FOR K = 1 TO 300: NEXT K,I

Line 130 constructs an orange (!) portcullis which is printed from the top
down in line 140. The delay loop K causing it to be 'lowered' slowly.

We will leave the castle now, you might like to add further details, like a
blue moat and a flag on the tower, and so on.

83

MOVING PICTURES

In the castle example, lines 140 and 150 showed us how to get some
movement into the picture, by printing parts in succession. This type of
movement is limited, largely to opening and closing doors. A much better
method is to print the image in full, then blank it out and print it again in a
slightly different position. As you are constantly redrawing the figure; the
drawing part should be a subroutine. But first the figure, we will construct it
in a 3 x 4 block. The top 'line' will be the head, the next the body, and the last
the legs.

10 CLEAR 500: CLS0
20 M1$ = CHR$(128) + CHR$(193) + CHR$(194) + CHR$(128)
30 M2$ = CHR$(196) + CHR$(207) + CHR$(207) + CHR$(200)
40 M3$ = CHR$(128) + CHR$(202) + CHR$(197) + CHR$(128)

The figure is now stored in three string variables M1$, M2$ and M3$. Now
the subroutine to print the strings in the correct order.

500 P = 32*Y+X
510 PRINT @ P,M1$;:PRINT @ P+32,M2$
520 PRINT @ P+64,M3$;:RETURN

This wall print the figure as three lines directly under each other, starting at a
point decided by X and Y. (Remember the X,Y grid? X is 0 to 31
horizontally, and Y, 0 to 15 vertically). You will have to enter all the lines up
to line 160 below before you will be able to run the program.

Now to move the character we need to change the print position, that is to
change X or Y. This can be done from the keyboard. We wall use INKEY$ to
read the keyboard, and the obvious characters to use are the arrow keys.
These keys have codes as well, just as the letters do.

[�] CHR$(8)
[�] CHR$(9)
[�] CHR$(10)
[�] CHR$(94)

We shall use X to hold the horizontal position of the figure, and Y to hold the
vertical position. If the background arrow key [�], is pressed, we want to
move to the left, so take one off the current X value. But we must make sure
that we do not go off the edge of the screen.

900 GOSUB 500
100 A$ = INKEY$:IF A$ ="" THEN 100
120 IF A$ = CHR$(8) THEN X = X�1: IF X < 0 THEN X = 0

84

Line 100 reads the keyboard until a key is pressed. If it is [�] then line 120
takes one~off X, checks to see if we are off the screen, and if we are, then
stops the movement at the left hand side. To move right, up and down the
pattern will be similar.

130 IF A$ = CHR$(9) THEN X = X+1:IF X>28 THEN X=28
140 IF A$ = CHR$(94) THEN Y = Y�1:IF Y<0 THEN Y=0
150 IF A$ = CHR$(10) THEN Y = Y+1:IF Y>13 THEN Y = 13
160 GOSUB 500: GOTO 100

In line 130 we set the maximum permissible value of X to be 28. It cannot be
greater than 31, anyway, and remember our figure is four blocks wide. The
same applies to Y, we must leave room to print the three lines. Line 160 goes
to the print subroutine, then back to check for another keypress. If you run
the program now, you should be able to move the figure around on the
screen, but it makes a mess because we are not removing the figure from the
old position. To do this we need a blanking string and a subroutine to print it.

50 BL$ = CHR$(128) + CHR$(128) + CHR$(128) + CHR$(128)

600 P = 32*Y+X: PRINT @ P,BL$
610 PRINT @ P+32,BL$;:PRINT @ P+64,BL$
620 RETURN

The new subroutine (600) does exactly the same as the other, except this time
prints a block of black squares. All we need to do now is to erase the figure just
before moving it.

110 GOSUB 600

You should now be able to move the figure anywhere on the screen. In its
current form this program is just an example, but moving figures like this
can be incorporated into games and junior educational programs.

A NEW RESOLUTION

We now move to the next level of resolution. This has a 32 x 64 grid, which
gives 2048 points on the screen. This level and the previous 16 x 32 screen are
the low resolution screens, and can be used together, if wanted. To switch on,
or off, the points on this screen, there are two commands

SET(X,Y,C) and RESET(X,Y)

85

The SET command switches on the point X,Y in the colour C. The X, (from 0
to 63) and the Y, (from 0 to 31), are the horizontal and vertical positions
as before. The C is a number from 0 to 8 representing the number of the colour
you want the dot to be.

The RESET command switches off the point X,Y. Using these commands
movement can be suggested by switching on and off in turn. Try the following
program.

10 CLS0:X1 = 0:Y1 = 0:XI = 2:YI = 2
20 X2 = X1 + XI: IF X2>63 OR X2<0 THEN XI = �XI:
 SOUND 180,1: GOTO 20
30 Y2 = Y1 + YI:IF Y2>31 OR Y2<0 THEN YI = �YI:
 SOUND 180,1: GOTO 30
40 SET(X2,Y2,8): RESET(X1,Y1): X1 = X2:Y1 = Y2: GOTO 20

You can see what it does, how does it do it? Starting with a point X1, Y1 the
program increases X1 by a small amount XI and Y1 by YI, to create a new
point X2,Y2. The new point is switched on and the old one (X1,Y1) off in line
40. The X2,Y2 point becomes the old point and the program goes back to line
20 to create another X2,Y2. This moves the 'ball' across the screen. When the
'ball' reaches the edge of the screen, the sign of the increment is changed.
This means that X (for instance) now starts to decrease, causing the direction
to change. This causes the 'bounce' off the edges. If you change the size of the
increment, (XI and YI in line 10) you can make the 'ball' move at different
speeds. This type of program is the basis of most computer ball games, but
these are usually written in machine language, not BASIC.

Another use for moving points is in shooting type games. These sort of games
require movement over the screen, and the ability to 'fire' a weapon. We
could use the arrow keys as before, but a much better method is to use the
joysticks.

The joysticks plug into the sockets on the side of your computer, and allow
much finer control over movement than the arrow keys. The joystick position
is read by the function JOYSTK. JOYSTK(0) returns the horizontal position
of the left joystick, and JOYSTK(1) the vertical position. JOYSTK(2) and
JOYSTK(3) do the same for the right joystick. As the value returned by the
function in each case is between 0 and 63 it will be necessary to scale the value
to fit the resolution of the screen you are working in.

86

SET

The SET command is used to set a specified point on the low resolution
screen to a specified colour

SET(x,y,c)

x,y are the co-ordinates of the screen point. X must be in the range 0 to
63, and Y in the range 0 to 31.

c is the colour code of the desired colour. It must be a number between 0
and 8.

10 CLS0:SET(5,27,8): SET(6,27,8)
20 FOR X=0 TO 6: FOR Y=28 TO 30
30 SET(X,Y,8): NEXT Y,X
40 FOR X = 7 TO 63: FOR D = 1 TO 200: NEXT D
50 FOR Y = 27 TO 30: IF Y = 27 THEN RESET(X�2,Y)
60 SET(X,Y,8): RESET(X�7,Y): NEXT Y,X
70 GOTO 70

RESET

The RESET command is used to erase a point switched on by the SET
command. It is used in low resolution graphics mode.

RESET (x,y)

X,Y are the co-ordinates of the point to be switched off. X must be from 0
to 63, and Y from 0 to 31.

The point is set to the background colour, causing it to be 'erased'. See
SET for an example.

87

10 CLS0:FOR I=0 TO 3
20 PRINT @ 74+32*I,"JOYSTK(";I;")ss";JOYSTK(I);
30 NEXT I: FOR D=1 TO 400:NEXT D: GOTO 10

Run the program above and move the joysticks. You wall see the values
change with the joystick position. You can also use the button on the
joystick. Add the line.

25 P = PEEK(65280):PRINT @ 202,"BUTTON VALUEs s";P

The PEEK function tells the computer to look at a specified part of its
memory. The memory address 65280 contains the result of checking the
button. It will be either 127 or 255 at the moment. If you press the left button
it wall change to 125 or 253, press the right and it will change to 126 or 254. (If
both are pressed together, the number wall be 124 or 252).

So let us start work on a game program � a battle between two ships in space.
We can use the joysticks to move the ships and the button to fire the weapon.

First the ships; we will use a similar method to that used to construct the
figure in the last example. Each ship will he a 2 x 3 block, one yellow, the
other blue, stored in arrays S$ and S2$.

10 CLEAR 500:FOR I=0 TO 5:READ S(I):NEXT I
20 DATA 128,131,128,134,140,137
30 FOR Y=0 TO 1:C = (Y+1)*16
40 S$(Y) = CHR$(S(0) + C) + CHR$(S(1) + C) + CHR$(S(2) + C)
50 S2$(Y) = CHR$(S(3) + C) + CHR$(S(4) + C) + CHR$(S(5) + C)
60 NEXT Y

If you do not like the shape of the ships, then design your own and change
the data in line 20.

Next we must read the joysticks, check we are still on the screen, and work
out where to print the ships.

70 FOR Y = 0 TO 1: A(Y) = JOYSTK(Y*2)
80 B(Y) = INT(JOYSTK(1+Y*2)/2)
85 IF A(Y)>58 THEN A(Y) = 58
90 IF A(Y)<2 THEN A(Y) = 2
100 IF B(Y)>27 THEN B(Y) = 27
110 L(Y) = INT(B(Y)/2*32 + INT(A(Y)/2): NEXT Y

The joystick positions are read in turn by line 70. The limits are set in lines

88

80�100 (remember the ship size). The final result is then converted into a
value for the PRINT @ command. (This is an example of mixing the two low
resolution screens � the joysticks work in one, the PRINT @ command in
the other).

We now need to print the ships and return to see if the joysticks have been
moved.

120 CLS0:FOR Y=0 TO 1:PRINT @ 0,Z(0);:PRINT @ 26,Z(1);
130 PRINT @ L(Y),S$(Y);:PRINT @ L(Y)+32,S2$(Y);:NEXT Y

170 A$ = INKEY$:IF A$ = "" THEN 70
180 CLS:END

Line 120 also prints the score, (but we haven't done that yet). To end the
game, press any key, otherwise go to 70 and read the joysticks again.

Run the program so far and check that the ships will move anywhere on the
screen.

The next step is to fire the guns and display the 'plasma bolt' This is the
awkward part, because we have to read the joystick buttons and decide who is
firing. Also as the ships are able to move anywhere on the screen we have to
know the direction of the bolt. To keep it simple, we will only allow the bolt
to move from the ship firing, along a horizontal line towards the target ship. It
will travel at the vertical height of the
firing ship.

140 P = PEEK(65280)
150 IF P=125 OR P=253 THEN F=0:T=1:GOSUB 200
160 IF P=126 OR P=254 THEN F=1:T=0:GOSUB 200

These lines read the buttons and decide which ship is firing. The bolt will
be displayed by subroutine 200

200 V1 = B(F):H1 = A(F):H2 = A(T):ST = 1
210 IF H1>H2 THEN ST = �1
220 FOR H=H1+ST*5 TO H2+2 STEP ST

240 SET(H,V1,4): SOUND 200,1: RESET(H�2*ST,V1)
250 NEXT H: RETURN

Note the switch of the step in line 210, if the left and right positions are
reversed. The movement of the bolt is done in line 240

All that is left now is to check if you have made a 'hit' If so, make the
appropriate noises and record the score.

89

The function POINT is used to check for a hit. The form is POINT (X,Y),
where X,Y is the point you want to check. The function returns 0 if the point
is off, and the number of the colour code, if on.

As the screen is black, and we are firing in the correct direction (we hope), we
only have to know whether any coloured point in the line of fire is on. If we
add the following line to our subroutine,

230 IF POINT(H,V1)>0 THEN GOSUB 300: RETURN

then if a 'hit' takes place it will go to subroutine 300, (where we keep
score etc.), when it comes back, there is no point in firing the bolt any
further so we leave the subroutine and start again.

300 Z(F) = Z(F) + 1
310 FOR K = 1 TO 15: I = RND(5)�2:J = RNI)(4)�2
320 SET(H+I*ST,V1+J,8): SOUND(RND(95)),1
330 NEXT K: RETURN

This subroutine keeps the score, draws and sounds the 'explosion'.

Though only 28 lines long, this program is sufficient to produce a game
involving considerable movement. We leave it to you as an exercise to
develop refinements that bring it to the arcade level.

This has been a long and involved chapter, but it contains most of the
elements needed for graphics on your computer, whatever level of resolution
you may be using.

90

CHAPTER EIGHT

MOVING TO A HIGHER PLACE

We now move to the high resolution screens which are completely separate
from the low resolution screens. The two low resolution screens can be used
together, and are displayed on what is known as the 'text screen'. The high
resolution screens cannot be mixed with the text screen. You may switch from
one to the other, but cannot write text onto the high resolution screen, or
draw high resolution graphics on the text screen.

When anything is drawn in high resolution the Computer writes the
instructions on how to display the information to a special part of its memory
called the 'video RAM'. The video RAM is then read to the TV and
converted into pictures. A number of 'pages' are reserved in the video RAM
for this purpose, normally four. As the amount of detail you are using
increases, so do the number of instructions required to display the result.
More instructions need more room and so you have to reserve more pages.
This is done with the PCLEAR command, followed by the number of pages
you want to reserve, (up to a maximum of 8),

PCLEAR 8

As each page takes up 1536 memory locations, only reserve what is actually
needed. The amount of available memory is fixed, so the more you assign for
graphics pages, the less is available for program space. PCLEAR behaves in a
similar way to CLEAR and should be used at the beginning of a program.

IN THE MODE

The amount of space you need to reserve is dependant upon the level of
resolution you want to use. One disadvantage of the increased resolution is
that it is not possible to use the full range of colours available in low
resolution. The available colours and the resolution are determined by the
mode you are working in. The mode is set with the PMODE command,

PMODE mode, starpage

where mode is a number from 0 to 4, and startpage is the 'page' in video RAM
you wish to start writing to. As before the screens are divided into grids. This
time, however, it is only necessary to remember one size (256 x 192). Even
though the resolution changes with different modes, you still refer to points

 91

PCLEAR

PCLEAR is used to reserve graphics pages in the high resolution modes.

PCLEAR n

N must be a number between 1 and 8. If the PCLEAR statement is omitted

PCLEAR 4 is the default.

As each graphics page requires 1536 bytes of memory only reserve what is
needed.

92

 S

C
R

E
E

N
 1

,1

B
la

ck
(0

),
 B

uf
f(

5)

B
uf

f(
5)

,C
ya

n(
6)

M
ag

en
ta

(7
),

O
ra

ng
e(

8)

 B
la

ck
(0

),
 B

uf
f(

5)

B
uf

f(
5)

,C
ya

n(
6)

M
ag

en
ta

(7
),

O
ra

ng
e(

8)

 B
la

ck
(0

),
 B

uf
f(

5)

C
O

L
O

U
R

 S
E

T
 A

V
A

IL
A

B
L

E

 S
C

R
E

E
N

 1
,0

1
 B

la
ck

(0
),

 G
re

en
(1

)

G
re

en
(1

),
 Y

el
lo

w
(2

)
B

lu
e(

3)
, R

ed
(4

)

1
 B

la
ck

(0
),

 G
re

en
(1

)

G
re

en
(1

),
 Y

el
lo

w
(2

)
B

lu
e(

3)
, R

ed
(4

)

1
 B

la
ck

(0
),

 G
re

en
(1

)

 P
A

G
E

S

U
SE

D

 1

 2

 2

 4

 4

PO

IN
T

 S
IZ

E

 G
R

ID

 S
IZ

E

 1

28
 x

96

 1

28
 x

96

 1

92
 x

 1
28

 1

92
 x

 1
28

 2

56
 x

 1
92

 P

M
O

D
E

 N

U
M

B
E

R

0

1

2

3

4

93

SCREEN

The SCREEN command is used to switch the display between the graphics and
text modes.

SCREEN type, colour set

type is either 0 for text and low resolution graphics
 or 1 for high resolution graphics

colour set is either 0 or 1. The colour set for the text screen is 0, black on
green, or 1, black on orange. For the high resolution graphics the colour set
available depends on the working mode as follows:�

PMODE SCREEN 1,0 SCREEN 1,1

 0 Black, Green Black, Buff
 1 Green, Yellow Buff, Green
 Blue, Red Magenta, Orange
 2 Black, Green Black, Buff
 3 Green, Yellow Buff , Cyan
 Blue, Red Magenta, Orange
 4 Black, Green Black, Buff

94

on the screen by using the 256 x 192 grid. The difference is in the size of the
point that is drawn. The mode selected also decides which colours you can
use. Each mode has two colour sets available. The colour set is selected with
the SCREEN command, which also selects the screen type.

SCREEN type, colour set .

Type is 0 for the text screen and 1 for the high resolution screen. The colour
set is also either 0 or 1. The default, which we have been using up to this
point, is SCREEN 0, 0. This sets the text screen with the black on green
colour set. (It is possible to use SCREEN 0,1, which gives black text on an
orange background, but every time the computer prints it will revert to black
on green). To display the high resolution screen you have to set type to 1. The
table opposite gives available modes and colour sets.

As you can see from the table, the resolution and colour set are closely
related. You will also notice that as the mode increased from 0 to 4, the
number of pages required also increases.

So to display one screen of graphics PMODEO only needs one page of
memory, while PMODE 3 and PMODE 4 require four pages. When the
colour set has been selected, the computer chooses the lowest numbered
colour from the set as the background colour. The highest numbered colour
in the set is used as the foreground colour. For instance, with PMODE 3 and
SCREEN 1,0 set, the computer will draw in red on a green background. You
can change the foreground and background colours with the COLOR
command,

COLOR foreground, background

where foreground and background are the required colour codes from the set
for that mode.

FAMILIAR FRIENDS

You will remember from the low resolution screens the commands CLS,
SET, RESET and POINT. Their high resolution equivalents are also
available. They are called PCLS, PSET, PRESET and PPOINT to indicate
their new status. Their job is the same as before, PCLS clears the high
resolution screen, and if followed by a colour code will set the background to
that colour. PSET switches on a point and PRESET switches it off. PPOINT
tests whether the point is on or off. The following example works through

95

each available mode and colour set in turn. It sets dots in a random colour on
the screen, the dots should be in a rectangular grid. The blank places in the
grid are caused by the random colour being the same as the background, or
not available in the colour set.

10 FOR P = 0 TO 4: PMODE P,1
20 FOR S = 0 TO 1: SCREEN 1,S
30 PCLS:FOR I = 50 TO 150 STEP 20
40 FOR J = 50 TO 150 STEP 20
50 C = RND(8): PSET(I,J,C): NEXT I,I
60 FOR D = 1 TO 1000:NEXT D,S,P

Look closely at the size of the dot, this is the resolution available in
that mode.

DRAW THE LINE, SOMEONE

So we can put dots on the screen, what next? The most obvious thing to do
with two dots is to join them with a line. Fortunately there is a command to do
just that, LINE. Delete lines 40 and 50 from the last example and change line
30 to read,

30 PCLS:LINE(10,180) � (245,10),PSET,BF

and run the program. A line is drawn across the screen from bottom left to
top right. The statement means draw a line from the start point, (10, 180) to
the finish point (245,10) in the foreground colour (PSET). If you change
PSET to PRESET the line will be drawn in the background colour. Drawing
in the background means it cannot be seen, it can aiso be used for erasing
previously drawn line. The PSET and PRESET are essential parts of the
LINE command, and here nothing to do with the commands to switch points
on or off.

It is not always necessary to specify the start point of LINE. With no start
point the line will begin at the most recent end point. (If the LINE statement
has not yet been used in the program, the last end point is taken to be 128,96,
screen centre). Add a further line to the current example.

40 LINE � (130,180),PSET

A line is now drawn from the last end point (245,10) to a point at the bottom
of the screen (130,180).

96

COLOR

The COLOR command is used to change the default settings of the foreground
and background colours in the high resolution graphics modes.

COLOR foreground, background

Both foreground and background are numbers between 0 and 8, representing
the colour code. Both colours must be in the available colour set for the
current mode

PCLS

The PCLS command is used to clear the screen to a given background colour
in the high resolution mode.

PCLS c

c is the colour code of the background required. It must be one of the
available colour set for the working mode. If the colour is not available or c is
omitted the default background colour is used.

See the box for CLS for the colour codes.

PSET

The high resolution version of the SET command

PSET (x,y,c)

switches on the point (x,y) to the colour c, x must be in the range 0 to 255, and
y in the range 0 to 191.

c is the colour code 0 to 8 and must be one of the available colour set.

PRESET

The high resolution version of the RESET command.

PRESET (x,y)

switches the point (x,y) off, (sets it to the background colour). x must be
from 0 to 255, y from 0 to 191.

97

To draw a square or rectangle, you could use four lines, but there is an
extension to the LINE command which takes care of this. Use the EDITOR to
add B to line 30, which should now read,

 30 PCLS:LINE(10,180) � (245,10),PSET,B

Instead of a diagonal line you now have a rectangle. To draw a rectangle all
you need do is specify the position of two opposite corners and add B to the
LINE statement. Get back into the EDITOR and add F to the end of line 30.

 30 PCLS:LINE(10,180) � (245,10),PSET,BF

The added F means fill the box, (rectangle) with the foreground colour.
Such a flexible command must have some use, so let us draw a picture.

We will start as before, in the construction business, but this time a house.
Run the program after each section so that you can see how it builds up.

First we set the resolution and draw the body of the house.

 10 PMODE 3,1:SCREEN 1,9: PCLS
 20 LINE(60,48) � (200,144),PSET,B

 260 GOTO 260

Next we add the roof.

 40 LINE(60,48) � (130,20),PSET
 50 LINE � (200,48),PSET

and a garage, with a door.

 70 LINE(200,144) � (255,94),PSET,B
 90 LINE(210,144) � (245,104),PSET,BF

We can use the same technique to put a door into the house.

 100 LINE(160,144) � (188,105),PSET,BF

To draw windows we need a rectangle with two lines as cross pieces.
 110 LINE(85,132) � (135,108),PSET,B
 120 LINE(110,108) � (110,132),PSET
 130 LINE(85,120) � (135,120),PSET

The upstairs windows use the same approach,

 140 LINE(90,84) � (125,64),PSET,B
 150 LINE(90,74) � (125,74),PSET
 160 LINE(110,84) � (110,64),PSET
98

LINE

The LINE command is used to draw lines and rectangles in the high
resolution graphics modes.

LINE (x1,y1) � (x2,y2),a,b

x1,y1 are the co-ordinates of the line's start point.
x2,y2 are the co-ordinates of the line's end point.
a is either PSET or PRESET. If PSET is used the line is drawn in the current
foreground colour. If PRESET, the line is drawn in the background colour.
b is an optional parameter. If used it is either B or BF. If B, a rectangle is
drawn instead of a line, the upper corner of the rectangle will be x1, y1, and
the lower right corner x2, y2. If BF is used, the rectangle is drawn and filled
with the current foreground colour.

10 PMODE 4,1: SCREEN 1,1: PCLS 5: COLOR 0,5
20 FOR I = 1 TO 1000
30 X =X+L*SIN(R): Y = Y+L*COS(R)
40 IF X<�128 OR X>128 THEN 90
50 IF Y<�96 OR Y>95 THEN 90
60 LINE �(X + 128,Y + 96),PSET
70 R1 = R1+60: R = R1/57.29578: L = L+0.5
80 NEXT I
90 GOTO 90

99

170 LINE(155,64) � (175,84),PSET,B
180 LINE(165,84) � (165,64),PSET
190 LINE(155,74) � (175,74),PSET

and to complete the structure a chimney,

200 LINE(150,40) � (160,15),PSET,BF

This little program shows how quickly a picture can be drawn, and all with
just one command. This, of course, assumes you know where to draw the
lines. The easiest way to find these points is to take a copy of the graphic
screen grid in Appendix B, sketch the picture on it and read off the points.

A SPLASH OF COLOUR

Our house looks a little drab, what it needs is a coat of paint to brighten it up.
So we will tell DRAGON to get the brushes out and start work. The PAINT
command allows you to paint any shape with any available colour. All you
have to do is to tell it where to start, what colour to paint with, and the colour
of the border where the painting is to stop.

PAINT (x,y),a,b

where x,y are the co�ordinates of the start, and a and b are the colour codes of
the paint and the border. Add the following line to the house example,

30 PAINT (90,90),2,4

This means starting at point (90,90), paint in yellow, (colour 2) until you meet
a red (4) border. Run the program to see what it does. Now delete the line
and re-enter as line 195 and run the program again.

195 PAINT (90,90),2,4

Note how it now stops at the window borders which were not there before.
Paint the garage the same way,

80 PAINT (210,140),2,4

Now the roof. If you omit to put in a colour or a border in a PAINT
statement, the current foreground colour is selected for both.

60 PAINT (130,25)

We finish off by drawing the skyline and the sky.

210 LINE(0,64) � (60,64),PSET
220 LINE(200,64) � (255,64),PSET
230 PAINT(0,54),3,4 no,

100

PAINT

The PAINT command is used in high resolution graphics modes, to fill a
shape with a specified colour.

PAINT (x,y),c,b

x,y are the co�ordinates of the point where the painting is to start.

c is the colour code of the colours to be used to paint. lt must be between
0 and 8 and be one of the available colour set for the working mode. If
omitted, the current foreground colour is used.

b is the colour code of the border at which painting is to stop. It must
also be between 0 and 8, the painting will continue over a border of any
other colour. If omitted, the current foreground colour is used.

See CIRCLE for example of usage.

101

The place looks a little brighter now. You may like to continue with
improvements, add a path and a fence. Or you could take some time off to
practice drawing your own shapes and painting them to see what happens.

GOING ROUND IN CIRCLES

We have got lines, squares and rectangles, and now circles. The CIRCLE
statement will draw circles, ellipses and arcs.

CIRCLE (x,y), radius, colour, hwratio, start, end

The x,y point is the centre of the circle, the radius is the circle's radius
measured in screen points. The colour is one of the available colours in the
mode you are working in, (if omitted, the foreground colour is used). The
other parameters are for drawing ellipses and arcs, we will deal with them
later. First let us see what happens with circles.

10 FOR P = 0 TO 4: PMODE P,1
20 SCREEN 1,1: PCLS
30 FOR R=120 TO 10 STEP �10
40 CIRCLE (128,96),R: NEXT R
50 FOR D = 1 TO 500: NEXT D,P

This will draw circles towards the centre of the screen. Circles are difficult to
draw and for a very accurate one you will probably have to work with
PMODE4.

You will notice that if a circle goes off the screen, there is no problem. If you
try to draw a line to a point that is not on the screen, it may not be drawn at
all, especially in the higher resolution modes. Try inserting

42 LINE �(300,40),PSET

and watch the result.

The PAINT command can also be used to fill in circles,

45 PAINT (128,96)

fills in the 'bullseye'.

By using the hwratio parameter you can change the circle into an ellipse. The
hwratio means height to width ratio. The width in the CIRCLE command
always remains the same, twice the radius. The height can be varied by the
hwratio, if it is greater than 1 then the 'circle' will be higher than it is wide. A
value less than 1 will squeeze the circle in the other direction, wider than it is

102

CIRCLE

The CIRCLE command will draw circles, ellipses and ares. It can only be
used in the high resolution graphics modes.

CIRCLE(x,y),r,c,hw,start,end

x is the X co-ordinate of the centre of the circle (from 0 to 255)
y is the Y co-ordinate of the centre of the circle (from 0 to 191)
r is the circle radius, measured in screen points
c is a colour code (from 0 to 8), it must be one of the available
 set. If omitted, the foreground colour is used.
hw is the height-width ratio (from 0 to 255). Used for drawing
 ellipses. If hw is omitted, 1 is used.
start is the start of the arc of the circle (from 0 to 1). The 0 position
 represents 3 o'clock. If omitted, 0 is used.
end is the end of the arc (from 0 to 1). The drawing proceeds

clockwise from start. The .5 position represents 9 o'clock. If
omitted, 1 is used.

10 PMODE 3,1: SCREEN 1,0: PCLS
20 CIRCLE (180,156),28,3: PAINT (180,156),3,3
30 CIRCLE (110,156),28,3: PAINT (110,156),3,3
40 CIRCLE (144,80),68,4,1,0,.5
50 LINE (212,80) � (76,80),PSET: LINE �(48,32),PSET
60 PAINT (144,82):CIRCLE(144,80),70,4,.8,.79,1
70 LINE (160,80) � (160,28),PSET: PAINT (210,75)
80 GOTO 80

103

high. So the width along the X axis (horizontal) is always the same, only the
height on the Y axis (vertical) changes. When hwratio is 0 the 'circle' is a
horizontal line, and with hwratio very large it approaches a vertical line
(actually a long thin rectangle). The largest value allowed is 255. Change lines
30 and 40 in our current example to read.

30 FOR H = 0.5 TO 3 STEP 0.5
40 CIRCLE (128,96),40,,H: NEXT H

Note in line 40 the extra commas, these are because we have missed out the
colour parameter.

The final extension to the CIRCLE command is the ability to draw arcs (part
of a circle). To use this option you have to specify the start and finish of the
arc. Both the start and finish values must be a number between 0 and 1. The
starting point of the circle is equivalent to the 3 o'clock position on a clock.
The drawing action then goes clockwise from the start. For instance, a start at
0.25 and end at 0.75 would draw 6 o'clock to 12 o'clock, the left half of the
circle. Start at 0.5 and end at 1.0 to draw the top half of the circle. The
following program uses arcs to draw a pattern.

10 PMODE 4,1:SCREEN 1,1:COLOR 0,5:PCLS
20 FOR R=15 TO 60 STEP 5
30 CIRCLE(128,96+R),R,,1,.5,1
40 CIRCLE(128,96�R),R,,1,0,.5
50 CIRCLE(128�R,96),R,,1,.75,.25
60 CIRCLE(128+R,96),R,,1,.25,.75
70 FOR D=1 TO 500:NEXT D
80 NEXT R
90 GOTO 90

TURNING THE PAGE

One way of introducing animation into drawings is to place a slightly different
picture on each page and then 'flip' through the pages. Remember you set the
number of pages with the PCLEAR command and the second parameter of
PMODE decides the page you are writing to. Of course, you have to bear in
mind the resolution in which you are working. In PMODE3 and PMODE4
each graphic screen requires 4 pages so it really only makes sense to flip
between page 1 and page 5. In PMODE1 and PMODE2, which needs 2
pages, you would flip between 1, 3, 5 and 7. The following example shows
how this is done, try entering all the PMODE values.

104

10 PCLEAR 8: PMODE 3,4: PCLS
20 INPUT"MODE";M: ON M GOTO 40,40,50,50
30 S = 1: GOTO 60
40 S = 2: GOTO 60
50 S = 4
60 FOR P = 1 TO 8 STEP S: PMODE M,P: PCLS
70 LINE(128,0) � (128,(P�1)*15),PSET
80 SCREEN 1,1:FOR I = 1 TO 1000:NEXT I,P
90 FOR P = 1 TO 8 STEP S: GOSUB 150:NEXT P
100 IF M>2 THEN D = 4: S1 = 3 ELSE D = 7: S1 = S
110 FOR P = D TO 1 STEP �S1:GOSUB 150:NEXT P
120 GOTO 90
150 PMODE M,P: SCREEN 1,1
160 FOR T=1 TO 20: NEXT T: RETURN

Lines 60 to 80 draw the changing figure onto the different pages. All this
drawing takes place without being displayed, as no SCREEN command has
yet been given. The remainder of the program displays each page in turn,
flipping first forwards, then backwards to give the impression of movement.
You can see that the more pages you use, the smoother the motion.

Another way of constructing displays is to use the command PCOPY

PCOPY sourcepage TO destinationpage

You may copy the contents of any page to any other page, provided the page
has been previously reserved with PCLEAR. PCOPY can also be used to
pack duplicates onto a PMODE3 or PMODE4 page. The following program
shows how PCOPY is used for this purpose, note how you have to be careful
where the figure is placed.

10 PCLEAR 8: PMODE 3,4: PCLS
20 LINE(100,20) � (140,40),PSET,BF
30 CIRCLE (50,25),20
40 CIRCLE (200,50),20
50 FOR D=3 TO 1 STEP �1
60 PCOPY 4 TO D: NEXT D
70 FOR P=4 TO 1 STEP �1: PMODE 3,P
80 SCREEN 1,1: FOR I=1 TO 1000: NEXT I,P
90 GOTO 90

In PMODE3, (and 4) the display consists of four pages, page 1 being the top
quarter of the screen, page 2 the next, and so on. So by copying the

105

contents of page 4 on to page 1 you have duplicated the top quarter of the
display in the bottom quarter. For PMODE1 and PMODE2 the same effect
can be obtained but this time the screen will be halved not quartered.

Those of you eager to continue with graphics may now turn to chapter 10,
for the rest of us there will be a short musical interlude.

106

PCOPY

PCOPY is a high resolution graphics command used to copy the contents of a
graphics page to another graphics page

PCOPY source TO destination

source and destination must be numbers between 1 and 8, and must refer to
pages previously reserved with the PCLEAR COMMAND. The space required
to
hold a display screen differs for each mode and should be considered when
using PCOPY.

PCOPY 3 TO 5

107

ragondata.co.uk

108

CHAPTER NINE

SOUNDS ELECTRIC

ADDING A SOUND TRACK

Graphics, and other programs, can often be made more interesting by the
addition of sound. We have already used the SOUND command for this,
especially in the example in chapter seven. An easier way of adding sound is
to provide it yourself. We do not mean sing along with your programs, or not
quite. Your computer uses a cassette recorder to store programs, it can also
run a tape on demand. The commands MOTOR ON and MOTOR OFF will
do exactly that. Together, with the AUDIO ON and AUDIO OFF
commands which connect, or disconnect, the cassette output to the TV
loudspeaker. This means that by putting these statements into your program
you could have background music to your graphics. Or, on a more serious
note, a pre-prepared tape could deliver instructions and the questions in an
educational program. The example following shows how easy it is. If you do
not have a tape handy, use one of your program tapes. The strange noises you
will hear are how computers talk to each other!

10 CLS: PRINT @ 135,"PRESS THE SPACEBAR"
20 PRINT @ 195,"TO STOP OR START RECORDER"
30 A$ = INKEY$: IF A$<>"s" THEN 30
40 IF F = 0 THEN MOTOR ON: AUDIO ON: F = 1 ELSE
 MOTOR OFF:AUDIO OFF: F = 0
50 GOTO 30

Rewind the tape to the beginning and press the PLAY button, then run the
program. By pressing the spacebar you will be able to stop or start the
playback of the tape.

Using this method a general question and answer type educational program
could be written to handle a number of different subjects, just by changing
the question tape. Or your cartoon animations could be supplied with
appropriate music and sound effects.

PLAY THAT THING!

Alternatively, you can make the computer play the music. The PLAY
command converts the contents of a string into sounds

PLAY string

109

where string may be a string constant or a string variable. Not just any old
string, however, but a music string made up from note, octave, note, length,
tempo and pauses. The note is obviously the musical note you want to play.
The easiest way to do this is to enter the letter representing one of the
standard musical notes � A,B,C,D,E,F,G. To indicate a sharp you use #, or
+ (F# or F+ for F sharp), and for a flat �, (B � for B flat). The computer will
not recognise B# or C�, as they do not exist in the music 12 tone scale.
Another way of entering a note is to use the number representing its position
in the 12 tone scale

The notes and their number equivalent are marked on the keyboard above.

The PLAY command can be used as a direct command, which is useful for
checking a music string before incorporating it into a program. Like all good
musicians we wall start by practising our scales.

PLAY "CDEFGABCCBAGFEDC" The scale in C
PLAY "GABCDEF#GGF#EDCBAG" The scale in G

Well the scale in C is nearly right, but the one in G is a mess. This is because
the scales move into a different octave, and we must tell the computer this. To
select the octave, use 0 followed by a number between 1 and 5, 02, (which
includes middle C) is automatically set when the computer is turned on. The
current setting for octave will be used until a change is made, so it is usually
safer to always specify the octave you want to use at the start. Let us try the
scales again.

PLAY "O3CDEFGABO4CCO3BAGFEDC"
PLAY "O3GABO4CDEF#GG#EDCO3BAG"

To play the scale in C using the numbers instead of letters

PLAY "O3;1;3;5;6;8;10;12;O4;1;1;O3;12;10;8;6;5;3;1"

Note the separator (;) used in the string. You can use the semi-colon
anywhere you want but with numbers it is usually needed to avoid confusion.

110

AUDIO

The AUDIO command controls the connection of the sound output of the
cassette recorder to the television set loudspeaker. AUDIO ON directs
cassette output to the T.V. AUDIO OFF disconnects the link.

MOTOR

The command MOTOR controls the operation of the cassette recorder motor.
MOTOR ON starts the motor, MOTOR OFF stops the motor.

The play button of the cassette recorder must be depressed for the command
to be effective.

111

As the music string is still a string, it can be manipulated with all the
usual string operations. The following example plays the scale in C over
the entire range of the PLAY command.

10 A$ = "CDEFGAB": FOR I=1 TO 5
20 B$ = "O" + STR$(I) + A$
30 PRINT B$:PLAY B$:NEXT I

By using the same technique, and numbers instead of letters we can play the
entire chromatic scale.

10 FOR I=1 TO 5:A$ = "O" + STR$(I) + ";"
20 FOR J=1 TO 12:PLAY A$ + STR$(J): NEXT J,I

In most tunes, the notes are rarely of identical length, so we need to set the
duration of each note. This is done with the note length parameter of the
music string (L). The letter L is followed by a number between 1 and 255.
Usually, however, the number represents the lengths commonly used in
music. As the size of the number increases so the length decreases, L1 is a
whole note, L2 a half note, L4 a quarter note and so on. It is possible to have
a 1/255th note, but not many composers use them. Those of you who read
music will have heard of "dotted" notes. The dot tells you to increase the
length of the note by one half of its normal value. To obtain that effect with
the PLAY command, you put a dot, (or as many dots as you like) after the
number in the L parameter.

L4. = 1/4 + 1/8 = a 3/8 note

We now have sufficient to play a simple tune. Carefully type in the following,

5 CLEAR 500
10 A$ = "O2L4GG;L2GDL4BB;L2BGL4GB;
 O3L2DDL4C02B;L1AL4AB;
 O3L2CCO2L4BA;L2BGL4GB;
 L2ADL4F#A;L1G;"
20 B$ = A$ + A$: PLAY B$

The separators are being used here to indicate the bar divisions, they are
not actually needed. You should be able to recognise the tune, 'Clementine',
but it is being played far too slowly. The tempo parameter takes care of this,
 the letter T followed by a number between 1 and 255. The higher the number
the faster the tune is played. Try changing line 20 to read,

20 B$ = A$ + A$: PLAY "T6" + B$

112

PLAY

The PLAY command is used to generate a music sequence. The argument is a
string expression, or string constant, or string variable. Its form is,

PLAY music

where music is constructed from the following elements:�

note A letter from 'A' to 'G' or a numeral from 1 to 12.

octave 'O' followed by a number from 1 to 5. Default
 O2. The default values are set by the computer when switched on.

note length 'L' followed by a number from 1 to 255.
 Default L4.

tempo 'T' followed by a number from 1 to 155. Default T2.

volume 'V' followed by a number from 1 to 31. Default V15.

pause length 'P' followed by a number from 1 to 255.

execution of substrings 'X' followed by string variable and a semi�colon.

A sharp flat note can be indicated by '+' or '#' for a sharp or '�' for a flat.

The note length parameter can be modified by the addition of a dot (.) after
the number, (L2.) to represent a dotted note.

The octave, volume, tempo, and note length can be modified by using one of
the following suffixes:-

+ Adds one to current value
� Subtracts one from current value
> Multiplies current value by two
< Divides current value by two

10 X$ = "O3L4EF#L4.EL8AAG#ABL4O+C#O�B"
20 A$ = "XX$;O4C#O�AF#O+DC#O�BL2AXX$;
 O+C#DEL8DO�BL<AG#L<AL4.BL8O+C#L4
 DO�BL4.O+C#L8DL<EC#L4.EL8EEEEEL1
 EL4.EL8DC#EDO�BL<AG#L<A"
30 PLAY"T2V20"+A$

113

Experiment by changing the 6, and find a value which suits your idea of what
speed the tune should be played at.

Most music also requires the ability to insert pauses in between phrases and
also to vary the loudness of certain passages. The pause parameter is the letter
P followed by a number. It follows the pattern of the note length parameter
(L), except you cannot use the dots after the number. To insert a pause the
equivalent of an L4. note, P4P8 would have to be used. The volume
parameter allows us to vary the loudness by inserting the letter V, followed by
a number between 0 and 31, as the number increases the piece becomes
louder. The example below uses the volume parameter to produce a
crescendo.

10 A$ = "V10O2L4GG;L1GP4V14L4GGG;
 L1GP4V18L4GGG;L2BL4BBBV22L2BL4BBB;
 V26O3L2DL4DDDL2DL4DDD;
 V30L1GL2.F#L4C#;L2EDCO2A;
 L1GL2AL4.DL8A;L2B"
20 PLAY "T5"+A$

Often a piece of music will contain a passage which is repeated in a number of
different places within the piece. Rather than type the passage more than
once, it is usually better to put it into a separate string variable. The execute
substring command X, allows this substring to appear as part of a normal
sequence of play commands. The X must be followed by the name of the
string variable and a semi-colon, as in,

10 X$ = "O3L2GBO4C;DL4CO3BAG"
20 Y$ = "L2ADD;L1.A"
30 Z$ = "L2ADD;L1.G"
40 A$ = "XX$;XY$;XX$;XZ$;L2BGG;O4CO3L4
 BAGF#;XY$;XX$;XZ$;"
50 PLAY "T8" + A$

We could have used a substring in our 'Clementine' example, just change line
20 to

20 PLAY "T6XA$;XA$;"

The semi-colon must follow the dollar sign ($), substrings and the use of
numbers for the notes (instead of letters), are the only places where the
semi-colon is essential.

There is one more option which can be used with the volume (V), octave (O),
tempo (T) and note length (L) parameters. Instead of a number following the

114

letter, you can use one of the following suffixes:�

+ Adds one to the current value
� Subtracts one from the current value
> Multiplies the current value by two
< Divides the current value by two

Our final scale example could now be rewritten to include this extra option,

10 PLAY "O1C": FOR I = 1 TO 4:PLAY "DEFGABO+C": NEXT I

Where does one get the music from? You could, of course, compose your
own, but for us lesser mortals, sheet music written for single line instruments
such as flute, recorder and trumpet are useful sources.

For those of you that have no inclination to play music on the computer, do
not ignore the PLAY command completely. Games fans can use it to produce
some very useful effects. Just try any one of the examples in this chapter with
the tempo parameter set at T255.

The final example uses ail the modern technology of the PLAY command on
a 400 year old song. Would Henry be impressed?

10 A$ = "O3L2E;L1GL2AL2.BL4O+C#L2O�B;
 L1AL2F#L2.DL4EL2F#;L1GL2EL2.EL4DL2E;
 L1F#V10L2DV8L1O�BV6L2O+E;L1GL2AL2.B
 L4O+C#L2O�B;L1AL2F#L2.DL4EL2F#;
 L2.GL4F#L2EV8L2.D#V10L4C#V15L2D#;
 L1.EL1EP1;"
20 B$ = "O4L1.DL2.DL4C#O�L2B;L1AL2F#L2.D
 L4EL2F#;L1GL2EL2.EL4DL2E; L1F#L2D
 O�L1BO+L2B;O+L1DL2DL2.DL4C#O�L2B;
 L1AL2F#L2.DL4EL2F#;L2.GV10L4F#L2
 EV6L2.D#L4C#V4L2D#;V15L1.EL2EP1;"
30 PLAY "T10XA$;XB$;XA$:XB$;"

115

116

CHAPTER TEN

FURTHER GRAPHICS

In chapter eight, we showed how the LINE and CIRCLE commands could be
used to produce regular shapes such as rectangles, circles, ellipses and arcs.
While these commands are extremely useful, it can require considerable
ingenuity to construct very detailed or irregular shapes using these
commands. The easiest way to handle these sort of shapes is to draw them.

When you draw a figure onto a piece of paper, you start at a particular place
and move the pencil up a certain amount, then to the right and so on. The
DRAW command allows you to repeat this process on the screen. The form
is,

DRAW string

where string is either a string constant, or a string variable, containing a set of
the draw subcommands. The approach is very similar to the PLAY command
of the last chapter.

Usually the first action of any drawing is to move to the start point.

M x,y means move to the co�ordinates given by x,y, as in M128,96, this will
move to screen centre. When you move to a point it is usually a good idea to
make a blank move, that is move without drawing or lifting the pencil off the
paper. If you do not you may get unwanted lines on your drawing. A blank
move is done by using the letter B, any drawing instruction following the B
will be a blank line. BM128,96 means move to the screen centre without
drawing.

Having decided the start point, you may now move up (U), down (D), right
(R), or Left (L) by as many points as you like. The sequence U20R20D20L20
will cause a line to be drawn upwards 20 points for the start, then to the right
20, then down 20 and left 20, drawing a box. Time to start building an
example,

10 PMODE 3,1: PCLS: SCREEN 1,1
20 DRAW"C8;"BM120,96:U26;R13;D26;L13"
80 GOTO 80

The semi-colon n a string is used as a separator. It is not actually required, we
have just used it to make the string easier to read. The example draws a
rectangle near the middle of the screen.

117

Apart from vertical and horizontal lines you can also draw diagonal lines.
These use the subcommands E,F,G and H, for instance E12 will draw a
diagonal line, 12 points long, at 45 degrees from the vertical. All the angles
are measured from the vertical as follows;

E 45 degrees F 135 degrees
G 225 degrees H 315 degrees

This allows diagonal lines to be drawn in any of 4 directions. Add the line,

40 DRAW"L6;U6;E6;BR13;F6;D6;L6;BU26;H6;G6"

to our current program and the rectangle becomes a rocket! The computer
remembers its last position so line 40 will continue drawing from that
point. Work through the string in line 40 to see how it is done. The last
position drawn is the bottom left corner of the rectangle and BR13 means
move right 13 points without drawing.

The rocket has been drawn in the default foreground colour, but we can
change that if we want by using C. The letter C is followed by a number from
0 to 8, representing the code for one of the available colours. Using the editor
change line 40 to read,

40 DRAW"C7;L6;U6;E6;BR13;F6;D6;L6;H6;G6"

and we now have a two-tone rocket! The drawing can be painted exactly the
same way as other shapes, but the C command changes the default
foreground colour, so care is needed to avoid painting over everything.

The drawing is a bit small, so we wall scale it up with the S parameter. The S
means scale, and allows a drawing, or parts of a drawing to be scaled up or
down in units of ¼. So S1 reduces the drawing to ¼ scale, S2 to 2/4 (half)
scale, S8 to 8/4 (twice) scale, and so on. The default setting for scale is 4/4 (i.e.
1 the original size). The S may be followed by any number from 1 to 62. Add
the line

15 DRAW"S12"

and the rocket is now three times the original size.

Another option available is the angle parameter A. This allows us to rotate
all or part of the drawing, as all lines after the A will be drawn with the
displacement given by An. n is a number between 0 and 3, as follows,

0 0 degrees 1 90 degrees
2 180 degrees 3 270 degrees

118

Alter the current program with the following lines

18 FOR I = 0 TO 3:DRAW"A"+STR$(I):PCLS
50 FOR D = 1 TO 100:NEXT D,I

The rocket now turns, but it also changes colour! This is because the
computer not only remembers the last position but also the last setting for C
and A. This problem can be solved by putting C8 at the beginning of the
string in line 30.

Line 20 shows that, as with the PLAY command, the strings used by DRAW
can be used with the string functions. Also in a similar way to the PLAY
command you can execute substrings with the X command followed by a
string variable, XA$, and a semi-colon (;).

10 PMODE 3,1:SCREEN 1,1: PCLS
20 S$ = "L834F4"
30 D$ = "A0;XS$;A1;XS$;A2;XS$;A3;XS$;"
40 DRAW"S24" + D$
50 GOTO 50

A triangle is stored as a substring in S$, which is then used in line 30 to build a
pattern. Note this is the only place the semi-colon is essential, after the dollar
($) sign.

The final parameter is N, meaning no update of drawing position. This is to
draw a line as specified but do not use the end of the line as the new position,
NU10L5, will draw a line 10 points up, return to the start of the line, and draw
right 5 points (an L shape).

10 PMODE 3,1: SCREEN 1,1: PCLS
20 DRAW"BM128,96;NU25NR25NL25;NE17NF17NG17
 NH17"
30 GOTO 30

The above example will draw lines outwards from the centre, always
returning to the centre for the start of the next line.

Often you will want to add another drawing near to the one you have just
completed. You know where the new drawing is to be in relation to the old
one, but do not wish to work out the co-ordinates. This can be done with
relative movement such as 5 points to the right and lo up. The move command
(M) allows this easily, ali you have to do is specify the distance as plus or
minus the current point, i.e. M+5, �10. Remember to use the B to avoid
unwanted lines.

119

25 DRAW"BM�25,�25;U10R25D10L25"

Add the above line to the last example and a rectangle will be drawn above
the last drawing. The last position was 128,96, because of the N parameter.
We have now moved 25 points to left and 25 points up (remember y = 0 is at
the top of the screen), and the rectangle drawing starts at that point (103,71).

The results of a DRAW command can be combined with shapes from the
LINE and CIRCLE commands, but remember that any subsequent scaling
(S), colour (C), or angle (A) changes will effect only the contents of the
DRAW part of the figure.

The PSET and PRESET commands can be used along with PAINT to block
in extra detail and colour. Be careful, in particular with PAINT, as changes in
the draw part of the figure may put the colour in all the wrong places.

GET THE PICTURE?

Having drawn your masterpiece using LINE, CIRCLE and DRAW etc, you
now want to move it around the screen. We could, of course, do this by
blanking out and redrawing cach time, as before. This could take quite a bit
of time if the drawiiig was in any way complex, the next two commands take
care of this. All you have to do is GET a copy of your picture and PUT it
somewhere else. The GET command allows you to copy a rectangular area of
the screen into an array, which can be PUT back onto the screen later.

GET(x1,y1) � (x2,y2),arrayname, G

The x1,y1; and x2,y2 are the co-ordinates of the upper left corner and the
lower right corner of the rectangular area containing the picture you want to
store. The array name is the name of a previously dimensioned array, in which
the picture is to be stored. (If you have forgotten about arrays have another
look at the beginning of chapter six). The size of the array must match the size
of the display rectangle. The first array dimension is the width of the rectangle
(x2 � x1), the second the length, (y2 � y1). The last parameter, G is
optional and determines the amount of detail stored, it is necessary to include
the G parameter in PMODEs 0, 1, or 3 otherwise horizontal moves via PUT
may be inaccurate.

We will use our rocket to show how it is done. First, we must calculate the size
of the array that will be needed. The drawing starts at 120,96, the left fin is 6
points across, the rocket and the right fin are 13 + 6, so the drawing is 25
points wide from 114,96 to 139,96. The height is 26 up, plus the nose cone,

120

which is 5 at the point, so the height is 31. Add a few points either way and
call it a 30 Î 40 rectangle with the left top corner at 112,60 and bottom right at
142,100.

10 PMODE 3,1: SCREEN 1,1: PCLS: DIM R(29,39)
20 R$ = "C8BM120,96;U26R13D26L13;C7L6U6E6BR13
 F6D6L6BU26H6G6"
30 DRAW R$
40 GET(112,60) � (142,100),R,G

100 GOTO 100

The above example draws our rocket as before (all in one string now) and
stores into the array R. Note that we only need a 29 x 39 array, because we
can use the zero elements in the array.

Having stored the drawing we now need to PUT it back onto the screen. The
PUT command has a form similar to GET

PUT (x1,y1) � (x2,y2),arrayname, action

The x1,y1 and x2,y2 are the co�ordinates of the rectangle as before, but this
time refer to the area where you want to PUT the drawing, not where it came
from. The arrayname is the array variable containing the stored drawing. The
action parameter is optional and is only needed when the G parameter has
been used with the GET commands. The action must be one of the following
words, and decides how the result is displayed in its new position.

PSET Set each point that is set in the source array. In other words,
 display it as you get it.
PRESET Reset each point that is set in the source array. This will
 either blank out the picture or reverse the colours,
 depending on the foreground and background colour settings.
AND Compares the points in the original with those at the
 destination. If both are set then the point will be set. If one
 or other is not set the point wili be reset. This means if one
 picture is placed on top of another only the points which
 coincide wall be shown.
OR Compares the points as above. If either the source or
 destination point is set the screen point will be set. This has
 the effect of overlaying one drawing with another.
NOT This reverses each point in the display area, thus displaying
 picture against foreground colour.

121

GET

The GET command may only be used in high resolution graphics modes. GET
will copy the graphics contents of a specified rectangular area on the
screen and store it into an array. The array must have been previously
dimensioned to the correct size.

GET(x1,y1) � (x2,y2),arrayname, G

x1,y1 and x2,y2 are the upper left and lower right co�ordinate of the
rectangle on the display.

arrayname is the name of the predimensioned array that will store the
rectangle's contents.

G instructs full GRAPHIC detail to be stored, this command is optional.

See the PUT box for an example of GET usage.

122

You must always use PUT in the same mode as GET, otherwise strange
results may occur. We can now return to our example and PUT our rocket in
a different place. Add these extra lines.

50 Y = 150:FOR X=10 TO 210 STEP 40
60 PUT(X,Y) � (X + 30,Y + 40),R,PSET

80 NEXT X

There should now be a line of rockets along the bottom of the screen. To
make the rocket move along the bottom just add the line,

70 FOR D = 1 TO 200:NEXT D:PCLS

By using the joysticks in conjunction with the GET and PUT commands, you
can move your drawing at will,

10 PMODE 3,1:SCREEN 1,1:PCLS:DIM S(48,48)
20 DRAW"BM24,12,S8;C4;E2H2D4D8R8H8G8R2
 NR6F3R6E3"
30 GET(0,0) � (48,48),S
40 A$ = INKEY$:IF A$="" THEN 40
50 PCLS:A = JOYSTK(0)*3.25:B = JOYSTK(1)*2.25
60 PUT(A,B) � (A+48,B+48),S:GOTO 50

The above example draws a figure in the top left hand corner of the screen.
When you press any key the screen is erased and the figure can be moved
about using the left joystick.

This completes our coverage of the graphics facilities available. The examples
we have offered are necessarily limited and do not in any way represent what
is possible with a little thought and a lot of patience. Drawing pictures can be
made much easier with a little forward planning and drawing the shapes onto
the graphics worksheet rather than direct onto the screen.

123

DRAW

The DRAW command draws a line, or series of lines according to the
instructions held in a string. It only operates in the high resolution
graphics modes.

DRAW string

The string may be a string constant or a string variable and contain any of
the following subcommands.

Mx;y Move to the draw position at x,y
Un Up n points
Dn Down n points
Ln Left n points
Rn Right n points
En At 45 degrees for n points
Fn At 135 degrees for n points
Gn At 225 degrees for n points
Hn At 315 degrees for n points
X Execute a substring and return
C Set colour of line
Ak Displace next line by angle
 k = 0 0 degrees k = 1 90 degrees
 k = 2 180 degrees k = 3 270 degrees
Sk Scale drawing in units of ¼, k from 1 to 62
 k = 1 is quarter scale, k = 8 is double scale.
 Default k = 4
N No update of draw position
B Blank (do not draw, just move)

Relative movement can be specified with the 8 parameter in the form

M x offset, y offset

Where x offset and y offset are numbers specifying the distance to move from
the current position. Both numbers must be preeceded by either a plus (+) or
minus (�) sign.

An example of the usage of DRAW appears in the PUT box.

124

PUT

The PUT command is used to display the contents of a graphic array stored
by the GET command.

PUT must be used in the same mode that was used to create the array in the
first place, otherwise the results may be unpredictable.

PUT(x1,y1) � (x2,y2),arrayname,action

x1,y1 is the co�ordinate of the top left hand corner of the display area. x2,y2
the bottom right hand corner. The arrayname refers to the predefined array
containing the graphic detail. The action parameter is optional but must be
used if the G parameter was present in the GET command.

PSET Sets destination points as source array
PRESET Resets each point that is set in source array
AND Compares source array and destination. If both points set the
 point remains set, otherwise it is reset
OR Compares points as above, if either point is set the screen point is
 set
NOT Reverses the state of each point in destination area, regardless of
 source array.

The chosen display area must be the same size as the array or 'garbage' will be
drawn on the screen.

10 PCLEAR 4:PMODE 3,1:PCLS:SCREEN 1,1:DIM W(30,30)
20 DRAW"BM10,12;S8;R1U3R1D2R2U2R1D3R1D2L1
 D2R1D1L2U3L4D3L2U1R1U2L1U2R1U2BR1BD1D2R2
 U2NL2R2D2L2U2"
30 PAINT (11,13),6,5:GET(0,0) � (30,30),W
40 A$ = INKEY$:IF A$="" THEN 40
50 PCLS:FOR C = 0 TO 100 STEP 20
60 FOR A=0 TO 200 STEP 20
70 PUT(A,C) � (30+A,30+C),W
80 PUT(A,C+30) � (30+A,60+C),W
90 PUT(A,C+60) � (30+A,90+C),W
100 PLAY"T255;ABFGBA":PCLS:NEXT A,C

125

126

CHAPTER ELEVEN

THE FINISHING TOUCH

PRINT EXTRAS

While your control over the way results are shown on the screen is quite
extensive, using the PRINT and PRINT @ commands, there is one more
facility available. The PRINT USING command allows you to specify exactly
how each line should be printed. It is especially useful for producing tables,
forms and accounting type layouts.

PRINT USING format; output list

The format is a string constant or a string variable containing the instructions
as to how the output list is to be printed. The output list is the usual list of
constants and variables as appears in the ordinary PRINT command.

The instructions in the format are made up of 'field specifiers'. These are a set
of characters which tell the computer exactly how many print postions to use
to print a number or string.

The # specifier

This character is used to indicate the position of each digit in a number.

PRINT USING"# # #.# #";A

The above statement will print the contents of A as 3 digits before the decimal
point and 2 after. If there are more than 2 digits after the decimal point, the
number will be rounded to fit. Any unused positions on the left hand side of
the decimal point will be displayed as spaces if the number is too big to fit into
the space allowed, the computer will do the best it can and print the number
with a % sign in front to show that this has happened.

PRINT USING"###.##";13.4695
s13.47
PRINT USING"###.##";1492.878
%1492.88
PRINT USING"###.##";146
146.00
PRINT USING "###";18.76
s19

The * specifier
127

Most accountants do not like the idea of printing numbers with spaces in
front, especially for cheques. This can be taken care of by using the asterisk
specifier. If you place two asterisks at the beginning of your numeric field the
unused positions will be filled with asterisks.

PRINT USING "**###.##";1.492
****1.49

The + specifier

When the + is placed at the beginning of a numeric field it forces the sign of
the number to be printed,

PRINT USING "+###.##";14.7
s+14.70
PRINT USING "+**###.##":�7.4
****�7.40

lf the plus sign (+) is placed after the numeric field it wall force the sign to be
printed alter the number.

PRINT USING "###.##+";27.86
s27.86+
PRINT USING "###.##+";�1.6
ss1.60�

If a minus sign is placed after a number it will cause all negative numbers
to appear with a following minus sign, positive numbers will be followed by a
space,

PRINT USING "**###.##�";�12.418
***12.4�
PRINT USING "###.##�";47.25
s47.25s

The � � � � specifier

This field allows numbers to be printed in exponential form. The four
upward arrows must follow the number field.

PRINT USING "###.## � � � �";123456
s1.2346E+05

The ! specifier

This specifier is used with strings. It will print only the first string
character that occurs.

128

PRINT USING "!";"CREDIT"
C

The % specifier

To print out strings it is necessary to specify the width of the field they are to
appear in. This is done with two % signs separated by a number of spaces.
The width of the field will be the number of spaces plus two. If the string is
longer than the available field, only the first n characters will be printed,
where n is the length of the field.

PRINT USING "%sssss%";"DEBIT"
DEBITss
PRINT USING "%s%";"BALANCE"
BAL

The $ specifier

The dollar sign is used to represent money. If placed in front of a numeric
it will force a dollar sign onto the output.

PRINT USING "$# # #.# #";2.87
$ss2.87

If two dollar signs are used it will cause the $ to be printed just in front
of the number.

PRINT USING "$$# # #.# #";2.87
sss$2.87

Used in conjunction with the two asterisks the dollar sign will produce the
following result,

PRINT USING "**$#.# #";14.9
*$14.90

Spaces and other characters appearing in the format string will also appear
in the output,

PRINT USING "MEANss# #.# #sssTOTALss# # #.# #";;3.4,40.8

MEANsss3.40sssTOTALsss40.80"

If the output list contains more items than the number of fields in a format, the
format is restarted from the beginning.

PRINT USING "# # #.# #sss";7.84,142.5,.234
ss7.84sss142.50sssss0.23

129

Of course, using the screen, the length of the line produced by the PRINT
USING statement is still limited to 32. Anything over this will cause the line
to 'wrap around', i.e. start on the next line. For those with a printer, however,
the line length you can use will be much longer (at least 80 characters on most
printers). The form for printer use is

PRINT #�2,USING format; output list

format and output list are as before, the �2 means send to the printer channel
not to the screen. If you want it displayed and printed then you will have to
use two PRINT USING statements.

CASETTE INPUT AND OUTPUT

So far all our programs have required us to enter any data we may need (or
READ it from a DATA statement), and all the output has gone to the screen.
You can, however, use your cassette to store data, as well as programs. This
stored data can then be read back in at a later date. The cassette is connected
and set up in exactly the same way as for storing programs. You then need to
tell the computer it is working with data files. This is done with the OPEN
command

OPEN a,#�1,filename

The a must be either "O" or "I". "O" means output, that is the data is going
out from the computer to the tape. "I" means input, the data is coming from the
tape in to the computer.

The #�1 tells the computer you are using the cassette recorder. The filename
is the name you want to call the data file (any name, beginning with a letter and
8 or less characters long, will do).

The next step is to write the data to the tape. This is done with a PRINT
command in the following way.

PRINT #�1, output list

The only difference from the PRINT command we have been using all this
time is the #�1. This tells the computer to print the output list to the tape and
not to the screen.

When you have finished writing out the data, you must close the file with
the CLOSE command.

CLOSE #�1

130

PRINT USING

The PRINT USING command allows greater control over the layout of
results output to the screen, (or printer).

PRINT USING format; output list

The format is a string constant or variable containing the 'field specifiers'
indicating how the output list is to be printed. The output list is a list of string
or numeric variables (or constants) separated by commas.

The 'field specifiers' are as follows;

CHARACTER ACTION EXAMPLE RESULT

Formats numbers "####";147.2 147

. Decimal point "##.##";34.678 34.68

, Display comma to the left
 of every third character "#####.#";123456 123,456

** Fill leading spaces with
 asterisks "**###.###";1.47 ****1.470

$ Places dollar sign ahead of
 number "$####.##";12.689 $��12.69

$ Floating dollar sign "$####.##";12.689 ****$12.69

+ In first position causes sign
 to be printed in front, in
 last position prints after
 number "##.##+";�12.689 12.69�

� � � � Print in exponential format "##.##� � � �";12.689 1.27E+01

! Prints only the first string
 character "!";CREDIT C

%spaces% String field. Length of
 field is number of spaces
 plus 2 %sssss%"; "BALANCE" BALANCE

131

Each 'field specifier' may be separated by any number of spaces which will
appears as spaces on the output line.

10 CLS:INPUT"ENTER LAST BALANCE";B:C=0:D=0
20 CLS:T$="ssss%sss%sss%ssss%sss%sss%"
30 L$="sss####.##ss####.##ss####.##+"
40 PRINT USING T$;"DEBIT","CREDIT","BALANCE"
50 PRINT USING L$;D,C,B
60 OPEN"I",#�1,"CHEQ"
70 IF EOF(�1)THEN 110
80 INPUT#�1,A:D=0:C=0
90 IF A<= THEN D=ABS(A)ELSE C=A
100 B=B+C�D:PRINT USING L$;D,C,B:GOTO 70
110 CLOSE#�1:END

OUTPUT TO PRINTER

For those with a printer connected to the parallel I/O port, there are
variations in some commands which allow output to be directed to the printer
and no to the screen.

PRINT#�2, output list
PRINT#�2, USING format;output list

The format and output list are the same as for use on the screen

POS(�2) will return the current position of the print head

LLIST will list a program directly to the printer. Its use is as for the
LIST command.

Using the [SHIFT][0] combination allows lower case to be output to the
printer. The lower case option can only be used in strings or REM statements,
as all commands to the computer must be in upper case letters.

132

To read the data back in you use the same steps except this time the file
is opened for INPUT and instead of PRINT you will use,

INPUT#�1, input list

The CLOSE command is the same for both.

The examples below show how it's done. First set up the cassette recorder and
wind the tape to the place you want the file to be, (use SKIPF). Now press the
PLAY and RECORD buttons together.

10 CLS:PRINT"CREATE PHONE LIST"
20 OPEN"O",#�1,"PHONE":PRINT"ENTER XXX,XXX TO END"
30 PRINT @ 128,"";:INPUT"NAME�",N$
40 INPUT"TELEPHONE NO.";T$:IF
N$="XXX" OR T$="XXX" THEN 60
50 PRINT #�1,N$,T$:PRINT @ 128,"":GOTO 30
60 CLOSE #�1:END

When you run the program the tape will come on and start the file on the
tape. Each time you enter a name and number it is written to the file. (the
PRINT @ 128 statement in line 30 just clears the line on the screen). This will
continue until you enter XXX,XXX, at which point the file is closed and the
program ends.

Now all we have to do is to read it back in again. The main difference between
output and input, is with input you must not try to read past the end of the
file. This is taken care of by the extra statement you will need for input, the
EOF command, this checks to see if the end of the file you are reading has
been reached.

Rewind the tape to the beginning and this time press only the PLAY button.

10 CLS:PRINT"READ PHONE LIST"
20 OPEN"I",#�1,"PHONE"
30 PRINT"NAME",NUMBER"
40 IF EOF(�1)THEN60
50 INPUT#�1,A$,B$:PRINT A$,B$:GOTO 40
60 CLOSE#�1:END

When you run the program this time the tape will start and look for the file
"PHONE". (You may have to wait a short while if it is towards the end of the
tape). It will then read in the name and number and display them on the
screen. Note that you do not have to use the same variable name you used to
write out the data. You must however use the same type of variable. When
the end of the file is reached it is closed and the program ends.

133

The EOF command has to appear before the INPUT #�1 command,
otherwise you wall get an IE error, (trying to read past the end of the file).

Do not forget to CLOSE a file either as this can cause problems, especially
when writing to a file.

A BIT MORE

You are now on your way to becoming an expert BASIC programmer, and
may wish to look ahead to the next step � machine language. This is the
computers native language, and so far you have been talking to it through an
interpreter which speaks BASIC.

Why would you want to bother? Well machine language instructions will
work much faster, may use less memory, and even allow you to do some
things that BASIC doesn't.

The best approach is to obtain a manual on machine language, with special
reference to the 6800 series microprocessors. One such manual is

Basic Microprocessors and the 6800 by Ron Bishop and published by the
Hayden Book Co. Inc.

Once you have the background, your computer has a number of routines
which allow you to use machine language routines. Brief details of these are
given below.

USRn this allows you to call up to ten (0 to 9) machine language routines.
The form is,

USRn (argument)

Where argument may be a string or numeric expression. When a USR call is
met in the program, control is transferred to the address given in the DEF
USRn statement. The address specifies the entry point of the machine
language routine.

DEF USRn is used to define the address of a USRn function. Its form is

DEF USRn = address

n is between 0 and 9 and matches the n in the USR. The address must be
between 0 and 65535 and contain the entry address for USRn.

CLEAR s,h. The CLEAR statement should be used to reserve memory for USR
functions. The s refers to the amount of string space reserved as before.

134

The h is the highest memory address that BASIC may use. From h + 1
onwards is now reserved for machine language routines.

POKE. The POKE command is used to place a value into a specific part of
memory.

POKE address, value

The address is as above and value must be between 0 and 255.

VARPTR. A pointer to a BASIC variable can be used as an argument by a
USR function. This would allow a USR function to access the contents of an
array.

VARPTR (variable name)

Where variable name is the BASIC variable you wish to access. VARPTR
is used as part of the USR argument as in.

USR0(VARPTR(X))

Machine language routines may be saved and loaded from cassette by
using CSAVEM and CLOADM.

CSAVEM name, start, end, entry
CLOADM name, offset

name is the name for the file on tape, start is the starting address of the
routine in memory, end the last address occupied by the routine and entry
is the program entry point. The offvet in the CLOADM command allows you
to reload the routine into memory it an address given by start + offset.

Once loaded, control can be transferred to the routine by the EXEC
command,

EXEC address

The address is the start of the routine, if address is omitted the computer
will use the start from the last CLOAD command.

135

APPENDIX A
A.S.C.I.I. CHARACTERS CODES

(Decimal)

KEY WITHOUT
SHIFT KEY

WITH
SHIFT KEY

[BREAK] 3 3
[CLEAR] 12 92
[ENTER] 13 13

[SPACEBAR] 32 32
! 33 �
" 34 �
35 �
$ 36 �
% 37 �
& 38 �
' 39 �
(40 �
) 41 �
* 42 �
+ 43 �
, 44 �

� 45 �
. 46 �
/ 47 �
0 48 18
1 49 �
2 50 �
3 51 �
4 52 �
5 53 �
6 54 �
7 55 �
8 56 �
9 57 �
: 58 �
; 59 �
< 60 �
= 61 �
> 62 �

136

KEY WITHOUT
SHIFT KEY

WITH
SHIFT KEY

? 63 �
@ 64 19
A 97 65
B 98 66
C 99 67
D 100 68
E 101 69
F 102 70
G 103 71
H 104 72
I 105 73
J 106 74
K 107 75
L 108 76
M 109 77
N 110 78
O 111 79
P 112 80
Q 113 81
R 114 82
S 115 83
T 116 84
U 117 85
V 118 86
W 119 87
X 120 88
Y 121 89
Z 122 90
� 94 95
� 10 91
� 8 21
� 9 93

The without shift characters are obtained by using the [SHIFT][0]
combination to move into lower case.
The following lower case characters are available with the CHR$ function:
[� CHR$(123) � CHR$(126)
/ � CHR$(124) � CHR$(127)
] � CHR$(125)

137

The characters from 128 to 255 are graphics characters as follows:

GRAPHICS CHARACTERS

To produce the above characters use CHR$ with the appropriate code. To
obtain the other colours, add the appropriate number to the code. For
example, PRINT CHR$(142+112) produces character 142 except the green
area is orange.

+ 16 yellow + 32 blue + 48 red
+ 64 buff + 80 cyan + 96 magenta
 + 112 orange

138

APPENDIX B

PRINT AND GRAPHIC SCREENS

The following work sheets are useful for designing graphics and print layouts.

The first is used for the PRINT @ command

The second for low resolution graphics on the text screen, using the SET and
RESET commands.

The third is for the high resolution screen and all the high resolution graphics
commands.

139

Print @ Grid

480

448

416

384

352

320

288

256

224

192

160

128

96

64

32

0 �

 � 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1

 1 1

 1 1

 1 1

 1 1

 1 1

 1 1

 1 1

 1 1

 1 1

 0 2

 1 2

 2 2

 3 2

 4 2

 5 2

 6 2

 7 2

 8 2

 9 2

 0 3

 1 3

140

Low Resolution Grid

141

High Resolution Grid

142

APPENDIX C

ERROR CODES

CODE EXPLANATION
/0 Division by zero. Not possible.

AO Attempt to open a file which is already open.
 Usually appears after pressing RESET to stop a program using files.
 Switch off and on again.

BS Bad Subscript. Usually because the value of subscript is greater than
 the declared dimension of the array.

CN Can't Continue. Trying to use CONT when at the END of a program.

DD Attempt to redimension an array. Arrays can only be dimensioned
 once in a program.

DS Direct Statement. Usually appears if you attempt to CLOAD a data
file.

FC Illegal Function Call. Usually parameter is out of range or the wrong
 variable type.

FD Bad File Data. Caused by trying to read string data into string
 variable using cassette data files.

FM Bad File Mode. Trying to INPUT from a file which is OPEN for
 output (O), or PRINT data to a file OPEN for input (I).

ID Illegal Direct Statement. Attempt to use a statement which can only
be used in a program e.g. INPUT, DEF FN.

IE Attempt to input past the end of a file. Use IF EOF (�1) to check
 this does not happen.

IO Input/Output Error. Cassette not adjusted correctly or bad tape.

LS String too long. Maximum is 255 characters.

NF NEXT without FOR. Usually occurs when NEXT statements are
reversed in a nested loop.

NO File not open. Input and output to a data filo can only take place after
 OPEN.

OD Out of data. A READ statement has read all the DATA statements.

OM Out of Memory. All available memory is being used or has been
reserved.

OS Out of String Space. Use CLEAR to create more space if available.
143

CODE EXPLANATION

OV Overflow. The number is too large for the computer to handle
 (ABS(X)>1E38).

RG RETURN without GOSUB. Program has most likely fallen through
the end into the subroutine, (use END) or a branch has been made
into the subroutine.

SN Syntax Error. Usually caused by typing errors or incorrect
punctuation.

ST String formula too complex. Break the operation into smaller steps.

TM Type Mismatch. Attempt to assign string data to numeric variable or
 vice versa.

UL Undefined Line. A branching statement has been directed to a line
 that does not exist.

144

APPENDIX D

TRIGONOMETRIC FUNCTIONS

In a right angled triangle ABC,

 AB is called the side adjacent to the angle á .
 BC is called the side opposite to the angle á .
 AC is called the hypotenuse.

The SINE, COSINE and TANGENT of the angle á are defined as follows:

 SIN á =
hypotenuse

 side opposite

 COS á =
hypotenuse

 side opposite

 TAN á =
sideadjacent

 side opposite

ALL BASIC trigonometric functions are assumed to be measured in radians.
A radian is a measure of an angle in circular units. There are 360o degrees, or
2 ð radians, in a circle. (ð is a Greek letter, pronounced "pie", representing
a constant numbert 3.1415926). So convert from one to the other as follows:

 degrees/(180/ ð) = radians
 radiansH(180/ ð) = degrees

The inverse of a function is the reverse of applying a function.
For instance, the tangent of angle of 1.5 radians is,

 TAN(1.5) = 14.101419

The inverse of the function TAN is ATN. This is used to find the angle, if you
already know the tangent,

 ATN(14.101419) = 1.5
145

The inverse of the SIN and COS functions, are not available in BASIC, but
can be found by using the ATN function in the following formulae:

 Inverse Sine = (ATN(X/SQR(�X*X*+1))
 Inverse Cosine = (ATN(X)SQR(�X*X+1))+ 1.5708

146

INDEX

 Page No.

! in PRINT USING 129
! specifier in PRINT USING 128
specifiers, PRINT USING 127
$ sign in PLAY 114
$ sign, string variables 11,12,14
$ specifier in PRINT USING 131
% in PRINT USING 129
% specifier in PRINT USING 129
* in PRINT USING 127,128
+ in PRINT USING 128
� in PRINT USING 128
6800 microprocessors 134
? symbol 5
?/OERROR 2
?ODERROR 76
?OM ERROR 76
?SN ERROR 2
A command in DRAW 118
ABS function 67
Adding sound to graphics 109
Addition 4
Address of routine 134
Adjusting colour balance of TV 82
Algorithm 27
Altering program line 39
AND in IF statement 50
AND operator 50
AND with PUT command 121
Angle subcommand in DRAW 118
Approach to programming 24,27
Ares 102�104
Arguments, of functions 66�73
Arithmetic expressions 5,6
Arithmetic operations 3
Arithmetic operators 13
Array dimensions 63
Array index 63

147

INDEX

 Page No.

Array sizes with GET 120
Array variables 9
Array variable names 63
Arrays, numeric 63
Arrays, string 63
Arrays, subscripts 63
Arrays, use of 64,66
Arrays, use with GET command 120
Arrow keys 84,85
ASC function 71
ASCII character codes 136
Assigning values to variables 11,12
Assignment statements 11,12,19
ATN function 67,145,146
AUDIO OFF command 109,111
AUDIO ON command 109,111
AUX socket 35
Available colour set 91,93�95
B command in DRAW 117
Background colour 95,97
Backspace key 1
Backward arrow key 16,84,85
BASIC 2
Blank move in DRAW 117
Bouncing ball example 86
Brackets, use of 5
Branching statements 47
Branching statements in loops 57
Branching, in subroutines 60
BREAK key, use of 47
BREAK key 16
Built in functions 72
C command in DRAW 118
Calling subroutines 59
Cassette control example 109
Cassette motor control 109
Cassette output 130,133

148

INDEX

 Page No.

Cassette recorder, type 35
Cassette recorder, use of 35
Cassette recorder, connections 35
Cassette recorder, setting up 35�38
Cassette recorder, remote control 35
Cassette tape as storage 35�38
Castle example 82�83
Changing characters in editor 39
Changing graphics pages 104�107
Changing program lines 24,38
CHR$ function 69,137,138
CHR$, graphics characters 81�82
Chromatic scale in PLAY 112
CIRCLE command 102,103
CIRCLE command, with DRAW 120
Circles 102�104
CLEAR command 76,78,134
CLEAR key 1
Clementine example 112
CLOAD command 36,37
CLOADM command 135
CLOSE command 133
CLS command 16,26
Colon, use as separator 15,20
COLOR command 95,97
Colour codes with CHR$ 138
Colour subcommand in DRAW 118
Colouring shapes 100,101
Combining DRAW and LINE 120
Command summaries 13
Comments in programs 27,33
Computer decisions 49
Computer music 109�115
Concatenation of strings 13
Conditional branch 47�50
Conditions, testing 48,49
Constants 9

149

INDEX

 Page No.

Constructing pictures 82
CONT command 44,46
Continuing a stopped program 44,46
Control, transfer in programs 47
Controlling recorder 109
Converting degrees to radians 73
Copying graphics pages 104�107
Copying values of variables 12
Correct versions of program 34
Correcting errors in line 1
COS function 67,145
Cosine, definition 145
CSAVE command 36,37
CSAVEM command 135
Cursor, use in editor 39
Cursor 1
D command in DRAW 117
DATA command 76,77
Data pointer 76
Dealing cards example 79
Debugging programs 27
DEF FN command 72,74
DEF USRN command 134
Degrees to radians, conversion 145
DEL command 42,43
Delay loops 55
Deleting characters in editor 39
Deleting program lines 42
Diagonal angles in DRAW 118
Dice simulation program 32,34
DIM command 63,65
DIN plug 35
Display screen page 104
Division operator 4
Dotted notes 112
Down command in DRAW 117
Downward arrow key 84
150

INDEX

 Page No.

DRAW command 117,124
Drawing ares 104
Drawing circles 102
Drawing diagonals 118
Drawing ellipses 104
Drawing lines 96
Drawing method 117
Drawing pictures 81�107
Drawing rectangles 96�99
Dummy variables in DEF FN 72
E command in DRAW 118
EAR socket 35
Earphone socket 35
EDIT command 39,40
EDIT, backspace 39
EDIT, change 39
EDIT, cursor 39
EDIT, delete 39
EDIT, example of use 41
EDIT, extending line 39
EDIT, hack 42
EDIT, insert mode 39
EDIT, insert 39
EDIT, kill 42
EDIT, icaving 41
EDIT, search 39
EDITOR 38�42
Educational programs 53
Ellipses 102�104
End of data filo 133
ENTER key 2,5,
Entering a program 15
Entry point of routines 134
EOF command 133
Equals sign, meaning in BASIC 11
Error codes 143�144
Errors, explanation 143�144

151

INDEX

 Page No.

Execute substring in PLAY 114
Execute substring in DRAW 119
EXP function 67
Exponential form, PRINT USING 128
Exponentiation 3
Expression in IF statements 49�55
Expressions, use of variables 12
Expressions, string 12
F command in DRAW 118
False conditions 49
Field specifiers 127
File names 36,130
Firing weapon example 88
FIX function 67
Flipping pages 104
FOR command 55�59
FOR NEXT command 55,58
Foreground colour 95
Formats in PRINT USING 127
Forward arrow key 84
Function names 66
Functions, classes 66
Functions, class I 67�69
Functions, class II 69�70
Functions, class III 70
Functions, class IV 71
Funetions, class V 71,72
Functions, list of 67�72
Functions, mixed type 69,71
Functions, types of 67
Functions, user defined 72
Functions 66�73
G command in DRAW 118
G parameter with GET command 120
GET command 120�123
GOSUB command 59,62

152

INDEX

 Page No.

Graphics characters, CHR$ 138
Graphics modes 91
Graphics pages 91
Graphics, screen worksheet 141,142
Graphics, available colors 82
Graphics, use of strings 82
Greensleeves example 115
H command in DRAW 118
HEX$ function 70
High resolution 81
High resolution mode 91
High resolution graphics 91�107
Horizontal movement 84
House drawing, example 98�100
I/O ERROR 36
IF statements, conditions 49
IF statements, strings 50
IF statements, relations 50
IF statements, expressions 49�53
IF statements, relational operators 50
IF statements, logical operators 50
IF THEN ELSE command 49,51
INKEY$ function 52,71
INKEY$, use of 55
INPUT command 16,23
Inserting characters in editor 39
Inserting program lines 24
INSTR function 71
INT function 67
Jack sockets 35
Joystick button 88
JOYSTK command, use of 86
JOYSTK function 68
Keyboard 1
L command in PLAY 112
L command in DRAW 117

153

INDEX

 Page No.

Left command in DRAW 117
LEFT$ function 70
LEN function 71
Line colour in DRAW 118
LINE command 96�100
LINE command, with DRAW 120
LINE IN socket 35
LINE INPUT command 73,75
LINE INPUT, use of 73
Line length 49
Line number increment 43,44
Line numbers in ON GOTO 47
Line numbers 15
Line numbers, range of 24
Line sequence in subroutines 60
Lines in program 15
LIST command 16,17,42
Listing line in editor 41
Lists 63
Loading programs from cassette 36
LOG function 68
Logical operators 50
Loop counters 55
Loops, delay 55
Loops, nested 56
Loops 55,57
Low resolution 81
Low resolution graphics 81�90
Low resolution worksheet 141
Lower case characters 1,137
M command in DRAW 117
Machine language 134�135
Making decisions 49
MEM function 72
Memory addresses 134
Memory storage of strings 6

154

INDEX

 Page No.

Minus sign in DRAW 119,120
Mixing strings and numbers 13
Mode use with GET & PUT 123
MOTOR OFF command 109,111
MOTOR ON command 109,111
Move subcommand in DRAW 117
Movement in graphics 104
Movement with joystick 86
Moving man example 84�85
Moving pictures 84�85
Multiple branching 47,60
Multiplication operator 4
Music keyboard 110
Music sources 115
Music string 110
Musical notes 110
N command in DRAW 119
Nested loops 57
NEW command 18,36
NEXT command 55�59
No update in DRAW 119
NOT with PUT command 121
Note length subcommand 112,114
Note subcommand 112
Notes, music 112
Numeric arrays 63
Numeric characters in strings 6
Numeric expression 47
Numeric functions 67�69
Numeric variables 9
Numeric variable names 9,10
0 and zero, difference 1
0 command in PLAY 112
0 in OPEN command 130
Octave subcommand 112
OK, prompt 1,5

155

INDEX

 Page No.

ON GOTO command 47,48
OPEN command 130
Operating modes, immediate 2
Operating modes, deferred 2
Options, selecting of 47
OR operator 50
OR with PUT command 121
Order of precedence 4,5
Output to cassette 130
P command in PLAY 114
PAINT command 100�102
PAINT command, with DRAW 120
Parentheses, use of 5,6
Pause subcommand 114
PCLEAR command 91,92
PCLS command 95,97
PCOPY command 105,107
PEEK command, use of 88
PEEK function 68
Placing values in memory 135
PLAY button, cassette recorder 36
PLAY command 109�115
PLAY subcommands 110
PLAY, use in games 115
Plus sign in DRAW 119
Plus sign, used with strings 12
PMODE command 91,93
POINT command, use of 90
POINT function 68
Pointers to BASIC variables 135
Points in high resolution 91,95
Points on TV screen 81
POKE command 135
POS function 68
Position of EOF command 133
Power, raising a number to 3

156

INDEX

 Page No.

PPOINT function 68
Precedence, modifying 5
Precedence, operators of 3
PRESET command 95,97
PRESET command with DRAW 120
PRESET with PUT command 121
PRINT @, in graphics 81�85
PRINT @ command 20,29
PRINT @ command worksheet 140
PRINT command 16,21
PRINT command, after STOP 44
Print screen worksheet 140
PRINT USING command 127,131
PRINT USING, strings 129
PRINT#�2, using command 132
PRINT#�1 command 130
PRINT 2
Printing characters 81
Program construction 24
Program documentation 27
Program order of operation 15
Program order 24
Program sequence 15
Program structure 59
Program, definition 15
Program, lines 15
Program, sections 27
Program, statements 15
Programming example 32�34
PSET command 95,97
PSET commands, with DRAW 120
PSET with PUT command 121
PUT command 121�123,125
PUT command parameters 121,125
Quotation marks 6
R command in DRAW 117

157

 INDEX

 Page No.

Radians, definition 145
Radians, use in functions 73
Radians 67�69
READ command 76,77
Reading data from program 76,77
Reading data files 133,134
RECORD button cassette recorder 36
Recording hints 38
Relational operators 50
Relations in IF statements 50
Relative movement in DRAW 119
REM statement 27,33
Remote control socket 35
RENUM command 43,44
Renumbering program lines 43,44
Repeated formats in PRINT USING 129
Repeated phrases in music 114
Repeating line sequence 55
Reserving memory for graphics 91
Reserving string space 76
Reserving memory for routines 134
RESET command 85�87
Resolution of TV screen 81
RESTORE command 76,77
RETURN command 60,62
Right subcommand in DRAW 117
RIGHT$ function 70
RND command 20,25
RND function 20,66,69
RND, use of 20
Rocket example 118�119
Rotation angles in DRAW 118
Rules of arithmetic 3�6
RUN command 16,18,24,42
Running machine language routines 135
S command in DRAW 118

158

INDEX

 Page No.

Saving machine language routines 135
Saving more than one program 38
Saving program onto cassette 36
Scalar variables 9
Scale in C 110
Scale in G 110
Scale subcommand in DRAW 118
Scales, music 110
SCREEN command 94,95
Screen colours 20
Sereen type 95
Search, in editor 39
Searching text example 80
Selecting options 47
Semi�colon in PLAY 110
Semi�colon in DRAW 118,119
SET command 85�87
SGN function 69
SHIFT key 1
Ships in space 88
Shooting type games 86
Shuffling cards example 64
Simple variables 9
SIN function 69,145
Sine, definition 145
Single quote as REM 27
SKIPF command 37,38
SKIPF, use of 133
Sorting, alphabetical 66
Sorting, example 66
Sorting, using arrays 66
SOUND command 20,24,31
Sound effects 109
Space dogfight example 88
Spacebar, use in editor 39
Spaces in BASIC statement 7
Spaces in strings 6

159

INDEX

 Page No.

SOR function 70
Start point in DRAW 117
STEP command 56�57
STEP, omission of 56
STOP command 44,46
Stopping a program 16,44
Storing data in program 76
Storing data on cassette 130
Storing program line 15
Storing programs on tape 36
Storing string variables 76
Storing values in variables 11
STR$ function 70
String arrays 63
String functions 69�71
String variables 9
String variable names 11,14
String variables in expressions 12
STRING$ function 70
Strings in IF statements 50
Strings, characters 6
Subroutine libraries 60
Subroutines, line numbers 60
Subroutines 59
Subscripts in arrays 63
Substrings in PLAY 114
Subtraction 4
Suffices in PLAY 115
Syntax error 2
System commands 42
T command in PLAY 112
TAN function 69,145
Tangent, definition 145
Tape file names 36
TAPE socket 35
Tempo subcommand 112,114

160

INDEX

 Page No.

Text screen 91
TIMER function 72
Tracing program flow 44
Transfer of program control 47
Trigonometric functions 67�69,145�146
TROFF command 44,46
TRON command 44,46
True conditions 49
Tune, Clementine 112
Tune, Greensleeves 115
Tune, Lavender Blue 114
TV screen 1,81
Twelve tone scale 110
Two dimensional arrays 64
U command in DRAW 117
Unary minus 3
Up subcommand in DRAW 117
Upper case characters 1
Upward arrow key 4,84
User defined functions 72
USRN command 134
VAL function 71
Variable names 9
Variable types 9
Variable types in IF statements 50
Variables, values of 11
Variables 9
VARPTR command 135
Vertical movement 85
Video RAM 91
Volume control, TV 16
Volume control, cassette recorder 35
Volume control setting, cassette 36
X command in PLAY 114
X command in DRAW 119
X,Y grid 84

161

INDEX

 Page No.

X,Y point 86
Zero, representation 1
� specifier in PRINT USING 128

162

DRAGON - ADDITIONAL INFORMATION

This booklet contains some extra information which we hope will enable you
to get the best out of your Dragon microcomputer. Particularly important is
the paragraph concerning the cassette recorder lead, as this differs from the
information given in your Dragon "Introduction to Basic Programming"
manual.

information on the connection and adjustments of your television is also
included with details of the printer connection and a copy of the Dragon
memory map.

TELEVISON

Once you have connected your computer to a television anti switched on,
select a spare channel control and tune in, as given in the "Introduction to
Basic Programming'' manual, lithe television picture is not stationary then it
is necessary to adjust to vertical hold on the television set. If there is no
external control for the vertical hold, contact your television service engineer
for assistance.

To obtain a picture of clarity adjust the contrast, brightness and colour
according to personal choice.

CASSETTE

To connect the cassette recorder to the computer using a Dragon Data
cassette lead, put the DIN plug into the socket marked TAPE on the left side
of the computer. The three plugs on the other end of the lead are connected
to the cassette recorder as follows:

ii) The smallest jack plug with blue wire fits into the small jack socket
 usually marked REM and next to the microphone socket.
ii) The jack plug with the red wire fits into the socket usually marked AUX
 or MIC or LINE IN. If there is choice of socket between AUX and MIC,
 always use AUX.
iii) The _jack plug with the white wire fits into the socket marked EAR or
 MONIT, or L/S or SPKR.

When using the rewind or forward wind controls on the cassette recorder, it
may be necessary to remove the jack plug from the REM socket jar these
controls to operate.

Always ensure that this plug is reinserted afterwards.

Alternatively, type MOTOR ON and press ENTER before using the rewind
or forward wind control. Afterwards type MOTOR OFF and press ENTER
to continue using the cassette recorder in con junction with the computer.

If you wish to reuse a cassette tape it is recommended that the complete tape
is erased before re-recording.

PRINTER

The printer point provided on the left hand side of the Dragon computer is for
a printer using a parallel centronics type interface (socket 6 in illustration of
"Introduction to Basic Programming" manual). The pin connections are as
follows.

PIN 1 Print Strobe PIN 2 +5 volts
PIN 3 Data bit 0 PIN 4 +5 volts
PIN 5 Data bit 1 PIN 6 0 volts
PIN 7 Data bit 2 PIN 8 0 volts
PIN 9 Data bit 3 PIN 10 0 volts
PIN 11 Data bit 4 PIN 12 0 volts
PIN 13 Data bit 5 PIN 14 0 volts
PIN 15 Data bit 6 PIN 16 0 volts
PIN 17 Data bit 7 PIN 18 0 volts
PIN 19 ACK PIN 20 BUSY

The position of the odd numbered pins are on the top line of the connector
part with PIN I situated on the right (viewed end on). The even numbered
pins are on the bottom line with PIN 2 situated on the right.

CARTRIDGE

It is advisable to ensure that the power is switched off when inserting or
removing a cartridge from the port on the right hand side of the computer.

© 1982 Dragon Data Limited.

65504 - 65535

65376 - 65503

65280 - 65375

49152 - 65279

32768 - 49151

12288 - 13823

2560 - 12287

9216 - 2559

7680 - 9215

6144 - 7679

4608 - 6143

3072 - 4607

1536 - 3071

 1024 - 1535

1023

255

0 - 1023
 D

ecim
al A

ddress

M
PU

 vectors

SA
M

 C
ontrol bits

Input/O
utput

C
artridge M

em
ory

B
asic Interpreter

 Page 8

 Page 7

 Page 6

 Page 5

 Page 4

 Page 3

 Page 2

 Page 1

G
raphic Screen M

em
ory

T
ext Screen M

em
ory

 E
xtended Page R

A
M

 D
irect Page R

A
M

System
 U

se
 C

ontents H
ex

D
R

A
G

O
N

 M
E

M
O

R
Y

 M
A

P

FFE
0 - FFFF

FF60 - FFD
F

FF00 - FF5F

C
000 - FE

FF

8000 - B
FFF

3600 - 7FFF

2A
00 - 2FFF

2400 - 29FF

1E
00 - 23FF

1800 - ID
FF

1200 - 17FF

C
00 - 11FF

600 - B
FF

 400 - 5FF

3FF

0FF

0 - 3FF
 A

ddress

Release Notes

'An introduction to BASIC programming' � PDF version 1.0 by R.Harding
Dragon Data Archive

Major Know Problems/Issues
q Zeros are not slashed.
q Vertical green bars missing from command description pages.

Acknowledgements
Original text version by Miguel Durán Uña � biblioteca8bits

http://www.dragondata.co.uk
http://www.geocities.com/biblioteca8bits

	Front Cover
	OPERATING INSTRUCTIONS
	CONTENTS
	INTRODUCTION
	CHAPTER ONE - GETTING STARTED
	THE KEYBOARD
	DRAGON THE CALCULATOR
	ARITHMETIC RULES. OK?
	PRINTING WORDS

	CHAPTER TWO - WHAT'S IN A NAME
	CONSTANTS - VARIABLES
	NUMERIC VARIABLE NAMES
	ASSIGNING VALUES TO VARIABLES
	STRINGS AND NUMBERS DO NOT MIX
	STRING VARIABLE NAMES

	CHAPTER THREE - A PROGRAM AT LAST
	PUTTING IN A PROGRAM
	STEP BY STEP
	LIST
	RUN
	NEW
	ASSIGNMENTS STATEMENT
	PRINT
	INPUT
	MAKING CHANGES
	PROGRAM CONSTRUCTION
	RND
	CLS
	Print @ Grid
	PRINT @
	SOUND
	GOTO
	A PROGRAM EXAMPLE
	REM

	CHAPTER FOUR - GOOD HOUSEKEEPING
	SETTING UP THE RECORDER
	STORING A PROGRAM ON TAPE
	LOADING PROGRAMS INTO MEMORY
	CSAVE - CLOAD - SKIPF
	SAVING MORE THAN ONE PROGRAM
	HINTS ON RELIABLE RECORDING
	THE EDITOR
	MOVING DOWN THE LINE
	ALL CHANGE
	EDIT
	MORE SYSTEM COMMANDS
	DEL
	RENUM
	TRacing a program flow
	STOPing and starting
	TRACE
	END - STOP - CONT

	CHAPTER FIVE - GOING PLACES
	SELECTING OPERATIONS
	ON. . .GOTO
	DECISIONS
	IF. . .THEN. . .ELSE
	INKEY$
	DO IT AGAIN, AND AGAIN, DRAGON
	FOR…NEXT…STEP
	WHEELS WITH WHEELS
	GOSUB - RETURN - ON ... GOSUB

	CHAPTER SIX - NEW DIMENSIONS
	LISTS AND TABLES
	DIM
	WHAT'S ITS FUNCTION
	D.I.Y FUNCTIONS
	ALTERNATIVES TO INPUT
	DEF FN
	LINE INPUT
	READ - DATA - RESTORE
	CLEAR
	PAUSE FOR REFLECTION

	CHAPTER SEVEN GETTING - THE POINT ACROSS
	PRINTING PICTURES
	MOVING PICTURES
	A NEW RESOLUTION
	SET
	RESET

	CHAPTER EIGHT - MOVING TO A HIGHER PLACE
	IN THE MODE
	PCLEAR
	SCREEN
	FAMILIAR FRIENDS
	DRAW THE LINE, SOMEONE
	COLOR
	PCLS
	PSET
	PRESET
	LINE
	A SPLASH OF COLOUR
	PAINT
	GOING ROUND IN CIRCLES
	CIRCLE
	TURNING THE PAGE
	PCOPY

	CHAPTER NINE - SOUNDS ELECTRIC
	ADDING A SOUND TRACK
	PLAY THAT THING!
	AUDIO
	MOTOR
	PLAY

	CHAPTER TEN - FURTHER GRAPHICS
	GET THE PICTURE?
	GET
	DRAW
	PUT

	CHAPTER ELEVEN - THE FINISHING TOUCH
	PRINT EXTRAS
	CASETTE INPUT AND OUTPUT
	PRINT USING
	OUTPUT TO PRINTER
	A BIT MORE

	APPENDIX A - A.S.C.I.I. CHARACTERS CODES
	GRAPHICS CHARACTERS
	APPENDIX B - PRINT AND GRAPHIC SCREENS
	Print @ Grid
	Low Resolution Grid
	High Resolution Grid
	APPENDIX C - ERROR CODES
	APPENDIX D - TRIGONOMETRIC FUNCTIONS
	INDEX
	! to Array
	Array to Cassette
	Cassette to Constants
	Constructing Pictures to Down arrow
	DRAW - Errors
	Execute in PLAY to GOSUB
	Graphic Chars to L command in DRAW
	Left command in DRAW to Memory
	Minus in DRAW to OK prompt
	ON GOTO to Power to
	PPOINT to R in DRAW
	Radians to S in DRAW
	Saving to Spaces
	SQR to Tempo
	Text screen to X,Y grid
	X,Y point to Zero

	DRAGON - ADDITIONAL INFORMATION
	DRAGON MEMORY MAP
	Release Notes

