SUPER
CHARGE

YOUR
SPECTRUM

Extend your Spectrum with ready-
made machine language routines

DAVID WEBB

SUPER
CHARGE

YOUR
SPECTRUM

SUPER
CHARGE
YOUR

SPECTRUM

DAVID WEBB

MELBOURNE HOUSE PUBLISHERS

Published in the United Kingdom by:
Melbourne House (Publishers) Ltd.,
Church Yard,

Tring, Hertfordshire HP23 5LU,
ISBNO-86161-112-8

Published in Australia by:

Melbourne House (Australia) Pty. Ltd.,
Suite 4, 75 Palmerston Crescent,
South Melbourne, Victoria, 3205,

Published in the United States of America by:
Melbourne House Software Inc.,

347 Reedwood Drive,

Nashville TN37217.

Copyright (c) 1983 David Webb

All rights reserved. This book is copyright. No part of this book may be
copied or stored by any means whatsoever whether mechanical or
electronic, except for private or study use as defined inthe Copyright Act.
All enquiries should be addressed to the publishers.

Printed in Hong Kong by Colorcraft Ltd.

The terms Sinclair, ZX, ZX80, ZX81, ZX Spectrum, ZX Microdrive, ZX Interface, ZX Net, Microdrive,
Microdrive Cartridge, ZX Printer and ZX Power Supply are all Trade Marks of Sinclair Research Limited.

DCBA987654321

SPECIAL NOTE

The programs and routines in this book represent a very unusual
willingness on the part of a machine language programmer to disclose
exactly how his routines are written.

David Webb has done so from a desire to help other programmers
develop their own programs and to teach machine language
programming by example. They are intended to be used as a tool for
learning and for use in your own personal programs.

However, it is not the intention that these routines be used in any
commercially produced programs, and we would like you to note that
these programs and routines are covered by the laws of copyright.

After reading and working through this book, | am sure you will agree that

David Webb has produced a work that will be of great assistance to
Spectrum programmers everywhere.

Best regards,

N WD

Alfred Milgrom
Publisher

CONTENTS

PREFACE ...ttt aenas 1
Getting Started
1. Using routines:- all you need to knowcccccoeiuiiciincnnnnnes 3
2. Building a dedicated toolkit from a library of routines 13

Routines for the attributes.

3. Colourful operations on the attributesc..ccocvceneniicinns 17
4. Inverting the attributescccccviiiiiniiniiiiiinin, 23
5. Scrolling the attributes in all directionscccccveevieveienennen. 26

Routines for the text and graphics

6. Scrolling the text and graphicscccoeiiaiiinicicneneceeeene 37
7. Scroling DY PIXOIS: ... cssumnmissssasassivsesasmisasssssssiseserss 49
8. Carpet-roll CLS ..ot 62
9. Mirrored Characterscoccvceveeeeerenenenresessessessesnessssinens 66
10. More spectacular ways to clear the screencccccceeinenne. 69

A complete and detailed breakdown of useful system variables

11. System variables and the keyboardcccocieiiiiiininnnes 71
12. Forcing error reports e Loy | e e 75
13, Changing MOS8uviiiniimniaisammasmimimsmsias 78
14 'SCreanCOIOUNS .-i:usiyssmumisay iy i s s i 80
15. FRAMES:- the hiddentimercccccoiiiiciiiiciiiiicicnn. 82
16 SCROLLING N BEIBON' <. cissvnscissiomumomsyiasonisasiismsssssisusmms 85
17. Redefining the character set: 96 more graphicscc...... 87
1B, MEMOIYIADAIS: ...iumessnsmrisssssuasyisrianehsrms b estispsararsenseen 91
19. DF SZ and software protectioncccevvernennirniicsinncinnnenn 95

20. Miscellaneous system variablescccecvvivviiiiiieincrannns 98

Routines to improve BASIC commands

21, SCRBEENS2 ccivvvuvisivivinvssavmiiimasiassss i omsomsmsmss s sss 103
227 [PAUSE MIC:2...covimsumnmssossiosassssorassisismsassiiimmsassaivsesasosaases 107
Utility routines

23. 'Foryourinformation ..qviacaamannainminnnniansiaas 111
24. Renumbering your Programsccccceeciueeasunsinnnssnissoresnens 113
25. [CABB CRBNGD ..oviiassivimsismrovisnssnvinaismsasimimeitmm psisaassassuings 116
26. Find Qngd 1oPIAGR - uwssisemuosisimmansisimmisiemm st smssasasirsisersens 118
27. Linedalelecimmussiosnsmsimssssusssssirsserisasnmasrymssartney 121
28. FULL RENUMBERcoooiiiiiierii et sas s 124
29. The Spectrum gets a TRACE functioncccceccvcicicnnne. 131
Enhancing your programs

30. Geographic keyboard SCaNScccccceueimeucieirieninerasceseaaes 137
31. Superplot 256 X 192coviiiiieiiieicree e eaens 143
32, Tape ralay s:umirnamm i an e 146
33.- Speech reproduUCHON ;. ::::urmiikui i iswsatmi mra 149
34. Multicoloured BORDERcocciiimiiiieniciiicccie s 159
35.: SOUNd BffOCESi...occusivsiimsmimmsmmsemmmssssm: 100
36.. Printer control using QUT v wuisamamssmmmmssemnismvemssesre: W3
APPENDICES

A. Alist of routines with page and length 173
B. Using this book with the Microdrivec.cccccociiiiniinininnne. 175
C: FOINer MBAIING .- isimnsnscosacsssassanesssssseassasisusanmmmsamares 176

PREFACE

Any reader who has purchased one of the multitude of
machine-coded arcade games available for the ZX Spectrum will
appreciate the vast difference in speed and power between
machine language and BASIC programs. Until now the only way
for a BASIC Programmer to achieve this power has been to
‘buckle down' to the ominous task of actually learning to
"speak the lingo".

In this book I aim to make machine code techniques freely
available to the BASIC programmer without him or her needing to
worry about how they work. Each of the routines is a small,
self-contained block of machine code with full instructions on
how to use it. 1In the first two chapters I provide all the
information, programs and simple techniques you'll need to use
the rest of the book. No knowledge of machine code is
necessary, but for the reader who has such knowledge I have
included a fully commented assembly mnemonic listing for each
routine.

In response to the many requests I have seen for a full list of
useful POKES and system variables on the ZX Spectrum, I have
included the appropriate information in this book. Also
included are machine language solutions to the problem of
recognising graphic characters with the SCREEN$ function, and
to that of using the erroneous PAUSE command.

I would like to extend my thanks to the following people:
- Mum and Dad, for seventeen years of unbelievable
tolerance.

- Alfred Milgrom, my publisher, for his support and
encouragement .

- My teachers at Woking 6th form College, for ignoring the
slight absence of homework on the five A-levels and two
S-levels for which I was studying while writing this book.

DAVID M. WEBB
WOKING, ENGLAND
JULY 1983

GETTING STARTED

CHAPTER 1
USING THE ROUTINES:- ALL YOU NEED TO KNOW

Unless you are fluent in machine code and have your own machine
code monitor program, you will need to read this chapter and
the next which contain all the information and programs
necessary to use the routines in the rest of the book.

First let me explain a few simple ideas. Your computer probably
has either 16K or 48K of Random Access Memory (RAM) in it,
together with a 16K Read Only Memory (ROM) which houses the
large machine language program that makes the Spectrum work in
BASIC. The 'K' stands for 'Kilobyte', and one may be forgiven
for equating this to 1000 bytes. In actual fact, because of the
way computers count in binary (i.e. multiples of 1, 2, 4, 8...)
'Kilo-' means 210 or 1024, so each 'K' of memory contains 1024
bytes. Each byte is like my bank account; it can store a whole
number between O and 255. Now the computer needs to know where
each of these numbers is stored, so it gives each byte a unique
number which we call an ADDRESS (like a bank account no.).

The commands 'PEEK' and 'POKE' simply 'find out' and 'change’
what is stored at a specified address, so entering the command:

PRINT PEEK O

tells us what number is stored at the first address in the ROM
(in the case of the Spectrum, 243).

The ZX-Spectrum has what is known as an eight-bit
microprocessor, the Z-80A. This is the real 'brain' of the
computer, the part which obeys all the machine language

instructions in the ROM and RAM. Microprocessors do not work in
BASIC. (BASIC is what is known as a 'high-level' language). It
is easy for we mortals to write programs in BASIC, but in order
for the microprocessor to understand our commands they have to
be "translated" into a machine language program. The BASIC
INTERPRETER breaks down the BASIC into a set of 'low-level!
machine language instructions which can then be executed by the
Z-80A.

All of this 'interpretation' takes time, a great deal in fact,
which is why by writing out programs directly in machine
language we can achieve an average speed increase in the order
of 100 times.

In order to fetch data and instructions from the memory, the
microprocessor must send the address of the required byte along
what is known as the ADDRESS BUS. There are only 16 lines or
'seats' on this bus, and so the address can only be two Bytes
long. (Eight bits per byte, one line per bit and each bit set
to 1 or 0.)

The highest number that we can represent in two bytes is 65535,
produced by filling both bytes with the 255 maximum. We let one
byte count the 'units' (the LO byte of the address) and the
other byte count the multiples of 256 (the HI byte). So

(255 x 256) + 255 = 65535
HI LO

The lowest number we can represent is, of course, zero, when
both the hi and lo byte are zero. The concept of 'hi' and 'lo'
bytes can be analogised to 'tens' and 'units' when we count in
normal decimal arithmetic. We say then that

27 = (2 x 10) + 7
HI byte LO byte

Now we can see that the maximum number of memory addresses that
the Z-80A with its 16-bit address bus can access is 65536. On
the Spectrum, addresses O to 16383 (the first 16K) are taken up
by the ROM. 16K of RAM follows on from address 16384 to 32767,
the first 6.75K of which is used up for screen memory. Finally,
if you have a 48K machine, the last 32K of addresses up to
65535 are consumed by the extra RAM.

This allocation of addresses can be shqwn with a MEMORY MAP.
Here is a memory map showing the areas we are chiefly concerned
with (a more complete memory map can be found on page 165 of
the official manual).

STKEND UDG (end of RAM)
Text and System BASIC User
ROM Graphics | Colour Printer | Vanables | Program + Spare | Definable
RAM RAM Buffer etc. Variables Graphics
16384 225 23296 552 PROG EAMT OP PRAM T
____V,__J___~v___J e — ———
16K 6K YK YaK 168 Bytes

As you can see, between the BASIC area and the only thing
normally in 'high memory', the user-definable graphics, is
whatever spare memory you may have. Normally this is decreased
by increasing the length of your program and/or producing
larger BASIC variables (letting the program 'grow upwards' in
memory). You can, however use up this spare memory by lowering
the pointer shown as RAMTOP, beyond which no BASIC program is
allowed to expand (the TOP of BASIC RAM). This operation has
the effect of reserving and protecting the memory space between
RAMTOP and UDG, which is another pointer indicating the start
of the user graphics.

The values of these pointers are stored in the 'system
variables' area. RAMTOP can be found by the command

PRINT PEEK 23730 + 256 * PEEK 23731

and will be 32599 on a 16K Spectrum or 65367 on a 48K machine
at power-up.

UDG can be found with

PRINT PEEK 23675 + 256 * PEEK 23676
but far more easily with the command

PRINT USR '"a'"

Since this returns the address of the first user-defined
character, "graphic a! which is naturally enough at the start
of the user-definable graphics area. The value of UDG will be
32600 or 65368 at power-up, thereby showing that there is
normally no space between RAMTOP and UDG.

To alter the value of RAMTOP we simply use the command CLEAR n,
where n is the new address for RAMTOP.

When we have lowered RAMTOP with a CLEAR command then an area
of memory between RAMTOP and UDG has been reserved, and it is
in this space that we usually put machine code. Everything that
is stored above RAMTOP is completely unaffected by anything we
do in BASIC other than a POKE, which alters the contents of a
specified address, including a NEW command. This means that we
can store machine-code utility routines such as a 'renumber'
program, above RAMTOP and never have to worry about losing them
when we LOAD up a different program or do a NEW.

Machine Code in its raw form is simply a collection of numbers
that the microprocessor interprets as instructions and obeys
accordingly. We choose to represent these numbers in a form
known as HEXADECIMAL, or base 16 (HEX for six, DEC for ten). We
use the symbols O to 9 and A to F (for ten to fifteen), and
with two hex. digits we can represent the numbers O to 255, or
00 to FF in hex.

All of the machine code routines in this book have a HEX
LISTING; it is this column of hex numbers which should be typed
into the computer. To make life easier we use a MONITOR program
which supervises the entry of machine code and lets you do
things like list entered code, save it, alter it and load it
back from tape.

Below you will find a monitor program which I have called
HEXAID. It will enable you to type in hex routines and
manipulate them to your heart's content. It may seem a little
long, but it is essential to the rest of the book. I will
explain how to use it when you have typed it in!

100 REM Hexaid (c) David M. Web
b 1982

110 POKE 23658,8: CLS : B0 SUB
8701 PRINT ‘"Menu:”

120 PRINT ‘"[11:WRITE a new rou
tine"

130 PRINT ""[2]1:ALTER a routine

140 PRINT ""[33:LIST Hex. code"
150 PRINT “"[41:SAVE a routine"
160 PRINT °"“[S3:LOAD a routine"
170 PRINT “"[&61:STOP this progr
amll

180 PRINT ""[71]:CLEAR the machi
ne code area"

190 PRINT #0;AT 1,0;3"Please pr
ess appropriate key."

200 IF INKEY$<>"" THEN GO TO
200

210 LET g$=INKEY$: IF g$="" OR
g$<"1" OR g$>"7" THEN GO TO 210
220 IF g#$="6" THEN STOP
0230 CLS : 60 SUB 870: BO SUB 93

250 GO TO (270 AND G#="1")+ (4460
AND G#$="2")+(500 AND G#$="3")+(5
90 AND G$="4")+(710 AND G$="5")+
(820 AND G#$="7")

260 REM WRITE a new routine

270 INFUT "Length of routine:";
LINE a$: 60 SUB M

280 CLEAR RAMTOP-VAL a%$: GO SU
B 870: GO SUB 930:

290 LET d=RAMTOP+1

300 LET as$=""

310 IF a$="" THEN INPUT "Enter
hex. code.";a$

320 GO sSUB M

330 IF LEN a$/2<>INT (LEN a%$/2)
THEN PRINT "Incorrect entry";s:
GO TO 300

330 LET C=0: FOR ¥=1 710 14 8T
EP 13

360 LET a=CODE a$(1+(F=1))

370 IF a<48 OR a>70 OR a>37 AND
a<é65 THEN PRINT "Incorrect ent
ry“s: 80 TO 300

380 LET c=c+f*((a<58)*(a—-48)+(a
>64 AND a<71)*(a-35)): NEXT
400 POKE d,c: LET d=d+1

410 PRINT as$(TO 2)3" “3

420 LET as$=a$(3 70)

430 IF d=USR "a" THEN PRINT "W
arning:you are now in user"’'"“gra
phic area!": GO TO 300

440 GO TO 310

450 REM ALTER a routine

460 PRINT "Alter from address:”
52 INPUT LINE a$: GO SUB M

470 LET d=VAL a$: PRINT d

480 60 TO 300

490 REM LIST hex code

500 LET b#$="0123456789ABCDEF"
510 PRINT “"list address:";: IN
PUT LINE a$: GO SUB M: LET d=VA
L a%

520 PRINT AT 4,22;"press";AT 7,
03

S30 LET a=INT (PEEK d/16): LET
b=PEEK d-1&#A

540 PRINT d;TAB 7;b$(a+1);b%$(b+
1)

550 LET d=d+1

560 IF INKEY$="M" THEN RUN

570 GO TO 530

580 REM SAVE a routine

590 PRINT ““save from address:"
5t INPUT LINE a$: 60 SUB M: LET
a=VAL a$: PRINT a

600 PRINT ’“"“Length of routine:"
5= INPUT LINE a%$: GO SUB M: PRI
NT VAL A$

610 PRINT ““Name of routine:";:
INPUT n$: PRINT n$

620 SAVE n$CODE a,VAL a$

630 PRINT “"Do you wish to veri
fy (Y\N)?";

640 PAUSE 0O: LET v$=INKEY$: PRI
NT v$

650 IF v$<>"Y" THEN RUN

660 PRINT ‘"Rewind and press ""
PLAY. """

670 VERIFY n$CODE

680 PRINT ""O.K.": PAUSE S50: RU
N

700 REM LOAD a routine
710 PRINT ““"Shall 1 make extra

room in the" "machine code area
(Y/N) 27"

720 1IF INKEYs$<>"" THEN 60 TO 7
20

730 LET a$=INKEY$: IF a$="" THE
N GO TO 730

750 GO SUB M: IF as$<{>"Y" THEN
G0 TO 770

760 INPUT "How many bytes?"; LI
NE a$: GO SUB M: CLEAR RAMTOP-VA
L a%: GO SUB 870: B0 SUB 930

770 PRINT ‘“Load to address:"j:
INPUT LINE a%$: GO SUB M: PRINT
a$

780 PRINT “"Routine name:"j;: IN
PUT n$: PRINT n$

790 PRINT "“Press ""PLAY"" on t

ape."

800 LOAD n#CODE VAL a#%$: GO TO 6
80

810 REM CLEAR the machine code
area

820 PRINT ‘"Are you sure (Y/N)?
830 IF INKEY$<>"" THEN GO TO 8
30

840 LET a$=INKEY$: IF as$="" THE
N 60O TO B4O

B850 IF a$<>"Y" THEN RUN

860 CLEAR USR "A"—-1: RUN

870 REM SETUP

880 LET RAMTOP=PEEK 23730+256%*P
EEK 23731

900 PRINT "Start of M.C. area="
s RAMTOP+1

910 PRINT "“"Length of M.C. area
=";USR "A"-RAMTOP-1;" bytes."
920 LET M=940: RETURN

930 PRINT ""To return to the me
nu,enter ""M"".": RETURN

940 IF a$="M" THEN RUN

250 RETURN

You are advised to save HEXAID before you go any further.

Hexaid works with the CAPS LOCK on: be careful not to go into
lower case while you are running it. When the program is RUN it
presents you with a menu of seven options. The first and most
important is 'Write a new routine'. On selecting this you are
asked to enter the length of the routine. This is the number of
bytes of code in the 'HEX' column in each routine's listing,

and is always found at the top right-hand corner of the
listing.

When you INPUT the length the program automatically moves down
RAMTOP with a CLEAR command (line 280) and thereby makes
exactly enough space in the machine code area for the routine.
(Between RAMTOP & UDG) You are then asked to "enter hex code'.
In response to this you simply read off the 'HEX' column of the
routine and enter it into the program as many bytes at a time
as you like, working across and down the column.

When you enter the length of the routine, the 'start of M.C.
Area', printed at the top of the screen always decreases by the
length of the routine. Make sure that you always note down this
new value, as this is the START ADDRESS or ''address of the
first byte' of your routine, and will be used with the USR
function later on.

When you have finished entering all the hex code for a routine,
it is wise to check the printout on the screen against the
listing in the book. The slightest error, a 3 entered instead
of an 8 or an 8 instead of a B can change the entire meaning of
an instruction and cause the computer to 'crash'. This doesn't
do any permanent damage to your computer, if it happens, just
'reset' and start again.

You can list the routine at any time by returning to the menu,
choosing option 3; 'list hex code' and entering the start
address. This will induce a column of hex code with its
locations to appear on the screen.

If you find that you have made an error in the hex. code then
note down the address .of the 'rogue' byte(s) from the 'list'
option, return to the menu (by pressing 'm') and choose option
2: 'Alter a routine'.

Here again you are asked to input the address of the rogue
byte(s) and then the hex code, to which you should reply with
the corrected byte(s).

When you are satisfied that the code is correct, select option
4 in order to SAVE the routine to tape. You are asked
successively for the start address, the length and the name of
the routine; the latter should, as usual, not be longer than
ten characters. The essential part of this section is the SAVE
+++ CODE command in line 620. What this does is to save a
specified number of bytes of machine code from a specified
start address. You could, in fact, perform exactly the same
operation by entering, in immediate mode: *

SAVE "(routine name)'" CODE (start address), (routine length).
Hexaid then gives you the option of VERIFYING, again based on
the simple command in line 670; equivalent to

VERIFY "(routine name)' CODE

Note that if the start address and routine length have not been
altered then they need not be specified in the VERIFY command.

Option 5: "load a routine'" lets you LOAD back a routine from
tape. It is particularly useful if you have found that a
routine you were using crashed the machine, as this usually
means that you made a mistake in the hex. code and will need to
LOAD it back, in order to detect the 'bug'.

On choosing the option you are asked if you want to make extra
room in the machine code area. If the length of the M.C. area
is longer than or equal to your routine and you don't mind
overwriting part of what is already in that area then the
answer is ''mo". If, however, the M.C. area is shorter than your
routine or you don't want to alter what is already there then
you do want to expand the M.C. area (answer Y).

If the answer was 'Y' then you must input the number of bytes
by which the M.C. area is to be lengthened. This is usually
equal to the length of the routine. The program will lower
RAMTOP to the required address (1 less than the "start of M.C.
area").

Finally you are asked "Load to address:'" to which you will
probably reply with the start of the M.C. area, as displayed at
the top of the screen.

The essential part of this section is line 800, which can be
emulated with the direct command

LOAD "(routine name)' CODE (start address)

You can make room for and load machine code from within your
own programs by 'tagging on' a few simple lines:

9900 LET RAMTOP = PEEK 23730 + 256*PEEK 23731

9910 RETURN

9920 GOSUB 9900 : CLEAR RAMTOP - (routine
length)

9930 GOSUB 9900 : LOAD "(routine name)' CODE
RAMTOP +1

9940 RUN

Line 9920 makes room; line 9930 loads. The start address of the
routine will now be RAMTOP + 1.

The last two options in Hexaid are option 6: "stop the program"
and option 7: '"clear the machine code area'. The latter should
be used with great care, as it will reset RAMTOP to its
original position, immediately below the user graphics area,
thereby deleting all of the machine code present. For this
reason I have incorporated line 820; "are you sure?". So if you
accidentally hit the 7 key all will not be lost. The essential
line is 860, which CLEARS RAMTOP to USR "a'" (UDG) minus one.

10

USING THE ROUTINES

All of the routines in this book have specific instructions
with them that will enable you to use them to the full, so I
will only talk in general terms here.

Many of the longer routines require some data in order to work,
such as the corners of a rectangle for 'scrolling' routines or
the first line number in a 'renumber' routine. This is either
POKEd into the routine, or, more usually, into the PRINTER
BUFFER, which is 256 bytes long from address 23296. As you
might imagine, the printer also uses this memory, so if you use
the printer while using the routines then any data will be lost
and must be POKEd in again before CALLING the routine.

To CALL a routine means to execute it, and this is always done
with the USR function, which is usually incorporated in a
RAMDOMIZE or LET statement, thus:

RANDOMIZE USR (start address)
or LET L = USR (start address)

USING HEXAID: A WORKING EXAMPLE
In order for you to practice using the Hexaid program and the

techniques I have taught you to date, here is a short routine
for you to enter.

HEX. MYSTERY ROUTINE: LENGTH: 39 BYTES
3E02 BYSTERY i A2
£ho1ta CaLL 16014
312 Lh & 124
7 RST 10H
3601 Lp mel
] RET 104
IES7 Ld A 5TH
07 RST LOH
645] A, 45H
b} RET 10H
3E4L LD B, 4CH
i R&T iCH
JE4C Lh A 4TH

RST 108

it &, 200

RET 100

LD &, 44K

RET 10K '
164 %) A, 8FH
) {3 10H

JE4L Lh A, 480
b7 R&T 10K
3645 Lp &, 45H
27 RST 10K
{4} RET

END

11

Using option one of Hexaid, the "length of routine" will be 39
bytes. If the M.C. area was previously of zero length, then its
length should now be 39 bytes and the start address of the

routine and the M.C. area should be 32561 (16K) or 65329 (48K).

When you have SAVEd the routine using option four, you are
ready to call the routine with

RANDOMIZE USR 32561 (16K)
or RANDOMIZE USR 65329 (48K)
or RANDOMIZE USR (start address), if your start address is
different to the ones above. If you have done all this
successfully, a brief message will appear on the screen. If
not, then load the routine with option five and use options
three and two to correct the code.

12

CHAPTER 2
BUILDING A DEDICATED TOOLKIT FROM A LIBRARY OF
ROUTINES

To prevent yourself having to type in the same routines with
Hexaid every time you want to use them for a different BASIC
program, it is obviously a good idea to build up a 'library' of
your favourite routines, adding to it with Hexaid each time you
use a new routine. Then whenever you start writing a new
program you can just select the routines that you think you
will need and put them together in one 'Dedicated Toolkit', (a
block of routines that has been purpose-designed for one
particular program).

To help you to do that, I have written a program that reads the
'headers’ in front of each routine on tape and then presents
you with a 'catalogue' of all the routines, along with the
addresses that they were saved from and their lengths. After
each routine has been 'read' you have the option of stopping
the catalogue and loading up any of the previous routines under
program control or stopping the program altogether. In this way
you can scan through the tape, picking up the routines that you
want until you have a complete dedicated toolkit.

Before I go any further I'll let you have the listing. It's
quite a long one, but it will save you a great deal of time in
the long run (you can, of course, omit all the REMs).

10 REM ROUTINE SELECTOR
20 REM = DAVID M. WEBB,1983
30 REM WARNING ONLY RUN THIS O
NCE. USE 6070 100 THEREAFTER TO
RE-ENTER PROGRAM

13

40 POKE 23658,8: REM PROGRAM
WILL ONLY WORK WHILE CAPS LOCK I
8 ON
S0 REM CREATE M.C. AREA AND IN
ITIALIZE POINTERS
60 BO SUB 420 : CLEAR RT-3000:
60 SUB 420: LET MC=RT+3001: LET
MCL=0: LET N=MCL: LET NB=MCL
70 B0 SUB 310: LET F=50: DIM A
$(F,10): DIM B$(F,10): DIM S(F):
DIM T(F): DIM L(F): DIM M(F): R
EM F=ND. OF FILES
80 REM A$,B$ HOLD NAMES, (8) ,(T
) HOLD START ADDRESSES, (L), (M)HD
LD LENGTHS.
90 REM USE“GOT0100" TO REPRINT
CATALDB
100 PRINT TAB By INVERSE 1;“ROU
TINE CATALOG."‘‘: PRINT " FILENA
ME"3; TAB 12; "FROM ADDRESS"; TAB 26
§ "LENGTH"
110 FOR A=1 TO N: BO SUB 410: N
EXT A: REM PRINT CATALOG
120 60 SUB 450: B0 SUB 350
130 LET N=N+1: LET AS$(N)=N$: LE
T S(N)=S: LET L(N)=L
140 LET A=N: G0 SUB 410
150 INPUT “*: PRINT #0;"PRESS S
NOW TO STOP CATALOG. "
160 FOR A=0 TO 400: IF INKEY$="
S* THEN 60 TO 180
170 NEXT A: INPUT “": BO TO 120
180 INPUT “LOAD A ROUTINE OR ST
OP PROBRAM (L/S)?"jX$
190 IF X$(1)="S" THEN STOP
200 POKE 23658,0: INPUT “PROUTI
NE NAME?"j;X$: POKE 23458,8
210 LET X$=X$+" “(TO
10-LEN X$): REM 10 SPACES
220 FOR A=1 TO N: IF X$=A$(A) T
HEN 6O TO 240
230 NEXT A: PRINT “NOT FOUND:~P
LEASE RETYPE": BEEP .25,10: 60 T
0 200
240 PRINT : GO SUB 410: GO SUB
430
250 PRINT "OPTIONS:"°"[1] STAND
ARD LOAD INTO M.C. AREAL21 LOAD
TO THE SAVED ADDRESS [31 SPECI
FY YOUR OWN ADDRESS. "
260 INPUT “CHOICE:";X$: LET V=V
AL X$: IF V<1 OR V>3 THEN GO T
0 260

14

270 IF V=1 THEN LET MC=MC-L (A)
: LET MCL=MCL+L (A): LET S=MC: GO
TO 300

280 IF V=2 THEN LET S=S(A): GO
TO 300

290 INPUT “LOAD TO ADDRESS.";S
300 GO SUB 450: LOAD A$ (A)CODE
S,L(A): LET NB=NB+1: LET B$(NB)=
A$(A): LET T(NB)=S: LET M(NB)=L(
A): BO SUB 470: GO SUB 430: 6O T
0 100

310 REM SET UP HEADER READER
320 RESTORE : FOR A=0 TO 11: R
EAD B: POKE 23296+A,B: NEXT A
330 DATA 221,33,224,91,17,17,0,
175,55,195,86,5

340 RETURN

350 REM READ HEADER

360 RANDOMIZE USR 23296

370 LET N$="": FOR A=0 TO 9: LE
T N$=N$+CHR$ PEEK (23521+A): NEX
T A: REM FILENAME

380 LET L=PEEK 23531+25&6%PEEK 2
3532: REM LENGTH

390 LET S=PEEK 23533+256#PEEK 2
3534: REM START ADDRESS

410 POKE 23692,-1: PRINT A$(A);
TAB 14;S(A);TAB 27;L (A): RETURN
420 LET RT=PEEK 23730+256%PEEK
23731: RETURN

430 PRINT °"START OF M.C. AREA=
";RT+1 ' "ROUTINES START AT ADDRES
S";MC’"TOTAL LENGTH OF ROUTINES=

"sMCL "
440 RETURN
450 INPUT "": PRINT #0;"START T
HE TAPE!!!": RETURN

460 REM LIST LOADED ROUTINES

470 PRINT TAB 8; INVERSE 1j;"ROU
TINES LDADED:"‘ ‘s PRINT " FILENA
ME"; TAB 13; "AT ADDRESS"; TAB 26;"
LENBTH" * *

480 FOR Y=1 TO NB

490 PRINT B$(Y);TAB 14;T(Y);TAB

273M(Y)

500 NEXT Y: PRINT : RETURN

510 REM CALL THIS WITH GOTO 520

TO LIST AND SAVE ALL THE ROUTIN
ES CURRENTLY LOADED IN THE M.C.
AREA

520 B0 SUB 470: G0 SUB 430

530 INPUT "FILE NAME?";X$

540 SAVE X$CODE MC,MCL

15

550 PRINT "TO LOAD THE ROUTINES
, USE"* "3 BRIGHT 1;"CLEAR "j;MC-1
3": LOAD ""“;X$;"""CODE "3MC;","
sMCL

560 INPUT "DO YOU WISH TO VERIF
Y (Y/N)?";A%$: IF A$<>"Y" THEN S
TOP

570 VERIFY X$CODE

When 'Routine Selector' is first RUN it automatically reserves
a machine code area of 3000 bytes at the top of memory, and
sets up several arrays which store the names, addresses and
lengths of the routines found and those loaded. For this reason
you should only RUN the program once, or you will end up
clearing all the arrays and trying to reserve another 3000
bytes, which is not possible on a 16K machine. To re-enter the
program after a BREAK, use GOTO 100.

In its standard form, the program will read and load up to 50
routines into 3000 bytes of memory. In the unlikely event that
you need more, variable F in line 70 controls the maximum
number of routines, and increasing 3000 and 3001 in line 60 by
the same amount will lengthen the M.C. area. If at any time you
want to clear the machine code area, then use the command CLEAR
32599 (16K) or CLEAR 65367 (48K). You will then be able to RUN
the program again if you wish.

When you have selected all of your routines, press '"s" to get
out of the catalogue or "Break" if the program is trying to
read another header. Then type "GOTO 520" and put a blank tape
in the recorder, ready to SAVE the block of routines. You will
be asked for a file name, the program will save the block and
then present you with the EXACT Basic line necessary to make
room for and load back the toolkit from tape during your own
program. It is well worth noting this down!

You are regularly presented with a list of the routines loaded
into memory and their new addresses during the program. To get
this list from 'immediate' mode, type

GOSUB 470

To get a list of all the routines found on tape (the catalog),
type

GOTO 100 .
You will need the list of start addresses from the first GOSUB
in order to call the routines with USR, so note them down! You

are now fully equipped to use the rest of this book: So on with
the routines!

16

ROUTINES FOR THE ATTRIBUTES

CHAPTER 3
COLOURFUL OPERATIONS ON THE ATTRIBUTES

As you probably know, you can choose one of eight colours on
the Spectrum for the INK and PAPER. You can also specify
whether the printing is BRIGHT or FLASHing. The one major
problem, however, is that in BASIC you cannot easily change any
of these ATTRIBUTES relating to a previously PRINTed character,
without rePRINTing it using the new INK, PAPER, BRIGHT and
FLASH values.

The following routine is a multi-purpose routine which allows
you to change the attributes instantly, operating on a
specified rectangle of the screen without affecting any text or
graphics therein. I have called the routine '"SCREENOP".

USING SCREENOP.

The routine operates on a specified rectangle of the screen,
using the usual PRINT AT coordinates.

(L1,C1)

(L2, C2)

17

Referring to the diagram, we enter the coordinates (L1, Cl) of
the character position that forms the top left hand corner, and
the coordinates (L2, C2) of the character position that forms
the bottom right hand corner of the rectangle in which we want
to change the attributes.

POKE 23332, L1 : POKE 23333, C1
POKE 23334, L2 : POKE 23335, C2

All of the colours on the Spectrum are derived from the three
primary colours: green, blue and red. Their codes are:

1 = Blue
2 = Red

4 = Green

The other colours are made up as follows:

Colour Code

Black = nothing 0

Magenta = Blue + Red 1 +:2=3
Cyan = Blue + Green 1 wfb= 5§
Yellow = Red + Green 2 +4=06
White = Red + Green + Bluefl + 2 4 =7

SCREENOP can perform any one of four operations on any of the
various attributes. I will give these attributes a value:

Blue ink 1
Red ink 2
Green ink 4
Blue paper 8
Red paper 16
Green paper 32
BRIGHT 64
FLASH 128

The four possible operations are: turn the attribute "on'.
turn the attribute "off".
alter the attribute.
leave the attribute as it is.

You need to poke the data into three seperate addresses, as
follows:

POKE 23328, (sum of values of attributes to
remain unaltered)

POKE 23329, (sum of values of attributes to be
turned "on'")

POKE 23331, (sum of values of attributes to be
altered)

18

By Yaltering" the part, 1 mean turning it "on" if it's 'off",
and vice versa. There is one important point to remember: if
you wish to alter, or COMPLEMENT one part of the attribute then
you must also include it in the first POKE (otherwise the
attribute will be turned "on'" or "off" according to the second
POKE) .

EXAMPLE

You wish to highlight a rectangle (brightness '"on"), leave any
cyan ink that may occur (leave blue and green ink as they are),
turn all the red ink "on" and complement (alter) all of the
paper and the FLASH attributes. For this you must

POKE 23328, (1 + 4) + (8 + 16 + 32 + 128)
POKE 23329, 64 + 2
POKE 23331, 8 + 16 + 32 + 128

To run the machine code, use
RAND USR (first address of routine)
or LET L = USR

Here is the routine itself. Enter it using 'hexload' and then
if you wish, enter the spectacular demonstration program.

HEX. ;SCREENOP LENGTH: 95 BYTES

212058 START LD HL, 3B20H sCOMPLEMENT MASK THEN
TE LD fi, (HL) $AND THE NEW ATTRIBUTES.
oF cPL

23 INC Hi

L) AND {HL)

23 INC HL

77 Lo (HL) A $STORE THE RESULT (1}
23 INC HL

2 INC HL

46 LD B, (HL sFIND L1

23 INC HL

23 INC HL

e L Ay (HL) sFIND L2

FEIB ce 24 sCHECK THAT L2 IS IN RANGE
D RET NC {RETURN If NOT,

90 SUB B 3iL2-L1)=

3 RET C ;RETURN IF NEBATIVE

3 INC A 3 {L2-L1) +1=LENGTH OF

F3 PUSH AF {RECTANGLE (LINES)

04 INC B 118 L1 IERD?

03 OEC B >

ES PUSH HL

210058 Lo L, 5800H

2806 IR 1,H0P 3 IF 60 THEN YOU DONT NEED
112000 NITE LD DE, 0020H 370 DESCEND 1O TOP LINE OF
19 ADD HL, DE ;RECTANSLE

10FA DIRI NXTH

EB HOP EX DEHL

El POP HL

b PUSH DE

19

3 INC HL

i3 LE A, (ML) $FIND 02
FE20 e hY) 115 07 IN RANGE?

3803 R £,0K +IF NOT THEN RETURM
| PP BC

£l ERRSTOP POP BC
£9 RET

2 0K DEC W

2% DEC WL

4 Lo £, (KL {FIND C1,
3] PP HL $ADVANCE 7O TOP LEFT CORNER
09 A0 HLBC $OF RECTANGLE.
9 siBEC $(02-01)=

386 IR <, ERRSTOP tRETURN IF NEGATIVE,

3 I 8 +1C2-C1)+1=HIDTH OF

4 Lo 8,4 {RECTANGLE (COLUMNS!.
3E20 L3 4,32 {FIND THE GAP FROM THE
9 S8 B sRIGHT SIDE OF ONE
5F) £, iRECTANGLE LINE TD THE
1600 LD 2,0 SLEFT SIDE OF THE NEXT
£s NITLINE PUSK BC {LINE,

15 PUSH OE

3A235R Lo A, (SB23H) i THE COMPLEMENT BYTE (1)
57 Lo 0,4

342058 NT2 LD A, 15B20H! 1MASK
SF Lo £,
7% LD o (KLY {TAKE ATTRIBUTES.
s WD ;CONPLENENT WITH BYTE (1
A3 M E 1AND (THE MASK BYTE) T0
5F LD £.A $BIVE RESULT (21,
32258 L0 A, (5B21H)
81 A B,E $ADD RESULT (1) TO (2}
7) {HL1 A {REPLACE ATTRIBUTES.

3 I K ;REPEAT FOR REST OF THIS
10F0 DINL NAT2 iLINE OF THE RECTAMGLE.
0 PP DE

19 a0 HL,OF TJUMP TO THE NEXT LINE OF

1 POF BT $THE RECTANGLE,
Fi PP AF

3 L & 1REPEAT UNTIL THE LAST LINE
e RET 1 +OF THE RECTANSLES IS DONE.
F5 PUSH AF

18E1 iR NXTLINE

END

Here is the demonstration program:

10 REM "Screenop" Demonstrati
on

20 REM DEFINE USR GRAPHIC

30 FOR A=0 TO 7

40 POKE USR "A"+A,B85+85#* (A/2=1
NT (A/2))

S0 NEXT A

60 REM FILL SCREEN

70 FOR A=1 TO 704: PRINT CHR$
1443: NEXT A

20

80 PRINT #0;AT 0,0;: FOR a=1
TO &4

85 PRINT #0;CHR$ 144;: NEXT a

90 LET SCREENOP=65200

100 PRINT AT 8,10; "SUPERCHARGE™"
3AT 10,133 “YOUR";

105 PRINT AT 12,113 "SPECTRUM"

110 RANDOMIZE

120 REM DEFINE RECTANGLE

130 REM (L1,C1)

140 LET A=INT (RND%*24): LET B=I
NT (RND%32)

150 FOKE 23332,A: POKE 23333,B

160 REM (L2,C2)

170 POKE 23334,A+INT (RND*(24-A

175 POKE 23335,B+INT (RND*(32-B

180 REM RANDOM OFPERATION

190 POKE 23328, INT (RND#*256)
200 POKE 23329, INT (RND%*256)
210 POKE 23331, INT (RND*256)
220 LET L=USR SCREENOP

230 GO TO 140

The program makes fairly random operations on a fairly random
rectangle of the screen. Lines 15 to 50 define a 'chess-board'
character (graphics U) and fill the screen with it: this allows
you to produce up to 36 colours (or shades of grey) by
combining paper and ink colours and is particularly effective
on a colour TV. Line 70 defines the beginning of the routine:
you must change this number according to where you store the
routine.

APPLICATIONS

The routine can operate on any area from one character up to
all twenty-four lines of the screen. One possibility would be
to print a message using a different set of attributes to its
surroundings and then 'alter' every attribute of the entire
screen continually, using a PAUSE of around 30 between
alterations to make the screen bearable (do not try this if you
suffer from epileptic fits)!

SCREENOP 2

This routine is a minaturised version of SCREENOP: it operates
in the same way but only on the whole screén (including the
bottom two 'EDIT' lines).

USING SCREENOP 2

Use the same 'colour' POKEs and values as for SCREENOP, but do
not define a rectangle. The routine is nearly a quarter the
length of SCREENOP and only requires three POKEs to operate it,
so it should be used whenever the more elaborate 'rectangle'
facility is not required.

21

HEX.
ED4B2058
79

*

A0

47
210058
EDSB2258
7€

AR

Al

&

7

2

€

FESB
38F35

c9

3 SCREENCP2

START

NXTATT

LD
LD
cPL
AND

LENGTH: 27 BYTES
BC, (5B20H!
A,C

F

B.A

HL , 5BO0K
DE, {5821H)
A, (HLY

D

£

a0
{HL) A
HL

AH

SBH
C,NITATT

1AND THE COMPLEMENT OF THE
sHASK WITH THE NEW
JATTRIBUTES.

iHL=START OF ATTRIBUTES,
;D 1S THE COMPLEMENTER.
1 TAKE ATTRIBUTES
+OPERATE

tREPLACE ATTRIBUTES.
3 INCREMENT COUNTER.
sEND OF ATTRIBUTES?

+IF NOT, NEXT ATTRIBUTE
{RETURN TO BASIC.

CHAPTER 4
INVERTING THE ATTRIBUTES

This routine takes all the 'INK' and 'PAPER' of each character
in the specified screen rectangle and swaps them around (e.g.
red INK on green PAPER becomes green INK on red PAPER). The
rectangle is specified in exactly the same way as for SCREENOP,
as is the case for all of the routines that work on a
colour-byte or 'attributes' rectangle. Apart from the four
POKEs described in the previous routine (23332 to 23335...), no
other preparation is required before calling the routine with
"LET C = USR (start address)". I have also included a

super-fast, super-short, whole screen version which requires no
POKEs whatsoever.

HEX. s INVERSE RECTANGLE LENGTH: 78 RYTES

ED4R245H START LD BC, (SB24K)

262658 b HL, {5B26H)

7 Lb AL {CHECK FOR LEGALITY OF
FEIS P 184 $L2 AND L1,

i) RET .

94 SUBC

8 RET ©

5F 0 E,A

7 LD a4 +CHECK FOR LEBALITY OF
FE20 o 20K iL2 AND C1.

il RET NC

%0 SUB

18 RET

7 LD 0,

14 W D ;D=WIDTH OF RECTANGLE.

iL INC E 1E=LENGTH OF RECTANBLE.
DS PiiSH IE $STORE THEM.
210058 ih HL, SB00H sFIND FIRST LINE OF
AF i0R A sRECTANGLE.
B9 C c
112000 LD DE, ZOH
2808 JR 1,10P1
19 NITH abp HL,DE
op DEC C
20FC iR RLNITL
i) HOP1 ce B {FIND TOP LEFTHAND CORNER
2803 ar 1,H0P2 10F RECTANBLE.
23 NETZ INC HL
LOFD DaNI NiT2
C1 HOP2 PP 8C 1B=WIDTH, C=LENGTH
08 NYTLINE PUSH BE
] PLSH HL
s PUSE BC
3807 NXTS LD #,7 s TAKE INK,
e ARD tHL)
OF RRCA
3 RRCA
4F ih C,h +STORE 1T,
IE%8 b A, 38H 1TAKE PAPER.
fb thid
81 4,8 1INK AND PAPER ARE NOW LN
oF $REVERSE ORDER,
OF
OF
3 C,A
IECO #,0C0H 1 TAKE FLASH AND BRIGHT
hé (HLI 1BITS.
8! &L {PUT THEM iM THE NEW
/) {HL) R tATTRIBUTE LNCHANGED AND
3 INC HL 1E6TORE NEW ATTRIBUTE.
10EA DINI NATD {NEXT CHARACTER
el o BC
H POP AL
i PoP DE
o0 DEC £
19 ADD Hi DE
2080 iR NI, NYTLIHE +REPEAT UNTIL END OF
£e RET {RECTANBLE, RETURN TO
ENE 1 BABIC,

There now follows a mind-boggling demonstration program for
INVERSE. Remember to alter the number in line 30 according to
where you have located the routine. To see the program at
neck-breaking full speed remove the PAUSE statement in line
190.

10 REM INVERSE RECTANGLE

20 REM DEMONSTRATION

30 LET REVERSE=65200

40 LET A=INT (RND#8): LET B=IN
T (RND#8): IF A=B THEN GO TO 40

24

50 PAPER A: INK B: BRIGHT RND:
CLS

60 PRINT AT 10,103"Look into m
y"3AT 11,103 ">>>>eyes<{{L"

70 LET B=0: LET C=10

80 GO SUB 120: REM ZOOM OUT

20 LET B=C: LET C=0

100 GO SUB 120: REM ZOOM IN

110 GO TO 40

120 FOR D=B TO C STEP SGN (C-B
)

130 REM DEFINE RECTANGLE

140 POKE 23332,10-D: REM L1

150 POKE 23333,10-D: REM C1

160 POKE 23334,11+D: REM L2

170 POKE 23335,21+D: REM C2

180 LET L=USR REVERSE

190 PAUSE 4: NEXT D

200 RETURN

FULL-SCREEN INVERSE

Here is the whole-screen version of INVERSE that I mentioned
earlier. No POKEs needed, and it occupies a mere 29 bytes (this
compares with line 40 of the above 'Inverse Demonstration'
program, which takes 51 bytes of memory). You will probably
need to use it with a PAUSE if in a 'flash' loop.

HEX. $FULL-GCREEN INVERSE LENBTH: 29 BYTES

210058 START LD. HL,S5800H JEEGINNING OF ATTRIBUTES,

307 NXTATT LD 7

ab AND L) $TAKE INK,

oF RRCA

0F RRCA

57 Lo 0,4 1STORE 1T,

#38 LD A, 384

fb AND (HL) 1 TAKE PAPER,

82 40 AD 1PUT IN FRONT OF INK,

oF RRCA tINK AND PAPER ARE NOW

oF RRCA $REVERSED,

57 LD DA 1STORE THEM. TAKE

3ECO) A,0C0H $FLASH AND BRIGHT BITS.

A AND (ML)

82 a0 A0 iCOMBINE NITH LAST RESULT.

b) LD (HL) (A $STORE NEW ATTRIBUTES,

3 IN HL + INCREMENT COUNTER. ARE

7 LD a4 ME AT THE PRINTER BUFFER?

FESR TP SBH

858 IR £, NXTATT $IF NOT, THEN NEXT

oy RET JATTRIBUTE, RETURN T BASIC.
END

25

CHAPTERS
SCROLLING THE ATTRIBUTES IN ALL DIRECTIONS.

The following set of routines allows you to 'scroll' the colour
bytes of the screen in any of the four directions LEFT, RIGHT,
UP and DOWN. There are two routines for each direction: the
first one allows you to scroll any rectangle of the screen
area, and the second, shorter and simpler type will work on the
entire screen only.

USING THE ROUTINES

For the 'rectangle' routines, define the rectangle in the same
way as for SCREENOP (Chapter 3), using the same POKEs.

For all of the routines, you have three options:

0. 'leave' the line or column which is left behind by the
scroll (e.g. the bottom line when scrolling the screen upwards)
as it is;

1. 'roll' the line or column which would be deleted by the
scroll back into the position left behind by the scroll (in
this way you could continuously rotate a rectangle of
attributes by 'scROLL-ing' them repeatedly in one direction);

2, 'fill' the line or column left behind by the scroll with a
new attribute.

First define the rectangle if necessary, then execute the
appropriate POKE(s):

0 to 'leave'
POKE 23340, 1 o ‘roli"

2ty 11111}

POKE 23341, sum of values of attributes to be used when
“EL1VingY.

VALUES OF ATTRIBUTES WHEN 'ON':

Flash =128 Blue paper = 8
Bright = 64 Green ink = (A
Green paper = 32 Red ink =
Red paper = 16 Blue ink =3

APPLICATIONS

If you've ever watched ITV's '"Crossroads'', or even seen the
credits come up as you defected from the other side to see if
it had finished, then you will have seen the unusual manner in
which the credits traverse the screen. An interesting exercise
would be to imitate this motion with a 'BRIGHT' rectangle that
approaches the centre of the screen from one side, stays in the
middle to highlight a message of some kind, and then scrolls
off by way of another side of the screen. There are many
occasions when routines like these can enhance a program, so
I'll leave further applications to your imagination.

Here are the routines:
Routines 1 and 2 : Scroll Attribute Rectangle Right and Left
The listing below is to scroll a rectangle to the RIGHT. To

change the direction to LEFT, alter the lines labelled (i),
(ii), and (iii) as follows:

Mnemonic Hex
(i) NOP 00
(ii) INC HL 23
(iii) LDIR EDBO

To change the routine from one direction to the other during a
program (if you prefer not to store the two seperate routines)
then do the following:

LET S = [start of routine]

LEFT RIGHT

POKE $+23, 0 POKE S$+23, 68

POKE $+55, 35 POKE 5+55, 43

POKE S$+57, 176 POKE S+57, 184

The above method, incidentally, takes about 70 bytes of RAM, so
there is very little to choose between that and storing the hex.
routines seperately (if you need to use the above POKEs more
than once then it is '"cheaper'" to store the routines seperately
instead).

27

Run the routines with the usual command:

HEX.

ED4B245B
202658
70

FEI8

b0

91

EDB8
ED4B2CSR
b7

79

FEO1
1805

c

2801

78

LET C = USR S

sRIGHTSCROLL ATTRIBUTE RECTANGLE LENGTH: B1 BYTES

START

NXTL

HOP1

NIT2

HOPZ

HOP3

U]

ORG

4000H
BC, (SB24H)
HL, (5BZ6H)
AL

18H

NC

C

C

0,4

A,H

204

NC

B

C

£.A

D

3

B,H

HL, 5800K
3

DE, 20H

C

1,H0P}
HL, DE

c
NZ,NITI
B

1,Hop2
HL

NIT2

BC

8,4
DE

D,H
EL
DE

C
4, (DE)
1,H0P3
HL

BC, (582CH)
Hh

Ac

1
C,LEAVIT
AH
1,R0LL
A8

;0=L1, B=C1

iL=L2, H=C2

{CHECK FOR LEGALITY OF
iL1 AND L2, RETURN IF
; ILLEGAL COORDINATES.

;CHECK FOR LEGALITY OF Ci
{AND C2, RETURN IF ILLEGAL
;COORDINATES,

$E=NIDTH OF RECTANGLE-1
1D=LENGTH OF RECTANGLE.

i (1) SEE NOTES ABOVE
{FIND THE TOP LINE OF THE
3'SCROLL® RECTANSLE.

1FIND TOPLEFT {LEFTSCROLL)
10R TOPRIGHT (RIGHTSCROLL)
CORNER OF RECTANGLE.

{BC=WIDTH DF RECTANGLE-!

;SET UP THE VARIABLES DE
AND HL, READY TO SCROLL
{THE TOP LINE OF THE
sRECTANGLE.,

1 (1117 SEE NOTES ABOVE

{ (T11) SEE NOTES ABOVE
{HAVING SCROLLED THE

sLINE, DECIDE WHETHER T0...

rovs AETLLAGITy st

ROLL LD (E), A Ferw PROLLY TT: 00 v

£l LEAVIT POP WL t... OR TLEAVE® IT,

Dt POPIE {PREPARE FOR NEXT LINE OF

ol PP BC sRECTANGLE,

19 ADD HL,DE

AF R A

1000 DINI NXTLINE tREPEAT UNTIL BOTTOM OF

09 RET sRECTANBLE IS DONE, THEN
END sRETURN TO BASIC.

Here is a little 'demo' program.

10
15
20

REM RIGHT SCROLL ATTRIBUTES
REM DEMONSTRATION
LET RIGHTSCROLL=65200: REM

INSERT YOUR OWN START OF ROUTINE

30
21

‘40

350
LU

60
70
80

BORDER 2: CLS : FOR A=0 TO

FOR B=0 TO 7
PRINT PAPER B; INK 7-Bj"

NEXT B
NEXT A
PRINT INK 8; PAPER B3AT 10

y63"1 am not a test card"

{0
100

REM DEFINE RECTANGLE
POKE 23332,4: POKE 23334,17

: REM L1,L2

110
120
130

POKE 23340,1: REM "ROLL"
LET A=INT (RND%*7)#4: REM C1
LET B=A+7+INT (RND¥*(&6—INT (

A/4)))#4: REM C2

140
150
160
170
180
190

POKE 23333,A: POKE 23335,B
FOR A=1 TO 4

LET L=USR RIGHTSCROLL
PAUSE 2: NEXT A

PAUSE 30

60 TO 120

In line 50 " ' = space. You should plug in the appropriate

value

in line 20 to tell the Spectrum where the routine starts.

On running the program the screen is filled with eight coloured
stripes, the centre portions of which are then visually
'shuffled’' by scrolling a random number of these portions four
places to the right. You may like to try getting the program to
randomly scroll left and right by randomly changing the three
POKEs needed to alter the routine from one direction to the
other (remember you must use only one set of these POKEs at a

time:

DO NOT mix them).

Routines 3 and 4: SCROLL ALL ATTRIBUTES RIGHT OR LEFT

If you only need to scroll the whole screen (including the EDIT
lines), then the following two routines can be used. Since you
do not define a rectangle, the only POKEs required for these
routines are 23340 and 23341.

29

HEX. sRIGHTSCROLL ATTRIBUTES LENGTH: 34 BYTES

11FF5A START LD DE,SAFFH ;BOTTON-RIGHT CORNER
011F00 NXTLINE LD BC, 001FH
82 L0 H,D
4B I LE
28 DEC WL
14 A E
£088 LDDR {SCROLL THE BOTTON LINE.
ED4B2CSE LD BC,(SB2CH) 18 C=(23340), B=(23341)
87 LD Hh
79 b AL
FEOL v 1
3805 R CLEAVIT 11F £=0 THEN ’LEAVE’
7 Lo MK
2801 R 1,R0LL $IF C=1 THEN "ROLL’
78 FILL LD A,B $ELSE "FILL’
12 ROLL LD (DE) 4
18 LEAVIT DEC DE {FIND NEXT LINE UP,
7 Lo AD tHAVE WE FINISHED?
FEST P STH
2062 I’ NI, NATLINE $IF NOT, THEN NETLINE,
] RET {RETURN TO BASIC,

END
HEX. sLEFTSCROLL ATTRIBUTES LENGTH: 34 BYTES
110058 START LD DE, 5800H $T0P LEFTHAND CORNER.
011F00 NXTLINE LD BC, 001FH
82 L WD
4B Lo LE
2 N W
1A LD A, (DE)
EDBO LDIR {5CROLL TOP LINE,
EDAR2CSR LD BC, (SB2CH) 14 C=(23340), B=(23341)
b7 LD HoA
79 AL
FEO! P 1
805 IR C,LEAVIT {IF C=0 THEN *LEAVE’
1 0 AH
2801 3R 1,R0LL $IF C=1 THEN *ROLL’
78 FILL LD AB {ELSE "FILL’
1 ROLL LD (0E) , A
13 LEAVIT INC DE iFIND NEXT LINE DOWN,
74 LD A,0 1HAS 1T REACHED THE PRINTER
FESB P SBH 1 BUFFER?
2062 R NINXTLINE {1F NOT, THEN NXTLINE.
09 RET {RETURN TO BASIC,

END d

ROUTINES 5 AND 6: SCROLL ATTRIBUTE WINDOW DOWN OR UP

The listing below is to scroll a rectangle of the attributes
DOWN. To change this to UP, alter the lines (i) and (ii) as
follows:

HEX.
(i) NOP 00
(ii) LD HL, 2020H 21 20 00

30

If you do not wish to store them as two seperate routines,

can convert one to the other as follows:

LET S = (start of routine)

DOWN
POKE § + 22, 711
POKE S + 61, 224
POKE S + 62, 255

As usual, run with

HEX.
ED4B245B
2A265R
7
FE1B
Iy
91
D8
57
7
FE20
Do
90

112000
19

o
20FC

2803

ES
11E058
ELBO
b1

€1

B8
2800
]

47

LET C = USR S

up

POKE S + 22, O
POKE S + 61, 32
POKE S + 62, O

+DOWNSCROLL ATTRIBUTE RECTANGLE LENGTH: 105 BYTES

START LD BC, (5B24H)
LD HL, (5B24H!
L0 AL
e 18H
RET KC
SUB
RET ¢
LD 0,4
Lo AH
tp 20H
RET AC
S B
RET ¢
LD £,A
N
(i) LD Lt
PUSH DE
1) HL, 58004
M A
P C
R 1,K0P1
LD DE, 20H
MXTE ADD HL,DE
BC L
® NI, NXTH
HOPL P B
R 1,H0P2
NT2 I HL
NI N2
HOPZ PO BC
PUSH BC
LD B,4
PUSH HL
LD DE, SBEOH
LDIR
PP DE
PP BC
e B
R 1, D0NE
NYTLINE PUSH BC
iD B,A

sL=L1, B=Ci
iL=12, H=C2
{CHECK FOR LEGALITY OF L1

JAND L2, RETURN IF ILLEGAL

1COORDINATES,

{CHECK FOR LEBALITY OF
1C1 AND C2, RETURN IF
s ILLEGAL COORDINATES.

{E=WIDTH OF RECTANGLE.
(1) SEE NOTES ABOVE
(FIND THE TOP (UPSCROLL
;OR BOTTOM (DOWNSCROLL)
sLINE OF RECTANGLE,

+ADVANCE TO TOP-LEFT OR
BOTTOM-LEFT CORNER.

$BL=WIDTH OF RECTANGLE.
1STORE THE LINE OF THE
{RECTANGLE ABOUT TO BE
1ERASED,

sBEGIN ACTUAL SCROLLING, BY

;SETTING UP HL AND DE,...

31

you

21EOFF (i) Lo HL, OFFEOH D

19 ADD HL,DE
E3 PUSH HL
EDBO LDIR 3 THEN SCROLLING....
i)} POP DE
1 POP BC
10F3 DINI NXTLINE 1ONE LINE AT A TIME UNTIL
Cs DONE PUSH BC ;THE WHOLE RECTANGLE IS
2A2C5R8 Lo HL, (5B2CH) ;DONE. DECIDE WHETHER TO
7 Lp AL 'LEAVE", 'FILL' DR "ROLL’.
FEOL ce 1
380F iR C,CLEANUP
2007 IR NI,FILL
21E05B ROLL LD HL, SBEOH 3'ROLL” BY RETURNING THE
EDBO LBIR STORED LINE AND PUTTING
1806 dR CLEANUP ;1T IN THE APPROPRIATE
EB FILL EX DE, KL ;PLACE. THEN 60 70 THE
3 "CLEANUP" AREA.

12 NXTZ LD (HL) (D i'FILL" THE LINE EXPOSED
3 INC HL +BY THE SCROLL.
0p DEC C
20FB IR NI, NXT3
1 CLEANUP POP BC 3'CLEANUR’ THE PRINTER
21E05R Lo HL, SBEOR {BUFFER. USED TO STORE A
70 N(TR LD (HL) (B sLINE OF THE RECTANGLE.
0p DEC C
3] INC HL
20FB IR NI, NXTA
c9 RET ;RETURN TD BASIC.

END

Warning: all of the 'downscroll' and 'upscroll' routines make
use of the printer buffer (the area where LPRINT, LLIST and
COPY information is temporarily stored on its way to the
printer), so anything stored in the printer buffer will be lost
on using the routines. This does not stop you from using the
printer; just be sure that anything LPRINTed before you 'call'
the routines has actually been sent out to the printer.

Here is a demonstration program for the 'downscroll' routine.
I1f the colours make you feel ill then feel free to change them:
the program was developed with a black and white TV. Line 30
should be altered appropriately to the beginning of the
'downscroll' routine (e.g. if your routine is at address 32400,
then line 30 should read "LET DOWNSCROLL = 32400"). You will
find that the program generates a recursive, 'kaleidoscopic’
pattern. "

10 REM DOWNSCROLL ATTRIBUTES
20 REM DEMONSTRATION
30 LET DOWNSCROLL=65200
40 REM PREPARE SCREEN
SO BORDER 7: CLS : INVERSE 1
60 FOR A=0 TO 168 STEP 8
70 PLOT INK 2; PAPER 2+3%(A>8
037,A

32

80 DRAW INK 2; PAPER 2+3%#(A>8
0)3;241,0

90 NEXT A: INVERSE O

100 PRINT INK 8; PAPER 83;AT 10
2143 "FLIP";AT 11,14;"FLOP"

110 POKE 23340,1: REM "ROLL™"
120 REM DEFINE RECTANGLE

130 LET B=0

140 LET A=1

150 LET X=INT (B*5/7+0.5)

160 POKE 23332,10-X: REM L1

170 POKE 23333,14-B: REM C1

180 POKE 23334,11+X: REM L2

190 POKE 23335,17+B: REM C2

200 FOR N=0 TO X

210 RANDOMIZE USR DOWNSCROLL
220 PAUSE 6: NEXT N

230 LET B=B+A

240 LET A=A+2%#((B=0)-(B=14))
250 PAUSE 50: 60 TO 150

ROUTINES 7 AND 8: SCROLL ALL ATTRIBUTES DOWN OR UP

These routines are for use when the more lengthy 'rectangle'’
routines are unnecessary. They work on all 24 lines of the
screen and as with the 'rectangle' routines, the contents of
the printer buffer are erased along with anything not yet
passed out to the printer. Use the usual POKEs, 23340 and
23341.

HEX. sDOMNSCROLL ATTRIBUTES LENGTH: 54 RYTES

012000) BC, 20H {HOVE THE BOTTOM LINE
2UFFSA L HL, SAFFH $INTO THE PRINTER BUFFER,
11FFSB LD DE, SBFFH

D5 PUSH OE

5 PUSH ML

EDRB LODR

D1 PP DE iNON MOVE THE REST OF THE
01002 b BC, 02E0H SATTRIBUTES DOWN A LINE.
EDBS LDDR

342058 LD &, (SB2CH) 1A= (23340)

FEO! oP 1 {DECTDE WHETHER T0
012000 LD BC, 204

810 R £, CLEANLP i.. LEAVE TOP LINE,

2004 R NI,FILL SFILL IT, OR

Ef ROLL POP WL sROLL THE BOTTOM LINE UP
33 PUSH ML 170 THE TOP,

EDBB LDOR

1808 IR CLEANUP

342058 FILL LD A, (5B20H) 1A= (23341

12 MT WD (D), A $FILL TOP LINE WITH A,
1B BCODE

ap L

20FR IR NI, NIT

33

0620 CLEANUP LD B, 204 {CLEANUP THE PRINTER

AF R A 1 BUFFER,

£1 PP WL

7 NT2 LD {HL),A

2 DEC ML

10FC DINI NAT2

€9 RET sRETURN TO BASIC.
END

Here's another amazing demonstration program to show off the
above routine:

10 REM WHOLE SCREEN DOWN

20 REM SCROLL OF ATTRIBUTES

30 REM DEMONSTRATION

35 LET DOWNSCROLL=65200: POKE
23340,1: REM ROLL

40 BRIGHT 1: FOR A=0 TO 21

50 LET B=A-8%INT (A/8)

60 PRINT INK 7-B; PAPER Bj"AM
AZING TECHNICOLOURED SCROLLING"

70 NEXT A

80 FOR A=0 TO 1

90 PRINT #03AT A,0; INK 7-A; P
APER Aj "AMAZING TECHNICOLOURED S
CROLLING"

100 NEXT A

110 RANDOMIZE USR DOWNSCROLL

120 PAUSE S: GO TO 110

Don't forget to alter the number 65200 in line 35 to the start
address of the routine. To produce the top speed, remove the
pause statement in line 120 (it then becomes impossible to
follow the pattern, since the scrolling will occur more often
than a new television frame is displayed). Here is the
equivalent upscroll routine:

HEX. jUPSCROLL ATTRIBUTES LENGTH: 50 BYTES

210058 START LD HL, S800H {MOVE THE TOP LINE INTD
11E0SR LD DE, SBEOH THE PRINTER BUFFER.

D3 PUSH DE

ES PUSH HL

012000 0] BC, 0020H

EDBO LDIR

]| poP DE NOW MDVE THE REST OF THE
01E002 LD BC, 02E0H JATTRIBUTES UP A LINE.
EDBO LDIR

JA2C5B Lo R, (3B2CH) 1A= 123340)

FEOL CP i 1DECIDE WHETHER TO
012000 LD BC, 200

J80F IR C,CLEANUP {LEAVE BOTTOM LINE,

2006 IR NI,FILL jFILL IT, OR

El ROLL POP HL {ROLL THE TOP LINE DOWN
ES PUSH HL JFROM THE PRINTER BUFFER.

EDBG

1807

3A2DSR FILL
12 NXTL
ic
20FC

El CLEANUP
70 NIT2

20
20FC
9

The same demonstration program used

with 'Upscroll'.

LDIR
JR
LD
Lo
INC
JR
pop
LD
INC
IR
RET
END

CLEANUP
8, (SRZDH)
{DE} A

E

NI, NXTH
KL

{HL), B

L

NI,NKT2

1A=(23341)
sFILL BOTTON LINE WITH 4.

;CLEANUP THE PRINTER
$BUFFER,

1RETURN TO BASIC.

for

35

'Downscroll!

will work

ROUTINES FOR THE TEXT AND
GRAPHICS

CHAPTER 6
SCROLLING THE TEXT AND GRAPHICS

I have already provided you with a complete set of routines to
scroll the 'colour' bytes or attributes; here then is a similar
set that will allow you to do the same to the text and graphics
present on the screen.

As for the attribute routines, there are two main types; the
first and most complex routine works on any rectangle of the
screen from one square to the full 24 x 32 size; the second,
shorter routine works only on the whole screen.

USING THE ROUTINES

If you are using a 'rectangle' routine, then you must first
define the rectangle using the same POKEs and in the same
manner as for SCREENOP (see Chapter 3). Text will then only be
scrolled if it is inside the rectangle. As for the attribute
routines, you now have three options:

0. LEAVE the line or column which is 'left behind' by the
scroll (e.g. the bottom line when scrolling upwards) as it is;

1. ROLL the line or column which would be deleted by the
scroll back into the position left behind by the scroll;

2. FILL the line or column left behind by the scroll with one
of 256 patterns.

In the last option, you define the pattern by POKEing into
address 23347 a number between O and 255 (both inclusive). This

37

is most easily accomplished by using the BIN function, as
follows.

Imagine a character square being split into eight horizontal
layers or 'rows'. Each of these rows would then consist of a
line of eight PLOT positions, or 'pixels', thus:

The routine allows you to set each of these pixels to INK (1)
or PAPER (0) and then replaces every row of every character
square of every line or column 'left behind' by the scroll with
the row of pixels that you have defined. In this way a series
of vertical lines is produced whose thickness and spacing
varies according to the row defined. In the diagram, alternate
pixels of the row are INK, and a 'pinstripe trouser' pattern
would be produced during repeated scrolls.

You must POKE 23347 with the 'pattern row' in BIN form:

POKE 23347, BIN 1

0 1
To choose which of the three options the routine is to use, use
this command with the appropriate number:

POKE 23346, 0 to 'LEAVE'
1 to 'ROLL'
2 te 'FILL®

APPLICATIONS

At the end of this chapter you will find a demonstration
program called CRISS-CROSS, which utilises each of the four
‘rectangle' text-scrolling routines. The program is a
computer-simulation of a puzzle that has sold in the millions
(and has had a similar number of pictures printed on it). You
have a four-by-four grid with fifteen tiles and one hole in it.
The tiles are numbered from one to fifteen, and are 'jumbled
up' by the computer by randomly and visually interchanging
the 'hole' on the screen with one of its four next-door
neighbours. The computer then leaves you to enter the moves
and restore the tiles to their original positions.

The application above of 'scrolling' the tiles of the puzzle is
only the tip of a spectronic iceberg. You could use the
routines to make a 'plane fly (by scrolling the landscape
underneath it using the 'ROLL' option), or perhaps in the
classic invader-type game to speed up the movement of the block
of invaders, the mother ship, the laser base and possibly even
the bombs and missiles. With the extra speed added by these
routines it should be possible to produce a quite acceptable
game under BASIC control.

COORDINATION WITH ATTRIBUTE ROUTINES

If you wish to combine any of these routines with its
corresponding 'colour' routine, thereby using only one USR call
instead of two seperate ones, then you should follow this
procedure:

1. Write the 'graphic' routine with Hexaid;

2. Immediately afterwards, write the corresponding 'attribute’
routine (so that the attribute routine directly precedes the
graphic routine in memory), changing the last line of the
attribute routine

HEX.
from RET c9
to NOP 00

The combined routine is now accessed by the USR call
LET L = USR (start of attribute routine).

Now on to the tedious bit we have all come to hate; typing in
the routines.

LEFT AND RIGHT FOR RECTANGLES
RIGHTR (R for rectangle), not surprisingly, scrolls to the

right. To change the routine to 'LEFTR', alter lines (i), (ii)
and (iii) as follows:

NEW LINE HEX.
(i) NoP 00
(ii) INC HL 23

(iii) LDIR ED BO

If you do not want to store the two routines seperately, you
can convert from one to the other during a BASIC program or by
direct commands as follows:

LET R = (start of routine)

LEFT RIGHT
POKE R + 23, O POKE R + 23, 68
POKE R + 44, 35 POKE R + 44, 43
POKE R + 52, 176 _POKE R + 52, 184

HEX. JRIGHTR LENGTH: B9 BYTES

ED4B245R START LD B, (SB24H) 10=L1, B=C1

242658 LD WL, (SB26H) jLeL2, H=C2

n 0 Al $CHECK FOR ILLEGAL

FEIS P 18K ;COORTINATES,

M RET AL

9 SIE €

18 RET ¢

57 0 Db

39

D

ib

FE20 i3
Do RET
90 SUB
08 RET
5F)
14 INC
05 PUSH
44 @ Lo
7% LD
E618 AND
o4t ADD
a7 LD
79 L
87 ADD
7 ADD
87 aDD
87 40D
Y ADD
80 ADD
&F LD
ci NXTRONS POP
£s NXTLINE PUSH
ES PUSH
54 Lo
50 LD
7)
2 (i) DEC
08 EX
AF XOR
4 L
BY cp
202 IR
EDR (iii) LDDR
203258 HOPT LD
70]
FEO1 (]
3805 IR
7)
2001 IR
08 ROLL EX
12 FILL LD
31 LEAVIT POP
2% INC
7t LD
E607 AND
2000 IR
1120F8 L
19 ADD
b LD
FE20 cp
3003 3R
0607 LD
09 ADD

A, (HL)
HL

8F , AF’
A

B,A

¢
1.HoP1

HL, {SB32H)
Bl

{

C,LEAVIT
B.H
NI,FILL

HF AF?
{DE) A

HL
o4

Y |

NZ, NYTRONS
D, 0FB20K
HL,DE

AL

20H

NC, NOTTHRD
B,7

HL,BC

{E=NIDTH OF RECTANGLE-1
1D=NO, OF LINES.

1STORE THEM!

;FIND THE ADDRESS OF
$(L1,02), THE TOP - RIGHT
{CORNER. FIRST FIND WHICH
{THIRD OF THE SCREEN

JIT 18 1IN,

tNON WHICH LINE.....

AND FINALLY WHICH COLUMN

15TORE RIGHT-NOST ROW.

$BC=WIDTH-1

1IF WIDTH=1 THEN DON'T
1SCROLL.

{SCROLL THE LINE.
{DECIDE WHETHER 10...

sLEAVE,

FILL, OR ELSE...ROLL
sRIGHT-HOST ROW INTQ LEFT-
1MOST. FILL WITH SPECIFIED
tPATTERN. ONTD THE NEXT
ROW OF EACH CHARACTER.

;THEN FIND THE NEXT
sLINE OF THE RECTANGLE.

40

L NGTTHRD POF BC

160F DINI NKTLINE SREPEAT UNTIL LAST LINE HAS
09 RET {BEEN SCROLLED, THEN RETURN
XD +T0 BASIC.

LEFT AND RIGHT FOR THE WHOLE SCREEN

These two routines work on the whole screen and therefore
require only two POKEs, 23346 and 23347. I have suffixed their
name with "WS" for "whole-screen'.

HEX. (LEFTHS LENBTH: 33 BYTES
210040 START LD HL, 4000H sHL=TOP-LEFT CORNER
GL1FO0 NITROWS LD BEL, 001FH sBC=WIDTH OF SCREEN-1
13 Ld A, (KL} ;5TORE LEFT-MDST ROW.
54 Lb ,H
50 LD E,L
23 INC HL
EDBO LDIR s5CROLL LEFT
(Y 31 4F AF
ED4RI2SB LD BC, (SBI2H) sTEST (23346} AND EITHER...
79 LD A,C
FEOL cp 1
3805 I8 C,LEAVIT sLEAVE OR ELSE
78 Lo AR
2001 JR NI, FILL JFILL OR
08 ROLL £X AF AF° tROLL
12 FILL L (DE}, A
€ LEAVIT LD AH sREPEAT UNTIL WHOLE SCREEN
FESB %3 58K 3 IS SCROLLED.
383 IR C,NXTROWS
9 RET tRETURN TO BASIC.
END
HEX. ;RIGHTHS LENGBTH: 33 BYTES
21FF57 START LD HL, S7FFH sHL=BOTTOM-RIBHT CORNER
011FO0 NXTROWS LD BC,001FH 1 BC=WIDTH OF SCREEN-1
7 &) A, (HL) 15TORE RIGHT-MOST ROM.
54 LD 0 H
5D L0 £l
28 DEC HL
EDB8 LDDR 1SCROLL RIGHT,
) EX AF AF’
ED4B3258 LD BE, (SRI2H! sTEST (23346} AND EITHER...
79 i (R
FEQY e i
3805 IR C,LEAVIT sLEAVE OR
78 4] A,B
2001 IR NI,FILL sFILL OR ELSE
08 ROLL EX AF A7 $ROLL
12 FILL Lh {DE) ;4
nw LEAVIT D #,H sREPEAT UNTIL WHOLE SCREEN
FES8 op S8H +18 SCROLLED.
J8EI JR C; NXTROWS
ce RET sRETURN 70 BASIC.
ERD

41

UP AND DOWN FOR RECTANGLES

UPR and DOWNR are listed seperately because too many POKEs are
required to make converting from one routine to the other
worthwhile during a program. The contents of the last
thirty-two bytes of the printer buffer are used by the
routines, so don't store anything there or use an unterminated
LPRINT command before calling the routines with the usual

LET L = USR ... command.

HEX. (0P LENGTH: 108 BYTES

ED4B24SE START LD B, (SE24H) i0=L1, B=C1

242658 LD HL,(SB26H) iL=L2, HeC2

) W AL {CHECK FOR ILLEBAL

FE18 oP 184 1CODRDINATES.

Do RET NC

91 sup

8 RET €

57 T WY

7 L A

FE20 e 204

) RET NG

90 S8 B

8 RET C

5F 0 Eh

{c I E sE=NIDTH OF RECTANGLE,

05 PUSH DE 1D=NUMBER OF LINES-1

79 AL {FIND THE ADDRESS OF THE
E618 AND 1M $TOP-LEFT CORNER (L1,C1),
Co40 ADD A, 40H

87 0 WA

7 L AL

& ADD A

8 MDD AR

8 A0 AM

8 AD A

87 ADD A8

& ADD A,B

oF LA

el POP L

£s NXTRONS PUSH BC

£5 PUSH HL

€5 PUSH BC

AF R A

11£058 LD DE,SBEOH {STORE THE TOP RON OF THE
4 b B §TOP LINE OF THE RECTANGLE
£5 PUSH WL {IN THE PRINTER BUFFER,
EDBO LDIR

0 POP DE

o POP BC

5 e B 115 THE RECTANGLE ONLY
2816 R 1,D0NE 10NE LINE DEEP? IF SO THEN
€s NXTLINE PUSH BC 1DON'T SCROLL.

212000 LD HL20H {FIND THE POSITION OF THE
4 Lb B sROWS IN MENORY WHICH ARE

42

19 ADD HL,BE 1BEING NOVED UP.

m LD AL
FE20 P 20
3004 R NC,NOTTHRD
b LD AH
£407 as A7
67 L Hoh
£5 NOTTHRD PUSH WL iNOW HOVE THE ROWS UP TO
EDRO LOIR :THEIR NEW POSITION, AND...
bt PP DE sREPEAT UNTIL ALL OF THE
£l PP BC ;TOP ROWS OF EACH
10ER DINI NXTLINE ;CHARACTER HAVE BEEN
243258 DONE LD HL, (5B32K) 1SCROLLED, TEST (733461,
i) LD AL
FEO! e i {DECTDE WHETHER TO
380F R L, LEAVIT {LEAVE,
2007 R NI,FILL $FILL OR
Z1E058 ROLL LD HL, SBEH 1ROLL THE BRAPHICS.
EDRO LOIR
1806 IR LEAYIT
4 FILL L B,C §FILL THE TOP-RON OF EACH
7 Lo AH 1CHARACTER WITH THE DESIRED
12 M1t LD {DE1,A 1PATTERN,
13 N DE
10FC DKL NMT
£l LEAVIT POP ML iNOW REPEAT WHOLE OPERATION
cl POPBC {FOR THE OTHER 7 RONS OF
2 INC K JEACH CHARACTER IN THE
1) AH {RECTANGLE, AND...
E607 a7
2088 R NI, NITRONS
09 RET SRETURN TO BASIC,
£ND
HEX. $DONNR LENGTH: 109 BYTES
ED4R24SE START LD BC, (SRZAH) 1C=L1, B=CI
202658 Lb HL, (5B26H) iL=L2, H=C2
i LD aL {CHECK FOR ILLEGAL
FE18 e 184 +COORDINATES,
0 RET NC
9 Sl
8 RETC
57) 0,4
10) AH
FE20 e 204
00 RET NC
90 S8 B
18 RET ¢
5F Lo E,A
it I E sE=WIDTH OF RECTANGLE.
05 PUSH DE s D=NUMBER OF LINES-1
7) bl iFIND THE ADDRESS OF THE
EbLB aND 18H sBOTTON-LEFT CORNER
Chid ADD B,40H $1L2,C1),

2817
s
21EOFF
0600
19

m
FEED
Ig04
c

LD
Lo
ADD
ADD
ADD
ADD
ADD
ADD
Lo
PoP
NXTROWS PUSH
PUSH
PUSH

NOTTHRD PUSH
LDIR
POP

DONE LD

ROLL LD

FILL LD

NTE LD

LEAVIT POP

DE, SBEOH
B4
HL

DE

BC

B

1,D0NE

BC

HL, OFFEOH
B,0
HL,DE

AL

OEOH

£, NOTTHRD
A H

7

H,A

KL

3
B
NXTLINE
HL, (SB32H)
AL

i
¢, LEAVIT
NI,FILL

HL, SREOH

LEAYIT
B,C
AH
(D), A
DE
NITH
HL

BC

K

{STORE THE TOP ROW OF THE
tROTTON LINE OF THE
{RECTANGLE IN THE PRINTER
{BUFFER.

115 THE RECTANGLE ONLY
{ONE LINE DEEP? IF SO THEN
sDON'T SCROLL.

{FIND THE POSITION OF THE
{RONS IN MENORY WHICH ARE
{BEING MOVED DOWN,

1NOW MOVE THE ROWS UP TO
$THEIR NEW POSITION, AND
REPEAT UNTIL ALL OF THE
1TOF ROWS OF EACH
;CHARACTER HAVE BEEN
$SCROLLED. TEST {(23344)

sDECIDE WHETHER TO
s LEAVE,

$FILL OR

sROLL THE BRAPHICS.

sFILL THE TOP-ROW OF EACH
sCHARACTER WITH THE
1DESIRED PATTERN.

{NOW REPEAT WHOLE
;OPERATION FOR THE DTHER
37 ROWS OF EACH CHARACTER

s LD AH 1IN THE RECTANGLE, AND...
E&07 AND 7

2084 JR NI NXTROWS
ce RET sRETURN TO BASIC.
END

UP AND DOWN FOR THE WHOLE SCREEN

The last two routines in this chapter are UPWS and DOWNWS (WS
for Whole Screen). The only POKEs, of course, are 23346 and
23347, Both of the routines, like their 'rectangle'
counterparts, erase the contents of the last thirty-two bytes
of the printer buffer.

HEX. JUPHS LENGTH: 67 BYTES

210040 START LD HL,4000H {BEGINNING OF DISPLAY RAM.

11E05R L0 DE,SREOH 1PRINTER BUFFER,

B NISLICE PUSH DE

£5 PUSH HL

3603 A3

912000 LD BC,20H

5 NITHIRD FUSH BC {STORE THE TOP *SLICE®

£5 PUSH ML $0F THE TOP LINE IN THE

£DBO LDIR 1PRINTER BUFFER,

0 POFDE

OEEQ L C,0EM

EDBO LOIR FNEXT 7 LINES (1-7) UP

0607 w87 {INTD THE TOP 7 LINES
1(0-4). FIND THE FIRST

09 ADD HWL,BC {LINE OF THE NEXT THIRD OF

3 L A {THE SCREEN. REPEAT UNTIL

o POP BC JALL OF THE TOP SLICES HAVE

20F0 R NI,NITHIRD {BEEN SCROLLED UP A LINE.

343258 L0 B, (SR3ZHE {TEST(23346)

FEO! 3 1 {DECIDE WHETHER 70 ...

Bl R CLEAVIT {LEAVE,

2007 R NILFIL {FILL OR

21E058 ROLL LD HL,SBEOK {ROLL THE TOP SLICE DOWN

£DBO LDIR $INTO THE BOTTON LINE.

1808 R LEAVIT

i FILL LD B,C

3A3358 LD A, (SB33H) 1123347) 1S PLACED IN THE

12 M1t LD (DE} A 1BOTTON LINE OF THE SCREEN.

13 N DE

10FC DN NKTH

3 LEAVIT POP ML {MOVE TO THE SECOND SLICE

n POP DE 10F EQCH LINE, AND REPEAT

24 I K {THE WHOLE DPERATION UNTIL

i b AM 1AL B SLICES OF ALL 24

FE4B 0P 4BH {LINES HAVE BEEN SCROLLED.

1809 B C,NISLICE

3] CLEANUP EX DE,HL {CLEAN UP THE PRINTER

73 NITZ LD (HL),E 1 BUFFER,

%€ m L

20FL W NLNIT2

09 RET TRETURN T0 BASIC.

END

45

;DONNNS LENGTH: 49 BYTES

21FFS7 START LD HL, S7FFH ;END OF DISFLAY RAM.
LIFFSR LD DE, SBFFH sPRINTER BUFFER,

05 NISLICE PUSH DE

ES PUSH HL

Ie03 Lo A3

012000 LD BC, 204

(] NITTHRD PUSH BC ;STORE THE BOTTOM ’SLICE
E3 PUSH HL 3OF THE BOTTOM LINE IN THE
EDRO LDDR sPRINTER BUFFER.

)1 POP oE

OEE0 Lo C,0E0H 1MOVE THE BOTTOM SLICES OF
EDBe LDOR sTHE NEXT 7 LINES (22-18)
06F9 1] B,OF9H ;D0WN INTO THE BOTTOM 7
09 ADD HL,BC jLINES (23-17), FIND THE

sBOTTON LINE OF THE NEXT
s THIRD OF THE SCREEN.

et PP BC {REPEAT UNTIL ALL OF THE
30 MEC A sBOTTON SLICES HAVE BEEN
20F0 B NILNXTTHRD {SCROLLED DONN A LINE.
3A3258 L A, (SB32H) 1 TEST(23346)
FEO1 P ! {DECIDE WHETHER T0 ...
3811 B C,LEAVIT $LEAVE,
2007 R NLEIL (FILL OR
21FFSR ROLL LD HL,SBFFH sROLL THE BOTTON SLICE UP
£088 LDDR {INTO THE TOP LINE,
1808 R LEAVIT
4 FILL L0 B,
303358 LD A, (SB33H) 1(23347) 1S PLACED IN THE
1 MTL LD (DE),A {TOP LINE OF THE SCREEN,
1R DEC OE
10FC DINL MITH
£l LEAVIT POP ML sHOVE ON T0 THE
{PENULTIMATE SLICE OF EACH

M PP DE sLINE AND REPEAT THE NHOLE
25 0EC K +THE WHOLE CPERATION UNTIL
7 W AH ;AL 8 SLICES OF ALL 24
FESO 0P S0 {LINES HAVE BEEN SCROLLED.
3009 B NC,NISLICE
AF R A ;CLEAN UP THE PRINTER
1420 LD B,20H s BUFFER,
12 MT2 LD (061 ,A
1B DEC OE
10FC DKL MXT2
£9 RET {RETURN T0 BASIC,

END ;

DEMONSTRATION PROGRAM - CRISS-CROSS
Here then is the demonstration program as described under
'applications' at the beginning of this chapter.

Notes:

1) The numbers in line 20 are the locations of the four
rectangle routines and will probably be different for you,
depending on where and in what order you store them in memory.

2) The quotes in line 40 contain 5 spaces; those in line 70,
one space.

Once the computer has jumbled up the tiles on the puzzle, enter
the number on the appropriate cursor key in order to state
which way you want the 'hole' in the grid to move. When you
have put the tiles back into the right order, see if you can
write a BASIC subroutine that makes the computer solve the
puzzle, illustrating its moves as its goes.

10 REM CRISS-CROSS & DAVID M.
WEBB 1982

20 LET UP=65240: LET DOWN=6313
1: LET LEFT=65042: LET RIBGHT=649
53

30 RANDOMIZE

40 BORDER 6: PAPER 5: CLS : PA
PER 6: FOR A=0 TO 21: PRINT AT A

03" “;AT A,27;" "3z NEX
TA
50 PAPER 2

60 FOR A=0 TO 20
70 PRINT AT 0,5+A;" ";AT A,26;
" “3AT 21,26-A;" "jAT 21-A,5;" *

B0 NEXT A

90 INK 4

100 FOR A=8 TD 128 STEP 40

110 PLOT 48,A: DRAW 159,0: PLOT
48,A+39: DRAW 159,0

120 PLOT 40+A,B: DRAW 0,159: PL
OT 79+A,8: DRAW 0,159

130 NEXT A
140 INK O: PAPER 5: REM PRINT N
UMBERS

150 FOR A=0 TO 3: FOR B=0 TO 3
160 IF A*4+B+1=16 THEN GO TO 1
90

170 PRINT AT 3+A%5,B8+B#5; A*4+B+
1

180 NEXT B: NEXT A

190 INK O: PAPER 6

200 PRINT AT 0,0;"Hang"'“on"'"w
hile* '“I mix" "the" "tiles"

210 POKE 23346,1: REM roll

220 LET X=21: LET Y=16

230 FOR A=1 TO 300

240 LET B=INT (RND%*4)+5

250 GO SUB 350

260 NEXT A

270 POKE 23333,0: POKE 23335,4:
POKE 23336,2: POKE 23347,0: REM
"FILL" WITH SPACES

280 FOR A=0 TO 5: POKE 23332,A:
POKE 23334,A

47

290
5
300
310
320
330
“sB:
30
340
350

FOR B=0 TO 4: LET L=USR LEF

PAUSE S: NEXT B

NEXT A

POKE 23346,1: REM "ROLL"™
INPUT "Which way (5/6/7/8)7
IF B<S OR B>8 THEN 60 TO 3

60 SUB 350: G0 TO 330
IF B=8 AND X=21 OR B=3 AND

X=6 OR B=7 AND Y=1 OR B=&6 AND Y=
16 THEN RETURN

360

B=6)
430

POKE 23332,Y-5#(B=7): REM L
POKE 23333,X-5#(B=5): REM C
POKE 23334,Y+4+5%(B=6): REM
POKE 23335,Y+4+5#(B=8): REM
LET Y=Y+5#% ((B=6)-(B=7))

LET X=X+5#%((B=8)-(B=3))

LET U=(LEFT AND B=5)+(RIGHT
B=8)+ (UP AND B=7)+(DOWN AND

FOR Z=1 TO S5: LET L=USR U:

PAUSE S5: NEXT Z
440 RETURN

CHAPTER 7
SCROLLING BY PIXELS

To complete the set of general-purpose scrolling routines in
this book, here are four that allow you to scroll any window on
the screen by just one pixel in any of four directions. This
provides for much smoother animation in games, but I should
warn you that even in machine code, with large areas of the
screen being scrolled, it takes significantly longer to scroll
eight times by one pixel than just once by one cell (eight
pixels).

To use the routines you must first specify a window, unless you
want the routine to default to the entire top 22 lines of the
screen.

To define the window I have used a new system of coordinates.
The columns are still numbered 0-31, but the '"rows' or "lines
of pixels" are numbered DOWN the screen from O to 191, thus:

(0,0
WHOLE
SCREEN
(31,175)
INPUT AREA
(31,191)

Calling the top-left corner of your rectangle (x1, yl) and the
bottom-right corner (x2, y2), both of which are included in the
rectangle, then your screen should look like this:

49

(X1,Y1)

YOUR
RECTANGLE

(X2, Y2)

If T is the start address of your routine, then these are the
POKE addresses for your coordinates. I have prefixed the
routine names with "PW'" for "Pixel Window'".

Parameter
Routine name
X1 X2 Y1 Y2
PW LEFT T + 41 T+ 32 T+ 1 T + 23
PW RIGHT T + 32 T + 37 T+ 1 T+ 23
PW UP T + 31 T + 36 T+ 1 T + 23
PW DOWN T + 31 T + 36 T + 27 T + 1

Hence to scroll the top four lines rightwards,

POKE T + 32, 0 : POKE T + 37, 31
POKET + 1, 0 : POKE T + 23, 31

The routines offer three different types of scrolling. These
are:

LEAVE - the row or column of pixels exposed by the scroll as it
is;

ROLL - the row or column '"pushed out" of the rectangle back
into the opposite end;

FILL - the exposed row or column with something new.

In the case of PW UP and PW DOWN, "Something new'" means an
eight-bit binary pattern that will go in the exposed row of
each column, e.g.

BIN 1111 0000

would provide thick INK and PAPER vertical lines during
repeated scrolling, while

BIN 0101 0101

would provide a fine "pinstripe" pattern. I'll call this binary
pattern the FILLER byte. To 'blank out" the exposed row (i.e.
fill with paper), the filler will be zero. To "black in" the
exposed row (i.e. fill with ink) the filler will be 255 (= BIN
1111 1111).

50

For PW LEFT and PW RIGHT, you may fill the exposed column with
an INK pixel or a PAPER pixel. The "option number" defining
which option you require is found from this table:

OPTION PW LEFT, PW RIGHT PW UP, PW DOWN
0 LEAVE
1 ROLL
2 Fill with PAPER Fill with FILLER byte
3 Fill with INK

The POKEs are as follows:

POKE 23361, [OPTION NO.]
POKE 23362, [Filler byte]

Here is the first one, PW LEFT, with a demonstration program.

HEX. ;PH LEFT LENGTH: 113 BYTES
¥1 TR
¥2 EQU OAFH
X B 0
12 BB 1FH
3E00 START LD A, Y1 {LOCATE THE ADDRESS OF
W) C,A sCOLUMN 0 IN ROW Y1
E4C0 AND OCOM
OF RRCA
OF RRCA
OF RRCA
Co40 ADD A,40H
b7 LD Hyh
79 LD AC
£607 a7
8 A AM
o7 L0 Hoh
5] LD Ac
8 a0 AR
8 ADD AA
E6ED AND OEOH
oF) LA
3EAF LD A,¥2 sCHECK, Y2 FOR LEGALITY
FECO P 0COH {THEN SUBTRACT Y1, IF
00 RET KC SRESULT 16 NEBATIVE THEN
9 SUB ¢ {RETURN TO BASIC.
8 RET C ;OTHERNISE ¥2-Y1+1=NUNBER
3 I A ;0F RONS TO BE SCROLLED.
¥ LD £,
081F) 8,12 {FIND ADDRESS OF (X2,Y1)
70 LD AL
B0 R B
bF LB L,k

51

78
FE20
0
D00
08
i
SF
1600
IA4158
08
43
A7
CBis
2B
10FR
08
19
FEQ1
3820
2827
CBCA
CB47
2002

NXTROW

NXTCOL

SET
INIT

out

LEAVE

ROLL

A,B
200

N

¥

c

A

)

0,0

A, (SBALH)
AF AF’
B,E

f

(HL)

H
NATCOL
AF, AF”
HL, DE

1
C,LEAVE
1,R0LL
0, (HL)
0,A

N2, SET
0, (HL)
AF AF"
AM

s

Hyh

7

NI, 00T
AL

Ay 204
LA

¢, 001
AH

8

Heh

C
NZ,NXTROK

AF , AF°
A, (HL)
2

(H)
(KL} , A
INIT
AF, AF°
a,0

(HL)
(HLI A
INIT

jCHECK X2 AND X1 FOR
tLEBALITY. X2-X1+1=NUNBER
+0F COLUMNS TO BE
+SCROLLED. STORE THIS
sRESULT IN DE.

{PUT THE OPTION NUMBER
yIN A",
;SCROLL A ROW LEFTWARDS.

;DECIDE ON WHETHER TO
{LEAVE, ROLL OR FILL.

{FILL ACCORDING TO BIT
30 OF THE OPTION NUMBER.

JLOCATE THE X2
{COLUNN OF THE NEXT
{RON DOMN,

{REPEAT PROCEDURE UNTIL
{ALL RONS OF RECTANGLE ARE
1SCROLLED, THEN RETURN TO
1BASIC,

sLEAVE MOVES BIT 1 OF
{COLUNN X2 BACK INTO

$BIT 0,

jJUMP BACK TO NEXT ROM.
sROLL THE LEFTMOST BIT OF
;COLUNN X1 OUT OF THE
;CARRY AND INTO BIT 0,
;OF COLUMN X2,

§JUNP BACK TO NEXT ROM.

52

Here is the demonstration; remember to change the start
address in line 70 to your value.

10 REM PIXEL WINDOW LEFT-SCROL
L DEMO

20 REM © DAVID M. WEBB,1983

30 BRIGHT 1: FLASH O: INVERSE
0: OVER O: BORDER 4: PAPER 6: IN
K 4: CLS

40 REM DEFINE USR GRAPHICS

50 FOR A=0 TO 7: READ B: POKE
USR "A"+A,B: NEXT A

60 DATA 0,BIN 10100000,BIN 100
10000,254,8,16,0,0

70 LET PWL=45000: REM START AD
DRESS

80 REM DRAW MOUNTAINS

90 LET Y=28: PLOT 0,Y: FOR A=0
TO 14

100 LET DY=INT (RND*5&)-Y

110 DRAW 16,DY

120 LET Y=Y+DY

130 NEXT A

140 DRAW 15,28-Y

150 GO SUB 240: LET A$=CHR$ 144

5 INK 2
160 PRINT AT 10,15;A%;A$;A$;AT
9,14;A%;" ";A$;AT 11,14;A%;" ";A

$;AT 12,13;A%;AT B8,13;A4%
170 PRINT AT 0,1;“"RED ARROWS IN
VIBGEN FORMATION": PLOT 0,167:

DRAW 255,0

180 REM DEFINE WINDOW

190 POKE PWL+1,119: REM Y1
200 POKE PWL+23,175: REM Y2
210 POKE PWL+41,0: REM X1
220 POKE PWL+32,31: REM X2
230 POKE 23361,1: REM ROLL
240 RANDOMIZE USR PWL: 60 TO 24
o

250 REM PAINT—IN MOUNTAINS

260 FOR A=0 TO 255: LET B=0
270 IF POINT (A,B) THEN GO TO
290

280 LET B=B+1: GO TO 270

290 PLOT A,0: DRAW O,B: NEXT A
300 RETURN

53

In JIGGEM FORMATICH

PW RIGHT is very similar to PW LEFT. You may like to try
altering the demonstration program for PW LEFT so that the
planes fly in the opposite direction, or perhaps leave the
mountains stationary, define two windows 8 pixels by 32 columns
in size and then produce a breath-taking display of two 'solo"
planes flying from opposite sides of the screen and crossing
each other in mid-flight.

Another use for this routine would be to scroll messages across
the screen, or maybe to move the landscape in a "Defender" or
"Penetrator''-type game.

HEX. ;PW RIGHT LENGBTH: 115 BYTES
Y1 EQU 0
Yz EQu 0AFH
3} EQu 0
2 31} O1FH

3E00 START LD A1 1LOCATE THE ADDRESS OF
13 LD LA ;COLUMN © IN ROW Y1,
EaCO AND OCOH

oF RRCA

oF RRCA

OF RRCA

Cado ADD A 404

87 LD H,A

7% Lo A,C

En)7 AND 7

84 ADD AH

87 LD H, &

79 Le A,C

&7 ADD A A

87 ADD Ak

EAED AND OEOH

&oF LD LA

NXTROW

NXTCOL

SET
INIT

LEAVE

LD
cp
RET
Sug
RET
INC

b,0

A, (B4 1H)
AF, AF’
B,E

4

(HL)
HL
NXTCOL
AF, AF
A
HL,DE
i

€, LEAVE
1.ROLL
7, (HU)
0,A
NI.SET
7, (4L}
4F, AF°
Al

A

HoA

7

NI, QUT
a,L
4,208
LA

£, 007
6,4

8

H,A

C

NZ, NXTROW

oF, AF
Ay (HLI
40K

;CHECK Y2 AND Y1
;FOR LEBALITY,

1Y2-Y1+{=NUMBER OF
+RONS TO BE SCROLLED.
{FIND ADDRESS OF (¥1,X1}

1CHECK 12 AND X1 FOR
SLEGALITY. XZ-X1+1=NUNBER
s0F COLUMNS TO BE
{SCROLLED, STORE THIS
{RESULT IN DE.

1PUT THE GPTION NUMBER
1IN A%,
1SCROLL A ROW RIGHTWARDS.

$DECIDE ON WHETHER TO
1LEAVE, ROLL OR FILL.

sFILL ACCORDING TO BIT
10 OF THE OPTION NUMBER.

LOCATE COLUMN X1 OF
+THE NEXT ROW DONE.

sREPEAT UNTIL ALL ROWS OF
JRECTANGLE ARE SCROLLED,
{THEN RETURN T0 BASIC.
{LEAVE NOVES BIT 4 OF
sCOLUMN X1 BACK INTO

$BIT 7.

17 RLA

86 08 (L)

77 Lo (H),A

1862 R INIT ;JUNP BACK TO NEXT ROM.

08 ROLL EX AF , BF? {ROLL THE RIGHTMOST BIT OF

3E00 LD 3,0 {COLUNN X2 OUT OF THE

IF RRA {CARRY AND BACK INTO

B] (HL} 1BIT 7 OF COLUMN Xi

n LD (HL),

1804 Ik INIT 1JUNP BACK TO NEXT ROW,
END

Here is a demonstration program for PW RIGHT.

I have included lines 180 to 210 as an example of how to make
the program "auto-run' on loading. Don't forget to alter the
start address in line 30 and the corresponding values in lines
170 to 210 to suit your own start address.

10 REM PIXEL WINDOW RIGHT-SCRO
LL DEMO

20 REM) DAVID M. WEBB, 1983

30 LET PWR=45000: REM START AD
DRESS OF PIXEL WINDOW RIGHT

40 OVER 1: PAPER &: INK 2: BOR
DER 1 : CLS

S0 PRINT TAB 9; "0OSCILLOSCOPE?"

60 PLOT 0,87: DRAW 255,0: REM

AXIS
70 REM DEFINE WINDOW
80 POKE PWR+1,24: REM Y1
9?0 POKE PWR+23,152: REM Y2
100 POKE PWR+32,0: REM X1

110 POKE PWR+37,31: REM X2
120 POKE 23361,0: REM LEAVE OLD
COLUMN
130 FOR A=0 TD 252
140 PLOT 0,87+64%SIN (A®PI/&3):
PLOT OVER 0,0,B7
150 RANDOMIZE USR PWR: NEXT A
160 POKE 23361,1: REM ROLL
170 RANDOMIZE USR PWR: GO TO 17
175 REM
176 REM
180 REM I USED THIS TO AUTD LOA .

D THE MACHINE CODE......

190 CLEAR 64999: LOAD “"RPIXWIND

OW"CODE &5000,115: RUN
200 REM ...AND THIS TO SAVE
210 SAVE "PWR DEMD" LINE 180: S

AVE "RPIXWINDOW"CODE 65000,115

Now for PW UP, which could be used highly effectively in
"launching' a rocket from the bottom of the screen, or perhaps
rotating the "fruit'" dials in a fruit machine simulation. Two
demonstration programs follow.

HEX. 1PN UP LENGTH: 115 BYTES
1 B0
Y2 EQU OAFH
1 B 0
2 R IFH
3600 START LD A,¥! {LOCATE THE ADDRESS OF
i C,A {COLUNN O IN ROW Y1,
E6CO AND OCOH
oF RRCA
OF RRCA
oF RRCA
Ch40 DD A,40H
87 L KA
79 L AC
£607 w7
) ADD AM
b7 D HA
] o AC
87 ADD AA
8 ADD A4
EAEO AND OEOH
oF 0w LA
3EAF W AV sCHECK Y2 AND V1
FECO cp OCOH $FOR LEGALITY,
00 RET NC
91 S8 €
18 RET €
8 £X AF , AF”
0E00 T 1 iFIND ADDRESS OF (X1,Y1).
7 0 AL
B! 0 C
oF LA
3ELF A2

57

FE20
i)
9
8
i€
&F
0400
€S
ES
1{EOSR
EDRO
El
1
ne
e
67
28tE
47
09 .

NATROW

ouT

NDSCROL

FILL

NXTFILL L

EXX
LB
INC
LD
L
AND
JR
LD
ADD
LD
iR

EXx
DINI
EXY

HL
DE, SBEOH

HL

AF AF
A
1,NOSCROL
B,A

A K
A
D,A
E,L
7

NI OUT
aE
£, 208
EA
£,0uT
8,0

8

D,h
DE, HL
He

B

BC
HL

NXTROW

4, (SBALH)
1

r
NI,FILL
DE, SBEOH
DE, KL

A, (SB4ZH)
B,C
(HLY B
HL
NXTFILL

{CHECK X2 AND X1 FOR
sLEGALITY.

$X2-X1+1=IDTH OF
$RECTANGLE. STORE THIS IN
1B,

sHOVE THE TOP ROW OF THE
$RECTANGLE INTD THE PRINTER
3 BUFFER,

+1F THE WINDOW IS ONE
sPIXEL HIGH THEN THERE IS
{NOTHING LEFT TO SCROLL.
1B HOLDS THE NUMBER OF
1RONS LEFT T SCROLL.
;LOCATE THE COLUMN X1

$OF THE NEXT ROW DOWN.

$HOVE THIS ROW UP ONE
sPIXEL WITH A BLOCK-SHIFT
 INSTRUCTION,

{REPEAT UNTIL ALL ROWS HAVE
1 BEEN SCROLLED.

;DECIDE WHETHER TO FILL,
sROLL OR LEAVE THE BOTTOM
1ROM. IF THE LATTER, THEN
$RETURN TO BASIC.

ROLL THE ROW STORED IN THE
sPRINTER BUFFER INTO THE
1BUTTOM ROW,

;RETURN TO BASIC,

1FILL THE BOTTOM ROM WITH
sTHE FILLER BYTE. -

JRETURN 70 BASIC.

The first demonstration is a program that simply lets ydu
"play around'" with the size of a window and the.type of
scrolling, which will then take effect on a listing of the
program itself. Line 90 forms an infinite loop, so to try a new
window or setting BREAK out and re-RUN the program. You should
alter the start address in line 30, and the corresponding
values in the optional "auto-load'" line, 100.

10 REM UPWARDS PIXEL WINDOW-SC
ROLL DEMONSTRATION

20 REM © DAVID M. WEBB, 1983

30 LET X=65000: REM #*%% START
ADDRESS ##%

40 INPUT “X1 "3X1,“X2 ";X2,"Y1

“3Y1,"Y2 "3Y2,"CONTROL ";C

50 IF C=2 THEN INPUT “FILLER
"3F: POKE 23362,F

60 POKE 23361,C: POKE X+1,Y1:
POKE X+23,Y2: POKE X+31,X1: POKE

X+36,X2

70 BORDER 3: PAPER &: INK 2: C
LS : LIST S0: LIST 50

80 REM

90 RANDOMIZE USR X: GO TO 90

100 CLEAR 64999: LOAD “"UPIXWIND
OW"CODE 65000: RUN

The second demonstration program for PW UP is somewhat more
spectacular, and shows a '"number-dial' pixel-scrolling past a
window in the centre of the screen, rather like a fruit machine
dial past its display window.

I have used the trick of making INK and PAPER the same colour
over the part of the screen (line 130) just below the display
window, and then invisibly printing a number there after every
eight pixel-scrolls, ready to be moved up into the display
window.

Please remember, as always, to alter the start address in line
50 to your value. The scrolling may be speeded up by removing
the PAUSE in line 130.

10 REM UFPWARDS PIXEL WINDOW--SC
ROLL DEMONSTRATION (2)

20 REM @ DAVID M. WEBB, 1983

30 OVER 0: INVERSE 0O: FLASH O:
BORDER 6: PAPER &: CLS

40 PRINT AT 11,1535 INK O; PAPE
R 73" "

S50 LET UP=65000: REM #*#*START
ADDRESS ###

60 POKE UP+1,11%8: REM Y1

70 POKE UP+23,13%8;: REM Y2

59

80 POKE UP+31,15: REM X1
90 POKE UP+36,161 REM X2
100 POKE 23361,0: REM LEA

VE
110 LET C=0: REM COUNTER
120 PLOT 112,96: DRAW 31,0: DRA

W 0,-26: DRAW -31,0: DRAW 0,26
130 PRINT INK 63 PAPER &;AT 12

,15;C: FOR A=0 TOD &: PAUSE 1: RA

NDOMIZE USR UP: NEXT A: LET C=C+

1: IF C=100 THEN LET C=0
140 RANDOMIZE USR UP: 60 TO 130

I come now to the logical conclusion of this chapter, the
routine PW DOWN. The two demonstration programs above may be
easily adapted, using the information at the start of this
chapter, to work with PW DOWN.

HEX. ;PW DONN LENSTH: 116 BYTES
Y B 0
12 EQU OAFH

1 B0

2 QU IFH

O0R6 BOOOH

3EAF START LD A,Y2 ;LOCATE THE ADDRESS OF
FECO cp 0COH 1COLUNN 0 IN ROW Y2.
10 RET NC sCHECK Y2 FOR LEGALITY.
I Lo C,A
E6CO AND OCOH
OF RRCA
oF RRCA
OF RRCA
Co40 ADD A, 40H
87) Heh
79 LD A,C
E607 M 7
& ADD A
&) Hy A
79 LD a,C
8 AD AA
Y ADD AR
EAEO AND OEOH
oF 1) L,A
7 LD AC
D400 siB vl {CHECK Y1 FOR LEGALITY,
18 RET C
[£X AF , AF
0E0D (0 C,X1 ;FIND ADDRESS OF (X1,Y2).
) L0 AL
B 0R C
bF L0 L,A
3EIF Lo A, X2
FE20 cP 20 sCHECK X2 AND XI FOR
00 RET MG sLEGALITY,
9 sig ¢

60

08
i

i
0600
cs

£S
11£058
EDBO
£l

3]

M

8

a7
2BIF
Ih

D9

i

30

JA415R
FEO)
08
2007
11E0SB

RET
INC
LD
Lo
PUSH
PUSH
1]
LDIR
POP
popP
EXX
£X
AND
IR
LD
NITROM EXX
LD
DEC
LD
LD
cPL
AND
IR
LD
SuB
Lo

out EX

NOSCROL EXX

FILL LD

NXTFILL LD
INC
DINI
RET
END

DE, SBEOH

HL
BL

AF , AF*
s
1,NOSCROL
B,A

NXTROW

A, (SB41H)
1

C

NI, FILL
DE, SBEOH
DE, K

A, (SRAZH)
B,C
(HL} A
HL
NITFILL

$X2-X1+1=HiDTH OF
{RECTANGLE, STORE THIS
1IN BC.

;MOVE THE BOTTOM RON OF
3 THE RECTANGLE INTO THE
iPRINTER BUFFER.

{IF THE WINDOW IS ONE
iPIXEL HIGH THEN THERE IS
{NOTHING LEFT TO SCROLL.
1B HOLDS THE NUMBER OF
{RONS LEFT T0 SCROLL,
{LOCATE COLUNN X1 OF THE
{NEXT ROW UP.

{MOVE THIS ROW DOWN ONE
fPIXEL WITH A BLOCK-SHIFT
$ INSTRUCTION.

FREPEAT UNTIL THE WINDOW
HAS BEEN SCROLLED.

tDECIDE WHETHER TO FILL,
ROLL OR LEAVE THE TOP
1ROW OF THE WINDOW. IF THE
{LATTER, THEN RETURN TO
{BASIC. ROLL THE ROW OUT
;OF THE PRINTER BUFFER

1 INTO_THE TOP ROW, THEN
sRETURN TO BASIC,

;FILL THE TOP ROW WITH
§THE FILLER BYTE.

sRETURN TO BASIC.

61

CHAPTER 8
CARPET-ROLL CLS

Here are two handy, novelty screen-clearing routines that can
be used as direct substitutes for CLS.

Imagine, if you will, that the text and graphics on your screen
are printed on a flat carpet, that the carpet is see-through,
and that underneath it is a white lino (a blank screen). These
routines take the carpet by one of the vertical edges and
"roll" it up into a l-column by 24-line roll, revealing as they
go the "lino" or blank screen underneath. The "roll' of text
makes its way from one side of the screen to the other,
becoming visually darker as it '"picks up'" more text and
graphics, until it eventually "falls off'" the far edge of the
screen, leaving a blank screen. The colour attributes are also
altered according to the current INK, PAPER and BORDER colours
as each column is cleared.

=)

The first routine, RIGHT PEEL-OFF, clears the screen from left
to right. You can vary the speed of the clear by means of a

62

simple POKE, which controls the length of the PAUSE made after

each column of the screen has been cleared.

If 8=

[start addressJ, then

POKE S + 5, [length of pause]

Note that a value of O corresponds to a PAUSE of 256. To remove
the PAUSE altogether, POKE S + 6, O. To get it back, POKE S +

6, 118.

Here is RIGHT PEEL-OFF, followed by a demonstration program.

Call the routine with the usual

LET A =

HEX
ATTRP
BORDCR
START
NXTCOL

2E00
2640
0603
7 PAUSE
10FD

4E NXTBYTE
3800
0608
CR19
17
10FH
23

Bé

77
H1IF00
19

T
FESB
20EA

NXTROT

77 NXTOP

EQil
£at
LD
]
L
HALT
GINI
LD
LD
LD
RR
RLA
DINL

SC8DH
SCABH
L0
H, 40H
B3

PAUSE
C, (HL)
(HLY 0
B,8

C

NXTROT
KL

(HL}
{HL) , A

DE, 001FH
HL, DE

a,H

58H

NI NXTBYTE
DE

B, 16K

4, (ATTRP}
(HL),A
HL, DE
NXTOP

4, (RORDCR)
(HL) A

it , DE
(HL) A
HL, DE

L

8L

1FH

NI, NXTCOL
Ho 40H

B, OCOH

USR [start address]

sRIGHT PEEL-OFF LENBTH: 78 BYTES

JHL=TOP-LEFT CORNER OF
s SCREEN,
100 A FAUSE

1BLANK QUT THE CURRENT
COLUMN, ...

t+4«PRODUCE 1TS MIRROR

3 IHABE. ..

$AND OR 1T WITH THE

sNEXT COLUMN TO THE RIGHT.

(MOVE ONTO THE NEXT
1ROW OF THE SCREEN.
1ARE WE AT THE BOTTOM?

i IF NOT THEN REPEAT THE
+PROCESS.

tNOW TAKE THE INK

1AND PAPER ETC., AND
$FILL QUT THE CURRENT
sCOLUMN’S ATTRIBUTES.

;USE THE BORDER COLOR
;FOR THE BOTTOM THO
sLINES,

{HAVE WE REACHED THE LAST
sCOLUNN DF THE SCREEN? IF
iNOT THEN ROLL UP THE
$NEXT COLUMN,

$BLANK OUT THE LAST
sCOLUMN, ...

63

72 NXTROW LD {HL),D

19 ADD HL,DE

10FC DINL NXTROW

3A805C LD 4, (ATTRP) tFILL IN ITS ATTRIBUTES...

0616) B, 16H

7 NXTOPZ LD (L) A

19 ADD HL,DE

10FC DINL NXTOP2

3AB4SC 1) A, (BORDCR)

7 LD (HL), A

19 ADD HL,DE

7 Lo {HL), A

09 RET {AND RETURN TO BASIC.
END

Note that as it stands, there is a PAUSE of 3 after clearing
columns. This following demonstration uses a PAUSE of 20, and
makes use of the fact that the routine also affects the
attributes. It does this by changing the PAPER colour just
before the routine is called, so that as the screen is '"rolled
back'" it reveals a differently coloured blank screen
underneath.

10 REM RIGHT PEEL-OFF DEMO

20 LET CLSB=65200: REM ENTER Y
DUR START ADDRESS

30 PAPER &: INK 2: CLS

40 CIRCLE 128,87,87: PAPER 4:
REM PAPER ALTERED

50 POKE CLSB+5,20: REM SET SPE
ED

&0 RANDOMIZE USR CLSB

Now I couldn't really resist giving you the luxurious choice of
a carpet-roll CLS in two directions, so here for all
left-handed or ambidextrous readers is "LEFT PEEL-OFF'". All of
the BASIC programming is the same as for RIGHT PEEL-OFF, and
the same demonstration program will work (you can adjust the
REM in line 10 if you wish!), so I'll just leave you with the
code:

HEX. sLEFT PEEL-OFF LENGTH: 75 BYTES
ATTRP EBU SCBDH
BORDCR EQU SCABH

%IF START LD L, 1FH ;HL=TOP-LEFT CORNER OF
2640 NXTCOL LD H, 40K $ SCREEN,

0603 LD B,3 100 A PAUSE

76 PAUSE HALT

10FD DINI PAUSE

3 NXTBYTE LD €, (HL) sBLANK OUT THE CURRENT
3600 Lo (HL),0 ;COLUMN, . ..

0608 LD 8,8

19 NXTROT AR C i++.PRODUCE ITS MIRROR
17 RLA $ IMAGE. ..,

10FR DINI NXTROT

NKTOP

NXTROW

NXTOP2

LD
RET
END

H

(HL)
(HL3, A
DE, 0021K
L, DE

AH

58K

N2, NXTBYTE
I

B, 16H

A, (ATTRP)
(HL),A
HL, DE
NXTOP

A, (BORDCR)
{HL) A
HL, DE
(HL),A
HL,DE

L

NI, NXTCOL
By 40

B, 0COH
(HL),D
HL, DE
NXTROM

A, (ATTRP)
B, 164
(HL) , A
HL, DE
NXTOP2

4, (BORDCR)
(HL) , A
HL, DE
(HL) , A

(AND OR IT WITH THE
sNEXT COLUMN TO THE LEFT.

jMOVE ONTO THE NEXT
sROW OF THE SCREEN.
{ARE WE AT THE BOTTON?

{1F NOT THEN REFEAT THE
1 PROCESS.

iNOK TAKE THE INK

jAND PAFER ETC., AND
{FILL OUT THE CURRENT
{COLUMN'S ATTRIBUTES,

;USE THE BORDER COLOK
{FOR THE BOTTON THO
;LINES.

{HAVE NE REACHED THE LEFT-MOST COLUMN?
$IF NOT THEN

FNEXT COLUMN

{BLANK OUT THE LAST

;COLUMN, ...

FILL IN ITS ATTRIBUTES...

AND RETURN TO BASIC.

CHAPTER9
MIRRORED CHARACTERS

Here is an amusing little routine whose sole effect is to
reflect each character on the screen in an imaginary vertical
axis dissecting each character cell. This gives the effect of
'mirror writing', and since the routine provides a reflection,
the operation is self-inverse, i.e. calling the routine again
will bring your characters back to normal.

The routine will also 'reflect' any graphics etc. that happen
to be on the screen: this in itself could be used to produce
some interesting kaleidoscopic effects.

Here is the code:

HEX. sMIRRORT LENGTH: 19 BYTES

210040 START LD HL, 4000H 15TART OF SCREEN.

4 NXTCELL LD Cy (HLY $TAKE A ROW.

0608 L B,8 ;B COUNTS RDTATIONS.

CR11 NXTRTIN RL 1 ;HOVE LEFT-MOST BIT

1F RRA JINTC CARRY AND THEN INTD A.

10FR DINI NKTRTTN FNEXT BIT

77 Lk (HLY (R ;RESTORE THE ROW.

2 INC HL sNEXT BYTE OF MEMORY,

T Lo AH {HAVE WE REACHED THE

FES® [S8R sATTRIBUTE AREA?

20F1 4 NI, NETCELL +IF NOT THEN CARRY ON,

('} RET ;ELSE RETURN TO BASIC.
END

PUT THIS IN A STAMPED ENVELOPE AND SEND TO:
In the United States of America return page to:
Melbourne House Software Inc., 347 Reedwood Drive,
Nashville TN 37217.

In the United Kingdom return page to:
‘Melbourne House (Publishers) Ltd., Melbourne House, Church Yard,

Tring, Hertfordshire, HP23 5LU

In Australia & New Zealand return page to:

Melbourne House (Australia) Pty. Ltd., Suite 4, 75 Paimerston Crescent,
South Melbourne, Victoria, 3205.

reflect any number of consecutive user-definable graphics
characters.

To use this routine, we must start by giving each graphic
character a number. To make it easy, I've used A = 1, B = 2 and
U = 21. A table of the alphabet may be useful:

A= 1 F-6 X —cid P - 16 U - 21
B -2 G=7 110 Q= 17
&3 H-8 M- 13 R - 18
D -4 I-9 N - 14 s - 19
£ & J-10 0-15 T - 20

If X is the start address, then POKE (X + 4) with the number of
the first character to be reflected, and POKE (X + 14) with the
number of characters to be reflected. As standard the routine
will reflect all of the UDG characters, and here it is:

HEX. {MIRROR2 LENGTH: 33 BYTES

NI T

N2 E 1SH
2A7B5C START LD ML, (SC7BH) {START OF THE UDG AREA.
3E01 0 AN ;CODE OF THE FIRST
3 DEC A s CHARACTER,
Y A A6 FMULTIPLY BY 8.
8 ADD A
87 ADD AR
5F W EA ;ADD THE RESULT T0
1600 00 iTHE UDG BASE.
19 ADD HL,DE
3€15 LD A N2 $THE NUNBER OF CHARACTERS
8 ADD AA $15 NULTIPLIED BY
8 ADD AA 18 T0 GIVE THE NUMBER
8 ADD A,A ;0F BYTES.
W cA
0608 NATRON LD B8 +B COUNTS THE BITS,
SE LD E, (HL) {REFLECT ONE BIT.
Ch13 NXTBIT RL E
IF RRA
10F8 DINI NXTRIT 1.+ EIGHT TINES.
7 L0 (HL) A sRESTORE THE BYTE,
3 e {ON TO THE NEXT ROM
00 BEC € SUNTIL ALL 1S DONE, THEN
20F3 JR NI, NXTRON .
09 RET sRETURN TO BASIC.

END

CHAPTER 10
MORE SPECTACULAR WAYS TO CLEAR THE SCREEN

In chapter eight I presented a new way of clearing the screen,
the 'carpet-roll' method. Here are two more techniques.
The first I have called "shifting" for want of a better word.
Every byte of the display file represents a row of eight
pixels. What the routine does is to shift those pixels along
by one pixel to the right. The leftmost pixel is replaced by a
PAPER pixel and the rightmost is lost. This process is
repeated eight times in quick succession, so, that the
resultant effect is a blank screen. The attributes file is then
filled out in the same way as for the CLS command.
As 1 said, the direction of this shift is to the right. For
slightly different effect (you guessed it, a shift to the left),
if X is the start address,

POKE X + 9,38 .
To restore the routine to its original form,

POKE X + 9,62 .
As usual, the routine can be called with the command

LET A=USR X .

HEX. RIBATSHIFT CLS LENSTH : 40 BYTES

1608 id L. 08K $FOR 8 BITS...
210040 NATSHFT LD HL, 40001 START OF DISPLAY
011800 LD LUO1BH gFiLE.

CBIE MT SRL $SHIFT THE BYTE

23 NG

10FR DINI tREPEAT 6143 TIMES
0p e ¢ '

20F8 NI, NXT

15 BEC D $NEXT BIT

69

20EF JR
JABDSC LD
7 LD
54 Lp
50 Lo
13 INC
01C002 LD
EDBO LDIR
34850 LD
n Lo
OE3F LD
EDBO LDIR
ce RET
END

The second new method for
by virtue of its effect.
is highly satisfying.

HEX +FADEQUT CLS
11FE8 LD
78 NXTFADE LD
07 RLCA
07 RLCA
07 RLCA
5F)
210040 LD
011800 LD
7€ MT LD
A3 AND
77 LD
3 INC
10FA DINI
0p DEC
20F7 IR
15 DEC
20E9 R
3A805C LD
7 L0
54 Ld
50 LD
13 INC
016002 LD
EDBO LDIR
A485C L0
7 LD
OE3F 0
EDBO LDIR
9 RET
END

NI, NATSHFT
A, (5CEDH)
(L), A
D.H

E,L

o€

BC, 020K
A, (5C48H)

(HL) ,A
€, 3FH

sTAKE 5.V, ATTR P
sFILL THE TOP 22 LINES
NITH 1T

s TAKE THE BORDER COLOUR
sFILL THE BOTTOM 2
sLINES WITH IT

tRETURN T0 BASIC

screen-clearing is called 'fade-out'
No POKES are required and the result

LENGTH 1 47 BYTES

DE, 08FEH
A,E

E,A

HL, 4000
BC, 0018H
A, (L)

E

(HL),A
HL

NXT

C

NI, NIT

D

NI, NITFADE
A, (SCBDH)
(L),
0,H

E,L

IE

BC, 02C0H

A, (SC4BH)
(HL) A
C,3FH

;D COUNTS THE BITS
1E IS A ROTATING MASK
{WITH ONE BIT RESET

1HL=5TART OF DISPLAY FILE

;TAKE A BYTE
1AND THE MASK
{REPLACE THE BYTE

{REPEAT 6143 TIMES

sNEXT BIT

1 TAKE SYSTEN VARIABLE
JATTR P

{FILL THE TOP 22 LINES
iNITH 1T

jTAKE' THE BORDER COLOUR
sFILL THE BOTTOM TWO
sLINES WITH IT

sRETURN TO BASIC

70

A COMPLETE AND DETAILED
BREAKDOWN OF USEFUL SYSTEM
VARIABLES

CHAPTER 11
SYSTEM VARIABLES AND THE KEYBOARD

Between the area in the RAM of the Spectrum which is used to
store the screen contents and that which is used to store your
BASIC program is a section of memory called the SYSTEM
VARIABLES area. It is here that the computer makes its 'notes
for future reference' such as what colour the screen border is,
which line of your program it is working on and which key is
being pressed.

In this section I will explain how you can use the system
variables to your advantage - and which ones to avoid! A full
list of the system variables and their addresses can be found
in Chapter 25 of the Spectrum Manual, here I shall elaborate on
some of the descriptions to be found therein.

CONCERNING THE KEYBOARD

1., Address 23556 will hold either

a) 255 if no key is being pressed; or

b) The CODE of the character printed in white on the left-hand
side of the key being pressed.

In the latter case the CODE can be thought of as that of the
character that INKEY$ would produce if the CAPS LOCK were on
and the key concerned were being pressed on its own.

This property can be used to advantage when using INKEY$ in

your program. Enter this program and see what effect CAPS SHIFT
or SYMBOL SHIFT has when pressed with another key:

71

10 REM To see how SHIFTS affect INKEY$

20 PRINT AT 0,0; INKEY$; " ": REM
4 spaces

30 GOTO 20

As you can see, the character produced depends not only on
which key is being pressed but also on whether any SHIFT key is
pressed. CAPS LOCK will also change the output. This leads to
complicated lines when using INKEY$. E.g. (after a game)...

1000 PRINT "Do you want another game? (Y/N)'":
PAUSE O:
IF INKEY$ = "Y" or INKEY$ = "y" or
INKEY$ = "AND'" THEN RUN
1010 STOP
We can get round this awkwardness by PEEKing address 23556. Try
this program.
10 REM Tidier INKEY$
20 PRINT AT 0, O; CHR$ PEEK 23556; " "y
30 GOTO 20.

You will find that whatever shift key is pressed, the character
produced is that which appears on the left-hand side of the
other key being pressed. Hence the solution to the above
problem is:

1000 PRINT "Do you want another game (Y/N)?"
: PAUSE O:
IF CHR$ PEEK 23556 = "Y" THEN RUN

1020 STOP.

There is one more invaluable benefit to be had from this
technique; if more than one key on the board is pressed then
CHR$ PEEK 23556 produces the character of the first key to make
contact, rather than nothing, as in the case of INKEY$. This

can be used to improve game control: so that if you accidentally
press another key whilst moving your LASER-base out of the way
of a bomb then you will survive to fight another battle, rather
than stopping dead (pun evident).

If you intend to use this idea a lot in your program, then it
might be as well to start off with

10 LET XEY = 23556
so that in future you will only need
IF CHR$ PEEK KEY = ... THEN ...

Incidentally, this saves a small amount of memory (both yours
and the machine's!).

2. LAST K: ADDRESS 23560

PEEKing this address will produce the CODE of the last key that
was pressed, whether or not you are still pressing it. As in

72

the case of address 23556, if more than one key is being
pressed then the CODE of the first key to be pressed takes
precedence. It is worth noting (perhaps) that although CAPS
SHIFT or SYMBOL SHIFT on its own does not affect INKEY$ or the
contents of 23560, together they produce CODE 14, which is
normally used to signify a number in the Spectrum BASIC
listing. These two keys affect the contents of location 23556
in the same way.

There are four other key combinations which produce values for
PEEK 23560 and CODE INKEY$ which do not appear in the Spectrum
Manual. These are as follows:

Keys normally used to produce ... Value of CODE INKEY$
GRAPHICS (CAPS SHIFT & 9) 15
TRUE VIDEO (CAPS SHIFT & 3) 4
INV VIDEO (CAPS SHIFT & 4) 5
CAPS LOCK (CAPS SHIFT & 2) 6
3. REPDEL

This location address 23561, holds the time that a key must be
held down before it begins to repeat. The time is measured in
50th of a second in Britain, 60th of a second in North America:
these intervals correspond to the time taken for one cycle of
mains current in the respective areas. REPDEL is initially set
at 35, but can be altered by POKEing 23561 with any integer
from O to 255. Note that the Spectrum takes the value of
REPDEL, decrements it and then checks to see whether zero has
been reached, so that POKEing REPDEL with zero will result in a
PAUSE of 256 rather than zero before the key repeats.

4. REPPER

Located at 23562, this system variable works in the same

fashion as REPDEL and controls the delay between successive
repeats of a key once a key has begun to repeat. Note again that
a value of O represents a PAUSE of 256 rather than zero. Some
idea of the potential speed of key entry can be attained by
POKEing REPDEL and REPPER with a value of one. This is best
attempted only in a program, since it is almost impossible to
type in the commands necessary to restore the variables to
sensible values once they have been reduced to such a level!

Try this program:

10 REM Changing REPPER and REP
DEL

20 LET A=PEEK 23561: LET B=PEE
K 23562

30 INPUT "Change REPPER to?"jr
epper , "Change REFDEL to?"jrepdel

40 PDKE 23561 ,repdel: POKE 235
62,repper

S50 INPUT "Try this , input spe
ed";A$

73

&0 POKE 23541,A: PDKE 23342,.,P
70 PRINT “"Values used:": PRINT
: PRINT "REPDEL=";repdel,"REPPE
R=";repper
80 INPUT “"Another combination
(y/n)?"; A%
90 IF As="y" THEN GO TO 30

Using the program you will be able to select the combination of
REPPER and REPDEL that suits you best. If you intend to do a
lot of typing, it may well be worth POKEing in these values
before you start. Note however, that NEW resets REPDEL to 35
and REPPER to its usual value of 5.

3. RASP

Location 23608 holds the length of that grating warning buzz
that occurs when your INPUT has spilled off the bottom of the
screen and you continue to try to enter the line. It may be of
interest that although the buzz occurs on every keystroke after
a screen overflow, the line is still being entered, and
(providing the syntax of the BASIC line is correct) the string
or BASIC line will still be acceptable to the Spectrum.

The value of RASP can be varied, from its initial 64 at power
up, between O and 255, and each increment of the value
corresponds to about one 65th of a second in the duration of
the tone. Thus one way of entering a very large REM statement
(in which to store machine code) would be to POKE RASP to its
lowest value of O (to speed up proceedings) and then to enter
the line all in one go. The following system variable should
also be set to zero for speed:

6. P1P

This is the length of the sound emitted from the Spectrum
(apart from the usual buzz) every time a key is pressed during
an INPUT or while in direct command of the computer. Initially
set at zero at power up, address 23609 can be POKEd to change
PIP up to its maximum of 255, which corresponds to about one
3rd of a second. Hence each increment corresponds to about one
765th of a second.

Note that neither RASP or PIP are affected by the NEW command.

74

CHAPTER 12
FORCING ERROR REPORTS

As you know, whenever you do something in BASIC that your
Spectrum does not like, it grinds to a halt and gives you one
of those annoying but none-the-less very helpful messages.
These are called 'Error Reports' and a list of them can be
found in appendix B, page 189 of the Spectrum Manual.

Whenever the Spectrum decides that it is about to deliver unto
you an error message, it gives the number or letter preceding
the message (e.g. R in "R Tape loading error'") a value, and
stores this value as the system variable 'ERR NR' (for ERRor
NumbeR) .

ERR NR can be found in location 23610, and the value for each
error report is decided as follows:

REPORT CODE ERRNR Value
0 to 9 Subtract 1 from report code (0 becomes
255)
A to R Add 8 to the position of the report code
in the alphabet. -

Hence code 9 has value 8, A has value 9, B has value 10 and so
on.

There are essentially two ways to force the computer to stop
with any required report code (apart from trying to make the

required mistake!)

The first method is totally in BASIC. You simply POKE the

75

appropriate value into ERR NR for the report required, and then
make sure the program ends without producing any more reports
(since these would alter the value of ERR NR). Perhaps the
easiest way to do this is as follows:

(any line) POKE 23610, [appropriate value] :
GOTO 9999
9999 REM

Note that the line 9999 is just a 'dummy' line whose sole
purpose is to ensure that 'GOTO 9999' does not produce the
report "0 OK'". There is one small snag, however; the line
number and statement number in the report will be '"9999:1". To
get around this, you can make use of the system variables PPC
(locations 23621 and 23622) and SUBPPC (23623). PPC holds the
current line number and SUBPPC the current statement number.
Hence in the above example we can produce the exact line and
statement numbers required in the report code, by POKEing in
appropriate values of PPC and SUBPPC.

If L is the line number required, change line 9999 from

9999 REM
to
9999 POKE 23621, L - 256 * INT(L / 256)%
POKE 23622, INT(L / 256):
POKE 23623, [statement number]

N.B. To cause a "O OK" report on the current line, insert the
command

POKE 23611, PEEK 23611 -128.
The second method involves one of the shortest pieces of

machine code you are ever likely to come across. It goes like
this:

Comment Mnemonic Hex
Call error routine RST 8 CF
Data byte = value of ERRNR DEFB (FF)

This is so short that it can be POKEd into the two spare bytes
to be found near the end of the system variables. They are
locations 23728 and 23729.

Hence to force an error report at any time in a program, use
the line: .

(Line L) POKE 23728, 207 : POKE 23729, [appropriate value
of ERRNR] : RANDOMIZE USR 23728

The line number in the report will be L, the statement number
will be three and the program will stop immediately.

76

NEWPPC, NSPPC

I have already mentioned PPC and SUBPPC, which store the
current line number and statement number respectively. NEWPPC
and NSPPC (not a charity) are normally used to store the line
number and statement number to be jumped to when GOTO and GOSUB
are being used.

One can use these variables to produce a sort of 'supercharged
GOTO' in that you can force the computer to jump to any
statement in any line.

NEWPPC is in locations 23618 and 23619, and NSPPC is in
location 23620. Hence to force a jump within the program to
(say) the 4th statement in line 10, use the line:

POKE 23618, 10: POKE 23619, 0: POKE 23620, 4.

Note that the POKE 23620, ... must always follow the other 2
POKES.

Generally, to force a jump to the nth statement in line L, use
the line:

POKE 23618, L -256 * INT (L/256): POKE 23619,
INT (L/256): POKE 23620,n.

The second POKE may be omitted if L is less than 256. If you
ever find yourself in a situation where you want to insert an
extra line into a block of program, there is not a spare line
number and no 'renumber' facility is available, then you could
insert the extra line as an extra statement in the line above
it and use the above technique to 'GOTO' the statement as
required. This is however a cumbersome process and any possible
use of a GOSUB to a subroutine in a 'less cluttered' part of
the program is to be much preferred.

77

CHAPTER 13
CHANGING MODES

MODE

This system variable occupies location 23617 and despite the
manual, the programmer can only use it to force a graphic (G)
mode prompt or an extended (E) mode prompt in the next INPUT
statement.

In graphics mode, MODE has the value 2 (bit 1 is set). In
extended mode, MODE has the value 1 (bit O is set, only valid
for one keystroke, as usual). Hence to force a graphic-mode
INPUT for A$, use:

POKE 23617, 2: INPUT A$

For extended mode use:

POKE 23617, 1: INPUT A$.

Unless A$ in the latter example becomes the empty string, the
E-mode will return to L-mode after the first keystroke. If
however A$ is empty or G-mode has been 'forced', then the mode
will remain the same for the next INPUT statement. Hence to
restore the prompt to the normal 'L', we use:

POKE 23617, 0

POKEing extended mode before an INPUT can be particularly
useful if repeated BIN functions are being entered.

78

CAPS LOCK

Having just mentioned how to produce G- and E-mode INPUTS, I
will 'jump the gun' up to location 23658, which is one of those
mysterious system variables given the description "more flags"
in the Spectrum Manual.

When the CAPS LOCK is on, bit 3 (value 8) of this location is
set. When the CAPS LOCK is taken off, the bit is reset (value
0). Hence to change all INPUTs and INKEY$ to capitals in a
program, use:

POKE 23658, 8;

and to produce 'lower case' or 'small letter' INPUTs and
INKEY$,

POKE 23658, 0.
This technique is a valuable alternative solution to the
problem discussed on page 72 regarding the fact that INKEY$ =
"Y" is different to INKEY$ = "y".

Hence instead of using the 'clumsy' lines such as:

|

120 IF INKEY$ = 'Y' OR INKEY$ = 'y' THEN PRINT
"yESII

130 IF INKEY$ = 'N' OR INKEY$ = 'm' THEN PRINT
"NO'I

|
i

we can use:

120 POKE 23658, 8 : IF INKEY$ = 'Y' THEN PRINT
IIYES"
130 IF INKEY$ = 'N' THEN PRINT "NO"

The use of this concept is most efficient when dealing with a
large number of conditional INPUT or INKEY$ statements.

79

CHAPTER 14
SCREEN COLOURS

BORDCR

Although the Spectrum normally protects the user from
accidentally setting the INK and PAPER for the two INPUT lines
at the bottom of the screen to the same colour, you can if you
wish, do so by POKEing the system variable BORDCR, location
23624, This may prove particularly useful if your computer is
on show and you wish to discourage prying little fingers from
ruining your program listing.

To produce the required effect:

POKE 23624, 8 * BORDERCOLOUR + INKCOLOUR : CLS
(the PAPER)

The CLS can be omitted if the computer is in 'direct command'
mode. The above line will change the INK and PAPER of the
bottom 2 lines of the screen, but to produce the appropriate
BORDER colour at the same time the line should be preceeded by
a BORDER command.

It is interesting to note that by using the above POKE location
we can make the input lines FLASH and/or BRIGHTer by adding the

following values to the number to be POKEd in:

128 for FLASH 1
64 for BRIGHT 1

80

The new value of BORDCR remains unaffected until the next
BORDER or NEW command.

EXAMPLE

(This one is particularly sickly!) To produce a magenta border
with yellow INK and magenta PAPER INPUT lines, FLASH 1 and
BRIGHT 1, use the line

BORDER 3: POKE 23624, 128 + 64 + 3 * 8 + 6: CLS
ATTR P, MASK P, ATTR T, MASK T

These variables simply store the values of INK, PAPER, BRIGHT
and FLASH that are currently being used. The 'P' stands for
Permanent and the 'T' for Temporary (i.e. enclosed in and onlv
operative on the current PRINT statement).

ATTR P and ATTR T are of little use; but for reference here are
the values which are added to make them:

ATTR = 8 * (PAPER COLOUR) + INK Colour + (128 for
FLASH 1) + (64 for BRIGHT 1)

ATTR P is in location 23693 and ATTR T is at address 23695.

MASK P and MASK T are more useful; any 'bit' of the one-byte
variables that is a 1 shows that the corresponding attribute
bit for PRINTing is to be taken from the cell at the current
PRINT position on the screen (as in the case of INK, PAPER,
BRIGHT and FLASH 8).

MASK P is at location 23694 and MASK T is at 23696. the main
point of interest with these variables is that we can set not
only the INK and PAPER to 8 but we can also restrict the effect
to only 1 or 2 of the 3 primary (blue, red and green) colours
that make up the eight available colours. This principle is
explained more fully with the SCREENOP routines in Chapter 3.
The constituent values for MASK P and MASK T are as follows:

BIT EFFECT VALUE
0 BLUE INK 8 1
i RED INK 8 2
2 GREEN INK 8 4
3 BLUE PAPER 8 . 8
4 RED PAPER 8 16
5 GREEN PAPER 8 32
6 BRIGHT 8 64
7 FLASH 8 128

255

81

CHAPTER 15
FRAMES:- THE HIDDEN TIMER

Hidden away in the darkest recesses of the system variables is
a constantly changing counter called FRAMES. This counter is
incremented 50 times per second in the U.K. and 60 times per
second in N. America. This frequency is equal to the mains
frequency in the area, and also to the number of times per
second a new 'frame' is sent to the television to update the
picture.

FRAMES starts off at zero when the computer is switched on and
increments every 20 milliseconds (16 2/3 in N. America) unless
a BEEP command, a cassette tape operation or one of the

hardware add-ons to the Spectrum (e.g. printer) is being used.
From this information we can at last see justification for the
1/50 or 1/60 of a second being the limit of a PAUSE statement.
"PAUSE n" simply means "wait until FRAMES has increased by n'".

FRAMES is located in 3 bytes: 23672, 23673, 23674. Each byte
has eight bits and so the maximum value of FRAMES is 224 _ 1 =
16777215, which in the U.K. corresponds to a time of 3 days, 21
hours, 12 minutes and 24.3 seconds since the count was started.
Hence if you leave your computer on for slightly longer than
this then FRAMES will go back to zero and start counting again.

The value of FRAMES can be found with the line:

PRINT PEEK 23672 + 256 * PEEK 23673 + 65536 *
PEEK 23674

This program demonstrates:

82

10 REM *#% To watch FRAMES *#»

20 LET FRAMES=234672

30 POKE FRAMES,0: POKE FRAMES+
1,0: POKE FRAMES+2,0

40 PRINT AT 11,1135 "FRAMES=";

50 PRINT AT 11,18;PEEK FRAMES+
256#PEEK (FRAMES+1) +65536#PEEK (
FRAMES+2)

&0 GO TO SO

The hidden potential of FRAMES is vast; it can be used to drive
a clock, to monitor a time limit in a game, to power an 'alarm
clock' (a good example of which can be found in "Over the
Spectrum', another Melbourne House book) or to run a stopwatch,
as in the following program. This program gives you all the
features to be found on a normal electronic stopwatch, with a
reading in tenths of a second. Since FRAMES is accurate to
0.01% (i.e. about 9 seconds a day), so is this stopwatch. More
information on FRAMES can be found in Chapter 18, page 129 of
the Spectrum Manual.

This listing is for areas with mains frequency 50 Hz; so if you
live in N. America (60 liz), change these values in line 150:

1.8 ES to 2.16 E5
3 E3 to 3.6 E3
50 to 60
5 to 6

And in line 130:

4320 000 to 5184 000

10 REM #*% STOPWATCH ##% & Davi
d M. Webb 1982
20 PAPER S5: BORDER S5: INK O: C

30 REM

40 REM T=TIME

50 REM

60 PRINT AT 9,133 INK 2; PAPER
63 "STOPWATCH"

70 PRINT AT 0,0;"PRESS:": PRIN
T BRIBHT 13"L“*3; BRIGHT 03" for
Lap time": PRINT BRIGHT 13"R"“j;
BRIGHT 03" to return to stopwatc
h"3s PRINT BRIBHT 13;"S"j; BRIBHT
03" to Start”: PRINT BRIBHT 13"
SPACE"; BRIGHT 03" to stop, THEN

"z PRINT BRIGHT 13"C"3 BRIBHT
03" to continue”: PRINT BRIGHT
13“X"; BRIGHT 03" to reset stopw
atch"

80 POKE 23658,8: REM caps lock

90 PLOT 100,89: DRAW 86,0: DRA
W 0,-12: DRAW -B6,0: DRAW 0,12:
REM display window

100 PRINT AT 11,133"0 :0 :0.0 "

110 PAUSE O: IF INKEY$<>"S" THE
N G0 TO 100: REM START

120 POKE 23672,0: POKE 23673,0:

POKE 234674,0

130 LET T=PEEK 23672+25&#PEEK 2
3673+65536#PEEK 23674: IF T>4320
000 THEN GO TO 120: REM ARE 24
HOURS UP?

140 LET T1=T

150 PRINT AT 11,133 INT (T/1.BES
13TAB 153"1"3: LET T=T-1.BES#INT

(T/1.BES): PRINT INT (T/3E3);TA
B 1B3":";

155 LET T=T-3E3#INT (T/3E3): FR
INT INT (T/50);3"."33 LET T=T-350#%
INT (T/50): PRINT INT (T/50)3;TAB

23: IF INKEY$="L" THEN PAUSE O

160 IF INKEY$<>" " THEN GO TO
130

170 LET F3=INT (T1/65536): LET
T1=T1-45536#F3: LET F2=INT (T1/2
S56): LET F1=T1-256#F2: REM F1,F2
+F3 ARE FRAME VALUES WHEN WATCH
WAS STOPPED

180 PAUSE 0O: IF INKEY$="C" THEN

POKE 23672,F1: POKE 23673,F2:
POKE 234&74,F3: 60 TO 130

190 IF INKEY$="X" THEN GO TO 1
00: REM RESET STOPWATCH

200 GO TO 180

n
n

3
0

T

W YO T

E
f
t
1
A
t
1

R TRk

CHAPTER 16
SCROLLING THE SCREEN

One problem frequently encountered by BASIC programmers on the
Spectrum is how to stop the 'scroll?" prompt appearing and how
to make the screen scroll at will, as the useful SCROLL command
on the ZX-81 has for some reason been omitted from Spectrum
BASIC.

There is a system variable called SCR CT (for SCRoll CounT),
and this has a value of one more than the number of lines the
screen will be scrolled upwards by before stopping with
"scroll?" (hence normally SCR CT is less than or equal to 23).
Therefore, to keep the computer from stopping, we must POKE a
value of SCR CT greater than one (255 will do).

SCR CT can be found at location 23692. This little program
shows you how it works:

10 PRINT AT :21,. 31!
20 PRINT PEEK 23692
30 GOTO 20

Line 10 forces the first "scroll?" prompt. Note that the PEEK
function in line 20 is evaluated before PRINTing starts, hence
the value printed corresponds to the state of SCR CT after the
previous number had been PRINTed.

To stop ''scroll?" occuring use:

POKE 23692, 255

and preferably do this in a program loop so that the value of
SCR CT never reaches 1, as it otherwise would after the screen
had scrolled 254 times.

To simulate a ZX-81-type SCROLL, do this:
POKE 23692, 255: PRINT AT 21, 31 * ' AT 21, O;

(Note the two single apostrophes). This makes the computer prepare
for printing on the next (as yet unseen) line below the bottom line
of the user's screen area, and in doing so SCROLLS the screen

up a line and sets the 'print position' at 21,0. Allow me to
elucidate:

10 LET as$="Press any key to SC
ROLL me."

20 FRINT a$

30 PAUSE 0O: REM WAIT

40 POKE 23692,255: PRINT AT 21
s31°"AT 21,03: REM SCROLL

S50 PRINT a$: REM PRINT POSITIO
N HAS BEEN SET TO 21,0

60 GO TO 30

There is, in fact, another way of producing a SCROLL-type
function. In the Spectrum ROM at address 3582 begins the
routine that performs the actual scroll that we can force, as
shown above, from BASIC. This machine-code routine can be
called using the USR function, like so:

RANDOMIZE USR 3582.
This will scroll the screen up a line. Note that the PRINT
position is unaltered, and so to imitate the ZX-81 SCROLL we
must use:

RANDOMIZE USR 3582: PRINT AT 21, 0;

Incidently and conversely, if you wish to produce a '"scroll?"
prompt then:

POKE 23692, 13 PRINT AT 21, 31
or the 'direct call' version,
RANDOMIZE USR 3213

will do nicely!

CHAPTER 17
REDEFINING THE CHARACTER SET: 96 MORE GRAPHICS

Apart from the fact that twenty-one user-definable graphic
characters are available on the Spectrum, it is also possible
to redefine the 96 characters (CODES 32 to 127, SPACE to (c))
whose normal "patterns" are held in a table in the ROM.

The character table begins at address 15616 and ends at address
16383 (the last byte of the ROM). Just like user defined
graphic characters, the entry for each character in the table
consists of eight consecutive bytes, one for each 'row' of the
character. Each byte has, of course, eight bits, one for each
column. The entries in the table are arranged in order of
character CODE. Let me demonstrate with a program that examines

the table and reproduces the characters at 16 times normal
size:

10 REM Letter, ' David M. Webb

20 PAPER 2: INK 7: BORDER 2: C
LS

30 FOR A=15616 TD 15616+95%8 S
TEP 8: REM 96 CHARACTERS

40 FOR B=A TO A+7: REM CHARACT
ERS HAS EIGHT ROWS

90 LET B$=""3 LET C=PEEK B

60 FOR D=0 TO 7: REM EACH ROW
HAS EIGHT BITS (1..0)

70 LET B$=B$+(" " AND C»*2<256

Y+(" " AND C#2>=256): REM IS TH
E BIT AN INK(1) OR A PAPER(O) DO
T

87

80 LET C=C»2-2546%#(C>127)
20 NEXT D

100 PRINT B#$ 'B#$

110 NEXT B

120 BEEP .2,30

130 PRINT AT 0,0

140 NEXT A

Some copies of the screen:

There is a two-byte system variable called CHARS, the value of
which is 256 less than the address of the character table (i.e.
usually equal to 15360). CHARS can be found in locations 23606
and 23607, and hence its value can be checked by:

PRINT "CHARS = '"; PEEK 23606 + 256 * PEEK 23607.

The great virtue of CHARS being a system variable is that we
can move the 'base address' of the table to wherever we like by
altering CHARS, and then if the new base address is in an
appropriate area of spare RAM we can redefine part or all of
the characters, just as we can with user-defined graphics.

This gimmicky little program "encodes'" any phrase you INPUT by
moving the base of the table up by one character (eight bytes)
so that 'A' becomes 'B', 'C' becomes 'D' and so on. The string
is printed out with the new character set and then CHARS is
POKEd back to normal.

10 INPUT A$

20 PRINT "In code that is';
30 POKE 23606, 8

40 PRINT A$

50 POKE 23606, O

It is very important to note that, although the 'pattern'
representing each CODE is different if CHARS is altered, the
actual meanings of all the command- and function-words are
exactly the same; the computer simply represents these words
with numbers or "tokens'", so that while

88

PRINT A$ would look like QSJOU!BY%

in the above program LISTing, it would still mean "print out A$
on the screen'" to the computer. In other words, altering the
character table does not affect normal usage of the machine -
it just makes listings and text nearly impossible for the user
to understand! To see what I mean, leave out line 50 of the
above program and press (ENTER) after it has RUN.

Right then, enough of that gimmickry and on to more serious
applications of CHARS. You may well find a time when you have
used up all the 21 user-defined graphics available on the
Spectrum, or when you want the BASIC SCREEN$ to recognise your
graphic characters. This is the time to call on a technique for
changing the character table.

First of all, we need to CLEAR an area of memory to accommodate
the new table. Using all the characters, this will be 96 x 8 =
768 bytes long. Next it is usually a good idea to copy the
existing table into the new table area. We then alter CHARS
appropriately so that it is 256 less than the address of the
start of the new table. At this stage things will appear as
normal, since the new table is exactly the same as the old one.
It is, however, in RAM. We can therefore redefine any character
we like using the BIN function in a very similar way to that
used with the user-defined graphic characters (see Chapter 14,
page 92 of the Spectrum manual).

If at any time you wish to revert to the normal table,

POKE 23606, O0: POKE 23607, 60.

I have written the following program partly for its functional
usefulness and partly to illustrate how to manipulate the
character set using the procedure outlined above. With the
program, you will be able to move, alter, SAVE and reLOAD any
character set you desire. To exercise the SAVE option, enter as
a direct command

GOTO 300

All other options are presented automatically when the program
is RUN. Please feel free to make alterations and improvements
to the program - you could for example add the option of
defining the characters by moving a cursor over an 8 by 8 grid.
It is obvious that having so many more graphics characters
available dramatically improves the quality of many games: I
leave it to the reader to further exploit CHARS.

10 REM To redefine the cha
racter set

20 REM first we clear some spa
ce

30 60 s8UB 310

40 INPUT "Shall I clear some m
ore space?";A%$: IF A$<>"Y" AND A
$<>"y" THEN GO TO &0

89

50 CLEAR RAMTOP-768: REM 7&B=8
(NUMBER OF CHARACTERS ROUTINES)
60 GO SUB 310
70 REM NOW WE COPY UP THE OLD
TABLE
80 INPUT "Shall I copy up the
old table ?";A%: IF A${>"Y" AND
A$<>"y" THEN GO TOD 110
20 INPUT "Shall I LOAD a table
from tape?";A$: IF A$="Y" OR A$
=“y" THEN LOAD ""CODE RAMTOP+1,
768
100 60 TO 150
110 PRINT “Hang on...": FOR a=1
TO 768
120 POKE RAMTOP+a,PEEK (15615+a
)
130 NEXT a
140 REM THEN WE ALTER CHARS
150 LET CHARS=RAMTOP+1-256
160 POKE 234606,CHARS-256%INT (C
HARS/256)
170 POKE 23607,INT (CHARS/256)
180 PRINT "The value of CHARS i
s "3;CHARS
190 REM FINALLY WE DEFINE ANY C
HARACTERS
200 GO SUB 310: INPUT "Alter wh
ich character?"; LINE A$
205 PRINT CODE A$;AS$
210 IF LEN A$<>1 OR CODE A$<{32
OR CODE A$>127 THEN GO TO 200
220 LET ENTRY=RAMTOP+1+8#% (CODE
A$~32): REM THAT IS WHERE THE PA
TTERN IS
230 FOR R=0 TO 7: REM ONE ROW A
T A TIME USE THE BIN FUNCTION TO
INPUT THE PATTERN
235 POKE 23617,1: REM EXTENDED
MODE
240 INPUT ("ROW "3;R;" "3)3;ROW:
IF ROW<O OR ROW>255 THEN GO TO
240
250 POKE ENTRY+R,ROW
260 NEXT R
270 GO TO 200
280 REM SPECIAL SAVE SECTION
290 GO SUB 310
300 SAVE "Characters"CODE RAMTO
P+1,768:1 BTOP
310 LET RAMTOP=PEEK 23730+256#P
EEK 23731
320 RETURN
330 REM &) DAVID M. WEBB 1983

CHAPTER 18
MEMORY LABELS

There is a whole group of system variables or 'labels' which
the computer uses to 'keep an eye' on the state of its memory
for example to know where the program begins, where the BASIC
variables start and so on. Most of these labels are of little
interest to the programmer: detailed here are the ones that are
worth noting.

1. PROG

Locations 23635 and 23636 tell the computer where the PROGram
starts.

PRINT PEEK 23635 + 256 * PEEK 23636

gives the value of PROG. Add five to this and you have the
location of the first character after the REM statement, if the
first program line is

10 REM Lots of characters to store machine code
in., >

Hence if you wish to store machine code in a REM statement at
the beginning of the program, then you simply create a long
enough REM statement (one character per byte) and find the
start address by adding five to the value of PROG. Note that
without any microdrives etc. attached, PROG is always equal to
23735,

The other possible use of PROG is to produce a more permanent

91

copyright statement at the beginning of the program. First
enter the copyright line in the usual way at the beginning of
the program, then evaluate PROG and finally

POKE (PROG), O: POKE (PROG + 1), O

If the old line number is less than 256 then the first of the 2
commands can be omitted. What the procedure does is to
'renumber' the first line of the program to zero, thereby
making it impossible to EDIT or remove the line without POKEing
the number back above zero again. A zero first line number can
also be produced with the machine code renumber routine in this
book, as explained in Chapter 24.

2. VARS

VARS holds the address of the BASIC VARiables, and is itself
held in locations 23627 and 23628, so its value can be found by

PRINT PEEK 23627 + 256 * PEEK 23628

The BASIC variables are situated directly after the BASIC
program in the Spectrum memory, and hence we can find the
actual length of a program by subtracting PROG from VARS, thus:

PRINT "Program is''; 256 * (PEEK 23628 - PEEK
23636)
+ PEEK 23627 - PEEK 23635; '"bytes long'.

- quite a mouthful but the only way in BASIC (see Chapter 23
for the equivalent machine code routine).

3. RAMTOP and STKEND

I have put these two otherwise unrelated system variables
together because they can be used to estimate the amount of
memory left to the user. Refering to page 165 of the Spectrum
Manual you will notice that the only things between the
pointers STKEND and RAMTOP on the memory map are spare memory
and the usually small machine stack and GOSUB stack.

RAMTOP is evaluated by:
PRINT PEEK 23730 + 256 * PEEK 23731

and STKEND by:
PRINT PEEK 23653 + 256 * PEEK 23654

Alternatively, as luck would have it, the Spectrum ROM contains
a routine that returns the value of STKEND, thus:

PRINT USR 7962
To estimate the amount of memory left then, just subtract

STKEND from RAMTOP. All this can obviously be a tedious
process, so if you intend to use the function frequently it is

probably as well to use the more accurate (it doesn't count the
2 stacks) machine code routine in Chapter 23.

4. DATADD

If you have 'READ' an unknown way along a DATA line and
suddenly have to do a CLEAR or a RESTORE command to another
line then you will lose your position on the first DATA line.
Shotild you wish to retain it, DATADD may be of use.

DATADD holds the address of the comma after the last DATA item
that was READ in the program, and can be found at address
23639, so to store the position on the line,

LET DATADD = PEEK 23639 + 256 * PEEK 23640

Then whenever (if ever) you wish to go back to that position
after DATADD has been altered, you can restore DATADD (excuse
my pun) as follows:

POKE 23640, INT (DATADD/256)
POKE 23639, DATADD - 256 * INT (DATADD/256)

5. UDG

UDG holds the address of the first user-defined graphic
character (CHR$ 144) and is itself held in locations 23675 and
23676. There are 21 user-defined characters, and hence the
length of memory they ocupy is 21 x 8 bytes = 168 bytes.
Conveniently enough, this is less than the 256 bytes to be
found in the area normally used by the printer, the PRINTER
BUFFER.

If you are:
a) running out of memory, and
b) not using the ZX printer,

then you can increase the spare memory left for your program by
168 bytes by moving the user defined graphics from the top of
memory down to the printer buffer and then CLEARing RAMTOP to
the last byte of free memory.

The printer buffer is 256 bytes long and begins at address
23296. Many of the routines in this book use the early part of
the buffer as a storage area, so to 'play safe' we will take
the last 168 bytes of the buffer in this case.

This program moves the graphics and alters UDG.
Note that, as always, UDG = USR "a"

10 REM 'GRAPHIC SHIFT'

20 LET NEWUDG = 23384

30 FOR A = 0 TO 167

40 POKE NEWUDG + A, PEEK (USR "a" + A)
50 NEXT A

60 REM ADJUST UDG
70 POKE 23676, INT (NEWUDG/256)
80 POKE 23675, NEWUDG ~ 256 * INT (NEWUDG/256)

Precisely the same function is fulfilled by a fast, short
machine language routine:

HEX. sHEMORY LABELS LENGTH: 16 BYTES

ube EQy SC7BH
2ATRSC START LD RL, (UDG) +HL=0LD UDB
ED5BS8SR Lo DE, (3RSBH) 3yDE=NEW UDE.
EDSI7BSC LD (D6}, BE $5TORE NEW UDEB
016800 LD BC, 148 1BLOCK SHIFT 168 BYTES
EDBO LDIR ;0F GRAPHICS.
cs RET +RETURN TO BASIC,

END

We have not quite finished; to create new spare memory we must

increase RAMTOP by 168 to its maximum value of 32767 (16K

machines) or 65535 (48K). Simply do this with a CLEAR command:
CLEAR 32767 (16K) or CLEAR 65535 (48K)

It is perhaps worth mentioning that another way of doing a
'block shift' of the graphics (or any other data for that
matter) is to SAVE it from one address using SAVE... CODE m,n
and then LOAD back to another address using LOAD... CODE. This
can be, and in most cases is, the slowest and clumsiest method
for block shifting, but if you have a Microdrive then it may
well prove to be highly practicable.

CHAPTER 19
DF SZ AND SOFTWARE PROTECTION.

DFSZ holds the number of lines in the lower INPUT part of the
screen, This is normally two, but can be altered with care.

On the earlier ZX-81 machine it was quite feasible to PRINT on
the two INPUT lines by POKEing DF S8Z to zero and then using
"PRINT AT 22,0..." or "PRINT AT 23,0...". In the case of the

Spectrum, one must be more careful when DFSZ is set to zero, if
one is to avoid a 'crash'.

Since DFSZ holds the number of lines in the INPUT and message
area of the screen, if it is reduced right down to zero then

there is no room for messages or 'reports' to be printed, and
whenever the computer tries to print in this area, due to the
lack of a "failsafe" device in the ROM which would alter DFSZ
to make room for the message, the computer crashes. So, if you
must alter DFSZ to zero, then remember the following points:

1. Do not use any INPUTS or SAVE commands.
2. Do not allow the Spectrum to try and piint "Scrolli™.

3. Do not press '"BREAK" or the Spectrum will try to print a
report and line number, etc.

4. Do not use "PRINT AT 23,...'" This is because for some reason
the ROM has been programmed only to accept rows O to 22, and so
"PRINT AT 23,..." would produce an attempt to print the error
report "B Integer out of range".

DFSZ can be altered to between 1 and 24 with none of the above
problems and if altered to 1 then "PRINT AT 22,..." is
acceptable. In order to reach the very bottom line if DFSZ is
zero, (PRINT AT 22, 31 ') will have to be used, since "PRINT AT
23,..." is unacceptable.

There is, as luck would have it, a far better solution to the
problem hidden away in Sinclair BASIC. It would seem that
whoever wrote the Spectrum manual either forgot to mention or
didn't want us to know that there exists a function allowing
you to print in the input area. I stumbled on it one day during
one of those "I-can't-think-what-to-write'" sessions.

To print in the area (using the "AT" coordinates found in some
INPUT statements) use:

PRINT # 0 ; (normal print items)

In fact there are 4 values that currently follow "#" (the
Microdrives may use more), they are 0 and 1 for printing in the
lower half of the screen, 2 for printing in the upper part (as
normal) and 3 for sending items to the printer (as in LPRINT).

PROTECTING BASIC PROGRAMS

Point 3. above can come in handy if you want to stop people
"breaking into' and copying your BASIC programs. By POKEing
DFSZ to zero you ensure that any attempt to BREAK the program
will produce a distinctly unconscious Spectrum. This idea would
be best used in conjunction with the following SAVEing
technique.

As you probably know, you can stop a program 'auto-running"
from tape when it has been stored with a SAVE... LINE...
command by first NEWing the computer and then using MERGE " "
rather than LOAD " ". This has proven to be rather a problem
for software companies who were trying to prevent copying of
their programs. One way round the problem is to SAVE the
program as a block of code by inserting the following lines at
the end of a program:

9010 LET STKEND = PEEK 23653 + 256 * PEEK 23654
9020 SAVE " [name] '* CODE 23552, STKEND -23500
9030 RUN

This SAVEs the entire user area, including program, calculator
stack, BASIC variables and system variables as a block of code
onto tape, so that when the whole lot is brought back using a
LOAD "(name)'" CODE command the computer carries on exactly
where it left off, i.e. by executing line 9030, RUN.

Now obviously you cannot MERGE a block of code, but it is not
impossible for someone to CLEAR RAMTOP to a low enough address,
LOAD the code up immediately above it, decipher the old value
of STKEND in order to calculate the length of the block and
then to re-SAVE it onto a new tape. In order to counter this
possibility you could substitute the following lines:

9010 LET STKEND = PEEK 23653 + 256 * PEEK 23654

9020 LET A = INT(RND * 256)

9030 SAVE " [name] " CODE 23552 - A, STKEND —
23500 + A

9040 RUN

This introduces a new element of randomness in that our phantom
copier does not now know from which address the code is SAVEd,
since a part of the printer buffer of random length A is also
SAVEd at the beginning of the block of code, thereby dislodging
STKEND to an unknown position in the block. Hopefully at this
point our "pirate" will have given up and moved on to someone
else's less-protected program, but it has to be said that
ultimately it is possible to break into any program given time
and patience - we can only make it harder to do so.

CHAPTER 20
MISCELLANEOUS SYSTEM VARIABLES

1. § TOP

S TOP, for Screen TOP, holds the number of the program line
which appears at the top of the screen in automatic listings.
STOP can be found in locations 23660 and 23661.

2. OLDPPC and OSPCC

OLDPPC and OSPCC hold the line number and statement number
respectively that CONTINUE would jump to after a '"'BREAK into
program'". Hence if you have just stopped the program, pressed
newline which deletes the message, and can't remember what line
you were at, then these variables will tell you.

PRINT PEEK 23662 + 256 * PEEK 23663
will tell you which line number is next, and

PRINT PEEK 23664
will tell you which statement.

3. COORDS

Addresses 23677 and 23678 respectively hold the X and Y
coordinates of the last point plotted. These can be treated as
two extra BASIC variables when using a PLOTing or DRAWing
program; if you start a program with

LET X0 = 23677: LET YO = 23678

then whenever you need to know the last point plotted,
PEEK X0 and PEEK YO will be fine.

To draw a line from the last point plotted to (A, B)
DRAW A - PEEK X0, B - PEEK YO

You can also POKE COORDS to alter the PLOT position without
actually PLOTting a point or DRAWing a line.

S POSN

S POSN holds the current print position, but not in the way
that you would expect. If you have just PRINTed at A, B then

location 23688 holds 33 - B,
location 23689 holds 24 - A.

Hence to find your current print position in the '"conventional"
format (A, B):

LET A = 24 - PEEK 23689
LET B = 33 - PEEK 23688

If you intend to use this a lot in any one program (perhaps in
conjunction with SCREEN$), then it is worth using DEF FN
statements for the two values, i.e.

:DEF FN Y() = 24 - PEEK 23689
:DEF FN X() = 33 - PEEK 23688

]

SEED
Seed is the system variable that was used to generate the last
trandom' number, and is located at addresses 23670 and 23671.

Try this:

PRINT RND, (PEEK 23670 + 256 * PEEK
23671)/65536.

You will see that the two values printed are equal. Every time
RND is used, SEED is altered by the computer as follows:

New SEED = (75 (SEED + 1)) mod 65537 -1
This corresponds to the BASIC line

LET SEED = 75 * (SEED + 1): LET SEED = SEED
-65537 * INT (SEED/65537) -1

The new value of SEED is stored away and then divided by 65536
to produce a value of RND between O and 1, the latter being
exclusive.

Whenever RANDOMIZE is used, this just moves the first two bytes
of FRAMES into SEED, so that the next time RND is used the
computer will produce a psuedo-random number at a different
position in the sequence of 65536 different numbers that the
above function generates.

This shows that FRAMES is moved into SEED by RANDOMIZE.

10 RANDOMIZE

20 LET SEED - PEEK 23670 + 256 * PEEK 23671
30 LET FRAMES = PEEK 23672 + 256 * PEEK 23673
40 PRINT "SEED ="; SEED, "FRAMES ='; FRAMES

There will be a small difference between SEED and FRAMES since
FRAMES is still increasing while the program is being RUN.

DFCC and DFCCL

These two variables hold the address in the display file of the
two print positions, one for the top part of the screen and the
other for the INPUT area. Due to the odd arrangement of the
display file it is not normally desirable to PEEK and POKE the
screen; we have POINT, PRINT and SCREEN$ (see SCREEN$2, an
improved function in this book) for that. The actual layout of
the memory map is explained fully on page 164 of the Spectrum
Manual, and as a consequence of this layout, if the print
position is Y, X then

DFCC = 2048 * INT (Y/8 + 8) + (Y - 8 * INT
(Y/8)) * 32 + X.

Don't forget that each character on the screen is stored in
eight bytes in memory (one for each row). The addresses of the
eight bytes for any one character are 256 apart, and so if the
first row is at DFCC, then the second is at DFCC + 256, the
third at DFCC + 512 and so on. This program will illustrate; a
graphic character is POKEd into a random position and then
animated by further POKEing. Line 20 sets the print position
and then line 30 reads DFCC, which is located at addresses
23684 and 23685. As you will see, the effect produced by
POKEing instead of PRINTing is considerably slower than the
latter and 1 can think of no reason to justify its substitution
for the same in normal BASIC programming.

10 REM POKING TO PRINT
15 BORDER O: PAPER O: INK &6: C

LS

20 PRINT AT INT (RND#22) ,INT (
RND#*32) 3

30 LET DFCC=PEEK 23&684+25&6#PEE
K 23685

40 FOR C=0 TO 1

50 FOR A=DFCC TO DFCC+7#%256& ST
EP 256

60 READ B: POKE A,B: NEXT A

70 NEXT C

100

B0 RESTORE : GO TO 40

90 DATA 24,60,126,25,31,254,460
+24

100 DATA 248,60,23,15,15,23,40,
248

PFLAG

This system variable holds the "switches" or FLAGS for the
printing values PAPER 9, INK 9, INVERSE and OVER. There are two
bits for each of these; one for the temporary value and one for
the permanent one. The temporary values are those caused by
inserting the functions into a PRINT statement in order to
affect just that command, the permanent ones are used
otherwise. Here are the values:

TEMPORARY PERMANENT
lFUNCTION BIT VALUE BIT VALUE
OVER 1 0 : | 1 2
INVERSE 1 2 4 3 8
INK 9 4 16 5 32
PAPER 9 6 64 3 128

P FLAG is situated in location 23697, and by adding up the
values of the functions desired from the table above, you can
set them all in one go by POKEing P FLAG.

Hence to set a permanent OVER 1; INVERSE 1; INK 9; PAPER 9;
just

POKE 23697, 170

- a lot more succinct, and memory-saving!

101

102

ROUTINES TO IMPROVE BASIC
COMMANDS

CHAPTER 21
SCREEN $ 2

If you have ever tried to use the SCREEN$ function on the
Spectrum to recognise a user-defined graphic character (such as
a space invader) or one of those 'chunky'" graphic characters
that consists of four.squares or "blocks'", each of which may be
INK or PAPER, then you will have found that the function does
not work and that the result is an empty string. This can be
illustrated with a short program:

10 PRINT AT 10, 15; " gM"
20 PRINT AT 1, 1; "The character at (10, 15) is
"; SCREEN$ (0,0)

In this case the character that the function does not recognise
is CHR$ (137), but the same applies to all characters whose
CODE ranges from 129 to 164 (if the CODE is greater than 164,
then the corresponding 'keyword'" is made up of characters
recognised by SCREEN$).

This deficiency in SCREEN$ makes it almost useless, since it is
usually needed when writing graphical ganfes (e.g. to detect
whether you, the defender are about to be annihilated by an
alien's carelessly placed mask grenade). For this reason I
bring to you an alternative SCREEN$, named SCREEN$2 (points for
imagination...?).

SCREEN$2 will look at any character 'cell' on the screen and
come back to you with its CODE. If there is no character, but
just a selection of PLOTted points on that cell, then the
result will be zero.

103

HOW TO USE SCREEN$2

Take the coordinates of the cell (these range from (0, 0) to
(23, 31) and POKE them into addresses 23354 and 23355
respectively. So for SCREEN$ (10, 21):

POKE 23354, 10
POKE 23355, 21

Now, if you intend to '"call' the routine more than once, it is
easiest to define a variable:

LET SCREEN = (start address of SCREEN$)

Thirdly and finally, you use the USR function to return the
character at cell (L, C) (for Lines, Columns). This is best
illustrated by showing a sample of program lines using SCREEN$
(most of which may not work) and their equivalents using the
machine code routine (all of which will).

Using SCREEN$ Using SCREEN$2
LET L'= 5 : LET C'= 10 POKE 23354, 5 : POKE 23355 10
LET SCREEEN=[start address]
LET A$=SCREEN$(L,C) LET A$=CHR$ USR SCREEN

IF USR SCREEN = 144 THEN PRINT
IF CODE SCREEN$(L,C) = 144

THEN PRINT

"The character at (5, 10) is "The character .at (5, 10) is
a graphic a" a graphic a"

PRINT AT 0,0;SCREEN$(L,C) PRINT AT 0,0; CHR$ USR SCREEN

If there are character cells on your screen whose contents are
unrecognisable as a character, and there is a possibility that
your program will test those cells with SCREEN$2, then in that
case the value zero will be sent back after using the routine.
Now obviously

PRINT CHR$ USR SCREEN
will not then make a great deal of sense to the Spectrum, and a
question mark will be printed. To stop this occuring, you
should incorporate the function "AND USR SCREEN" like so:

PRINT CHR$ (USR SCREEN) AND USR SCREEN

This means

"PRINT CHR$ (USR SCREEN) only if USR SCREEN > 0"

A longer-winded version would be:

IF USR SCREEN < >0 THEN PRINT CHR$ USR SCREEN.

104

Here then is the routine, followed by a short "demo'" program.

HEX. {SCREENSZ LENGTH: 129 BYTES

CHARS EQU 5C3eM

U EQu SC7RM
ED4B3ASE START LD BC, (SE3AH) 1C=LINE, B=COLUMN
79 Lo EN {LOCATE THE ADDRESS GF
£A1B AN 1BH $THE FIRST RGW OF THE
Lo40 A0 A 40H SCHARACTER CELL IN THE
&7 Lo iy $GCREEN MENDRY,
7 i ac
& a0 AR
& A0 A8
Y A0 Ah
Y A0 4,h
a7 A AR
8 A AR
oF LD LA $8ET THE 'CODE’ 70 32
0E20) £,20H + (SPACE] AND START SCANNING
EDSE36SC Lo DE, {CHARS! +THROUGH THE CHARACTER
14 N D $TARLE,
ES NXTCHAR PUSH HL
0408 Ld 8.8 $COMPARE EACH ROW OF THE
14 NITRON LD A, (DE) ;CURRENT CHARACTER IN THE
BE ce (HL) {TABLE WITH THAT OF THE
2006 IR NI HOP1 ;CHARACTER CELL, AND IF &
2% NN W sRON 15 NOT EQUAL TO THE
13 N BE sCORRESPONDING ONE IN THE
10F8 0JNI NATROK $CHARACTER CELL THEN MOVE
£l PP WL sON T0 THE NEXT CHARACTER

1IN THE TABLE.

] RET 1IF THE CHARACTER CODE
£l HOPL PO WL {445 BEEN FOUND THEN RETURN
13 MTD INCOE $70 BASIC,
16FD NRI NATH
o I C
n) 4,6
FEAS ce 04SH
280C IR 1, BLEKCHK
FEai b 80K
2065 IR NI, NITCHAR
0€90 L0 €, 90H
£15R785C LD OE, {UD6) {NON CHECK FOR A USER -
1800 IR NXTCHAR :DEFINED GRAPHIC CHARACTER.
&5 BLCKCHK PUSH WL (NN 175 EITHER A *CHUNKY'
0608 Lo 8,8 {BRAPHIC OR NOT A CHARACTER
7E NXTRONZ LD A, (HL) {IN THE CELL. S0 CHECK 70
i NG A sSEE IF THE CELL DOESK’T
810 IR 1,0 {CONTATN A ° CHUNKY
30 L & 1GRAPHIC’, AND IF S0...
2800 IR 1,0
FEOF p OFH
2809 R 1,0
FEFD P OFGH
2805 R’ 1,0K

105

410000 NGCODE LD BC,0 t... THEN RETURN TO BASIC

3] PP HL {WITH CODE IERD. THE

] RET $CHARACTER 1S A *CHUNKY’

2% e N A 1GRAPHIC CHARACTER. THIS

10£9 DINI NXTRONZ $ALGORTTHM TAKES DECIMAL

3| PP HL {128 AND ADDS ON THE VALUE

0E80 LD £, 80H 10F ANY OF THE FOUR BLOCKS

1401 Lb 5,1 $11,2,4,8) THAT IS INK.

1E0F NXTHALF LD £,0FH +D HOLDS THE VALUE OF THE

£S NITZ PUSH ML ;CURRENT *BLOCK" BEING

0404 L B4 {CHECKED, B COUNTS THE RONS

7 NXTRON3 LD Ay (HL) i~ THE CHARACTER IS SCANNED

A3 a ok $IN THO HALVES:- TOP

B TP £ {AND BOTTOM,

2006 IR NI, HOF2

% N W

10F8 DINL NXTRON3

] LD a,c

& ADD A,D

o L C,h

CB22 WOPZ SLA D 1D 15 DOUBLED,

i) AE

87 Y

7 ADD A,A

8 A AA

8 A A

SF LD)

£l POP HL

2067 R NI, NAT2

£862 BIT 4D 11F D{16D THEN THE

2803 R 1, NOTDONE ;CALCULATION IS NOT YET

0600 DONE LD B0 {FINISHED, ...

£9 RET

CBD4 NOTDONE SET 2,M 1...50 MOVE ON TO THE NEXT

1808 R NXTHALF {HALF OF THE CHARACTER.
END

Here is the demonstration program: not spectacular but it gives
you a glimpse of the vastly improved potential of SCREEN$2 by
displaying all of the characters available on the Spectrum and
then using SCREEN$2 to place them elsewhere on the screen.
Notice that line 30 depends upon where you have located the
routine in memory.

10 REM SCREEN$2 DEMONSTRATION

20 FOR a=0 TO 167: POKE USR "a
"+a, INT (RND*256)

25 NEXT a

30 LET screen=63200

40 POKE 23354,0: REM 1

50 POKE 23355,0: REM c

60 FOR a=32 TO 164

70 PRINT AT O0,0;CHR$ a

80 PRINT AT 1,13;CHR$ (USR scre
en) AND USR screen

90 PAUSE 30

100 NEXT a

106

CHAPTER 22
PAUSE MK.2

You may have noticed while programming with the PAUSE command
on the ZX-Spectrum that it doesn't always work. PAUSE is
supposed to wait for a given number of frames of the TV.
(forever in the case of PAUSE 0) or until a key has been
pressed. Unfortunately, a bug in the auto-repeat keyboard
scanning routines in the original Spectrum ROM means that if
you have been pressing keys just before a PAUSE line then the
machine sometimes blunders blindly on into the rest of the
program. This demonstration will show you what I mean; press a
few keys while in the loop, stop when you hear the BEEP, and if
the computer prints a message then PAUSE O has failed.

10 FOR a=0 TO 1000

15 REM PRESS KEYS WHILE IN TH
IS LOOP

20 NEXT a

25 BEEP 1,10: REM WHEN YOU H
EAR THIS, STOP PRESSING

30 PAUSE O: REM SUPFOSED TO
WAIT FOR A KEY PRESS

40 PRINT "I 'VE FINISHED"

One partial solution to the problem is to substitute line 30
with

30 IF INKEY$ = "' THEN GOTO 30

Unfortunately this is only of use when the value after the
PAUSE is zero, since it does not have any timing effect in it

107

and will thus continue until a key is pressed rather than
breaking out after a fixed number of TV. frames.

Well, you've probably guessed by now that there is a quick
machine ctode solution to the problem, and here it is. PAUSE
MK.2 will allow you a bug-free PAUSE of between O and 255
(around five seconds). If you need a longer PAUSE then you
simply call the routine several times in succession.

To use the routine, it is a good idea to define a variable

LET PAUSE = (start address)

at the beginning of the program. Then to set the duration of
the pause (zero meaning, as usual, forever),

POKE PAUSE + 1, (duration (0 - 255)).
Finally to call the routine and execute the PAUSE,

RANDOMIZE USR PAUSE
or LET A = USR PAUSE.

Now for the routine.

HEX. {PAUSE MK2 LENETH: 25 BYTES

0600 STRT LD B,0 ;B 15 THE PAUSE LENGTH.

78 AR $IF B=0 THEN WAIT FOR

a7 M A 1A KEY PRESS,

2808 R 1,17

AF YR A s OTHERWISE. ..

76 NXFRANE HALT ¢NAIT FOR AN INTERRUPT

DRFE N A, (OFEHI + (LIKE PAUSE 1), THEN SCAN

* ceL §THE KEYROARD,

EbIF AND IFH

€0 RET NI +IF NO KEYS ARE PRESSED

10F7 DINI NXFRANE sTHEN WAIT FOR THE NEXT TV

09 RET {FRANE, UNLESS THE PAUSE
sCOUNT 1§ ZERQ, IN WHICH
;CASE, RETURN TO BASIC.

DBFE WAIT IN A, (OFER) {WAIT FOR A KEY PRESS.

”* ceL

EbIF AND IFH

28F9 R 1,017 {WHEN ONE 1S DETECTED,

€9 RET {RETURN TO BASIC.

END

Going back to our short demonstration program, using PAUSE MK.2
it should now look like this:

S LET PAUSE=65000: REM START
ADDRESS
10 FOR a=0 TO 1000

108

15 REM PRESS KEYS WHILE IN TH
IS LOOP

20 NEXT a

25 BEEP 1,10: REM WHEN YOU H
EAR THIS, STOP PRESSING

30 POKE PAUSE+1,0: RANDOMIZE U
SR FAUSE: REM WAIT FOR A KEYFRES
8

40 PRINT “I°VE FINIGHED"

It occurred to me while writing PAUSE MK.2 that there may be
occasions when you want to pause for an exact amount of time
without the possibility of breaking out of the pause by
accidentally touching the keyboard. Such a case could be where
a pause was required between the notes of a sonata that your
Spectrum was playing. If you used (say) PAUSE 5 then if you
pressed any keys while the music was playing the "PAUSE 5"s
would be continually broken out of and the music would speed
up. Short of timing a FOR-NEXT loop such as

FOR A = 1 TO 10: NEXT A
there is no BASIC solution to the problem.
The following short machine code routine solves the problem
nicely and allows you to have an un-interrupted PAUSE of
between 1 and 256 (longer pauses obtainable by calling the
routine more than once). I have called the routine 'TIMELOCK’,
since you can't break through it until a certain time has
elapsed.

To use the routine,

LET TIMELOCK = (start address)
POKE TIMELOCK + 1, (duration)

then RANDOMIZE USR TIMELOCK
or LET T = USR TIMELOCK

Here comes the code!

HEX. j;TIMELOCK LENGTH: 6 BYTES

0600 START LD B,0 B COUNTS THE PALSE

76 NXT RALT $WAIT FOR INTERRUPT

10FD DINI NKT $REPEAT UNTIL B=0

L9 RET $RETURN 10 BASIC.
END

Note that in this routine a value of O POKEd into TIMELOCK + 1
corresponds to a PAUSE of 256.

109

110

UTILITY ROUTINES

CHAPTER 23

FOR YOUR INFORMATION

This section contains three short, but useful routines that
will give you information about the state of the memory in your

machine.

The first is PROGLENGTH - the length of the BASIC program in

bytes.

HEX. ;PROGLENGTH LENGTH: 13 BYTES

VARS EQU SC4B8H

PROG EQU SC53H
ZA4BSC START LD HL, (VARS}
ED4BSISC Lo BC, (PROG)
A7 AND A {RESET CARRY FLAG.
ED42 SBC HL,BC 3 VARS-PROG=PROBLENGTH
44 Lo B.H 1PROGLENGTH 1S RETURNED IN
4D LD gL sTHE BC REGISTER PAIR,
ce RET

END

To use PROGLENGTH, enter

PRINT "Program is '"; USR (start address); "
bytes long."

The second is VARLENGTH - the number of bytes in the variables

area.

111

HEX. jVARLENGTH LENGTH: 13 BYTES DATE: 1/7/83
ELINE EQU SC59H
VARS EGU SCABH

285950 START LD HL, (ELINE)
ED4B4BSC Lo BC, (VARS)
My SCF 15ET CARRY FLAS,
ED42 SBC HL, BC +ELINE-VARS-1=VARLENGTH
44 LD B.H ;VARLENGTH 15 RETURNED IN
40 LD C,L ;THE BC REGISTER PAIR.
€9 RET

END

Use VARLENGTH by entering

PRINT "Variables are '"'; USR (start address); "
bytes long."

The final routine is FREE, which tells you the number of bytes
which you are actually free to use (discounting anything above
RAMTOP). It does this by subtracting the system variable STKEND
from the stack pointer (SP register pair).

HEX. (FREE LENGTH: 13 BYTES

STKEND EQU SCeSH
216000 START LD HL,0
8] ADD HL,SP {TAKE STACK POINTER,
EDAB4SSC LD BC, (STKEND)
EDA2 SBC WL,BC §SUBTRACT STKEND.
44 0 8K SRETURN RESULT IN BC.
) gL
€9 RET

END

Use FREE by typing the following:

PRINT "you have '"; USR (start address); '" bytes
free."

You can also find the total memory used by the computer by
subtracting FREE from the amount of bytes of RAM available.

Thus:

16K : PRINT "Bytes used: "; 16 * 1024 - USR
(start address) ¥

48K : PRINT "Bytes used: '"; 48 * 1024 - USR
(start address)

112

CHAPTER 24
RENUMBERING YOUR PROGRAMS

This routine will renumber the line numbers of your BASIC
programs, but you will have to renumber the GOSUBs, GOTOs,
LISTs, LLISTs and RUNs yourself, as the machine code routine
necessary to completely renumber a program is very long

and complex. Nonetheless, this routine has proven very useful
to me and I am sure it will be worth your while to LOAD it
into the top of memory whenever you are writing BASIC
programs. For those who are undaunted by a very long machine
code listing the full renumber appears in Chapter 28.

USING RENUMBER

You must specify two parameters; the first line number and the
"step' between line numbers (e.g. If you want the line numbers
to read 100, 110, 120... then the first line number is 100, and
the step is 10). The parameters are entered as follows:

POKE 23348, (First line no.)
POKE 23349, 0 :
POKE 23350, (step)

POKE 23351, O

The above procedure works for all numbers between O and 255; if
you wish either parameter to be greater than 255 then the

procedure is different. For the first line number:

POKE 23348, (First line no.) -255 * INT ((first
line no.)/256)

113

POKE 23349, INT ((First line no.)/256)

Similarly, for the '"step'":

POKE 23350, (step) -256 * INT ((step)/256)
POKE 23351, INT ((step)/256)

In both cases, the renumbering is almost instant on entering
RANDOMIZE USR (start address of RENUMBER)

Be warned: do not use too big a first line number or step, or
the last line number may be greater than the limit of 9999.
This can have serious effects on your program when RUN, but you
can correct such a mistake by renumbering using more
appropriate parameters.

Here is the routine.
HEX. ;RENUMBER LENGTH: 37 BYTES

PROE EQU SUS3H
VARS EQU SCARH

2AS35C START LD HL, \PRCB) sHL=BEGINNING OF PROGRAM.

EDSBI45E LD DE, (SB34H} sDE=FIRST NUMBER.

ED4BI65R LD BC, (3036H) 1BC=GTEP

5] PUSH DE

ER NXTLINE EX OE, AL {HAVE WE REACHED THE

2R4RSC LD HL, (VARS! $VARIABLES AREA?

A7 AND A

052 SBC HL, DE

ER EX D, HL

1} POP DE

8 RET I iIF 50, RETURN TO BASIC,

n Lo (HL) ;D INSERT NEW LINE NO,

2 INC HL

73 Lb (HL) (€

u INC HL

EB EX DE,HL

09 ADD AL, BC tAOD "STEP’ T LINE NUMBER,

EB EX DE,HL 1BIVING NEXT NUMBER.

5] PUSH DE

SE Lo £, (HL) 3§ TAKE LENGTH OF CURRENT

2 INC HL tLINE,

36 LD b, (HL)

ral INC HL

19 ADD HL, DE 1ADD LENGTH OF LINE TO

187 JR NXTLINE sCOUNTER, PROCEED 10
END JRENUMBER NEXT LINE.

APPLICATION

You may already know that if the first line number of a program
is zero then it cannot be EDITed or removed without altering
the line number by POKEing it. If you make the "first line

114

number'" in the renumber routine zero, and make the first line
of your program a REM statement such as:

2 REM (c) David M. Webb, Hands off, pirates!!!!

then after renumbering the program, you will have a copyright
line that cannot be EDITed.

115

CHAPTER 25
CASE CHANGE

This routine operates on the program rather than in it: it sets
all of the letters occurring in the BASIC listing to either
"Upper Case'" (capitals) or "Lower Case'" (small letters). This
can be useful if you want to make a ZX-printer LLIST more
legibly - just use the "Upper Case'" mode and then LLIST away
with clear capitals to your heart's content.

CHOOSING UPPER OR LOWER CASE
You need just one POKE:

POKE 23356, 16 for Upper Case
240 for Lower Case

The routine does not operate on anything after a REM statement
in a program line, in order to preserve any machine code that
you may have stored there. This can be used to added advantage
by temporarily inserting a REM statement before anything (such
as a PRINT statement) that you wish to 'protect' from the
action of the routine.

HEX. ;CASE CHANGE LENGTH: 77 BYTES
PROE EBU SCI3H
VARS EQU SCABH

24535C START LD HL, {PROG) iHAVE WE REACHED THE
EDSR4BSC NXTLINE LD DE, (VARS] SEND OF THE PROGRAM?
ER EX DE, KL

a7 AND A

116

ik

FE2Z
2001
[i[%

Chét
2062
FEGE
2008
0atd
¥

10FC
FESA
800
FEGD
2009
19

1884

NXTEHAR L

NOCHANG ¢

NTEBUCTE

ROTHUN

REHFND

wr
T
S
4

-
o)

"

INC HU

Lk

or

4R

LG

LD

ip

cP

JR

[344

CF

JR

%] iyl

SUE B

SUB B

LD (HLI &

Lh fiy iHL

INC HL

JEC

of

JR

{8

BIT 3sC

M NI, NXTCHAR

cP \EH

IR NI, NGTNLN

Lo 19

ING

UL

bini

% IAH

JR 1, COLOK

X ubh

IR Wi, COLON
HL, O
KETLINE

NE

FRANGE OF VALUES WHICH
JHUST BE CHANGED FROM ONE
{CASE TD THE OTHER®

+IF NOT THEN SKIP THIS...

tHCVE ON TO THE NEXT

CHECK WHETHER WE'RE
$INSIDE A SET OF QUOTES,

3 IF 50 THEN NELT CHARACTER,
$SINCE THE LINE CAN'T END
1INSIDE A SET OF GUOTES.
+IF WE'VE FOUND 4 S-BYTE
1NUMBER THEN SXIF 1T,

SEPERATOR THEN CHECK FOR
th REM ABRIN, IF NOT END OF
o INE THEN NEXT CHARACTER,
{MOVE ON TO THE NEXT
1PROGRAM LINE,

+1F WETVE FOUND 4 COLON

117

CHAPTER 26
FIND AND REPLACE

With this routine you can search through the BASIC program
(instantly, naturally) looking for a specific key word or
character and replacing it with a second byte. Thus two POKEs
are required:

POKE 23352, CODE '"(find character)"
POKE 23353, CODE "(replace character)"

If you had used some character frequently as part of a screen
presentation, say "#'" as the border for the screen, and wanted
to see what other characters would look like in the same place,
then it is far quicker to call up this routine to do the
"donkey work'" rather than manually EDITing all of the
appropriate program lines.

EXAMPLE
change all the # symbols to & symbols in the program:

POKE 23352, CODE "#" 4
POKE 23353, CODE '"&"
LET L = USR ... (start address of routine)

PROGRAMMING CONSIDERATIONS

The routine ignores anything after a REM statement in a program
line in order to avoid mutilating any machine code the user may
have stored therein. 'Find and Replace' may be called from
within a program like most of the other routines in this book,

118

so you may like to use it to alter a set of PRINT statements
during a program and then to go back over that section of the
program, thereby varying the screen display by overprinting the
'found' characters with the 'replaced' ones. Remember also that
you can change key words as well as characters, so the routine
could be used to change SIN functions into COS in a
trigonometrical graph - drawing program, or maybe to turn all
your PRINTs into REMs if you wished to temporarily speed up the
BASIC program.

Right then, here's the listing - don't forget to SAVE it when
entered!

HEX. {FIND AND REPLACE LENGTH: 81 BYTES

PROS EGU SCE3H
VARS EQU SCABK

ZAS35C START LD KL, (PROS) 1START AT THE BEGINNING.

EDSB4BSC NXTLINE LD I, (YARS! {ARE NE AT THE END OF THE

£8 EX OE, HL 1PROGRAN?

a7 a4 {BACK TD BASIC IF SO,

€052 SEC HL,DE

8 RET 1

£B £X OE, KL

3 Y

3 N L

5¢ LD E, (HL) {TAKE THE LENGTH OF THE

% N K $PROGRAN LINE,

56 L0 B, (KL

3 N K

7 COLON LD By HL {TAKE THE FIRST CHARACTER

FEEA cP OEAH ;0F THE CURRENT STATEMENT.

{15 1T A REN? IF S0, THEN

20 I’ 1,RENFND $SKIP T0 THE NEXT LINE.

0E00 LD L0 +IF T 15 ODD THEN WE ARE

T NXTCHAR LD fy (HLI 1 INSIDE GUOTE NARKS,

FE22 ce 22H 115 THIS CHARACTER A GUOTE?

2001 R NI, NTUSTE +IF S0, THEN CHANGE C FROM

oC W ;000 TO EVEN OR VICE VERSA.

303858 NTQUDTE LD 4, (SB3EH) $TAKE "FIND’ CHARACTER.

BE P L} 118 THE CURRENT CHARACTER A

2004 IR NZ, HOF IND {*FIND" CHARACTER?

303958 @ A, (5B39H) 115 50, THEN REPLACE IT

n] (HL & TWITH THE NEW VALUE.

7 NOFIND LD Ay (HL) {MOVE THE PDINTERS TO THE

3 N H $NEXT CHARACTER.

i) DECIE

CB41 BIT 6,0 ARE WE IN'QUOTES?

269 IR NI, NXTCHAR 415 50, THEN NEXT CHARACTER

FEOE ce OEH JOTHERWISE CHECK FOR S-BYTE

2008 R NZ, KOTNUM sFLOATING POINT NUMBERS AND

1605 b B,S $SKIP THEM WHEN FOUND.

%3 MT I KL

1B BEC DE

10FC DINT NAT {NOW CHECK FOR A COLON, AND

FE3A NOTNUR CP 36M +IF FOUND, GO AND CHECK FOR

2804 IR 1,COLON +A REM. ARE WE AT THE END

119

FEGD
2007
188E
ED4RZSEE
ik

BE

2001

10

12

e

RENFND

NTRMFND ADD

0D

NI NXTCHAR
NATLINE
BC, (SRIBH}
4,0

HLY

NI, NTRMFND
(HL),B
HL,DE
KXTLINE

OF THE LINE?

IF NOT, NEXT CHARACTER...
ELSE NEXT LINE.

CHECK TO SEE IF THE REM
SHOULD BE REPLACED, AND IF

350 THEN DO S0,

;GKIP ONTD THE NEXT LINE.

120

CHAPTER 27
LINE DELETE

LINE DELETE is another of those utility routines which no
self-respecting BASIC programmer should be without. The short
routine allows you to delete any part of the program from one
line to all of it, instantly. Quite obviously to use the
routine we must specify two values; the first and last line
numbers to be deleted. Let's call the line we are deleting from
F, and the line we are deleting to, T. Then the correct
commands are:

POKE 23357, F - 256 * INT (F/256)
POKE 23358, INT (F/256)
POKE 23359, T - 256 * INT (T/256)
POKE 23360, INT (T/256)

Both values are included in the block deletion, and the second
and/or fourth POKEs may be omitted if the corresponding line
number is less than 256, since the number POKEd in would be
zero (do not omit the commands if you have previously POKEd in
non-zero values to 23358 or 23360!). To illustrate, if we were
to delete from line 25 to line 515 (both inclusive), then

POKE 23357, 25: POKE 23359, 3: POKE 23360, 2.
(note: 515 = (2 x 256) + 3)

Call the routine with RANDOMIZE USR (start address)
or LET A = USR (start address)

If you are deleting just one line (and either it hasn't
occurred to you to just type in the line number or you are

121

doing so from within a program) then the two values will be the
same .

If you wish to delete from a line to the end of the program,
then any line number greater than the last line number will
also do for the second value. Hence:

POKE 23360, 40

will ensure that this is the case, since 40 x 256 = 10240,
which is greater than the highest possible line number.

One useful sideline to this routine is that it can be used to
save all variables onto tape in one go. Simply run the BASIC
program so that all the variables are defined, then use the
routine to DELETE the entire program. The variables will be
unaffected, and these can then be saved just like a program
with the SAVE command. To load them back into the same or any
other program, type CLEAR if you want to get rid of the
existing variables, then MERGE "(filename)'" to load up the old
variables from tape.

Here is the routine.
HEX. sLIRE DELETE LENGTH: 7¢ BYTES

RO EOU SCS3H
VARS EQU SLABM

20535C START LD HL, (PROG)
ED4EINSR Lo BC, {5R3DH) 1 TAKE THE "FROM' NUMBER,
(3] NITLN EX 0E, HL 1HAVE WE REACHED THE BASIC
ZR4RSC 4] HL, (VARS) 1 VARIABLES?
A7 AND #
£052 SEC HL, DE
RET i sRETURN 10 BASIC IF S0,
R £X DE HL
56 LD b, (KLi sTAKE A LINE NUMBER.
23 INC HL
3 LB E, iHLi
EB EX DE.HL {COMPARE 17 WITH THE 'FRON
ED42 SHC i, BC 1 NUMBER,
ER EX DE HL
1008 JR N, FOUNDFR $IF 1T'S LESS THEN NEXT LINE
23 INC HL 1OTHERWISE B0 AND LOOK FOR
SE) E, (WL} $THE 70" LINE,
23 TNC HL +70 FIND THE NEXT LINE, ADD
S6 (] D, tHL! sTHE LINE LENGTH TO THE
23 INC HL 1POINTER,
19 A00 HL,BE
18t JR NATLN 1LODP BACK.
ES FLCUNDFR PUSH HL 1STORE POINTER FOR 'FRON
ED4RIFSB LD BC, {(SRIFH) sSTART LOODKING FOR '70°
8 NXTLNZ INC HL sMOVE POINTER TO NEXT
® LD £, (HL} sLINE NUMBER.
23 INC HL
Sk Lo D, (HL)

122

CIESIY

FOUNEND

END

HL

HL,DE
DE, HL

HL, (VARS!
A

HL, DE
DE,HL

1, FOUNEND
D, (HL)

HL

E, (HL)
DE, KL

HL, BC
DE, HL
C,NITLN2
H

DE

DE

19E5H

yHAVE WE REACHED THE
1VARIABLES?

+IF 50, THEN 60 AND DELETE,
;OTHERNISE TAKE THE NEXT
sLINE NUMBER,

{CONPARE 1T WITH 'T0°

s NUNBER,

1 IF CURRENT NUMBER IS LESS
$THAN OR EQUAL TO *T0?
sNUMBER THEN NEXT LINE.
{NOW WE ARE READY TO DELETE
iHITH A JUNP TO THE ROM
iNHICH MOVES DOWN
{EVERYTHING ABOVE HL TO DE.

123

CHAPTER 28
FULL RENUMBER

I consider this routine to be one of the most useful pieces in
this book. The program renumbers all of the BASIC program and
correctly adjusts all non-computed GOTO, GOSUB, RUN, LLIST,
LIST, RESTORE and SAVE... LINE commands. '"Computed'" commands
such as GOTO a * b/c cannot be renumbered since the routine has
no way of knowing what values any variables will take in the
program.

Due to the sheer complexity of renumbering a program with its
GOTOs and so on, this routine at 411 bytes is just over eleven
times as long as its 37-byte counterpart in Chapter 24, which
only affects the line numbers. Do not, however, be put off by
the length; it is well worth the effort of typing in the code
and can be invaluable when '"tidying up' your BASIC listing or
when you need to make room for more BASIC lines, due to all the
line numbers in that area having been used up.

USING FULL RENUMBER
Before calling the routine with g

RANDOMIZE USR (start address)
or LET A = USR (start address)

you must specify two parameters; the first new line number and
the 'step' between line numbers, thus:

POKE 23348, L - 256 * INT (L/256)
POKE 23349, INT (L/256)

124

POKE 23350, S - 256 * INT (S/256)
POKE 23351, INT (S/256)

Where L is the first line number and S is the step.

You may omit the second and/or fourth commands if L and/or S
are/is less than 256, as is usually the case, since the value
of the POKEs would be zero.

Hence to renumber starting at line 10 in steps of 10,
POKE 23348, 10: POKE 23350, 10.

I1f you have particularly high line numbers being renumbered to
particularly low numbers, then the overall length of the
program may reduce, since

GOTO 9999 takes 3 bytes more than GOTO 9.

If the reverse case happens, the length will increase. So for
safety's sake (i.e. to prevent an irreversible crash) the
routine incorporates a fail-safe device which returns to BASIC
with "Error 4 — Out of Memory'" if there are less than 256 bytes
of free memory. If you wish you can find out how much free
memory you have by using the short routine in Chapter 23.

The routine ignores anything after a REM statement in a BASIC
line, so machine code buffs can still store code in REM
statements. If your program has a reference to a non-existent
BASIC line then it will be altered to the nearest line number
above that line, or to the next logical number if that line was
the last in the program. That may seem a bit complex, so allow
me to illustrate:

Renumbering this program from line 10 in steps of 10,

15 GOTO 31 becomes 10 GOTO 20
43 GOTO 999 20 GOTO 30

FULL RENUMBER works on about 2K of program per second, and
incidentally uses the three spare bytes in the system variables
area, so don't use them for your own purposes or you will lose
your data!

HEX. iFULL RENUMBER LENGTH: 411 BYTES
STKEND EQU 5CASH
VARS EQU SC4BH
PROG EQU SCS3H

AF HEMTEST R A sCHECK FOR 254 SPARE

67 LD H,8 1BYTES BETWEEN THE STACK
&F LD LA sPOINTER AND END OF BASIC.
19 ApD HL, 6P ;IF THERE ISN'T THEN
ED4BASSC LD BC, {STREND} $RETURN 10 BASIC...

ED42 SBC KL, BC

BC cF H

2002 4R NI, ROOK

125

o
)

FH4BST

R
3 I

B ™

32815C

~d Pt
Bm e
Furd
wn Py
a

e

850

210000

»a m ra BN o
Samuan

~d
m

i%‘lEOO

8
7t
23
FE2Z
2001
o
CB4Y
20F4
FECA
2004
08
FEEE
205C
08
FE3R
280F
FEFO
2853
FEOE
2004
110500
19
FEEC
847
FEED
2BAT
FEES
283F
FEFT
2838
FEE!
2837
FEGD

2002

RET
DEFR
ROOW LD
LD
LD
LD
LD
Logrd LD
INC
JR
Lo
INC
INC
ING
PUSH
FUSH
ENTRYZO INC
ENTRYE LD

LOOFS EX

ENTRY14 CP
JR
[+
IR
cP

NOTNUM CP

LINKI IR

]

@

HL, (VARS!
8, (HL)
{SCAIK) , A
{HL) , OFFH
HL, (PROG)
B, (WL}

&

1, SRCHEND
8C,0

OEAH
7, NASRCLN
AFAF"

A, (HL)

H

PP
NZ,NTRUQTE
C

0,C
NZ,L00P3
OCAH

NI, ENTRY14
AF AF’
OFEH
NZ,ADJUST
AF, AF’
30H
1,ENTRY4
OFOH
1,AD3UST
OEH

NI, NOTNUN
IE,5
HL, DE
OECH
1,ADJUST
OEDH
1,600087
OESH
1,A0008T
OFTH
1,ADJUST
OEIH
1,A03U5T
DK
NZ,LOOP3

(WiTH ERRDR 4 - "QUT OF

3 "MEMORY ",

;FIND THE FIRST BYTE
sAFTER THE BASIC PROGRAM,
JSTORE IT AND THEN REPLACE
$1T WITH AN FF MARKER,

i THE SEARCH FOR BOTQ'S
$ETC. BEGINS. IF AT END OF
1PROGRAN THEN JUMP TO

1 SRCHEND,

$BC HOLDS THE ALTERATION TO
;THE LENGTH OF THE CURRENT
sLINE, WHICH VARIES AS THE
1AREUMENTS OF 60T0'S ARE
1EXPANDED OR CONTRACTED.

1L KEEPS A CHECK ON QUOTES.
sCHECK FOR A REM. IF FOUND
s THEN SKIP CURRENT LINE.

10 15 INCREMENTED EVERY

(TINE A QUOTATION MARK 1S
{1 DETECTED.

+IF © IS ODD DON'T CHECK
{FOR BOTO AS WE ARE INSIDE
$QUOTE MARKS. CHECK FOR
jLINE.

1F LINE IS FOUND THEN
{UNLESS PREVIOUS BYTE WAS
+INPUT, GO AND RENUMBER IT.

CHECK FOR LIST,

{IF WE'VE FOUND A FLOATING-
1POINT NUMBER THEN SKIP ITS
iFIVE BYTES.

sCHECK FOR 6070,

i CHECK+ FOR BOSUB.

;CHECK FOR RESTORE,

CHECK FOR RUN,

;CHECK LLIST

;END OF LINE? IF NOT, THEN
;ON TO THE NEXT CHARACTER.

126

Ct

Et

56

2B

SE

EB

a9

EB

73

23

72

23

19
189F
EDSB34SH
EDAR3A5R
24535C
13

it
2008
2A815C0
1

o9

[

23

73

8
22R0SC
4600
TE
FEOE
282E
FE20
ke

NXSRCLN POF

PGP
LD
DEC
Lo
EX
ADD
3}
Lo
INC
Lo
INC
ADD
JR

SRCHEND LD

NITLNZ

NOSTOP

ADJUST

CHEAT

LOOPS

Lb
Lo
LD
INC
IR
Lo
LD
RET
LD
INC
%]
INC

DEC

INC
CP
iR
cr
I

B

HL

0, tHL}
HL

E, (HL)
DE HL

HL,BC

DE, HL

(HL) ,E

HL, DE
LODP4

DE, (SA34H)
BC, (SBI&H)
HL. {PROG)
A, (HLS

A
NZ,NOSTOP
A, (5CB1H)
{HL), 4

(HL1,D
HL
(HLILE
HL
DE, KL
HL,BC
DE, HL

1,ENTRY20
ODH

1, NASRCLN
HL

204
C.ADJUST
HL
(5CBOH) KL
B,0

A, (HL)

Hi

OEH

7, NUMFOUN
Z0H
€,L00Ps

sBC=CHANGE T0 LINE LENGTH.
1HL=ADDRESS OF LINE LENETH.
sTAKE DLD LINE LENGTH.

1ADD ALTERATION TO LINE
1LENGTH,
sSTORE NEW LINE LENGTH,

$MOVE ONTO NEXT LINE.

1ALL RENUMBERING OF 6070°S
$ETC IS FINISHED, 50 NOW
tALTER ALL LINE NUMBERS.

$END OF PROGRAN?

311F S0, THEN REPLACE FIRST
{BYTE AFTER BASIC PROGRAM
+AND RETURN T BASIC.

$STORE FIRST LINE NUMBER.

1ADD THE *STEP? T0 THE LINE
s NUMBER.

$TAKE THE LINE LENGTH, AND
$ADD 1T 10 THE FOINTER,

$NOW MOVE ON TO ALTER THE
$NEXT LINE NUMBER, THIS
tPART ALTERS BOTO'S ETL.
1LO0K FOR THE BEGINNING OF
sTHE ASCII - CODED NUMBER
3 (STORED ONE DISIT 1O ONE
1BYTE),

+STORE THIS ADDRESS,

B COUNTS UP THE NUMBER
;OF DIGITS OR COLOR BYTES
$IN THE ARGUMENT OF THE
16070, COUNT THEM UNTIL

1A FLOATING POINT NUMBER IS
{FOUND, TGNORE COLOR CODES
$ETC.. THEN IF THE CURRENT

127

FEIA cr IAH ;BYTE ISN'T AN ASCIT

3 R NC, NOGO sNUMBER ME CANNOT RENUMBER
FES0 tP 30H 1 THE STATENENT (NOGO).
3803 R €, NOG0

04 N B

1856 R LO0PE

7 NOSO LD A, (KLY ;LOOK ALONG THE BASIC
FE22 e 24 sLINE UNTIL YOU FIND

2001 R NI, NTRUOT2 1A STATENENT-SEPARATING
o I ;COLON OR THE END-OF-LINE
CB41 NTOUOTZ BIT 0,C iBYTE, IGNORE ANYTHING
2010 R NI, NOTNUNZ +INSIDE QUOTATION MARKS.
FE3A cp 3

800 3R 1,CHEAT

FEOD cp ODH

288 R 1,CHEAT

FEOE P OEH

2004 IR NI, NOTNUNZ

110500 LD DE, S

19 ADD HL,DE

b NOTNUK2 INC HL

18E3 R NOGO

1883 LING IR LINKI {PART OF A 3-STEP RELATIVE
110500 NUNFOUN LD 0E, S ;JUNP FRON END OF ROUTINE,
19 ADD HL,DE iA FLOATING-PT, NUMBER HAS
7 Lo B, (HL! 1BEEN FOUND, IF IT'S NOT
FEOD tp 00K sFOLLOMED BY A COLON OR
2804 R 1,0k 1END-OF-LINE BYTE THEN HE
FEIA ce M iCANNDT RENUMBER THE

2004 R NI, NOGO {CURRENT STATEMENT,

2% 0K DEC KL {TAKE THE LINE NUNBER

2 DEC W {REFERRED 10 IN THE CURRENT
€5 PUSH BC ;STATEMENT FRON 1TS FIVE-
£5 PUSH WL $BYTE FORM,

56 LD 0, (HL)

28 DEC K

5 h) £, (HL)

ED4B3ASE) BC, (SB34H) 1BC=FIRST NEW LINE NUMBER.
£5 PUSH BC

2A535C Lb HL, (PROG) iCALCULATE THE NEW LINE
7 MT9 LD A, (HL) iNUNBER BY ADDING THE

3 N A $5TEP TO THE FIRST LINE
81D R 1,CNTDONN {NUNBER AND NORKING

1 0] B, (WL} $THROUGH THE LISTING UNTIL
B I H {WE FIND A LINE NUNBER

i€ Lo C, (KLY $BREATER THAN OR EQUAL

3 M {10 THE NUMBER REFERRED
1] £X DE, HL 170 IN THE CURRENT STATE-
£5 PUSH ML $MENT,

k¥ CF

€042 SBC HL,8C

£l PP HL

B! R €, CNTDONN

ER EX DE,HL

£3 EX (5P, HL

128

ED4B343B
09
£3
4
3
46
23
[
18E1
181
bt

809
0600
09
E3
CBSS16
180E
2F
3
3F
1600
08FF
09
E3
EB
19

LINK3
CNTDOWN

STOPONT

LD
A0
EX
id
INC
LD
ING
ADD
JR
IR
PGP
Fop
Lp
U3
Lo
LD
LD
1]
JR
INC

ADD
IR
ING
LB
ApD

INC
POP
FOP

PUSH
PUSH

PUSH DE
SUB
iR

L

PUSH

Lo
ALD
EX
CALL
IR
CPL
INC
L
Lo
LD
ADD
31
33
ADD

BE, (3H3eH)

(HLi D
HL

(HLI,E

A

HL, OFFF&H
HL, OE

NC, STOPCNT
A

HL, OFFICH
HL, OF

NC, STOPONT
A
HL,OFC1BH
HL, DE

NC, STOFCNT
4

BC
AL

AF
13
DE, (SCBOH}

B

1, NOCHANG
Cih

DE

C,DONN
B, 0

HL,BC
(8P} HL
1655H
PLUGIN

]

E,8
b0

B, 0FFH
HL,8C
{5P) , L
DEHL
HL,DE

(PART OF A 3-GTEP RELATIVE
1 JUMP HAVING CALCULATED
1 THE NEW LINE NUMBER FOR
s THE 6070, STORE IT IN
T°G FIVE BYTE FORM,

{NOW CALCULATE THE
INUNBER OF DIBITS IN
{THE NEW LINE NUMKER,
{THE RESULT BEING STORED
JIN A

1B=4 OF CHARS IN OLD NUNBER
{HL=ALTERATION 10 CURRENT
{LINE LENGTH,

1STACK N0, DF CHARACTERS.
1STACK NEW LINE NO.
{DE=ADDRESS OF ASCIT CODED
SLINE NINBER,

+1F THE NEW LINE NUMBER
$HAS NORE OR LESS DISITS
{THAN THE DLD THEN WE
1MUST MOVE THE REST OF
{THE BASIC PROGRAM AND
{VARTABLES UP OR DONN THE
{MENORY BY UP T0 3 BYTES,
{CARE 1§ TAKEN TO ENSURE
JTHAT ALL OF THE SYSTEN
{UARAIBLE FDINTERS ARE
1ADJUSTED ACCORDINGLY, THE
SROUTINE AT 1655H IN THE
{ORIGINAL ROH MAKES BC
1SPACES FRON HL.

1 THE ROUTINE AT 19ESH

+ABOVE HL DOWN FROM HL
370 DE. BOTH ROUTINES CALL
+A ROUTINE WHICH ADJUSTS

129

=
Il
en
—_—
sy

R ey Mo

ES
210100
30
2810
ES
ZE0A
1D
2008
E§
ZE64
i

PLUBIR
NOGCHANE

LOCKDON

NXTCHAR

LOOP1G

HOPIT

CaLL
POP
POF
POF
POF
PUSH
ib
DEC
iR
PUSH

LD

2 D e B2
—
I el
=

AND
SBC
INC
IR
ADD
Lo
INC
DEC
IR
LD
Lo

19E5H

H

B

D€

aF

HL

HL, 1

4
1,LOCKDON
HL

L,10

4
1,L0CKDON
HL

L, 64H

3

1, LOCKBON
HL

HL, 03E8K
DE, HL

8, 2FH

A

HL, BE

4

NC, LOOR 1
HL, DE
(B}, A

B

3

NZ HOPIT
H,E

L6

C,E

£

LINKS

DE
NXTCHAR

5 THE POINTERS,

{CALCULATE THE ASCIT CODE

{OF THE NEW NUMBER. DECIDE
{WHERE TO START, DEPENDING
0N HOW NANY DIGITS

§THERE ARE. LNITS,

$ TEHS,

s THOUSANDS,
tA STARTS WITH THE CODE OF
30 MINUS ONE,

iSUBTRACT THE PONER OF TEN
TFROM LINE NUMBER UNTIL
{THERE 18 4 CARRY, INCRE-
{MENTING THE DIGIT EACH
{TIME. ADD THE FOMER OF 10,
$STORE THE CURRENT DIGIT.
+1F DE=1 THEN THE
;RENUMBERING 1S COMPLETE
(AND WE CAN MOVE ON TO THE
sNEXT STATENENT IN THE
1PROGRAN, CLEARING C TO
{INDICATE THAT WE ARE NOT
{IN GUOTATION MARKS. MAKE A
s THREE-STEP RELATIVE JUNP.
{MOVE DN TO PRODUCE NEXT
$DIGIT,

130

CHAPTER 29
THE SPECTRUM GETS A TRACE FUNCTION

This routine imitates the TRACE function often found on other
micrpcomputers. When a BASIC program is being run, TRACE will
automatically display the number of the line currently being
interpreted at the top right-hand corner of the screen. In
order to make the number stand out against whatever else is on
the screen, the routine prints the number in inverse video.
TRACE can be of great use when debugging your programs, as it
allows you to follow the progress of the machine through your
masterpiece without having to stop it.

For technical reasons, I have written two versions of TRACE;
one for the 16K Spectrum and one for the larger machine. These
routines are unique in this book in that they must be located
at a specific address, that is to say they are LOCATION
DEPENDENT.

To "turn on'' the TRACE function, we use one USR call. To turn
it off, we use another seperate one. The addresses of these
calls are different for the two routines.

In order to enter the hex. code, first select option 7 of
HEXAID and clear the machine code area. Now select option 1
("write a routine'"). In response to the '"length of routine"
prompt, enter 118 for TRACE 48, or 252 for TRACE 16. The latter
number is not a misprint. Although TRACE 16 is physically only
114 bytes long, we must enter 252 in order to position the
routine at the correct start address. Now enter the hex. code
in the usual way.

131

Here is a table of start addresses and lengths for the SAVE
option of HEXAID, together with the commands to turn the TRACE
ON and OFF. Once the routine has been turned on, the current
line number will be displayed automatically whenever a program
is running. Note that you may turn TRACE on or off from within

a program.

TRACE 16 TRACE 48
Start address 32348 65250
Length 114 118
Command for RANDOMIZE USR 32448 | RANDOMIZE USR 65250
TRACE ON
Command for RANDOMIZE USR 32455 | RANDOMIZE USR 65257
TRACE OFF

Printing in
INVERSE VIDEO

POKE 32441, 47

POKE 65361, 47

Printing in
TRUE VIDEO

POKE 32441, O

POKE 65361, 0O

Now the the routines: make sure you get the right one!
sTRACE 16 LENGTH: See bottom paragraph on page 131.

HEX
FF

F3

£S5
2AA5SC
24
2841

s

03

(5]
CDAY7E
El
110400
7

ENTRY

NXTY

NXT2

RST 3H
PUSH AF

PUSH WL

L WL, 23820
N W

IR 1,007
PUSH BE
PUSH DE

L H

R A
A

i CA

LB DE,1000
SBC HL,DE
N &

R NN
ADD HL,DE
MEC A

PUSH ML
CALL PRNTNUN
POP WL

W DE100
R A

SBC HL,DE
A

=’ AL NET2
ALD HL,DE
DEC A

T D
PUSH ML

CALL PRNTNUK
POP AL

L DE10
L At

sCALL THE USUAL INTERRUPT
1ROUTINE, STORE REGISTERS

1SYBTEM VARIABLE. PPC.

i IF HI-BYTE=HEX FF THEN
1PROGRAM [SN'T BEING RUN
50 JUNP TO THE END

10F THE ROUTINE.

{CALCULATE THE THOUSAND’S
;DIGIT,

{PRINT 17,

sCALCULATE THE
JHUNDRED'S DIGIT.

$PRINT 11,

sCALCULATE THE
;TEN'S DIBIT,

132

ce
211040
09

HEX.
JEFE
ED47
EDSE
c9
ED36
JE3F
ED47
e

NAT3

ot

PRNTNUN L

T

TRON

TROFF

END

£

D
NE,NET3
D

A€

Heh

HL

[;2

ad
PRNTNUM
oF

c,3
PRNTNUN
€

8

HL

AF

HL, 401CH
HL, BC
A, A

AR

A A
DE, HL
C,A

HL, 3080H
HL, BC
B,8

A, (HL)

$PRINT 1T,
{WE'RE LEFT WITH THE
sUNITS:-PRINT THEM

RESTORE THE REBISTERS

{RETURN FROM INTERRUPT,
1THE A REGISTER

{HOLD THE DIBIT TO BE
1PRINTED, THE C REGISTER
1HOLDS THE NUMBER OF

3 THE DIGIT (0 T0).

;THIS BYTE DETERMINES
3 INVERSE (CPL) OR TRUE
1 INOP) VIDEO,

1 TRACE ON BY VECTORING

1 THE INTERRUPTS VIA
128FF, WHERE BYTES

;3C AND 7E ARE STORED.

; TRACE OFF BY RESTORING
31 T0 IS ORIGINAL VALUE
AND RESELECTING

3 INTERRUPT MODE 1.

TRACE 48 LENBTH: 118 BYTES

TRON

TROFF

LD

4, OFEH
1,A

2

1

4, 3FH
1A

$TRACE ON BY VECTORING
1THE INTERRUPTS VIA
{FEFF TO FEFO, LABEL
SENTRY,

$TRACE OFF BY RESTORING
:1 T0 3F AND RESELECTING
+ INTERRUPT NODE 1.

133

FF
Fs

ES
204550
2845
&5

b5

5

oF
1802
FOFE
47

i
11£803
£D52
i
30FB
19

k)

£S
CO4LFF
£l
116400

El

JoFC
15
&1

67

ES
0E0Z
T4
CD4LFF
3
OE03
CD4LFF
bl

i

El

F1

9
211040

ENTRY RST
PUSH

HOP Lo

NTI SBC

NITZ SBC

NXT3 SUB

out POP
Pop
RET

PRNTNUM LD

HL, (23621)
“

1,007

BC

DE, 1000
HL, DE

A
NC,NXTL
KL, DE

A

HL
PRNTNUN
HL

DE, 160
A

HL,DE

A
NC,NKTZ
HL, DE

]

Ay

HL
PRNTNUM
HL
DE, 10
Al

E

D
NC,NIT3
]

At

H,A

HL

€2

A0
PRNTHUR
AF

L3
PRNTNUN

KL, 401CH

;CALL THE USUAL INTERRUPT
sROUTINE. STORE REGISTERS
$5YSTEN VARIABLE PPC.

3 IF HI-BYTE=HEX FF THEN
;PROGRAM ISN'T BEING RUN
180 JUMP TO THE END

+0F THE ROUTINE.

$HOF ARDUND THE INTERRUPT
;VECTOR ADDRESS.

+CALCULATE THE THOUSAND'S
+DIGIT.

$PRINT 1T,

;CALCULATE THE
1HUNDRED'S DIBIT.

PRINT 1T,

CALCULATE THE
TEN'S DIBIT,

$PRINT 1T,
$WE'RE LEFT WITH THE
$UNITS:-PRINT THEM

1RESTORE THE REGISTERS

{RETURN FROM INTERRUPT,
;THE A REGISTER

134

09 ADD HL,BC $HOLDS THE DISIT TO BE

&7 ap A,A {PRINTED, THE C RESISTER

& A AM {HOLDS THE NUMBER OF

& a0 AM $THE DIGIT (0 10 31,

EB £X 0E, HL

i i) C,h

218030 LD HL, 3DBOH

09 ADD HL,BC

0408 1) B,8

TE NIT LD A, (HLY

F oeL {THIS BYTE DETERMINES

12 L0 (DE), A +INVERSE {CPL) OR TRUE

B I W $INOP) VIDEO.

1 0

10F9 DINL T

9 RET {END OF PRINT ROUTINE,
END

A NOTE FOR THE TECHNICALLY MINDED

Due to the phenomenon of picture break-up that occurs when the
interrupt vector holds values between hex. 40 and 7F, it is
necessary to vector interrupts under mode two via an address
less than 4000H (i.e. in the ROM) on a 16K Spectrum. The data
bus on a Spectrum always holds hex. FF at the time of an
interrupt. This leaves us with a choice of 63 different
interrupt tables each with one address in them. Of these, only
seven are in the 16K RAM area, one of which is in the screen.
Of the remaining six addresses, the only one remotely near the
32K boundary is that stored at addresses 28FF and 2900 hex. The
value of this is hex. 7E5C, which is where I have put the entry
point of TRACE 16.

135

136

ENHANCING YOUR PROGRAMS

CHAPTER 30
GEOGRAPHIC KEYBOARD SCANS

GEOGRAPHIC KEYBOARD SCANS

If you have read page 160 of the Spectrum Manual then you will
know that it is possible to read the keyboard using the IN
function. The great advantage of this against the INKEY$
function is that you can detect the depression of more than one
key at any one time. In this way it is possible to combine
(say) two direction keys to produce a diagonal movement in a
game rather than presenting the player with the 'finger
gymnastics' task of using eight different direction keys.

The one problem with IN is that it can be rather slow and
clumsy to use, especially if you are reading only one key in a
given 'half-row' of five keys. By now you will probably have
guessed that machine code offers the solution: in fact IN and
OUT are the most similar words in Spectrum BASIC to their
counterparts in assembly language, namely the IN and OUT
instructions on which they are based.

I have included in this chapter a suite of five machine-code
keyboard routines to suit your every programming need. You use
them with a command - such as: -

LET A = USR (start address)
It is important to use LET rather than RANDOMIZE, since the
value that A takes will be the number returned from the routine

and can then be used in IF... THEN statements and so on.

The routines are called 'geographic' because they attempt to

137

lay out the directions in corresponding areas of the keyboard,
e.g. the top row of the keys can be used to move upwards.

The first routine, GEOSCAN1, offers the four directions
(combinable to eight) and a keyboard layout like this:

[1 UP 0]

Q T Y P
LEFT RIGHT

A G| [H ENTER

[caps DOWN BREAK |

The numbers returned are as follows:
8
10 j[9
: < :
6 l 5
4

GEOSCAN1 is ideal for Pac-Man type games!

HEX. ;GEOSCANI LENGTH: 48 BYTES

01001F START LD BC, 1FOOH ;B=NASK ON INPUT PORT,
3E9F LD A, 9FH ;€ WILL HOLD THE RETURN
DBFE i1 A, (OFEH) ;VALUE,

* CPL ;CHECK FOR *RIBHT’....
A0 AND B

2803 IR 1, NTRIGHT

0 I T {IF 50 THEN LET C=1 AND
180A IR NOTLEFT ;DON'T CHECK FOR 'LEFT’,
3EF9 NTRIGHT LD 4, OF9H {CHECK FOR °LEFT’.

DBFE N f, (OFEH)

¥ CPL,

40 AND B

2802 iR 1,NOTLEFT 1 IF LEFT THEN LET C=2
CBCY SET 1,0

3E7€ NOTLEFT LD A, 7EH {CHECK FOR *DOWN’,

DBFE N A, (OFEH]

x* CPL

A0 AND B

0600 Lo B,0

2803 IR 1, NOTDOWN

138

0022 CRDL
0024 C9
0025 3EET
0027 DBFE
002% 2F
0024 EbiF
0u2C C8
0020 CBOY
Q02F (9
0000

00330
00340

00350 NOTDOMN

00380
00370
00380
00390
00400
00419
00420

SET
RET
LD

N

CPL
AND
RET
SET
RET
END

2,C

A, 0ETH
4, (OFER)

1FH

[

.

31F 'DOWN’ THEN C=C+4,
1AND RETURN TG BASIC.
;OTHERNISE CHECX FOR
1P .

1AND IF AN "UP' KEY IS
sPRESSED THEN LET CsC+8.
{RETURN TO BASIC.

Note that in all of the GEOSCAN routines, I have given 'right'
priority over 'left', and 'down' priority over 'up'.

The second GEOSCAN routine checks for just two sets of keys; in
doing this it divides the keys vertically down the middle and
then checks each of the two halves for a key-press. This
routine would be at its best in a 'Breakout'-type game.

Layout

Values

LEFT

CAPS

2e—0—*1

RIGHT
BREAK

It should be realised at this point that the directions that I
have attached to the values returned are entirely arbitrary;
you could, for example, equally use the values from GEOSCAN2 to
mean "turn anticlockwise'" and "turn clockwise", or in a
calculating program '"print subtotals' and ''don't print
subtotals'.

HEX.
010000
SEOF
DBFE
o
E6IF
2802
U

9
IEFO
DEFE
2F
E8IF
)
CBLY
8]

yBEOSCANZ LENGBTH: 25 BYTES

START

NTRIGHT

INC
RET
Lo

N

AND
RET
SET
RET
END

BC,0
#, 0FH
A, (GFEH)

IFH
I NTRIGHT
c

4, 0FOH
A, (OFEH)

1FH
l
1,C

180 HOLDS THE RETURN
:VALUE. CHECK THE RIGHT-
{HAND HALF OF THE KEY-

1 BOARD.

sRETURN THE VALLE 1 IF
1 PRESSED,

sCHECK THE LEFT-HAND
$S1DE.

{RETURN IF NO KEY PRESS.
sOTHERWISE RETURN VALUE
12 IN BC 70 BASIC.

The logical counterpart to GEOSCAN2 is (you guessed it) a
routine which divides the keyboard into halves horizontally
and is ideal for any game involving only vertical control, such

139

as control of the up-down bat movement in a 'squash' game. Here
are the layout and values...

1 0
uP
[Q P
A ENTER
DOWN
CAPS BREAK

bt——o0o—> >

. and here is the routine. As usual, call it with

HEX.
010000

JEIC
DBFE
F
EbIF
2803
cant
9
3EC3
DEFE
2F
EbIF
8
CRDY
c9

LET

A = USR (start ad

;GEOSCANI LENGTH: 24 BYTES

START

NOTDOWN

i 8C,0

) A, 3CH

N A, (OFEH)
CRL

AND IFH

R 7,NOTOOWN
SET 2L

RET

Lo A, 0C3H
N 4, (OFEH)
CPL

AN IFH

RET 1

SET 3,0

RET

END

dress)

$BC HOLDS THE RETURN
;VALUE, CHECK THE BOTTOM
{HALF OF THE KEYBOARD.

yRETURN THE VALUE OF 4
jIF PRESSED.
;CHECK THE TOP HALF.

sRETURN IF ND KEY PRESS.
1OTHERWISE RETURN VALUE
18 IN BC TO BASIC,

If you are a space-invader fan then this next keyboard routine
is the one for you. It uses the bottom row of the keyboard for
a 'fire' control and divides the other three rows down the
middle, as before, into left and right laser-base control

regions.
1 5 6 0| Values
LEFT RIGHT
7 24 0
A G H ENTER
CAPS FIRE BREAK +16 for FIRE

Note that this gives you the ability to detect movement and
FIRE controls simultaneously (e.g. FIRE and LEFT gives value

18).

140

LENETH: Ja BYTES

BC, IFO0H 1B=NASK ON INPUT PORT,
4, BFH +C ¥ILL HOLD THE RETURN
#, (OFER} 1VALUE, CHECK FOR "RIBHT'
JCONTROL
B
J I, NTRIGHT
N0 g $11 SED, THEN LET L=y
] iR NOTLEFT , X 'LEFT!.
JEFY NTRIGHT LD A, UF K ‘
N A, (GFEH;
CrL
LI B
if 1 KOTLEFT £ PRESSED, THEN LET
SET 1,C 2
KOTLEFT LD A, TEH
b N f, (OFEHI
pid CPL
[AND
G600] B, t+1F PRESSED THEN ADD
) RET 1 116 TO THE VALLE AND
CREL SET 4L (RETURN 17 IN BC 7O
] RET 1BASIC,
ERD

For the final GEOSCAN routine I have used a layout similar to
that found on many popular arcade games for the ZX-Spectrum,
including Melbourne House's No. l-selling "Penetrator' game for
the 48K machine. The controls are:

Q Values:

8
10 9
(0] P 2 1
6 5
A 4
Bottom Row = FIRE +16 for FIRE
... and here is the routine.
1BEDSCANS LENGTH: 49 BYTES
START LD BL, 0 (B0 WILL HOLD THE RET-
id 4, 0DFH 1URN VATLE, CHECK THE
i A, (OFEH) SPYINEY,
RRA
R’ L NTRIGHT
INC £
JR NOTLEFT
if NTRIGHT RRA
802 iR C.NOTLEFT
CHCY SET 4 1 1F PRESSED THEN BC=2
IEFD NOTLEFT LB A, OFDH $CHECK THE “A* KEY,

141

<) [ek
ENREAE
— A ~ies
- mm .3

CBEL

©
o

NOTDGHN LD

NOTUP

i
RRA
JR
SET
LD
(]
CFL
AND
RET

A, (OFEH)

£, KOTDONN
2,C
NOTUP

£, OFBK
Ay LOFEH)

i IF PRESSED THEN BL=BC+d,
$AND DON'T CHECK “up”,

1CHECK THE “@" KEY. IF
sPRESSED, THEN BC=BC+8.

sCHECK FOR THE BOTTOM
1 *FIRE" ROW
;IF IT IS PRESSED THEN
sADD 16 TO RESULT

tRETURN 10 BASIC.

142

CHAPTER 31
SUPERPLOT 256 x 192

This routine lets you plot on the bottom two lines of the
screen as well as the rest of it. I have used a new system of

coordinates; the top-left corner of the screen is now (0,0),
thus:

(0,0)
SUPERPLOT
SCREEN
(255, 175)
INPUT AREA (255, 191)

To use SUPERPLOT to plot a point (x,y):

POKE 23677, X : POKE 23678, Y
RANDOMIZE USR [start address]

The routine follows all the usual rules fér the current INVERSE

and OVER values, and does not affect the colour bytes. Here it
is:

HEX. 57H: AR BYTES

287055 +8YSTEM VARIABLE COORDS
it HE

[T L0

GF s THIRD OF TH

OF

143

FOCHS7SE

2001

i

57 HOP

CBOA NXT

Th OVER

RRCA
ADD
Ly
LD
AND
ADD

END

E,A
DE, KL
¢, OFEH
b

3, (1Y+5TH)
NI, HOP
A

B, A
A€
07H
B,A

B

AL

D

NI

1, (1¥457H)
NI, 0VER
(L)

D

(L),

AD
(HL}
(HL) A

sNOW FIND THE RIGHT ROM.....

3...0F THE RIGHT LINE
sON THE SCREEN

;FIND THE RIGHT COLUMN,
jNOW WE HAVE THE
1ADDRESS OF THE BYTE OF
s THE SCREEN TO BE
ALTERED

10 HOLDS THE NASK
1FOR THE OLD BYTE.

14 HOLDS THE NEW BIT,
§ [Y45TH=GYSTEN
{VARIABLE P FLAB, BIT
13 SIGNIFIES INVERSE
$VALUE,

{SHIFT THE HASK (NOW
1IN) AND THE NEN

1BIT T0 THE RIGHT POINT
{BIT | OF P FLAG IS THE
JOVER VALUE,

{PLOT DVER 0,X,Y,

sRETURN T BASIC.
iPLOT OVER 1,X,Y.

JRETURN TO BASIC

The demonstration below will plot a sine curve, using the full
screen. Don't forget to alter the start address in line 30.

Line 80 forms an infinite loop in order to stop the computer
overwriting the bottom two lines of the screen with a report
code. Press BREAK to end this.

144

10 REM SUPERPLOT DEMO

20 REM © DAVID M.WEBB, 1983

30 LET PLOT=65000: REM START A
DDRESS

40 FOR A=0 TO 255

50 POKE 23677,A: POKE 23678,96
-95#SIN (A*P1/128): REM SET X,Y
COORDINATES

60 RANDOMIZE USR PLOT

70 NEXT A

80 GO TO BO

145

CHAPTER 32
TAPE RELAY

The tiny 2-80 microprocessor or CPU (Central Processing Unit)
at the heart of your Spectrum is linked to the outside world by
what are known as INput and OUTput ports. In the case of the
Spectrum these take the form of the EAR socket and keyboard
(IN) and the MIC socket, television, loudspeaker (well 0.K.,
quiet BEEPer) and printer (OUT).

These ports can be accessed from BASIC by use of the
aptly-named IN and OUT commands (see Chapter 23, page 159 of
the manual) but unfortunately BASIC cannot provide a fast
enough sampling or 'reading" rate to relay sound IN through the
ear socket and OUT through the speaker. This can be
demonstrated thus:

10 REM This relay program is too slow
20 OUT 254, O: OUT 254, INT ((IN 254)/4): GOTO 20

You will find that although the above program produces a series
of "clicks" when you play your favourite Beethoven sonata at
full volume and high tone through the EAR socket, they are not
frequent enough to produce a recognisable sound. For this we
have to resort to machine code, because it '"refreshes the ports
at a speed that other languages cannot reach!"

The following routine was written to provide the highest
possible sampling rate, in an effort to achieve the best
possible '"relay" sound quality. As a result the EAR port is
"read" approximately once every 17 microseconds (a microsecond
is a millionth of a second) and this produces a sampling rate

146

of about 57000 times per second (57 Kilohertz). For reasons
best known to the hardware enthusiasts amongst you, the signal
output to the speaker can be very weak. I find the best sound
reproduction is achieved as follows:

1, Disconnect the lead from the '"MIC" socket on the tape
recorder to that at the back of the Spectrum - this prevents
'feed-back' distorting the sound;

2. Connect the lead between the EAR sockets of the two devices
in the normal fashion;

3. Put the volume control on maximum setting, and if you have
a "tone' control then do likewise for that (the reason for the
latter adjustment is that the circuitry inside the computer
incorporates a "Schmitt trigger'" which does wonders for
filtering out background noise when LOADing but does have a
habit of removing "low-tone" sound).

Before we go any further I'd better let you have the routine.

HEX. {TAPE RELAY LENGTH: 27 BYTES

F3 TART DI $STOP THE CLOCK AND KEYBOARD

010000 Lb BC,0 1SCANS. FOR BC=0 TO -85536

DBFE LooP 1N A, (OFEH) $LET A=IN(254)

oF RRCA SLET A=INT(A/4)

0F RRCA

DIFE BT (OFEK),A $0UT{254), A(SPEAKER *ON’)

oF R A ILET 420

DIFE 0UT (OFEW),A $0UT(254) ,ASPEAKER 'OFF”)

10F5 DINI LDOP $NEXT BC

oD DL €

20F2 IR NZ,LOOP

3ETF) A, TFH $TEST FOR BREAK KEY.

DBFE N A, (OFEH) $IF NOT PRESSED THEN REPEAT

iF RRA $ THE SEGUENCE,

36ER IR €,L00P

FB 3 {TURN THE CLOCK AND KEYBOARD

09 RET 15CANS BACK DN, RETURN TO
END 1BASIC,

No POKEs are needed for this routine; to begin "listening' just
use the line

LET L = USR (start address.of routine)

Start the tape player (Preferably with a tape in) and
"boogie-on-down' to the merry old sound of Glen Miller (or
whatever takes your fancy). To stop the routine, press the
BREAK key (on its own, or with any other key) and the machine
will come back into BASIC. Remember that if the routine was
called from a BASIC program then the program itself will only
normally stop if you press CAPS SHIFT as well as BREAK. The
BREAK key is only checked once every second or so, therefore

147

the computer will not always respond instantly when you press
the key: hold it down until the return to BASIC has ocurred.

An interesting offshoot of this program is that every time the
EAR socket is read part of the keyboard is also read. The
values obtained from this are sent out through port 254, which
apart from controlling the speaker also controls the BORDER
colour of the TV screen. You will find that by pressing certain
keys you can vary the BORDER colour (or shade, for the benefit
of the non-coloured reader!).

It works like this:

Wz E) R NS
VRN (e]Jr]Ce]||[e]r] e A2
v 6] (rlel||] A N Y
NNWWEREw| S aee]7Z]7777

The keyboard can be considered as being split up into eight
'half-rows', each of five keys. The three keys in each half-row
that are nearest to the centre of the keyboard correspond to
the three primary colours Green, Red and Blue, and these three
colours used in various combinations produce all the other
colours of the Spectrum (sorry!).

When a key is pressed the corresponding primary colour is
removed from the 'palette' or border, leaving the resulting
combination of the other two colours. Hence depressing a Red
key leaves green and blue, which together make cyan. Note that
when all three colours are removed (by pressing three keys)
then black (or '"total absence of colour") results, while
depressing no keys leaves all three primary colours, thereby
producing white.

148

CHAPTER 33
SPEECH REPRODUCTION

Following on from the 'Tape Relay' routine in the last chapter,
I hereby reproduce a pair of routines that will let you store
and reproduce speech on your Spectrum. No extra hardware is
required.

The process works by taking the signal sent to the EAR socket
on the Spectrum by your tape player, and turning it into a
succession of 1s and Os. These are then stored in groups of
eight as bytes in the memory. When the sound is needed again
these bytes are taken from the memory in the same sequence in
whi¢h they were stored, broken back down to 1s and Os and sent
to the speaker (pun unavoidable). The resulting sound should be
a good approximation of what was on the tape cassette.

Due to the high 'sampling rate' (the frequency at which the EAR
socket is 'read') needed to produce intelligible speech, large
amounts of memory are needed to store the shortest of words.
Typically this equates to a memory consumption of 1 - 2K of RAM
per second of sound.

For this reason, although it is perfectly feasible to store
speech on the 16K machine, you will have to restrict yourself
to two or three words in order to have room for a decent-sized
BASIC program.

Before proceeding further on how to use the routines, I'll give

you the pleasure of typing them in - don't forget to SAVE them
when you've finished!

149

HEX

217754
119046
ES

a7
€52

T
0

Ly
£t
84
it
167F
it}
1680
5]
IETF
DRFE
1%
3028
CReF
20F5
09
54
DBFE
CB17
Ck17
CRIB
806
1600
10FE
L8F0
8
Lo
7
b
74
DEFE
1F
2005
10E2
o0
200F
it

i
3
b
w

JLISTEN

WalT

NXTBYTE

KXTHIT

SELF

NCDELAY

END

END2

LENBTH & 78 BYTES

£au
£3i
£y

Lo
Ld
PUSH
GND
SAC
ING
LD
Lo
POF
IR
INC
BI
LD
EXy
ig
EX}
Lo
N
RRY
JR
8l7
JR
EXt
LT
N
AL
RL
RR
IR
LD
DINL
IR
i
Exx

SAFFH

4000H

(CH

AL, START $50UND IS STORED
DE,LIMIT 1 DOUNWARDS FROM

HL sSTART AND NOT

[] sEXCEEDING LINIT IN
HL,DE 1 NEXORY

H

1BC HOLDS COUNT OF
3SPARE BYTES REMAIN-
1ING IN LO-HI ORDER

1BISABLE INTERRUPTS

0, 7FH +D 15 USED IN BOTH
1REGISTER SETS FOR
0. 80k 1SPEED A3 A CONSTANT
8, 7FH {TEST BREAK KEY
A, (OFEH) 1AND RETURN TO BASIC
{IF HIT
NC.END2
5.4 1WAIT UNTIL A SOUND
NI, KATT 115 DETECTED
{LOOP FOR EACH BYTE
£,D
. COFEH) {READ THE EAR SOCKET
A 1STORE THE RESULTING
A {RIT IN THE E REBISTER
£
£, NODELAY {HAVE A TIMING DELAY
B, DELAY ;UNLESS ON THE 8TH BIT
SELF
NETRIT {REPEAT FOR EACH BIT
A€
LA {STORE THE FINISHED
H SBYTE IN MENORY
aD {TEST BREAK KEY
4, (OFEN) $1F HIT THEN RETURK
170 BASIC OTHERWISE
NC, END $CONTINUE UNTIL ALL
NITRYTE {RESERVED MENORY 18
{ JUSED UP
NI, NXTBYTE
HL iNOW 10 CONSERVE
Ay (ALY {MENORY BACKTRACK
8 i THE POINTER T0 THE
1,END $LAST DETECTABLE SOUND
HL
H {RETURN THE ADDRESS

150

;0F THE NEXT FREE

1START AND END
sADDRESSES OF SOUND

{BC KOLDS COUNT OF
{BYTES OF SPEECH
JRENAINING IN LO-HI

{STORE THE BORDER

;COLOUR IN THE ALTERNATIVE

3H’ HOLDS CONSTANT
110K LSED RS A MASK

1 TAKE A BVTE OF SPEECH

{STORE THE BIT IN BIT
14 OF A, PUT THE BORDER
;COLOUR IN BITS 0-2 AND
1OUTPUT THE BYTE ON

tHAVE & TINING DELAY
{UNLESS THE BTH BIT

LD #,00 18 A 7.T-STATE
TIMING EQUALIZER WITH
THE LISTEN ROUTINE

) 0 ciL
P £l {BYTE TO BASIC
o RET
END

HEX. (GPEAK LENGTH : 69 BYTES

START EBU SAFFH

ENDD EQU 4000H

DELAY EQL OCH

'
21FFSA 0 HL, START
110040 i DE, ENGD
£ PUSH KL 1IN MEMORY
a7 AND A
£052 SBC ML, 0E
23 N H
i L5 £,H
45 L0 Byt
£i PP ML ; ORDER
ot N
34485C (b A, (SC4EH)
oF RKCA
OF RRCA iC REBISTER
0F RRCA
£607 oM 7
» X
I L0 C,A
£5 PUSH WL
%10 L Hy 10K
09 EXX {LATER
F3 ol
% NATBYTE L Ay (HL)
oF ARCA
OF RRCA
oF RRCA
OF RRCA
09 30
5 b E,h
1608 Lo D,8 {FOR 8 BITS
78 NXTBIT LD A,k
ik DK
Bl) ¢
O3FE BUT (OFEHD,A
£808 RRC E {PORT 254
15 €C D
806 IR 1,NODELAY
080C 5 B, DELAY
i0F¢ SELF DIND SELF
18F0 M NXTBIT $NEXTRIT
09 NODELAY EXX
28 0EC K ;
3E60 LD 4,00 ;
101 DINI MXTBYTE ;
0B C €
200€ IR NI, NETBYTE

151

g END EfY

El POF AL ;RETRIEVE HL* TO avoID
09 Exy :A CRAGH ON RETURNING
1] ;70 BASIC

H

END

Before any speech can be stored you must reserve some RAM for
it and tell the routines where that space is. We do this by
lowering RAMTOP with the CLEAR instruction. RAMTOP will already
be lower than usual since room was needed for the routines
themselves.

We define the two ends of the area reserved for speech with the
aid of the two variables, START and LIMIT. The sound is stored
DOWNWARDS in memory, so START is the highest free bytes and
LIMIT is the lowest. For example, let's suppose that the LISTEN
routine is stored at 65290 (on a 48K machine) and SPEAK starts
at 65221. Now assuming you haven't any other routines above
RAMTOP, we can let START = 65220 (one less than SPEAK).
Reserving, say, 20K of memory, we let

LIMIT = 65220 - (20 * 1024) + 1
44741

[}

and to reserve this space we must reduce RAMTOP to one less
than the LIMIT, i.e.

CLEAR 44740
To use the parameters START and LIMIT in the LISTEN routine, we

use a by now familiar looking set of POKEs. If LIS is the start
of the routine,

POKE LIS + 1, START - 256 * INT(START / 256)
POKE LIS + 2, INT(START / 256)
POKE LIS + &4, LIMIT - 256 * INT(LIMIT / 256)
POKE LIS + 5, INT(LIMIT / 256)

In a similar way, we must define the START and END addresses
of the speech to be replayed by the SPEAK routine. START will
always be greater than or equal to END, and is the same value
as that used in the LISTEN routine.

When the LISTEN routine is used, it returns the value of the
next free byte below the speech just stored. As a result we
can find END by using the command

LET END = (USR LIS) + 1
to call the LISTEN routine.

To set the START and END parameters of the routine with start
address SPK,

POKE SPK + 1, START - 256 * INT(START / 256)
POKE SPK + 2, INT(START / 256)

152

POKE SPK + 4, END - 256 * INT(END / 256)
POKE SPK + 5, INT(END / 256)

The rate at which the LISTEN routine reads the EAR socket is
controlled by the 'timing delay' in the central loop of the
routine. This controls the length of time between samples, so
the higher the delay value, the lower the sampling rate and
the poorer the speech. There is an identical delay loop in the
SPEAK routine, and I have carefully matched all other loops of
the two routines so that given the same delay values, there
will be no change of pitch between the input and output sound.
The delay value ranges from 1 to 256, with O corresponding to
256, 1 find that values up to about 45 can produce intelligible
speech, but this is largely a matter of personal preference. I
have set the standard value as twelve, since I use this most
often. To alter the delay value

POKE LIS + 48, [Delay value]
POKE SPK + 50, [Delay value]

It is worth bearing in mind that as the delay value decreases,
the memory will be used up faster. In fact at a delay value of
one the sampling rate is about 50 KHz (fifty thousand times per
second) and the memory is used up at about 6K per second.

Now for the practicalities of using the routines. Any signal to
the EAR socket will do as long as it is strong enough. I find
the best signal using stardard equipment is produces as
follows:

1) Insert a blank tape into the cassette player.

2) Set the recorder going in 'RECORD' mode, having first
disconnected the MIC connection to the Spectrum.

3) Speak loudly and clearly into the microphone. You may need

to shout, but if the recording is distorted then you are too close
to the microphone. The aim is to get as 'loud' a signal as
possible, without distortion.

4) Having made the recording, and leaving the MIC lead
disconnected, connect the EAR socket of the tape recorder and
the Spectrum.

5) Set the volume to maximum and the tone control (if you have
one) to maximum treble. These levels are rough guides; you may
need to experiment.

The LISTEN routine is what is known as ''voice-activated", that
is to say that once called with the USR function it will wait
until it detects a signal on the EAR port before beginning to
eat its way through your spare RAM. The routine will stop
automatically when it reaches the LIMIT of RAM, but if you want
to stop it beforehand (to prevent unwanted sound being stored,
say) then just press the BREAK key. In either case, the routine

153

will 'backtrack' up the memory until the last detected sbund is
found (said the poet who didn't know it) and return you the
address below it, so as not to waste memory storing silence.

At the end of this chapter I have included a fully operational
program that will let you build up and manipulate a vocabulary
of speech, but for the impatient I have also included a short
demonstration program. I have preset the standard values of
START, LIMIT and END to cover the complete display and
attribute files. Together these are 6 3/4K long, and so form an
adequate and somewhat spectacular temporary store for speech.

Here is the program; don't forget to alter the start addresses
to suit.

10 REM SPEECH REPRODUCTION DEM
0

20 REM START ADDRESSES

30 LET LIS=65290: LET SPK=6522
1

40 RANDOMIZE USR LIS: BORDER 2

50 RANDOMIZE USR SPK

60 PAUSE 30: 60 TD SO

Having prepared your speech sample as previously described, set
the player running and RUN the program. All being well, the
screen will fill up with seemingly ramdom colours and

patterns, then the border will turn red and the Spectrum will
begin to speak. If nothing happens at all, then you have either
made an error in entering the routines, in which case the
machine has probably crashed, or the input level at the EAR
socket is too low. Press BREAK and make a fresh sample in the
latter case, shouting more loudly into the microphone.

It is worth mentioning at this point that pre-recorded
cassettes will do just as well, as long as they are loud
enough. Something else you might like to try is 'replaying' the
16K ROM by setting the START and END parameters of SPEAK to
16383 and O respectively, and then using the direct command:

RANDOMIZE USR SPK

I come now to one of the largest BASIC programs in this book,
"Spectrum Speech'. The program takes the effort out of using

the routines by handling all the POKEs and calculation of the
START, END and LIMIT parameters for you. While providing all

the basic functions that 1 feel are necessary I have kept the
program fairly concise in order to leave plenty of spare RAM

for 16K users, hence the lack of a 'menu' and other frills.

Line 30 of the programs CLEARS RAMTOP to reserve storage area
for the spoeech. I have arbitrarily chosen 32767 for RAMTOP;
this reserves about 32K of RAM on a 48K machine. 16K owners
will find that by omitting all the REM statements RAMTOP can be

154

lowered to about 27000. That gives almost 5.5K of speech
storage. You should set LIMIT in line 90 to one more than the
value CLEARED, and START in line 80 one less than the lower of
the start addresses LIS and SPK in lines 50 and 60, which
should also be adjusted. Don't forget to leave room (by
lowering START) for any other routines you may want to use.

The command RUN will clear all the variables and set up the
system to build a vocabulary of speech (lines 100 to 200). You
can view the contents of this vocabulary with the direct
command GOTO 210 (not RUN 210, as this would clear the
variables). The START and END addresses of each word along with
the timing delay used will be shown. You should note these
down, since you will need them to use the SPEAK routine in your
own programs (by POKEing them back into the routine).

Any of the words on its own can be heard with the command GOTO
280, and the entry can be changed with GOTO 320. The central
subroutines used by the program are lines 370 to 510 (LISTEN)
and lines 520 to 590 (SPEAK).

It is there that all the POKEing is done.

Lines 600 and 610 are optional and simply used in conjuction
with SAVE ... LINE 600 to make the program auto-run.

GOTO 620 lets you save any or all of the speech. You will be
provided with the start address of the block of code; this
should be noted down. When you come to reload this speech from
your own program you should use the lines:

CLEAR [start address] - 1
LOAD "' CODE

in that order.

Array A() is used to hold three peices of data for each entry.
The first is the delay value and a great deal of pleasure can
be derived from altering it, thereby raising or lowering the
pitch of your voice. The second entry is the value of START and
the third is the value of END for that word.

I1'11 end with a summary of commands and this listing itself.

Command Effect

RUN Build a vocabulary

GOTO 210 View the vocabulary

GOTO 280 Hear any word

GOTO 320 Change any word

GOTO 620 SAVE speech

LET A(W,1) = K | Alter delay value of word W

155

10 REM SPECTRUM SPEECH
20 REM © DAVID M. WEBB, 1983

30 CLEAR 32767: REM MEMORY RES
ERVED
40 REM ROUTINE START ADDRESSES

S50 LET LIS=65000

60 LET SPK=64%900

70 LET ZE=SIN PI: LET ON=SGN P
I: LET TW=ON+ON: LET TH=INT PI:
LET PO=256: REM CONSTANTS

80 LET START=6489%: REM FIRST
FREE BYTE

90 LET LIMIT=32768: REM LAST F
REE BYTE

100 REM BUILD A VOCABULARY #*¥#¥*

110 INPUT "Maximum no. of words
:"sM: IF M<ON THEN GO TO 110

120 INPUT "Maximum word length:
“3N: IF N<ZE THEN 60 TO 120

130 DIM AM,TH): DIM N$(M,N): R
EM (A) HOLDS DELAY & START & END
ADDRESS OF EACH WORD, (N$) HOLD
S WORD NAMES

140 FOR C=0ON TO M: REM C COUNT
S WORDS

150 INPUT “Please give word ";(
C);":1"3A$

160 LET N#$(C)=A$(TO (LEN A$ AN
D LEN A$<=N)+(N AND LEN A$>N))

170 60 SUB 370: REM LISTEN

180 IF A(C,TH)=LIMIT THEN PRIN
T "Out of memory": STOP

190 NEXT C

200 PRINT "“VOCABULARY COMPLETE"
1 BTOP

210 REM #%% VIEW VOCABULARY*#%%*

220 CLS : PRINT “NO. WORD";TAB
15; "DELAY"; TAB 21; "START"; TAB 28
; IIEND“ * 9

230 FOR C=ON TO M

240 PRINT C;TAB TH3N$(C);TAB 18
$A(C,ON) s TAB 21;A(C,TW) 3 TAB 27;A .
(C,TH)

250 GO SUB 520: REM SPEAK

260 NEXT C

270 STOP

280 REM #%#% HEAR ANY WORD* ¥

290 INPUT “Which of the "; (M);"
words do you want"” ""to hear?";C

156

300 IF C>M OR C<ON THEN 60 TO
290

310 GO SUB 520: STOF

320 REM ##% CHANGE ANY WORD #*#*#%

330 INPUT "Which of the "j(M)*
words do" “"you want to change?"
iC

L

340 IF C>M OR C<ON THEN GO TO

330

350 LET START=A(C,TW): LET LIMI
T=A(C,TH)

340 GO SUB 370: STOP

370 REM #a%xa# LISTEN #%¥%8%6%54%%

380 POKE LIS+ON,START-PO#INT (S
TART/P0)

390 POKE LIS+TW,INT (START/FO)
400 POKE LIS+4,LIMIT-PO*INT (LI
MIT/FPO)

410 POKE LIS+5,INT (LIMIT/PO)
420 INPUT "Timing delay (1-255)
2 "D

430 FPOKE L1IS+48,D

440 LET A(C,ON)=D: LET A(C,TW)=
START

450 INPUT "Fress ENTER to begin
listening"”; LINE a$

460 CLS : PRINT "Press BREAK or
just wait to end listening”

470 LET A(C,TH)=(USR LIS)+ON
480 IF A(C,TH) >START THEN FRIN
T "No sound detected": LET C=C-0
N: RETURN

490 G0 SUB 520

500 LET START=A(C,TH)-0ON

510 RETURN

520 REM ###%%%% SPEAK %% %% %%

530 POKE SPK+ON,A(C,TW)-PO*INT

(A(C,TW) /PO)

540 POKE SPK+TW,INT (A(C,TW) /PO
)

550 POKE SPK+4,A(C,TH)-PO*INT (
A(C,TH) /PO)

560 POKE SPK+5,INT (A(C,TH) /PO)
S70 POKE SPK+S0,A(C,0N)

SB0 LET A=USR SPK

590 RETURN

600 REM OPTIONAL AUTO-LOAD SECT
T ON 9636 396 3 36 5 3 3 9 966 3 3 3 36 3 3 3 36 96 36 363 3 3 3% 9%

610 CLEAR 6489%9: LOAD "LISTEN"C

ODE 65000: LOAD "SPEAK"CODE 6490
0: RUN

157

620 REM ##xx%% SAVE SPEECH *#**%%

630 INPUT "SAVE from word no. "
;C1""to word no. ";C2

640 IF C1>M OR C2>M OR CI1<ZE OR
C2<ZE OR C1>C2 THEN GO TO &30

650 LET ST=A(C2,TH): LET LE=A(C
1,TW)-ST+ON

660 IF LE<XZE THEN PFPRINT "NEGAT
IVE LENGTH": GO TO 630

670 CLS : PRINT "WRITE THIS DOW

N!" “"START ADDRESS=";ST

680 INFUT “FILENAME:";A$

6720 IF A$="" OR LEN A$>10 THEN
GO TO &80

700 SAVE A$CODE ST,LE

158

CHAPTER 34
MULTICOLOURED BORDER

This following routine will produce for your visual delight a
multi-coloured BORDER around your text. You thought it was
impossible? Certainly not, indeed it can even be done in BASIC.

At this point may I ask readers with a 60 Hz mains supply
(including North Americans) to read the values in brackets.
Inside your computer is a very powerful chip which goes by the
mysterious name of U.L.A. (Uncommitted Logic Array) which is
responsible amongst other things for handling the television
output from the Spectrum.

Inside a colour T.V. are three (or one in the case of a black
and white set) electron guns, each responsible for one of the
primary colours blue, red and green. In order to build up one
"frame" of the television picture, the three beams move in
unison from left to right of the screen at high speed,
gradually moving down the screen and producing one very thin
"scan line" for every horizontal sweep. Coated on the screen in
an orderly fashion are three different types of phosphor, each
emitting one of the three primary colours when the electron
beam hits it. The lines of phosphor are so close together that
their colours can mix to produce all the other colours that the
eye sees, each colour being produced in accordance with the
T.V. signal which effectively decides which of the electron
beams are to be "switched on'" for each point on the scan line.

All of the above operation is carried out at very high speed,

since it takes just one fiftieth (sixtieth) of a second for the
guns to build up each frame of the T.V., including the period

159

during which the beam is in "flyback" from the bottom of the
screen to the top.

Now the T.V. signal that I just mentioned is generated by the
U.L.A., which reads the output port 254 in order to determine
which colour to send out to the T.V. whenever the beam is

producing the border. We can show this by way of the command

OUT 254, n

where n is the required border colour. The change of border is
only temporary, since whenever the BASIC operating system
detects a key-press it changes the colour according to the
contents of location 23624,

Incidentally, the effect of BORDER n is simply to output the
new value to port 254 and adjust location 23624.

The interrupts which scan the keyboard and update the real time
clock occur 50 (60) times per second, exactly the same
frequency as the T.V. frame-production, and also exactly in
phase with the high-point of the beam's path.

We can use this identical frequency to synchronise border
colour changes by way of the PAUSE 1 command, which has the
effect of '"wait for an interrupt". Immediately after this we
can have as many border-colour changes as time will allow in
the fiftieth (sixtieth) of a second before the next interrupt.
If the program has not come back to the PAUSE by this time then
severe flashing will occur since the port 254 will not then
have the same value in it every time the television scan comes
to any fixed point. Assuming that the program does get back to
a PAUSE within a fiftieth (sixtieth) of a second, the effect
will be a number of stationary coloured bands on the border,
one for each BORDER change. This program will demonstrate how
to produce a BASIC multi-coloured border; if you have a 60 Hz
mains supply then you may need to remove one of the BORDER
commands in line 30.

10 REM BASIC MULTIBORDER

20 GO TO 40

30 PAUSE 1: BORDER 1: BORDER 2
: BORDER 3: BORDER 4: BORDER 5:
BORDER 6: BORDER 7: BORDER 0: BO
RDER 1: BORDER 2: GO TO 30

40 BORDER 2: CLS

S50 FOR a=1 TO 8: READ B,C

60 FOR d=1 TO b: PRINT PAPER
Cyy

70 NEXT d: NEXT a

80 PRINT #0;AT 0,03 PAPER 1,,

0 GO TO 30

100 DATA 1,2,3,3,4,4,3,5,3,6,3,
Ty3y0,2,1

160

You may find that you cannot see the first stripe, which should
be blue, or that it is thinner than the others. This is because
immediately after the PAUSE the T.V. beam is still in “flyback"
from the last frame, and it takes a millisecond or two before
the beam comes down to the top of the screen.

As you can see from the program, the maximum number of stripes
obtainable from BASIC is ten. this number decreases if you
locate line 30 further down a BASIC listing, since in order to
execute the GOTO at the end of the line the BASIC interpreter
has to scan through the listing from the beginning until it
finds the line. Obviously the further down the listing the line
is, the longer it takes for the interpreter to find it and the
less time there is to execute BORDER commands.

Incidentally, this serves as a good illustration of the fact
that if you put any subroutines at or near the beginning of a
program instead of at the end then the program will take less
time to execute its GOSUBs and will run that much faster.

I come now to a machine-coded multi-coloured border, which as
you would expect, is far more versatile than the BASIC one. You
can have as many horizontal stripes as you like, and it is
interesting to note that with more than 625 (525) stripes (the
no. of T.V. scan lines per frame,) you are bound to get a
change in colour along each scan line as well as between lines!

In order to use the routine, it is best to start with the line
LET X = (start address)

The range of colour values for the stripes is decided as
follows:

POKE X + 6, (first colour's value)
POKE X + 5, (last colour's value)

Both values are inclusive and can be found by reading the
number on the key below the appropriately coloured legend on
the top row of the keyboard. The routine works in modulo eight,
so if we want the sequence of stripes '"yellow, white, black,
blue" (6, 7, 0, 1), then:

POKE X + 6, 6: POKE X + 5, 1

The routine works like a PAUSE and could indeed be used as a
colourful substitute in programs: it will'either wait a fixed
number of T.V. frames or stop when a key is pressed, whichever
happens first. To define the length of the 'pause", P,

POKE X + 1, P - 256 * INT (P/256)
POKE X + 2, INT (P/256)

omitting the last command if P is less than 256. Finally we

have the two interlinked parameters of the number of
border-changes per frame, and the length of time between

161

changes (the depth of the stripe). Obviously the deeper the
stripes the fewer you can fit on the screen.

As a general guide, the product of the depth and no. of stripes
should not exceed a constant value, found from this table:

Max. (stripes x
depth) Mains Supply
50 Hz 60 Hz
Location of Bottom 16K 1920 1600
routine in
RAM Top 32K 2400 2000

Aha! 1 hear you cry, the value for a 16K machine is lower
than for a 48K machine where the routine has been placed in the
top 32K of memory. Allow me to explain.

The bottom 16K of RAM is located physically on eight 16K-bit
memory chips, one for each of the eight bits that go to make up
a byte. Hence any '"reading' or "writing'" to the bottom 16K of
RAM involves accessing all of these chips. Now the memory that
is used to store the screen is in this 16K, and 345600 (414720)
times per second the ULA must 'read'" a byte from the screen
memory in order to produce the display. Only one chip can have
access to the RAM chips at any one instant, and since the
U.L.A.'s job is time dependent and involves the incredibly
accurate timing needed to produce a steady picture, it takes
priority over the humble Z-80A micro-processor which is '"brought
to a halt'" until it can use the RAM.

The Z-80A has to continually read the RAM chips in order to
find out what its next instruction is, and for this reason
machine-code placed in the lower 16K of RAM runs about 20%
slower than identical code placed in the top 32K of a 48K
machine, which the U,L.A. doesn't use.

Anyway, back to the script; to specify the number of stripes,
N!

POKE X + 37, N - 256 * INT (N/256)
POKE X + 38, INT (N/256)

and to specify the depth of the stripe, D

POKE X + 52, D - 256 * INT (D/256)
POKE X + 53, INT (D/256)

As it stands, this routine produces for five (4 1/6) seconds 20
stripes with depth 80 and colours 3-6 (magenta to yellow) and
so should work without flashing on any of the four memory/power
supply combinations. Here it is, along with a demonstration
program.

162

HEX. sMULTICOLORED BOROER LENGTH: 68 RYTES

21FADD START LD KL, D0FaH {PAUSE LENSTH,

£5 PUSH WL

110403 LD DE, 0308H ;D=FIRST COLOUR, E=LAST
78 LD 8.E {COLOUR,

P N A

E607 w7

5F L £.4

£ BAIT PP WL

AF \RA $TEST FOR & KEY-PRESS
DBFE i A, (OFEH) + (INCLUDES ETTHER OF THE
¥ £hL 1SHIFT KEYS),

EbIF oD iFR 41F & KEY IS PRESSED

2004 I8 NZ.STOP +THEN PREPARE 10 STOF,

it) Ak 11F THE PAUSE COUNT 15

8 OR L +1ERD THEN PREPARE T STOP.
2009 B3 NI, NIFRANE

344850 STOF LD &, (SC48H) s TAKE NORWAL BORDER COLOUR
0F RRCA {FRON SYSTEM VARIABLE

oF A 1BORDER,

0F

IE QU (OFEHI A ;00T 254, COLOUR,

£9 RET TRETURN T0 BASIC,

b NKFRRME DEC WL ;DECREMENT PAUSE COUNTER,
£5 PUSH KL

211400 Lo HL, 0014H tHL=NUNBEF OF STRIPES,

76 HALT $HATT FOR AN INTERRUPT,

74 NXTSER LD 4D §A HOLDS THE BORDER COLOUR.
(i"S NITCOL EX AF BF° {IF WE'VE PRODUCED THE

€ Lb 4K $LAST STRIPE THEN GO BACK
B R L 170 SCAN KEYEOARD AND
280¢ JR 1,NA1T TMALT FOR AN INTERRUPT,

b} DEC ML

8 £t AF AF"

D3FE W (OFEH) A {CHANGE THE BORDER COLOUR.
8 3 AF AF"

015000 LD BC, 0050H 1A SHORT DELAY LETS 4

78 DELAY LD A8 1STRIPE BE PRODUCED.

Bl R b

0B DL RC

20FR iR NI, DELAY

8 £ A 4F°

3 N A s INCRENENT COLOUR COUNT. IF
E607 a7 {ME'VE JUST USED THE LAST
BE 3 £ iCOLOUR THEN REPEAT THE
2067 iR NZ,NITCOL $SEQUENCE, DTHERMISE NEIT
1864 IR NYTSED ;BORDER COLOUR.

END

The table I gave you previously where the product of depth and
no. of stripes should reach a constant in order to fill the
screen is usually good enough for low numbers of stripes, but
for higher values we must use a more accurate formula, as

163

incorporated in the demonstration program. Now we have that, to
avoid flashing,

0< = stripes x (117.5 + 26 x depth) <= (a
constant)

That constant is given by the table following:

Mains Supply

50 Hz 60 Hz
Location of Bottom 16K 54800 45666
routine in
RAM Top 32K 65800 57083

Hence for a given number of stripes, N, and a constant K, to
fill the screen,

DEPTH = (K/N - 117.5)/26
Note that depth should always be non-negative, so a line
IF SGN DEPTH = -1 THEN LET DEPTH 0

should be incorporated, as in line 110 of the demonstration, if
there is any chance of depth being negative.

Remember to adjust the start address in line 40 and the
constant K in line 50. I have included lines 200 onwards as an
example of one way to save and load the program and routine
together.

10 REM MULTICOLORED BORDER

20 REM DEMONSTRATION

30 REM i DAVID M. WEBB 1983

40 LET MULTI=65368-68: REM STA
RT ADDRESS

50 LET K=68500: REM CONSTANT F
OUND FROM TABLE BELOW. THIS IS F
OR A 48K MACHINE ON A SOHZ SUPPL
Y

60 POKE MULTI+1,0: POKE MULTI+
2,2: REM PAUSE LENGTH

70 POKE MULTI+&6,1: REM BLUE IS,

FIRST COLOR

80 POKE MULTI+S,0: REM BLACK I
S LAST COLOR

85 PRINT AT 10,2; "THERE ARE NOD
W"; TAB 22; "STRIPES."

20 FOR A=0 TO 9

100 LET STRIPES=2+A: PRINT AT 1
0,17;STRIPES

164

110 LET DEPTH=(K/STRIPES-117.5)
/26: IF SGN DEPTH=-1 THEN LET D
EPTH=0: REM NOTE THE NEW DEPTH F
ORMULA

120 LET HI=INT (STRIPES/256)

130 POKE MULLTI+37,STRIPES-254%H
|

140 POKE MULTI+38,HI

150 LET HI=INT (DEFTH/236)

160 POKE MULTI+52,DEPTH-256%HI

170 POKE MULTI+53,H1

180 RANDOMIZE USR MULTI

1920 NEXT A: GO TO 9999

200 REM I USED THIS TO LOAD THE

ROUTINE FROM TAFE....

210 CLEAR 65367-68B: LOAD "MULTI
BORD"CODE 65368-68: RUN : REM &5
367 WAS RAMTOF

220 REM ...AND THIS TO SAVE THI
S PROGRAM,WHICH AUTOLOADS THE RO
UTINE

230 SAVE "MB DEMD" LINE 200: SA
VE "MULTIBORD"CODE 653468-68,68

165

CHAPTER 35
SOUND EFFECTS

The only sound effect available to you on a standard Spectrum
is the BEEP command, so I thought one of the most useful
inclusions in this book would be a versatile set of sound
routines to enhance your programs.

There are three routines in this chapter, and for technical
reasons they each sound different when placed above or at
address 32768 to when placed below that address.

The reason for this is that the ULA chip (the one that produces
the T.V. picture) and the Z-80 (the one that runs machine code)
both need access to the memory chips that hold addresses up to
32767, and since the ULA has priority and only one chip can use
the memory at any one time, the Z-80 has to wait until the ULA
has finished. This "waiting'" on the part of the Z-80 results in
a rougher tone and a longer average delay between the '"clicks"
that produce the note, causing a lower pitch. Above address
32767, the note will be purer and have a higher pitch.

If you have a 16K machine, then the routine will always be
below address 32768 (you have no RAM above that address). If,
however, you have a 48K machine, then the routine will normally
be above 32767, and you will get a purer tone. In order to try
the rougher note (which in my opinion often sounds better),
you'll need to CLEAR '"RAMTOP'" below 32768. To do this use the
direct command:

CLEAR 32767.

166

Now RUN the Hexaid program, and use option one to enter the
routine in the normal manner. The cost of this technique is
that you only have as much room left for a BASIC program as you
would on a 16K machine, so bear this in mind when using it.

The first routine produces a short "whooping" sound, and if
called repeatedly in a short BASIC loop produces a very
effective warning siren. No POKEs are required.

HEX. {SIREN LENBTH: 21 BYTES

34485C START LD 4, (SC48H) $TAKE BORDER COLOUR.

oF RRCA

oF RRCA

oF RRCA

1E00 1) E,0

F3 0l 1DISABLE INTERRUPTS.

D3FE NXCLICK DUT (OFEH),A $CLICK,

EEL0 R 10H

3 Lo B,E $DELAY,

10FE SELF DINI SELF

1 DL E $ INCREASE PITCH UNTIL

20F4 R NI,NICLICK. ;MAXINUM,....

FB 31 $THEN ENABLE INTERRUPTS

i RET $AND RETURN TO BASIC,
END

You can increase the pitch that the note starts off at (and
hence shorten the sound) with a simple POKE. If "S" is the
start address, then

POKE S + 7, [new value]

That 'mew value" is in the range 0 to 255, where 1 is the
highest pitch, decreasing towards 255 and finally to 0, which
can be thought of as 256, the lowest pitch and the value in the
standard routine.

The second routine works in the exact opposite direction to
SIREN and sounds like a space-age 'laser shot' above address
32767, or a Winchester '"rifle-shot'" below it. Again, if "S" is
the start address, then you can decrease the pitch that the
note starts off at (shortening the sound) with the command.

POKE S + 7, [new value]

Where the new value is as described for SIREN.

HEX. ;LASER SHOT LENGTH: 21 BYTES

JA485C START LD #, (5C4BH) ;TAKE BORDER COLOUR.
oF RRCA

OF RRCA

oF RRCA

1E01 Lo £l

F3 i ;DISABLE INTERRUPTS.
D3FE NXTCLIK OUT {QFEH} ,A JCLICK,

EE1D 1R 10

167

3 LD B,E

10FE SELF DJNI SELF s DELAY
it ING £ sDECREASE PITCH
20F6 JR NZ,NXTCLIK JUNTIL MINIMUM
F8 (3 s THEN ENRBLE INTERRUPTS
c9 RET tRETURN TO BASIC
END

The next routine is a WHITE NOISE generator. That is to say
that it produces a series of clicks in quick succession but at
varying and fairly random lengths of time apart. The resulting
sound is a sound like an explosion or static picked up on a
radio.

For the mathematicians among you, I have written a
pseudo-random number generator producing a cyclical sequence
of 256 numbers containing each integer in the range O to 255.
Taking the Fermat prime 257 (= 2 to the power of 8 + 1) and
one of its primitive roots, 254, the residue of

(254)1 modulo 257 (0€= 1 <= 255)

minus one is the sequence of 256 distinct numbers used. This
can be illustrated with a simple BASIC program that generates
the sequence:

10 REM PSUEDO-RANDOM GENERATOR

15 REM @ DAVID M. WEBB 1983

20 LET P=257: LET A=254

25 REM P IS PRIME, A IS THE PR
IMITIVE ROOT MODULO P

30 LET SEED=ATO

40 FOR R=1 TO 256: PRINT R,SEE
D-1

50 LET SEED=A*SEED: LET SEED=S
EED-P*INT (SEED/P): REM SEED=(SE
ED*A)MOD P

60 NEXT R

The pseudo-random number generator is used in the routine to
produce the delay between clicks.

To use the routine, the only parameter needed is the duration
of the sound. Let this be '"D'", and the start address be "W'".
Then

POKE W + 12, INT(D / 256) :

POKE W + 11, D - 256 * INT(D / 256)

specifies the duration, the standard value of which is 128.

Here is the routine, followed by some tips on how to get the
most out of it, and a demonstration program.

168

HEX. sHITE NOISE LENGTH: 48 BYTES

F3 START 01 {DISABLE INTERRUPTS,

304850 Lo &, (SCABK) s TAKE BORDER COLOUR.

0F RRCA

oF RRCA

oF RRCA

08 £ AF , AF iH HOLDS (SEED-1)

2600 Lo H,0

018000 L0 BC,0080H {BC HOLDS DURATION,

i NTCLIC EX BF AP sCLICK,

D3FE BUT (OFEH), &

EE1D SR 104

8 £X AF, &7

2800 b Lo $LET HL=2568 (SEED-1}

55 L DL

5 U EN

aD A

£052 SBC HL,DE $LET HL=HL-28(SEED-1}, SO

£052 SBC HL,DE {HL=25415EED-254

{1FE00 LD IE, 254 SLET HL=HL+254, §0

19 ADD HL,DE {HL=2544SEED

b Lo AL {LET H=HL MODULO 257

94 SUB W

3801 R T, Hap

3 DEC A

87 WP LD Hoh 1STORE NEW SEED [N H

30 SELF DEC A {DELAY LOOP,

2F0 R NI,SELF

o8 DECBC {REPEAT FOR DURATION

7 Lo AR 10F SOUND,

Bl R

200F R NI, NETCLIC

FB £l {ENABLE INTERRUPTS,

£9 RET {RETURN TO BASIC.
END

Varying effects can be produced by altering the duration of the
noise and then calling the routine within a short BASIC loop.
Values of about 64 to 200 can sound like a machine gun, as
shown by this program:

10 LET NOISE=65000: REM INSERT
YOUR OWN START ADDRESS

20 INPUT "DURATION ";3D

30 POKE NOISE+11,D-256%INT (D/
256)

40 POKE NOISE+12,INT (D/256&)

50 IF INKEY$<>"" THEN RANDOMI
ZE USR NOISE

60 GO TO 50

169

You can use the program to experiment with other durations,
holding down a key to hear their repeated effect. A value of 2
sounds like a light aircraft in level flight; a value of about
10 is like a motorbike cruising on open roads; a value of
200-260 sounds like the starting motor on a car. Higher values
can be used for explosions.

Obviously we cannot hope to exactly duplicate the real-life
sounds described above, but you will probably find that the use
of text or graphics illustrating the source of the simulated
sound adds to the realism of the effect (e.g. animating an
aeroplane whilst simulating its engine noise). This
demonstration program will show you what I mean: don't forget
to alter the start address of the routine in line 30!

10 REM WHITE NOISE DEMO

20 REM © DAVID M. WEBB 1983

30 LET NDISE=65000: REM START
ADDRESS

40 POKE NDISE+11,220: POKE NOI
SE+12,0: REM DELAY OF 220

50 PRINT “A DAY IN THE LIFE OF
A CAR......";AT 10,12;"START!!!

60 FOR A=0 TO 3

70 FOR B=0 TO 7+5%RND

80 PAUSE 2: RANDOMIZE USR NOIS
E

90 NEXT B

100 IF A<>3 THEN PAUSE 25+50#R
ND

110 NEXT A

120 PRINT AT 10,12;“BROOOM"

130 POKE NOISE+11,2: REM LENGTH
oF 2

140 FOR A=0 TO 400: RANDOMIZE U
SR NOISE: NEXT A

150 POKE NOISE+11,0: POKE NOISE
+12,12: REM LENGTH OF 2560

160 PRINT AT 10,12;"SMASH!'!!"
170 RANDOMIZE USR NOISE

180 STOP

190 SAVE “NOISE DEMO" LINE 210:
SAVE “NOISE“CODE 65000,48

200 STOP

210 CLEAR 64999: LOAD ""CODE &5
000: RUN

170

CHAPTER 36
PRINTER CONTROL USING OUT

You may have seen mentioned on page 160 of the Spectrum manual
that the printer is addressed by port 251, I will elaborate on
this.

Your ZX printer can run at three speeds; fast, slow and zero.
The stylus which burns away the aluminium coating to reveal

the black backing of the paper can either be on or off. The
speed and stylus status can be controlled by OUT-putting a
number to port 251. The output port is 'latched', that is to
say that once a value is output it remains there until the next
one is sent. For example, if you turn the printer motor on it
will stay on until the value to turn it off is sent, whatever
the Spectrum happens to be doing in the meantime.

The command to operate the printer is
ouT 251,N

and here are the values of N and their effects.

It is probably not a good idea to leave tHe stylus on for too
long, or overheating may result.

VALUE Of N EFFECTS

128 Motor fast, Stylus on.
0 Motor fast, Stylus off.

130 Motor slow, Stylus on.
- Motor slow, Stylus off.
4 STOP

171

I have included a little subroutine which can be used as a
computer—controlled line feed.

9000 REM KEYBOARD PRINTER LINE-F
EED CONTROL SUBROUTINE

?010 REM PRESS AND HOLD DOWN L F
OR LINE-FEED, X TO ESCAPE

2020 IF INKEY$="X" OR INKEY$="x"
THEN RETURN

030 IF INKEY$="L" DR INKEY$="1"
THEN OUT 251,0: GO TO 2020
2040 OUT 251,4: 60 7O 9020

172

APPENDIX A

A LIST OF ROUTINES WITH PAGE AND LENGTH

Getting Started
Mystery routine

ROUTINES FOR THE ATTRIBUTES
SCREENOP (rectangle)
SCREENOP2 (whole screen)
Inverse rectangle
Full-screen inverse
(Right/left)~scroll attribute rectangle
Rightscroll attributes
Leftscroll attributes
(Down/Up) - scroll attribute rectangle
Downscroll attributes
Upscroll attributes

ROUTINES FOR THE TEXT AND GRAPHICS
RIGHT R (right /left Rectangle scroll)
LEFT WS (Whole Screen)
RIGHT WS
UP R
DOWN R
UP WS
DOWN WS
PW LEFT
PW RIGHT
PW UP
PW DOWN
RIGHT PEEL-OFF (Carpet roll CLS)
LEFT PEEL- OFF
Mirrored Screen Characters
Mirrored UDG Characters
RIGHTSHIFT CLS
FADEOUT CLS

SYSTEM VARIABLE ROUTINES
Forcing an error report.
Shifting graphics to the printer buffer
ROUTINES TO REPLACE BASIC COMMANDS
SCREEN $2
PAUSE MK.2
TIMELOCK
UTILITY ROUTINES
PROGLENGTH
VARLENGTH
FREE
RENUMBER (line numbers only)
CASE CHANGE
FIND AND REPLACE
LINE DELETE
FULL RENUMBER
TRACE 16
TRACE 48

173

Length(bytes) Page
39 11
95 19
27)
78 23
29 25
81 28
34 30
34 30

105 31
54 33
50 34
89 39
33 41
33 41

108 42

109 43
67 45
69 46

113 51

115 54

115 57
116 60
78 63
75 64
19 66
33 68
40 69
47 70

2 76
16 94

129 105

25 108
6 109
13 111
13 112
13 112
37 114
w 116
81 119
70 122

411 125
114 132
118 133

ENHANCING YOUR PROGRAMS
GEOSCAN1 (Keyboard routines)
GEOSCAN2
GEOSCAN3
GEOSCAN4
GEOSCANS
SUPERPLOT 256x192
TAPE RELAY
LISTEN
SPEAK
MULTICOLOURED BORDER
SIREN
LASER SHOT
WHITE NOISE

Length(bytes) Page
48 138
25 139
26 140
36 141
49 141
68 143
27 147
78 150
69 151
68 163
21 167
21 167
48 169

174

APPENDIX B
USING THIS BOOK WITH THE MICRODRIVE

Information on the Microdrive became available at too late a
date for inclusion in the main text of this book, so here it
is.

Although the increase in speed when saving short blocks of
machine code is negligible, the Microdrive does have the
advantage of taking less time to find the code when loading it
back than for tape.

The Hexaid Program in chapter one is easily altered to SAVE and
LOAD machine code on a Microdrive cartridge by making the
following changes:

Where K is the Microdrive number.

615 PRINT "Insert cartridge and hit any Key":
PAUSE ©

620 SAVE * "m''; K; n$ CODE A, VAL A$

Delete line 660

670 VERIFY * "m'; K; n$ CODE

790 PRINT "Insert cartridge and hit any Key":
PAUSE O

800 LOAD * 'm''; K; n$ CODE VAL A$:GO TO 680

The SPECTRUM SPEECH program in chapter 33 can be altered to
SAVE speech on Microdrive K with the line

700 SAVE * "m'"; K; A$ CODE ST,LE

Using a Microdrive to store the speech will speed things up
considerably, due to the massive length of such blocks.

I would like to draw your attention to the list of system
variables for coping with the Microdrive, Network and RS 232
Interface on page 47 of the ZX Interface 1 and ZX Microdrive
manual. In particular, you can change the colour assumed by the
border during input and output to the interface by the command:

POKE 23750, (colour number(0-7)).

175

APPENDIX C
FURTHER READING

In this book I have refrained from attempting to teach the
reader how to program in machine language, but have instead, I
hope, shown the vast increase in speed and power over BASIC
that such an ability can offer. 1 have endeavoured to include
all the routines a Basic programmer is ever likely to need for
program enhancement, but if you would like to take the next
logical step and begin writing YOUR OWN machine code then I
would recommend the Melbourne House book, "Spectrum Machine
Language For The Absolute Beginner'.

The book takes you gently through the elementary ideas behind
machine language and on to a thorough working knowledge of it,
culminating in the step-by-step development of a fully -
fledged machine code arcade game.

While the above-mentioned book adopts an informal approach to
machine language with special reference to a particular
computer, if you want a more clinical and technical approach to
programming the Z-80 in general then

Rodnay Zaks' "Programming The Z-80" is to be recommended.

Be warned, however; it can be rather heavy going for the
beginner and is more appropriate as a reference aid to a fluent
machine language programmer.

Also of interest to the reader who wants to know what makes the
Spectrum tick (or should I say "buzz') is '"Understanding Your
Spectrum" by my colleague Dr Ian Logan and published by
Melbourne House. This book explains concisely the rudiments of
machine language and goes on to delve into the 16K Rom and
reveal some very useful details on how the 'operating system'
works, and how to use it to your advantage.

* * * *

176

NOTES

177

NOTES

178

SUPERCHARGE YOUR SPECTRUM

REGISTRATION CARD

Please fill out this page and return it promptly in order that we may keep
you informed of new software and special offers that arise. Simply cut

along the dotted line and return it to the correct address selected from
those overleaf.

Where did you learn of this product?
{7} Magazine. If so, which one?
(] Through a friend.

[] Saw it in a Retail Store
[] Other. Please specify
Which Magazines do you purchase?

Regularly:

...

OCCasSBIONAY: - coiiving svs ais s avdsin s o Soy ST s S0 B
What age are you?

[]10-15 []16-19 (] 20-24 [[] Over 25
We are continually writing new material and would appreciate receiving
your comments on our product.

How would you rate this book?
Excellent [] Value for money
Good [] Priced right
Poor [] Overpriced

Please tell us what software you would like to see produced for your
SPECTRUM.

Name
Address

Code

PUT THIS IN A STAMPED ENVELOPE AND SEND TO:
In the United States of America return page to:
Melbourne House Software Inc., 347 Reedwood Drive,
Nashville TN 37217.

In the United Kingdom return page to:
‘Melbourne House (Publishers) Ltd., Melbourne House, Church Yard,

Tring, Hertfordshire, HP23 5LU

In Australia & New Zealand return page to:

Melbourne House (Australia) Pty. Ltd., Suite 4, 75 Paimerston Crescent,
South Melbourne, Victoria, 3205.

Melbourne House

	Cover
	Special Note

	Contents

	Preface

	Getting Started
	Chapter 1 - Using the Routines:- All You Need to Known
	Chapter 2 - Building a Dedicated Toolkit from a Library of Routines

	Routines For the Attributes

	Chapter 3 - Colourful Operations on the Attributes

	Chapter 4 - Inverting the Attributes

	Chapter 5 - Scrolling the Attributes in All Directions

	Routines For the Text and Graphics

	Chapter 6 - Scrolling the Text and Graphics

	Chapter 7 - Scrolling By Pixels

	Chapter 8 - Carpet-Roll CLS

	Chapter 9 - Mirrored Characters

	Chapter 10 - More Spectacular Ways to Clear the Screen

	A Complete and Detailed Breakdown of Useful System Variables

	Chapter 11 - System Variables and the Keyboard

	Chapter 12 - Forcing Error Reports

	Chapter 13 - Changing Modes

	Chapter 14 - Screen Colours

	Chapter 15 - FRAMES:- The Hidden Timer
	Chapter 16 - SCROLLing the Screen
	Chapter 17 - Redefining the Character Set: 96 More Graphics

	Chapter 18 - Memory Labels

	Chapter 19 - DF SZ and Software Protection

	Chapter 20 - Miscellaneous System Variables

	Routines to Improve BASIC Commands

	Chapter 21 - SCREEN$2

	Chapter 22 - PAUSE MK.2

	Utility Routines

	Chapter 23 - For Your Information

	Chapter 24 - Renumbering Your Programs

	Chapter 25 - Case Change

	Chapter 26 - Find and Replace

	Chapter 27 - Line Delete

	Chapter 28 - FULL RENUMBER

	Chapter 29 - The Spectrum Gets a TRACE Function

	Enhancing Your Programs

	Chapter 30 - Geographic Keyboard Scans

	Chapter 31 - Superplot 256x192

	Chapter 32 - Tape Relay

	Chapter 33 - Speech Reproduction

	Chapter 34 - Multicoloured BORDER
	Chapter 35 - Sound Effects

	Chapter 36 - Printer Control Using OUT

	Appendix A: A List of Routines with Page and Length

	Appendix B: Using This Book with the Microdrive

	Appendix C: Further Reading

	Back Cover

