PROGRAMMING SERIES

STEP-BY-STEP
PROGRAMMING

, ZX SPECTRUM
X SPECTRUM+_

Qrneen

PROGRAMMING SERIES

STEP-BY-STEP

i s

]_T

ZX SPECTR
- \EE

A

PROGRAMMING _

e i

L 4 B i

- i L

b= o m i L
- -

l- 'z“m i L :
i ! s o -

i : = |

i3

THE DK SCREEN-SHOT PROGRAMMING SERIES
Books One and Two in the DK Screen-Shot Programming Series
brought to home computer users a new and exciting way of
learning how to program in BASIC. Following the success of this
completely new concept in teach-yourself computing, the series
now carries on to explore the speed and potential of machine-code
graphics. Fully illustrated in the unique Screen-Shot style, the
series continues to set new stanfards in the world of computer

books.

BOOKS ABOUT THE ZX SPECTRUM-+
This is Book Three in a series of guides to programming the ZX
Spectrum+. It contains a complete BASIC-and-machine-code
graphics language for the Spectrum-, and features its own
graphics editor which enables you fo use all these facilities directly
from the keyboard. Together with its companion volumes, it builds
up into a complete programming and graphics system.

ALSO AVAILABLE IN THE SERIES

Step-by-Step Programming for the Commodore 64
Step-by-Step Programming for the BBC Micro
Step-by-Step Programming for the Acorn Electron
Step-by-Step Programming for the Apple lle
Step-by-Step Programming for the Apple lic

PIERS LETCHER
After graduating with a degree in Computer Systems, Piers
Letcher has worked in many areas of the computer industry, from
programming and selling mainframes to designing and marketing
educational software. He was Peripherals Editor of Personal
Computer News until May 1984 and has since written a guide to
peripherals and a number of other books for popular home micros.

|

| =

| %_ 1 L

DI
QoeenShot

PROGRAMMING SERIES

STEP-BY-STEP

R

_ PROGRAMMING

T
P : . e
,
:

it o8

TR R S

PIERS LETCHER

PICTURES WITH

SCREEN COLOURS 2

) s) POINTS 1
ABOUTTHISBOOK || T
- T PICTURES WITH
USING THE FOINIS 2

MACHINE CODE ,
I I— | LINEGRAPHICS 1

o o _ Sl .
REEN COLOURS 1 ENLARGED TEXT

L 20 .

=
F

L =
=
*
—
il

The DK Screen-Shot Programming

All rights reserved. No part of this

Series was conceived, edited and publication may be reproduced, stored
designed by Dorling Kindersley in a retrieval system, or transmitted in
Limited, 9 Henrietta Street, Covent any form or by any means, electronic,
Garden, London WC2E 8PS. mechanical, photocopying recording, or
otherwise, without the prior written
Editor Michael Upshall permission of the copyright owner.

Designer Steve Wilson
Photographer Vincent Oliver
Series Editor David Burnie

British Library Cataloguing
in Publication Data

Series Art Editor Peter Lufl Letcher, Piers
Managing Editor Alan Buckingham Step-by-step programming
ZX Spectrum and ZX Spectrum-+
First published in Great Britain in 1985 Graphics.
by Dorling Kindersley Limited, - (DK screen shot programming
9 Henrietta Street, Covent Garden, series) Bk. 3
London WC2E 8PS. 1. Sinclair ZX Spectrum (Computer) | _— =
Second impression 1985 - Programming 1 o &
Copyright © 1985 by Dorling L. Title
Kindersley Limited, London 001.64°2 QA76.8.5625 TR'ANG LEs

Text copyright © 1985 by Piers Letcher ISBN 0-86318-103-1

As used in this book, any or all of the Typesetting by Gedset Limited, e
terms SINCLAIR, ZX SPECTRUM, Cheltenham, England

MICRODRIVE, MICRODRIVE Reproduction by Reprocolor Llovet CIRCLES AND ARcs 1

CARTRIDGE, and ZX PRINTER are S.A., Barcelona, Spain
trade marks of Sinclair Research Printed and bound in Italy by
Limited. A. Mondadori, Verona R S R

30

42

50

CIRCLES

AND ARCS 2

5

GRAPHICS EDITOR 5

SECTORS

AND SEGMENTS

s

a2

MULTIPLE

LINES

54

MAGNIFICATION
AND REDUCTION 1

56

MAGNIFICATION

44 |
GRAPHICS EDITOR 2
34 46 |
FILLING SHAPES 1 GRAPHICS EDITOR 3
i % |
FILLING SHAPES 2
[38
OVERPRINTING

AND ERASING

58

- -

SAVING

AND

LOADING DISPLAYS

60

40

COMBINING

ROUTINES

ROUTINES
CHECKLIST

62

ERROR TRAPPING

63

e

GRAPHICS GRIDS

64 |

|

INDEX

* ABOUT THIS BOOK

The Sinclair Spectrum is one of the most popular
microcomputers ever produced. One reason for its
success has been its remarkable ability to produce
graphic displays rivalling those produced by much
larger computers designed only ten or fifteen years ago.
However, graphics programming in BASIC under-
utilizes the Spectrum. To produce the kind of displays
seen in commercially available games, you need to use
machine code as well as BASIC.

What is machine code?

The heart of the Spectrum, the Z80 central processor,
cannot understand BASIC. A BASIC program must
first be translated into a simpler language that the
machine can understand (hence the term “machine
code™). This code is in the form of binary 1s and 0Os.
Before the processor can execute a BASIC program
line, all keywords and variables are first converted to
machine-code instructions.

BASIC is an example of what is known as an
“interpreted”, as opposed to a “compiled”, language —
that s, itis executed by the central processor line by line
rather than as a complete program. While an
interpreted language is easier to use, it is also slower in
execution. By writing programs in machine code, you
can miss out the BASIC interpreter altogether. In
addition, machine code allows you to utilize many
features of your Spectrum which cannot be reached
from BASIC, so that you can therefore achieve far more
impressive results than would ever be possible from the
simpler, but more restricted, BASIC. You can get an
idea of how much faster machine code is by seeing the
time taken for the programs in this book to run.

Disadvantages of machine code

Given all the advantages of machine code in both speed
and flexibility, why not ignore BASIC and use machine
code all the time? The answer is simply convenience.
Using machine code is tme-consuming, difficult and
frustrating, and attempting to write your own code is
only for the expert. When you see machine-code listings,
they are usually in a “disassembled” form, that is, with
some of the numbers translated into mnemonics such as
LD for LOAD, and JP for JUMP. But a special
disassembler program is required simply to give you a
machine-code listing in this form, and these mnemonics
are themselves far from simple. Using machine code
even the simplest operations in BASIC, such as drawing
aline on the screen, require many lines of machine code.
In addition, machine code has no error-trapping
routines such as those in BASIC. If a mistake is made
when keying in a BASIC program, the program will not
be lost (although the program may refuse to RUN at

some point); in machine code, without error-trapping
routines, a mistake will probably cause the Spectrum to
crash, erasing both the program and its DATA.

The solution

This book combines the advantages of machine code
with the convenience and simplicity of BASIC. This is
done by giving the machine code in the form of ready-
made and tested routines, which you can then use in
your BASIC programs. The machine code is shown as
DATA statements in BASIC, which means it isn’t
necessary for you to understand anything about
machine code to be able to use the routines. The DATA
is given in the form of decimal numbers, rather than in
binary or hexadecimal (to base 16), so that the machine
code is in the form most convenient for you to read and
key in.

The machine-code routines
Here is an example of a machine code routine (the
point-plot routine, FNf, from page 17):

[ROUTINE LISTING |

73S LET b=61S28: LET L=56@: LET
Zz=&: RESTORE 7360@

7351 FOR i=08 TO L-1: READ a
7352 POKE (b+i) ,a: LET zZ=zZ+a
7353 NEXT i

7354 LET z=INTFT (((Z,/L}) -IMT <((z-L)

I xb) "
7355 RERD a2: IF a<:z THEN PRINT/
tEt s STOR

IS

NGN «
=0 NONON-
- W
~N@

[0/

@ e RPELR- A0~
=1
Al
]

~J

W

]

]

Q

D

pur}

D
NRNRNNREIDONDE R
PRONAQ- PR -
s pNe@PJO- Qoo
[P T A
R el RN L e T e T
QROM ~ OO~
Al SN ENT ST (W Ui
G - PR s QR)
B RYRP RO A
B P BRWGB AN B

DI et LSRR [¥
(TR AT R R

Each routine in the book i1s shown like this, in the
form of a BASIC program. The machine code is
contained as a series of DATA statements in lines 7360-
7372. At the beginning of the routine in lines 7350-
7355, there are a few lines of BASIC. This is a loader
program; variable b tells the computer where in mem-
ory to begin loading the routine, and variable | the num-
ber of bytes in the routine. When the loader routine is
RUN, this routine is placed in memory from address
61500 onwards, and has a length of 60 bytes,

Asshown here, of course, the routine is simply a list of
numbers, and has no visible meaning, These numbers
are the ready tested and assembled machine code which
has then been converted to a sequence of decimal
numbers., Each number corresponds to a single
instruction or item of DATA required by the routine;

hence, all the numbers have values between 0 and 255,
the maximum value of a byte. All you need to know
about the routine is what it does and what information it
requires so that you can call it correctly from your
BASIC program.

All the routines in the book are defined as functions.
Each functionisindividually coded by thelettersatot; a
complete list of functions is given on pages 60-61.
Demonstration BASIC programs can be found on the
same page as the routine, which give an indication of the
kind of displays possible using the machine code.

How to use the routines

To use any program in this book, simply key in a
machine-code routine together with a BASIC program
which demonstrates its use. You will find full details of
how to do this on pages 8-9. When you RUN the
program, you will immediately begin to see the true
power of your Spectrum.

As you progress through the book and the range of
routines grows, the BASIC programs grow too by
calling several routines to produce increasingly complex
graphics. By keying in each routine just once, and then
SAVEing it onto cassette or Microdrive, you will have a
sophisticated graphics capability at your fingertips.

The programs in use

A typical program from this book (the exponent curves
program on page 17) contains two details which will be
unfamiliar to BASIC programmers who have not used
machine code before:

EXPONENT CURVES PROGRAM

DEF FMN f (x,y)=USR 51521
EORDER 5: PAPER 65: INK

FOR n=1.19 TO 1.58 STEP ©.0

: C

FOR =@ TO 22 STERP 8.5
nl
=3
£E
F

First, you will see in line 10 a DEF FN statement, which
is used to instruct the computer that a machine-code
routine with two parameters (x and y) is located at
address 61500 in memory. You will also notice two
RANDOMIZE FN commands (lines 150 and 160).
These are the calls to the point-plot routine, and the
numbers in brackets which follow them are the

parameter values to be passed to the machine-code
routine (in this case, the co-ordinates of the point to be
plotted). When RUNning, the program is carried out by
the computer in this way:

POINT-PLOT PROGRAM FLOWCHART

10 DEF FNf (routine
name and address)

110,120 set up loops
¥
150 RANDOMIZE FNf | | Foutine plots point at
= i (zaY)

—= routine plots point at
o 1
160 RANDOMIZE FNf e (255-2,168-y)

170,180 repeat loops

On the left side of this diagram is the main BASIC
program, and on the right you can see the machine-code
routines, called twice using a RANDOMIZE FN
statement. You will see from the diagram that the
machine-code is used here very much as a subroutine
would be used in BASIC, with variables passed to the
routines each time they are called.

What the routines do

Much of this book gives you machine-code versions of
the graphics commands you are familiar with in BASIC.
You will find that the machine code is often many times
faster, and offers you alternative ways of producing
graphics which will often be preferable to the BASIC
method.

In addition, several routines are included in this book
which would simply not be possible in Sinclair BASIC,
such as magnification and reduction, and filling in
irregular shapes with the current INK colour.

The graphics editor

To make the machine-code routines in this book even
easier to use, all the routines contained on pages 10to 41
have been combined in a single program to form a
complete package of routines, which you can use as a
graphics editor (pages 42 to 51). No knowledge of
BASIC is required to use the graphics editor; even
someone with no knowledge of programming, and who
has never used a Spectrum before will quickly learn how
to produce sophisticated displays using this graphics
editor.

USING THE MACHINE CODE

The machme—code routines in this book can easily be
incorporated into your BASIC programs without you
having to understand the intricacies of how they work.
Simply choose a program from this book, and follow the
four steps given here.

1: CLEAR memory
As soon as you switch on the Spectrum, type CLEAR
55500. This command resets RAMTOP, the top of the
area in memory free for BASIC programs, and ensures
that BASIC programs cannot overlap with the machine
code (stored inmemory from 55500 upwards). Now you
can safely use NEW to delete BASIC programs without
deleting any of the machine code in memory.
Remember to use CLEAR before loading machine
code, since this command erases whatever is in memory
above the specified address.

2: Load the machine code
Now type in whatever machine-code routines are

required by the BASIC program. After keymg in the
routine, RUN the short BASIC program which
accompanies it: this loads the code into memory. If you
keyed in the DATA correctly, you will see an “OK”
message on the screen; if not, you will see a couple of
question marks. In this case, look again at what you
have typed in to trace the mistake.

3: SAVE the routine
When you are sure you have keyed in the routine
correctly, SAVE it onto cassette or Microdrive. Always
SAVE machine code before using it, to minimize the risk
of losing everything you have keyed in. When BASIC
errors occur, an error message is usually produced but
the program is not lost. Machine-code routines,
however, donot generally have error-trapping facilities,
and a fault in the code will as often as not cause the
Spectrum to crash — deleting everything in memory.
The machine code can be SAVEd in two ways: either
in the form of DATA statements like any other BASIC

EXPLANATION OF A MACHINE-CODE BOX

FNi—|

Routine title (a single letter)

TRIANGLE DRAW-ROUTINE

Name of routine

Address in memory at which

Start address-66300 Length 80-bytes

Number of bytes in memory

routine is located taken up by routine
x : Other routines-eatted Line draw routine (FNg). PoX

Other machine-code routines What it does Draws a triangle given the pixelco-ordinates of

which must be present in three points. Purpose of routine

memory for this routine

to work

Using the routine The routine uses absolute co-ordinates.

Specifying off-screen co-ordinates produces—an—errot
message; values more than 255 pixels off the screen will
probably cause the Spectrum te crash. Colours are set by the
current screen INK attributes.

List of parameters used by the
routine, and letters used to
describe these parameters

Bt

ROUTINE PARAMETERS |

——DEF FNi(x,y,p,q,r,5) !

Points to note when using
the routine

X,y ” specify first corner of triangle (x<<256y<<176) I

What the parameters do

T
|
| ” specify second corner of triangle (p<<256, q<176—)—’T
LT

|| specify third corner of triangle (r<{256,5s<C176) ‘

BASIC loading routine for

Maximum and minimum values
of parameter to ensure the routine
does not plot off-screen points

Number of bytes for machine-
code (without check digit)

Calculates check digit z

machine-code DATA | ROUTINE LISTING /|'
3 : B b-603@@: LET L=7S.-TET
quamkws%rPOKEmg B gl = e
DATA 7681 FOR i=@ TQ L-1. READ a
76@2 POKE (b+i),a: LET z=z+a
: 73 NEXT— 1
POKEs byte value a into 7604 LET zZ=INT r((z/Lr—Im?fT?TTT;I
; :) # L)
location {b+i) Z6@5 READ a: I M PRINT
“277 . STOP
- ® DATA 42,11,592,1,4
Start of machine-code DATA 7611 DATA ©,9,86,14,8
7612 DATA 2,94 ,237,53,203
7613 pATA 235,9,86,9. 34
7614 OATA 237.55.212,235.9

READs next DATA item, the
routine check digir; if this is not
the same as z, two question
marks are PRINTed to show a
mistake has been made

listing, or, after you have loaded it into memory, as a
block of code. To save machine code, type:

SAVE “routine name” CODE start address, length in
bytes

The start address and length are given at the top of each
machine-code box. The diagram on the facing page
shows how this information is displayed.

4: LOAD a BASIC program

With the machine-code routine in memory, you can now
use it in a BASIC program. DEF FN statements are
used to tell the Spectrum the whereabouts of the routine
in memory, and what information the routine requires.

Using functions
A machine-code routine can be called simply by
specifying its start location, like this:

10 RANDOMIZE USR 63000

Aline like thisin a BASIC program, however, is not very
informative. It tells you neither what the routine does,
nor how many parameters the routine may require
when called. This information could be POKEd into the
appropriate memory locations — but the consequences
of a mistake would be disastrous. Much more reliable is
to pass information to the routines using a BASIC
function. Functions on the Spectrum are identified by a
single letter, and are followed by parameters in
brackets. When you define the name and location of the
function in your program, you must also specify the
parameters, if any, which are to be passed to the routine.
For example, the screen clear routine, FNa, requires
four parameters:

10 DEF FN a(x,y;h,v) = USR 63000

Which letters are used after DEF FN is not important;
their function is only to tell the computer the number of
parameters which will follow the routine callinaBASIC
program.

A machine-code function can be called from BASIC
in two main ways, both of which require you to combine
the keywords FN or USR with a BASIC keyword.

The method used generally in this book is with the
keyword RANDOMIZE. Thus,

RANDOMIZE FN a(10,10,10,10)

would clear a rectangular area of 10x10 characters with
the top corner at point 10,10. Note that using
RANDOMIZE also resets the random number
generator with a new seed; this may cause problems if
you are also using a random function in your program.

The second word you can use to call machine code is
RESTORE. However, RESTORE also resets the
pointer to DATA statements when you use it — which s
of course the purpose of the RESTORE statement. If

you opt to use RESTORE instead of RANDOMIZE
then be especially careful if there are any READ or
DATA statements in your program.

QUESTIONS AND ANSWERS

What if I make a mistake in keying in?

Don’t panic! Nobody keys in long lists of numbers
without making any mistakes. A check routine is
included with each machine-code routine to warn you if
you made any mistakes in keying in the DATA. This
routine compares the DATA you have entered with a
check number, which is placed by itself on the last
DATA line of each routine.

After the loading program has POKEd the DATA
numbers into memory, it looks to see if the check digit s
the same as the one currently calculated. If the two
numbers are different, the program prints two question
marks to show an error has been made. If this happens
look through the numbers you have typed in to find the
mistake. Having corrected the error, you may still find
that the routine fails to load correctly; look to see if you
have made more than one error.

Can I start anywhere in the book?

Yes, you can start on any page, but obviously when you
key in a program it will not RUN unless the machine-
code routine it calls is present in memory. Check before
you begin if the program you want to RUN calls any
machine-code routines you haven’t already keyed in.

Can I use more than one machine-code routine
in my programs?

Yes — you can use any combination of routines from
this book together. The complete graphics editor
program (pages 42-51) provides a convenient way of
using machine-code routines together in a single
program.

Can I adapt the BASIC programs?

Yes. You can edit the BASIC programs in any way you
want to produce different displays, and you will find
suggestions for variations throughout the book. One
suggestion, though, if you are going to experiment with
unusual or off-screen values for the machine-code
parameters, is to SAVE what you have keyed in before
experimenting. This will prevent you from losing hours
of work at the keyboard!

Can I adapt the machine-code routines?

Yes, but at your own risk! Without a good
understanding of machine code, itis highly unlikely that
you will be able to alter any of the routines successfully.
Much more probable is that the Spectrum would crash,
with the result that both program and code are wiped
from memory.

~ SCREEN COLOURS 1

The Spectrum CLS command is used to wipe off any ink
from the screen, leaving the PAPER and INK attributes
for the screen unchanged.

However, there are often occasions when you may
want to clear a portion of the screen without disturbing
the rest of the display. The partial screen clear routine,
FNa, enables you to do this. It clears any rectangular
portion of the screen, leaving the PAPER and INK
attributes at their current setting. It is used in a program
by first defining the function (as in line 10 of the
program below), and then calling it with a
RANDOMIZE FNa statement (line 160).

Colours on the Spectrum

The Spectrum screen colours are set by the familiar
INK and PAPER commands. However, although each
character square on the Spectrum can have one INK
and one PAPER colour, a command such as INK 2

affects the whole screen, even though you may only
want the command to affect a small area. How can this
be done? It is possible to change the INK attribute of a
single character square on the screen by PRINTing
spaces in graphics mode and using OVER, or by finding
the relevant memory location of the INK attribute, and
POKEing the new value, but these would be very slow
methods of changing the INK colour on more than a few
squares,

Changing colours with machine code

The window ink routine allows you to change the INK
colour of any rectangular area of the screen. Whatever
you draw on this area of the screen will now be in the
INK colour specified by the routine, while outside this
area, colours remain in the current Spectrum INK
colour. The routine also allows you to set the BRIGHT
and FLLASH attributes of the area you are specifying.

PARTIAL SCREEN CLEAR PROGRAM

DEF FN alx
EBORDER 4 :

i
HEXT o
PRUISE ige
FOR n=1 Ta S
RANDOMIZE FMN a{nx6-5S,nx3-1,

HEXT n

WINDOW INK PROGRAM

@ DEF FMN (x4 ,h.,v,C,b,Ff)]
j=1%1"]
@ BORDER ©®: PARPER @: INK

i

14@ PAUSE 1028

1S@ FOR n=1 TO 7

16@ RANDOMIZE FMH b(@,n*x3-3,32.3
,8-n,80,2)

178 NEXT n

18@ FOR n=1 TO 7

190 RANDOMIZE FM bBinxa-1,0,2,22
,n,@,8)

200 NEXT n

L
10 .
nmmmmw g Huﬂuammﬂmﬂm

FNa _
PARTIAL SCREEN CLEAR ROUTINE

FNb
WINDOW INK ROUTINE

Start address 63000 Length 100 bytes

What it does Similar to BASIC CLS command, but clears only a
specified rectangular portion of the screen.

Using the routine Parameter values in this routine represent
character positions rather than pixel positions. As with all the
machine-code routines in this book, parameter values must be
whole numbers.

If the result of adding x and h is greater than 31, or if the sum of
y and v is greater than 23, the area to be cleared will run off the
screen, and the routine may crash as a result.

| ROUTINE PARAMETERS |
| DEF FNa(x.y,h,v) |

Xy specify top left-hand corner of area to be cleared
(x<<32,y<<24)

h,v | horizontal and vertical size (x +h<C32, y+v<(24) l

] ROUTINE LISTING]

T@ave LET b=63@2a: LET L=95: LET

foae

7aal FOR i=22 TO L-1: RERD =2
78@2 POKE (b+i2) ,3: LET zZ=zZ+3
7@as MNEXT i

74 LET z=INT (¢(zZ L) —INT (z.-L3

TaasS RERD s
et STOR

IF a<»>»z THEN PRINT

7@l@a DATH 4
711 pATA @
7ali2 bRTR @
i3
9
2

-

7813 DATH
7814 DATAH
7e1s DATH
7al6 DRTAH 2S5
vaiv? DATA 116
7A18 DATA 245
7Aal19 DRATH 7,18

T
U~ WP
Wwm

LI CIND -
G W

SOROBNE: PO « PAUP-LP RO

DI =1 A S

G- @ v s O g
(P
FOW~ M 10

N

9

1]

(0]

Q

I

_l

I

)]

TR

il
WRO~NANW
o= ~
QOO
nma a

Mps v e Pe b

S O0E- DO LG D
e LI PO~

B NRENNRE LR s DRl 1R
L@ WODA00R - @R REQDW- -
s Qe N0~ B DUROD &

@ PRUONAN- NP QORNEO- « DR
&~~~ U~

~
3
ny
Jull
Q
I
-
By
1]
]
i
~ W

While the standard Spectrum screen graphics area is
22 characters deep, with two lines reserved below this
for text (lines 23 and 24), both the routines on this page
can be used anywhere within the whole screen area, 32
characters wide by 24 deep.

The two programs on the facing page demonstrate
the machine-code routines in action. Both programs
begin by PRINTing a graphics character over the whole
screen (lines 110-130). The partial screen clear program
then clears five rectangular areas on the screen. The
result is that the INK is deleted in these areas, while the
paper colour remains unchanged. The window ink
program calls the ink routine in two loops eight times
across and down the screen, producing a grid effect:

Start address 62800 Length 135 bytes
What it does Sets the INK colour of any specified part of the
screen.

Using the routine Be careful that you do not try to set the ink
colours of points off the screen. Since parameters h and v are
added to x and y respectively, this means that x+h should not
be greater than 31, and y+v should not exceed 23. If they do,
you may crash the Spectrum and lose the program you were
working on.

If, when using the routine, it appears that nothing has
happened, then either you have set the INK colour to what it
was already, or the area you have altered contained no INK
attributes. Try the routine again after printing something in the
specified area.

Note that the routine can set the ink colour over the whole
Spectrum 32x24 character screen, not just over the normal
32x22 graphics area.

| ROUTINE PARAMETERS |
1 DEF FNb(x,y.hv,c,bf) !
[xy || specify top left-hand corner of box area (x<C32, y<24)|

i specify horizontal and vertical sizes of area
. (x+h<<32, y+v<C24)
‘ c || specifies ink colour (0<<=c<<=7)]

r b]rspecifies bright (1=bright, 0=o0ff)
f__|[specifies flash (1=flash, 0=off) o

[ROUTINE LISTING |

7@5@ LET b=62800: LET (=1308: LET
z=@: RESTORE 7960
7051 FOR :=@ TO L-1:
7252 POKE (b+i) ,a:

7@S53 MNEXT i
7854 LET z=INT (((z L) —INT (zZ /L)

7055 RERD s
SrEetts S TUR

RERD &
LET zZz=Z+3

IF a<>Z THEMN PRIMNT

~J
a
4]
P
Q
D
-
Rt
NUENOOLE G
WP o=
w & D

PR B pRes
NN ENT Y N

NP~ e IO~
RER, SN ~ T 11 |1 MRS
W« ~ M o FO- s 3 ~ 10
o~ Us L R
QOO0 EWOW- -
B SRR N 4 T
W~ N~
Wngp- oMo &
QONOAN- W

N
8
~
]
Q
o
ﬂ.{
I
&~
w0~
p- - HN

N

o]

~

(0]

Q

I

=

1
IV VESEIRALN]
WU
B0~

]
WU HHEUU

Q- s
R LIS R =Y
NWw- WENEQS

« BENS s P >

B

U P &N

= NWHWRRLMN
fus « B O~
BRrAMLWEIRAN
MO >~ (s My~

e

B W
. L. O

9,245
7

o TN
[BIL TR |3]
M-~

~ PR

qaoa~ag
ey
'_\‘.
0
'_1
1n]

O @BNE-

< -

-

L]

v}

n

v/

D

_i

D
AN GN-Jp FWE
S&W0- ~JON
it
© PR
- QUEELN

~

SCREEN COLOURS 2

The Spectrum PAPER command sets the background
colour of the whole screen. The window paper routine
on this page, FNc, allows you to set the paper colour of
only a part of the screen, in the same way that you can
use the window ink routine to change the INK colours
on a part of the screen.

As for the ink routine, the paper routine requires you
to specify the top left-hand co-ordinates and height and
width of a rectangular area within which the colour is to
be changed. Unlike the PAPER command in BASIC,
you will see any colour change without having to clear
the screen with CLS. Again, like the previous routine,
you can use the routine to set the BRIGHT and FLASH
attributes of the area. By calling the routine several
times you can create a layered effect, with colours
apparently superimposed on one another.

Alayered effect forms the basis of the random boxes
program on this page. Random values are chosen for the

RANDOM BOXES PROGRAM

C,b,) =LiSR

¥ agbs

L2 DEFE £ c tx iy ok oh
&

S250a

188 BORDER 1: PRPER
12G

(R

lie FOUR i=1 74O
13@ LET xi=TINT
4@ LET 22=INT (
LET B1=INT
LET %1=INT €

£

5!

< il
8 1
&} 3
& 1

a4
1
1
2l
1
I o
®

& ok ok

~N0DD
RODOQD

LET cl=INT
RESTORE FN
, @, @)

1S& NEXT i
@@ PRUSE O

+ Y

-
@
=]
=1
:

1

ahadswet, el

start co-ordinates (x1,y1) and horizontal and vertical
increments (h1,v1) of the area, and a random colour
value is chosen, before the routine is called, inside a
loop. Note that the machine-code routine is called using
RESTORE rather than RANDOMIZE. Using RAND-
OMIZE would reset the seed of the random number
generator within the loop, so that the same random

number sequence would begin again and again.

“MONDRIAN” PAINTING
PROGRAM

,.-‘“L"I_-’ ;i second

How the program works
The window paper routine
draws black “lines” (single
character-width boxes), and
then fills areas of the screen
with colour.

Line 10 defines the window
paper routine.

Lines 100-150 draw the black
“lines”.

Lines 160-190 draw the
coloured areas.

Line 190 also stops the
program continuing until a key
is pressed, so that the bottom
two lines of the display are not

it m

]
i
i

P

|

e m
|
|
|

orIreaseas.

rTimsTeeeiIT
ereotTasee

The “Mondrian” painting program demonstrates
how by using only a single routine, you can produce
quite an effective display.

“MONDRIAN” PAINTING PROGRAM

1@ DEF FMN cixX,g9.b,wv,c,&;fl =Uusg
52599 : BCORDER 7. PARAPER 7 CLS
RANDOMIZE FM <€ (4 ,1@,1,14,@,

il

RANDOMIZE FN c{(16,8,1,24,@,
RANDOMITE FMN c {24 ,0,1,24 ,08,
RAMNDOHIZE
RAMNDOMIZE

[T
B BEE Ry e

O QU-ISN~DI0NER-OENEREE

x

[oRd hd g]

ci®,28,32,1,0,02
t@,i7,32,1,e,
RANDOMIZE {14 ,83,28 ;1 ;8;

ci(&,8,16,9,4,1

8 8 -

[T
A R o
B~E-E

REMDOMIZE
RAMDCHIZE
RAMNDOMIZE

(5,18,11,6.,6,
25,2,7.9.,2,1

RAMDOMIZE
FRAUSE @

2.1

C L2 A% P, 7,

@ -8

0 B -

FNc
WINDOW PAPER ROUTINE

Start address 62600 Length 150 bytes
What it does Changes the PAPER colour of a specified
rectangular area of the screen.

Using the routine The routine works in the same way as the
window ink routine, except that here the PAPER attributes are
changed within the area specified. As before, it could be
dangerous to go beyond the limits set for the parameters, so
the sum of x and h should always be less than 32, and y and v
together should be less than 24. This is because h and v are
relative, not absolute, parameters, which means they are added
to x and y respectively to produce the values actually plotted.
Thus, ifxis 15 and his 20, then the right-hand edge of the paper
area is column 35, which is off the screen,

As before, the routine operates over the whole Spectrum
32x24 character screen, not just over the normal 32x22
graphics area.

| ROUTINE PARAMETERS |
| DEF FNc(x,y,h,v,c,b,f) |
| X,y | l specify top left-handcorner of box area(x<<32, y<2-4)]

biv specify bottom right-hand corner of area (x+h<C32,
& y+v<(24)

[c H specifies paper colour (0<<=c<=7) |
] b H specifies bright (1=bright, 0=o0ff) |
[f H specifies flash (1=flash, 0=off) l
| |

ROUTINE LISTING
Y188 LET b=626@a0: LET L=145S: LET
zZ=@ RESTORE 711@
71l FOR i=0 TQ L-1: REALD 3
7l@2 RPOKE (b+i) ,a: LET zZ=2 +a3
7103 NEXT 1
?1?? LET Z=INT ((0(Z L) -INT iZ.L)
*
7iasS READ a: IF a<»>z THER PRIMT
T2V SToR
7lle DRTA 42,11,92,1.,4
7111 DATAR @,9,86,1,8
7ll2 DRATR @,9,84 ,237,53
7113 DPRATR 22,245,9,865,9
7114 DRTA 94 ,237,83,20,245
7115 BPRTA 9,126 ,230,7,203
7116 DATH 39.,283,39,203, 39
7117 DATAH S©,19,245,9, 126
¥11&8 DATH 2530,1 .40 ,8,58
7119 DARATA 19,245,246 ,64 .52
7120 DATA 19,245,939, 126 ,253€
7121 DRATA 1,48 .5,55,19
7122 DATA 245,zZ46,125.5@, 19
7123 DRTR 245,237 ,91,22,245
7iz24 DRATAH 53,200,245 ,254,0
7129 DATAR 200,58 ,21, 245,254
7126 PRTRH &,208,237 ,83,22
7127 DATR 245,123 ,253@,24 ,205
7128 DATAHR 63,203,653 ,203,63
7129 DARTHR 246,835,103 ,123 .,230
71l3@ DRATR 7,183,31.31,5%
7131 DRATR 31,130,111 ,55,20
7132 DRATR 245,71.197.,.229,55
7133 DATR 21,245,71,126,230
7134 DARATAR 7,79,558,19,245
7135 DATA 177,119 ,35,16, 244
7136 DRTAR 225,1,32.&,9
7137 DRTA 193,16 ,23@,2@1,&
7138 DATA 2,5,0,0,0
7139 DATA 19,@.@,0 .0

ENLARGED TEXT

Doubling the size of Spectrum characters is quite
straightforward in principle. Spectrum characters are
drawn on a grid eight pixels by eight; they can be
enlarged onto a 16x16 grid by the routine looking at
each pixel of the 8x8 grid in turn. If a pixel is filled, then
two pixels across and two pixels down are filled on the
16x16 grid. The diagram below gives an example of a
character and its enlarged version.

HOW A CHARACTER IS ENLARGED.

8x8 grid l6x16 grid

Both routines use this method to enlarge a string of
characters (text or graphics) and then print them on the
screen at twice their normal size. The horizontal text
routine, FNd, prints enlarged characters across the
screen; the vertical text routine, FNe, prints the
enlarged characters downwards.

The two demonstration programs below show how
the routines are used. Both programs begin by defining
the word “Spectrum” as the string (n$) to be enlarged by
the routine, and both then POKE these characters into
memory using a subroutine beginning at line 300. The
string must always end with 13, the code for
RETURN, to signal to the computer there are no more
characters to be enlarged. The horizontal text program
prints the string against a background of horizontal
lines; the second program displays the vertical string six
times, each time with a different coloured background,
using the window paper routine.

HORIZONTAL TEXT PROGRAM

DEF FN 4 (x
BEORDER I:

FOR i=@ TO

CRAW 255, 8@:

CRAL —255 a:

NEXTF i

DRAL 255.a

LET nR%s="3Spectrum"

GO S5UB sSaa

FOR m=1 TG 22 STEPRP 4
RANDOMEIZE FMN 4 (7 ,m3

LET n=CODE nglil
POKE E+i1.,n

MEXT 1

FOKE k+i , 13
RETURRM

(mrank

VERTICAL TEXT PROGRAM

108 DEF FN c(X,9y,h,v,C,b, fF) =USR
E2620

2 PEF FN e (x,4) =USR €190@
é@@ BORDER 1: PAPER @: INK @: C
LET nD#&=" SPECIFUM
G0 SUB sS@a
LET clL=1
FOR x=5 TO 25 STEF 4
RANMDOMIZE FM cCcix-1,2,4,15,C

@1
RANDOMIZE FPMN & (x ,31
LET CL—Cl+1

LET L=LEN (n%): LET k=5242%
FOR i=1 T

LET n=COoDE n$(i)

FPOKE %+i.,n

HEXT i

POKE k+1i,13

RETURH

FNd
ENLARGED HORIZONTAL TEXT ROUTINE

FNe

ENLARGED VERTICAL TEXT ROUTINE

Start address 62200 Length 220 bytes
What it does Displays a double-sized version of specified
characters horizontally on the screen.

Using the routine Before using this routine, you must first use
some BASIC lines to store in memory the text (n$) which you
want to display. Lines 500-560 of the programs on the facing

page

provide an example.

The text is stored as a string in 100 bytes of memory from

address 62500 to 62600.

he routine continues printing

characters from this location onwards until it reaches a
RETURN message.
Note that with double-sized characters you are now restricted
to 16 characters across the screen; longer strings are
continued on the line below. To print a space in the text string,
use the graphics blank character (above the 8 key) rather than
the space key. ‘

Start address 61900 Length 215 bytes

What it does Displays a double-sized version of specified

characters vertically on the screen.

Using the routine This routine works in the same way as the
horizontal text routine, but prints text down the screen instead

of across it. The same BASIC subroutine is needed to store the
text string (lines 500-560 of the demonstration programs on
the facing page). Remember to put the string into memory
before calling the routine.
Since each character is twice its normal size, only 12 characters
down are shown in a column. The routine displays only one
vertical line of text, and does not continue a message across to
the next column. To display a message longer than 12
characters, call the routine again for each new column of text.

Toobtainas
(above key 8

g)ace in the text use the graphics blank character

ROUTINE PARAMETERS

Bl

ROUTINE PARAMETERS

DEF FNd(x,y)

|

1

DEF FNe(x,y)

E |

X,y specify position on screen from which text is to be X,y specify position on screen from which text is to be
4 = 2
printed (x<{32, y<<24) printed (x<C32, y<<24)
ROUTINE LISTING N | | ROUTINE LISTING |
= . =215 725@ LET b=619@@: LET 1=21@: LET
7158 REsPoRe-2%ce TT tTEAS: LET 2.0 RESTORE_7260
7151 FOR 1=@ TO t-1: READ a 7251 FOR i=@ TO L-1: READ a
7152 POKE (b+i) ,a: LET z=z+a 7252 POKE (b+i) ,a: LET z=z+a
7153 NEXT i 7253 NEXT i
7154 LET zZ=INT (€((z - L} -INT (zZ-L} ?3?? LET zZ=INT (¢(zZ,L) -INT (z-L}
) L)
7155 READ a: IF a<>z THEN PRINT 7255 Rg?gpa: IF a<>z THEN PRINT
“27v . STOP it
1,92 , 1.4 726@ DATA 42,11,92,1.,4
7189 BATA 559784713 5561 DATA ©,9,586,1.8
7162 DATA @,9,94,237,83 7262 pATA B.S,Qi,egg,gg ek
7163 DATA 240,243,62,99,71 7263 DATA 191,242, " :
7164 DATA 33,336,244 ,34,244 7?5964 DATA 33,36,244,34, 195
2165 DATA 243,147 ,257,91,248 7265 DATA 242,197,2537,91,191
b 5 i ; ;
186,242 75266 DATA 242 ,62,30, 186,242
7166 DATA 243,62,30, . 567 DATA 244,241,195 ,62,242
7167 DATA 37,243,22,0,28 7 D 23%as 12 228 is
7168 DATA 28,237 ,83,24@.,.243 ?gga D S e REE T EaS o
7169 DATA 62,200,187 ,25@,111 Kd 9 D ; . s ,
7178 DATA 243 ,42,244,243,126 7278 DATA 35,34,195,242,254
7171 DATR 35,34 ,244,243,254 72571 DATA 351,250,62,242,254
7172 DATA 31,258,111 ,243,254 7272 DATA 144,242 ,62,242,214
7373 BATa 35%i8Te a5 T4 ES 7373 BATA 52.52928:8%61
,1,8.08, . S = ;
7175 DATR S4,92,36,9,61 7275 DATRA 32,25=2,34,193,242
7176 DRATA 32,252,34 ,242,243 7276 DATAR 125,230 ,24,2456,564
7177 DATA 123,230,24,246,564 7277 DATA 103,123,232 ,7, 183
7178 DATA 183,123 ,23@,7,133 7278 DATA 31,31,31,31,130
7178 DATA 31.31,31,31,130 7279 DATA 111,34 ,159,242,205
718@ DATA 111,34 ,238,243,205 728@ DATA 54 ,242,58,191,242
2181 DATA 113,243,58,241,243 2081 DATRA 60,60 ,50,191 ,242
7182 DATA 60,60 ,5@,241,243 7282 pATA 193, 16,169,201, 193
7183 DPATA 193,16, 164,201,193 7283 DATA 201,17 ,157,242,6
7184 DATA 201,177,206 ,243,6 7284 DATA 32,62,0,18, 19
7185 bATA 32,62,9,18.,19 7285 DATA 16,252 ,237.91,193
7186 DATA 16,252,237 ,91,242 7986 DATA 242,33.157.242,6
7187 DATA 243,353,206 ,243,6 7287 DATA 8,197,26,1,2
7158 DATA 8,197,26,1,2 7288 DATA 4,197 ,23,245,203
7189 DATA 4,197 ,23,245,283 7289 DATA 22,241,203 ,22,16
7ig9e DRTA 22,241,203.22.16 7298 DATA 247,3%,193,13, 32
7191 DATA 247,35,193,13,32 7291 DARTAR 241,435,126 ,245,43
7192 DATA 241,43, 126,245 ,43 7592 DRTR 126,35,35,119,35
7193 DATR 126,35,35,119,35 7293 DATA 2441,119,35,19,193
Ed o R igiéllg,gségg,iga 7294 DATA 16,228,42, 189,242
7195 DA i22@,42, ,243 b e e
7196 DATA 17,206,243,14,2 EEdS REH LA e st 3aA
7397 DRIR 2235.6,8,26,119 7297 DATA 35,19.26,119,19
7198 BATA 55,13.26.,113.13 7298 DATA 43.36,16,245,22S5
#2399 DRTA 43,36, 16,245, 225 7299 DATA €2.532,135,111,43
Z2@@a DATA 62 ,32,133,111 ,48 73@@ DATA 4 ,62,8,132, 103
7e gl DRTR &, 53 ,8,13, 105 ?3@1 DATA 13,32,228,201,0
z20s DHIA 1d,9e, 258, S04 0 73@2 DATA 125,2.0,0.0
,3,2,08,

" PICTURES WITH POINTS 1

The Spectrum ROM routine which is called by the
BASIC command PLOT to draw single points is also
used by the BASIC DRAW and CIRCLE commands.

The peint plot routine given here, FNg, is used in the
same way, both to plot points on the screen, and to
provide the basis for the other drawing routines in this

COSINE CURVES PROGRAM

DEF FMN fFixX,4) =USR 61530
PRAFPER @: INMNK =2

Ji=24@2 TO 168G STEP -4
FOR m=1 T Si@a
=INT

Jia
15@ RANDCOMIZE FN Fim, 4}
16@ NEXTE m
17@ NEXT i

{2@+90@ % (COS (mxP I

book, including routines for lines, boxes and circles.

The demonstration programs on this page may seem
slower than you would expect. This is not due to the
speed of the routine, but because the BASIC program is
switching to machine code for each single point and then
returning to BASIC. Later drawing routines, which call
the point-plot routine from machine code, give a better
indication of the routine’s true speed. The programs
here show only the difference in speed between the
BASIC commands RANDOMIZE and PLOT.

The planet program plots random points on
horizontal lines which begin and end on the
circumference of a circle. There is an increasing
probability of a point being plotted towards the right of
each line (line 540). The series of exponent curves are
produced by varying the horizontal co-ordinate, x.

COSINE CURVES
PROGRAM
7.3

[3'_1 minutes

How the program works
Over 10,000 points are plotted
in a series of cosine waves.

Line 10 defines the function.
Line 130 sets the horizontal
start co-ordinate of each curve.
Line 140 calculates the y
co-ordinate (each curve is a
slightly different function,
since) varies for each curve).
Line 150 plots a point at m,y.

PLANET PROGRAM

DEF FN Fix ., y)=USR S15S&802
BORDCER &: PRPER O IHE 4:

LET r=68: LET xc=127: LET u

=
GO SUB S@aa
LET r=2&: LET xXc=75: LET ugc

GO S4B S@2a
STOP
FOR 4=-¢ TOQ r
LET ®1=INT (SR
FOR x=-x1 TO x1
LET n=INT
Sd4i IF ndxi+x THERN
(X+XC,44+9C)
S5@ HNEXT =
SEE HEXT 4y
S7@ RETURN

Line 130 raises x to the power n to determine the point
for plotting, z. Line 160 plots the curve again,
subtracting co-ordinates from an initial value.

FNf
POINT-PLOT ROUTINE

Start address 61500 Length 65 bytes
What it does Plots a single point on the screen.

Using the routine The point-plot routine uses pixel rather
than character co-ordinates. Pixel co-ordinates are calculated
from the bottom left-hand corner of the screen, unlike charac-
ter co-ordinates which start on the Spectrum from the top left-
hand corner. Thus, points are calculated on the screen from 0
to 175 vertically upwards, and from 0 to 255 horizontally:
point (255,175) is the top right-hand corner of the screen, for
example. Note that routines in this book which use pixel points
will not go over the text area of the screen (the bottom two
lines of the screen) since the point (0,0) is actually above
these two lines.

1 ROUTINE PARAMETERS]
B DEF FNf(x,y) |

% specify pixel position at which point is to be plotted
Y| (x<256,y<176)

| ROUTINE LISTING |

735@ LET b=615S08&8: LET L=58: LET
Z=@: RESTORE 736€@
7351 FOR i=@ TO t—-1: REARAD a

LET z=z+a

7352 POKE (b+i) ,a:
7353 MNEXT i
7354 LET Z=INT (((Z/L}) —-INT (z. L)

7355 RERD a: IF a<»>z THEN PRINT
EEt . STOP

7360 DATA 42,11,92,1.,4

7361 PATA ©,9,86,14

7362 DATA 9,94 ,62,175, 147
7363 DATA 216,95,1567,31,5S
7364 DATA 31,167 ,31,171,230
7365 DATA 248,171,163 ,122,7
7356 pATA 7,7,171,238,199
7367 bATA 171,7,7,111,1=22
7368 DATA 230,7,71,4,62

7369 DARATA 254 ,15,16,253.,6
73708 DRATAH 255,168,771, 126,176
7371 DRTA 119,201 .,0,2,8

7372 DATA 24 ,2,8,2,0

EXPONENT CURVES PROGRAM

DEF FN F
EGRDER o

FOR n=1.19 TO

BAMNDOMIZE
REANDOMIZE
NEXT %
NEXT ©

EXPONENT CURV

PICTURES WITH POINTS 2

The displays on the previous page used only a simple
BASIC listing and a single routine, the point-plot
routine. There is no reason why you should not combine
routines together to produce far more complex displays,
as demonstrated here.

The cityscape program

The large display on this page is produced by a single
program, the cityscape program. The program
combines plotted points with three other routines to
produce the display.

A total of four routines is used in this program. The
skyscrapers are drawn by the window paper routine,
FNb; the vertical text routine (FNe) is used to draw the
word SINCLAIR, printed in blue by the window ink
routine.

The effect of a crowded group of skyscrapers is
achieved by drawing coloured windows at random. The
effect of random heights but a constant base line is
achieved by making all the windows end on the bottom
line of the screen. This is done by subtracting the starty
co-ordinate (y1) from 25, the total number of vertical
text characters on the screen plus one.

The vertical text routine, which is used to print the
word “SINCLAIR”, must have the letters which are to
be displayed placed in memory before the routine is
called. Lines 110-170 take the characters from the word
one at a time and POKE them into memory ready to be
used by the routine. As before, the final character
entered is 13, the ASCII code for carriage return. You
will remember that the routine requires the co-ordinates
of the top left-hand character (x,y) as well as the stored
text string in order to print the text. The window ink
routine is used in line 360 to give a blue colour to the area
over which the text is to be printed.

CITYSCAPE PROGRAM

shLuvw,c b, Fl =USR

} =SSR E 19490
show e ,b, f) =USR

2

Do RIE L0 L

3
FOR 4 =1 TOD S&

sCcrobli?

Line 210 calls the point-plot routine to plot the stars.
Random co-ordinates are chosen in lines 190 and 200
for each star. The moon is drawn in lines 530-560 by
using semicircles nested inside each other, using the
Spectrum BASIC DRAW command. A later routine in
this book will enable you to produce circles using
machine code. Finally, the meteor is drawn as a series of
straight lines (lines 490-510), again using BASIC,

You will notice from the listing for this program that a
convention has been used for all the listings in this book.
Lines numbered from 10 to 90 are used for the function
definitions, while lines 100 onwards are used for the
main listing. You can thus see clearly which machine-
code routines have been used for each program, as they
are placed at the beginning of the listing.

CITYSCAPE PROGRAM CONTD. CITYSCAPE PROGRAM CONTD.

Z25Sa RANDOD
RAMNDOMIZE FWN < (4,4 ,1,1,6,1,

NMEXT i :
BERNDOMIZE FMN ci23Z,15,9,7,3,

FOR _i=24 e STER 2
RﬁNDGMI’E FN cri,19,2,1.4,1

RANDOHIZE FMN Ccili ,21,%1.1,4,1
MNEXT

(R]
i 150

4

M
a2
i
i 5
gL
1

HOoinnnH

g
[3
e £ T.bhd,vw1,

Cl16,9,1.15,4.
RANDOMIZE c(l17.,6,2,18.4.,
RANDOMIZE ciile,16,1,314 .4
RAMDOMIZE Fi b(i?:S,EJls,l,

RANDOMIZE FM {17 ,6}
RAMNEDOMIZE FMN <11,11,S,1i4,2,

FOR i=12 TO 22 STEP 2
RARMHDOMIZE FM FFE,1,1 1.7:%1,

SCroblti?

BRIFHT 1
TE . .B STEP 2
JAlBS-1
si-48: HMEXT i

NESOA-~I=q=MpEan
geEeae 8 Ae-a89 B

i CITYSCAPE PROGRAM
THiR
G 7.
ik BU : 75- seconds

e This program calls four
routines, all of which must be
} present in memory before
. RUNning the program:
window ink routine (FNb)
page 11

window paper routine (FNc)
page 13
g enlarged vertical text routine
(FNe) page 15
point-plot routine (FNT)
page 17
How the program works
Lines 10-40 define the
routines.
Line 110 defines the text
string.
Line 120 sets up a loop to
POKE characters into
memory.
Line 130 POKEs a single
character into memory.
Line 170 POKEs ASCII code
13 into memory.
Lines 180-220 print stars at
random points in the top 74
ki pixel rows of the screen.
F ! : Lines 240-320 set up values
1 } ! for the window paper boxes
=i i E ; and draw them — a total of 50
= 3 | 3 boxes.
= 5 : Lines 330-380 draw the
“buildings” with windows

e
Tz
o

e

| g i £ which appear in front of the
= £ paper boxes (lines 340 and 360
= _ print flashing boxes).
— 2 Lines 480-510 draw the
= ; comet.
== : Lines 5§20-570 draw the

moon (a series of semicircles). |

Lines are drawn in BASIC on the Spectrum using the
command DRAW. This command uses relative co-
ordinates, that is, the command is followed by co-
ordinates which specify the distance from the current
plot position. A line is then drawn from this point to the
specified point. Itisn’t always as simple asitmay seem to
calculate this horizontal and vertical increment from
the current plot position.

The line-draw routine
The routine on this page, FNg, offers an alternative to
Spectrum DRAW for drawing straight lines. This
routine is faster than the DRAW command, and uses
absolute, rather than relative co-ordinates. Thus, you
no longer have to worry about calculating distances
from the current plot position.

The line-draw routine contains some error-trapping
to prevent the Spectrum crashing if the routine 1s called

CUBE PROGRAM

2 DEF FN gi(x 52700
122 BORDER 1-: . OINK B
Ti@ CLs

128 FOR j=@ TO TEP

150 RANDOMIZE (56, 54ti; 188,
24% 41
142 RANDOMIZE g iS6+),24 .56+
‘iggﬂ$nwbumxzs J(SE+,,136,96+
is5@ RANDOMIZE 9 (165 ,24+.) , 205

A S+
17& NEXT

o
%?E-RRNDDEIZE 9 (86,166,285, 1
éé?ﬁ RANDOMIZE F{2@5,16&.,288,

SUNSET PROGRAM

18 OEF FN c(x.Y.h,w,Cc,b, fl) =U435FK

22
DEF &N SEKJQ,P,Q)—USR SB?BB
BORDER ©: PRPER 1: IMN

REBNDOMIZE FN Cci@,.@,32,17,2.

FOR j=48 TO 174 STEP 12
RAMDOMIZE FN 9(@, j,128,482
RAMNDOMIZE FN g (255, J.,128,482

NEXT
FOR j=6 TG 255 STERP 12
RHNDDMZZE FH g (j,1275, 128,48

MEXT
FOR j=35 TO B STEFR -3)
RANDOMIZE FM g (1@+ j%3) , J, (
2485- %3}, 03
21e MEXT

2 0K, 2:1

with off-screen co-ordinates. This makes it easier to
devise complex graphics displays using a trial and error
method, since there is less danger of losing both
program and routine if off-screen co-ordinates are
entered.

The cube display on page 20 is formed from a series of
lines. The program is very simple. The line draw routine
draws four lines repeatedly in the loop from lines 120 to
170: two to draw the grid pattern, and two for the pers-
pective effect. Lines 180 and 190 specify the two lines

which complete the cube shape.
SUNSET PROGRAM Line 110 sets the blue colour
in the bottom part of the screen
using the window paper

Bﬂ s ggseconds

routine.
How the program works Lines 130 and 140 draw the
Yellow lines are drawn horizon.

Lines 160-180 draw the
yellow lines in the sky.
Lines 190-210 draw the
horizontal lines on the lower
half of the screen.

radiating {from a point at the
centre of the screen to points on
the edge. Horizontal lines are
then added to create a reflec-
tion effect.

XL

FNg
LINE-DRAW ROUTINE

Start address 60700 Length 205 bytes)
What it does Draws a line between two specified points.

Using the routine This routine draws a line joining any two
pixel points on the screen. Althou%h the Spectrum already has a
line draw routine available in BASIC, the version given here is
much faster, and uses absolute rather than relative co-
ordinates. Ths means that co-ordinates p,q represent the
position of the end point of the ling, not the horizontal and
vertical increment from x,y.

The routine will usually work if off-screen points are specified,
but for safety some error-trapping has been incorporated. Ifyou
attempt to plot lines off the screen, you will see an “Integer out
of range” message, unless the value you have entered is more
than 255 pixels off the screen; in this case the routine will
probably crash.

| ROUTINE PARAMETERS

[DEF FNg(x,y.p.q)

I X,y [rspecify start position of line (x<C256,y<C176)
[p.a || specify end position of line (p<<256,4<<176)

] ;_L,m;

| ROUTINE LISTING

LET b=5@70@: LET L=2106:
: RESTORE 7418

FOR i=0 TO t-1: RERD a
POKE (b+:1) ,a: LET zZz=zZ+a
74803 MNEXT i .
LET Zz=INTFT (((z.-L) —THT

RERD a:
: STORP

LET

{z-L)
IF a<»z, THEK PRINT

.6, 255

Q
I
-
D
PRI =) B N0 @

237,58,95,122,187
48,180,106 ,237,67
DATR 177 ,237.,175,71,185
187,237,178 ,28=2,167
23?,1@7,93,237,67
177,237,14 ,@,99
123,311,133, 218 118
237, 188 218 123 237
148,8?,217,&37,91
177,237,185, 132,237

87,197 .217.,209.,42
26,237,123,133,95
122,60 ,132.,218, 164
237,282,167 ,237,61
87,237,83,26,237
205,179,237 ,217, 122
29,32,2905, 195, 167
237,202,147 ,237 ,237
123,178 .237.217 ,225
217,221,181 ,214 ., 1

176,119,281, 229 197
205,179,237, 193,225
DATA 9,85,9,2@1,@
192,0,0,2.,0

LINE GRAPHICS 2

Line-drawing routines are ideal for producing
interference patterns. These are produced when a series
of lines or points are drawn so close together that whatis
produced is neither separate lines nor a complete solid,
but a pattern.

The pyramid program below shows interference
patterns at work. Each pyramid is drawn by a
subroutine beginning at line 500, which draws lines
from the top of the pyramid (the fixed point tx,ty) to
points along a horizontal base line (by). Only the base
x co-ordinate (x) is varied within the loop. Interference
patterns are seen from near the top of the pyramid
(where the lines nolonger have the appearance of a solid
figure) to a point towards the base of the pyramid
(where lines are beginning to be seen distinctly).

The line pattern program demonstrates a related
phenomenon. Here the line-draw routine (called in lines
140-170) has the paradoxical effect of producing

PYRAMID PROGRAM

1 DEF FR Bix,2.h.v,C,b.) =35R
cix,2,h, %, ,C,b,f)=USR

S@a
@ PEF FM gix,4,p.d) =USR £6723
1o@ BORDER B: PAPER 1@ INE 2
119 CLE
IZ@ RONCDOMIZE FH ci®,5,31,14.6,
2,8l
1%@ LET tx=80: LET 14=135: EET
- LET a=15: LET b=128

LET by=68: LET

STOP
3 TG b STEP 2
2ANDOMIZE FH g (tx s Tu X, Bl
HEXT X
FOR x=b TO b+185
RAMDOMIZE FH g{tx,ty . %.,bd)
LET buy=bd+1

MEXT =®: RETURMN

i19a
=4l

LINE PATTERN PROGRAM

RANDOMIZIE FEH
RANDOMIZIE FH

g
RAMNDOMIZE FMN

q oo
& Gan 64m o

-

- |
PEUSE B®: CLS
HREXT i

=Sk S@7ad
: IME @

LINE PATTERN DISPLAYS

LR AR R
IERS RN

5. L1 ’1 il

L
LN
()

;_J §
LA ASANS

Sk

iﬁ

LINE INTERFERENCE PROGRAM

E Fh
RANDOMIZE FM
REBNDOMIZE Fh
MNEXT i

PR R R

0000 B) B

ARASEHOOAREE
gunenS o
SO Am
FONEMT

M

curves. T zontal and vertical lines in

sequence produces the curve effect. As the lines become
closer together, with each successive display, a better
effect is obtained.

The line interference program shows how a program
similar to the line pattern program can produce
interference patterns simply by increasing the number
of lines plotted on the screen, from 150 to 255 (the
variable 1 in line 130).

LINE INTERFERENCE DISPLAY

LINE INTERFERENCE

PROGRAM Line 130 scts up the second,
_ inner loop, which calls the
8[].‘ UEseconds rf)utine§ 255 times to draw a
single display
How the program works Lines 140-170 call the line
Patterns are produced by routine to draw four lines.
drawing lines from each corner Line 190 waits for a key to be
of the screen to the opposite pressed before clearing the
screen edge. screen and beginning the next

Line 120 sets up the first loop, display.

TRIANGLES

A triangle shape is useful as the basis of all kinds of
graphics displays. Pyramids, mountains, trees and
bushes can all be formed from a triangular shape; even
the spotlight display on this page is drawn with
triangles. However, Spectrum BASIC does not have a
single-statement triangle command.

The triangle routine, INi, enables you to draw
triangles quickly and painlessly. Like the line-draw
routine (FNg), on which it is based, the triangle routine
uses absolute rather than relative co-ordinates; this
makes complex graphics displays easier to program.

All the displays shown here make use of the routine
within a loop or loops. The repeated triangles program
is based on triangles plotted between two parallel lines.
Several interesting modifications are possible here: try,
for example, changing the first x co-cordinate of the
triangle from xc-2xy to xc-y. This will produce
parallelograms between the parallel screen edges.

The spotlight display is produced by drawing a series
of triangles from a single point (5,170). The base of each
triangle is a horizontal line, the end points of which lie
on the circumference of a shallow ellipse.

The final program, the triangle curves program, is a
display of curves produced from sequences of triangles.
The outer and inner curves are produced by the routines
called in lines 130-140 and 180-190 respectively.

REPEATED TRIANGLES PROGRAM

OCEF FMN i1 (X ,4,p.9.,f ,3) =UsSR

BCORDER 5: PRRPER & IMNK 2:

LET rF7=63: LET xcCc=127: LET
i=? TO 2 STEP -1

FOR y=r TO - STEP -i

RANDOMIZE FN i ixc-2%y ,4C-4,

XC,dC+Y ,XT+Y ,4C-Y)
158 MNEXT

b
168 PHRUSE &@: CLS
178 NEXT i

& D, 2|1

REPEATED TRIANGLES
PROGRAM

BB: Bgseconds

How the program works
The program draws a series of
triangles. Each of the three
points of the triangle is moved

along a straight line, by
changing the variable y for
each successive triangle.

Line 120 begins the first loop,
which sets the distance
between each triangle in the
display.

Line 130 sets up the second
loop, which draws the pattern.

&

i

1

h..
s
S

S
e

13
1]
T

3

i
gee

SPOTLIGHT PROGRAM

DEF FM i (xX,d,p.q.,r ,s) =U5R S
BORDER @: PAPER ©: INK B&: o
s=4: LET a=0: LET ad=s#%
: LET yl=28
255 S5TEP =
(S %5SIN 313
(1@ ¥C0S a1
(205 IN (a+PI
ifx,d.x2.4,5,1

LET a=a+ad
HMEXT i

i

FNi
TRIANGLE DRAW ROUTINE

Line 160 of the curves program sets the central screen
area to red using the window ink routine, FNb (which
must be present in memory for the program to RUN).

Start address 60300 Length 80 bytes

Other routines called Line draw routine (FNg).

What it does Draws a triangle given the pixel co-ordinates of
three points.

Using the routine The routine uses absolute co-ordinates.
Specifying off-screen co-ordinates produces an error
message; values more than 255 pixels off the screen will
probably cause the Spectrum to crash. Colours are set by the
current screen INK attributes.

l ROUTINE PARAMETERS |
| DEF FNi(x,y,p,q,r,s) |
| ‘rspecify first corner of triangle (x<C256,y<C176)]
{ P.q H specify second corner of triangle (p<<256,q<C176) |
! || specify third corner of triangle (r<<256,s<<176) I

| ROUTINE LISTING]

768A LET b=60328: LET L=75: LET
Z=0: RESTORE 761@
7601 FOR i=0 TO L-1: READ 3
7602 FPORKE (b+i) ,a: LET z=zZ+a
76@3 MNEXT i

76@4 LET z=INT (((zZ-L}) —-INT (zZz.1)

76085 READ a: IF a<»z THEN PRINT

st & T SO P
7616 DATA 42,11,92,1.,4
7611 DATA @,9,56, =

7617 DATA 34 ,26,237,205,51
7618 DATA 237,237,291 ,288,235
7519 DRTAHR 42,212 ,235,34 ,26
7620 DRATA 237.,205,51,237,237
7621 DATA 91,210 ,235,42.,208
7622 DRATAR 235,34 ,26,257,20S
7623 DATAH S51,237.,291,40,6
7524 PRATAH 46,143,386 ,123 .2
7525 DRATH 68 ,8.,8,0.8

TRIANGLE CURVES PROGRAM

EEF FR. b I . 4. h v, , F) =SSR

@
&0

DEF FN 1 (x,d,p,;q.r ;5 =USR ©
PRAPER 4: INK 1

o}

SORDER 4
B

FOR 3=@ TO 175
RANDOHIZE FHN i
RRNODOMIZE FM

RNDUMIZE i (
RAENDDOM
~a 255,88}

Y
MUk P PR PR BRRel 0
Zx -
O =D
I
w40
mw

[
m

Fh b(5,4,16,14 .2,

&
iy

W OI

TO 178 STEPRP 4
= i ts 38y 178 —

]
QrQ

FH ii256-3,1358,73

I ZD

[ATmEAT

=

[Tl (MR RN X S S T (T Ry (1] (R
GUaNEe-0eG- GU-LEaee0HeE

© M- DwDo DM
£ W
-

&
O
=
iy

TRIANGLE CURVES DISPLAY

~ CIRCLESANDARCS 1

Two methods are commonly used to draw circles on a
computer. The first uses a combination of sines and
cosines; this is the method used to draw circles in
Spectrum BASIC. The sine/cosine method is derived
from the fact that, for aright-angled triangle, the length
of the horizontal and vertical sides can be calculated
from the size of one angle and the length of the third
side. If a right-angled triangle is formed between the
centre of a circle and any point on the circumference, as
shown in the diagram below, then the length of the sides
is given by

X=r*cos(a)

y=r*sin(a)

You can see a typical example of circles plotted in
Spectrum BASIC in the circle program on this page.

The command requires the centre-point and radius to
be specified (x,y and r).

DRAWING A CIRCLE USING SIN AND COS

X=TIr=%xcCosa

Y=r%SIna

The second method is faster in operation but requires
more memory to implement. This method, based on
squares, forms the basis of the machine-code routine
given here. It is derived from the equation

x2+-y2==r2
This, of course, is Pythagoras’ theorem, which gives the

relation between the sides of a right-angled triangle, as
shown in the squares method diagram below.

DRAWING A CIRCLE USING SQUARES

X*X+tyxy=r«r
y=SQR(r»r—x«x)

BASIC CIRCLES PROGRAM

FRAFER 7 TIHKE

This method is more complicated than the sine/
cosine method, since it must calculate square root
values each time a circle is drawn. To use it most
effectively, first calculate a list of square roots and then
store this list in memory — as done by the routine at
address 59600. The list of square roots can then be
“consulted” by the main routine. Using stored square
roots makes this routine much faster — and more
accurate — than using the BASIC CIRCLE command.

Using the routines

Together with the BASIC square loader program, the
routines given here do the work of calculating points for
circles to be drawn. After keying in these routines you
will not yet be able to produce anything on the screen,
because the routines do not in themselves draw any
curves; for this you must also key in one of the curve
routines in the following pages.

MASTER CURVE ROUTINES

Start addresses 59600 and 52000
Length 60 and 525 bytes
Other routines called Point-plot routine (FNT).

What they do Carry out the calculations for the arc, sector and

segment routines.

Using the routines The following BASIC-program must be
keyedin and RUN before using the machine-code routines given

here:

10 LETj=59700
20FORi=0T0255
30LETp=i#i:LETh=INT (p/256)
40 LET | — p—256 % h

50 POKEj,|: POKEj+1,h

60 LETj =] + 2

70 NEXT |

This program POKESs the squares of numbers from 0 to 255 into
memory. Each square is stored in two bytes, since numbers
larger than 16 squared will not fit into a single byte, which has a
maximum value of 255, Having keyed in this routine, SAVE the
area of memory containing the squares by using the command
SAVE “title” CODE 59700,600. These 600 bytes are also used

as workspace by the circle routines.

The routine at 59600 calculates square roots and stores them
in memory. The longer routine, starting at address 59000, cal-
culates points on the circumference of a circle using these

square roots.

i

ROUTINE LISTING

765S@ LET b=5S960&: LET L=55: LET
z=2: RESTORE 756
7651 FOR i=@ TO L-1: READ a
7652 POKE (b+i) ,a: LET zZz=zZ+3
7653 MNEXT 1
?5?? LET Z=INT (((z-L) —IMNT (Z~-L)
) ¥
7655 . RERD a: IF a<>z THEN PRINT
N ISR
766@ DATA 62,0 ,186,32,4
7661 DATA 187 ,32,1,2e1 .1
7662 DATA S52,233,1@,111,3
7663 DATA 10,103,167 ,237.,82
7664 DATA 242,234 ,232,3.,24
7665 DRATA 242,17 .,202,22,96
7666 DATA 105,255,124 ,167.,31
7667 DATA 125,531,201 ,33,52
7668 DRATA 2533.,22,@,7.48
7669 DATA 1,20,95,25,34
7678 DATA 35,86,201,0.0
7671 DATA 3,0,8,0,0
ROUTINE LISTING
7733 LET b=592283: LET L=520: BT
Z=3: RESTORE 7718
77@1 FOR i=@ 70O L-1: RERARD a
7702 POKE (b+i) ,a: LET Z=zZ+a
7703 MNEXT i g
7784 LET z=INT (((zZ-L) —=TIKMNT (Z.-L)
) L3
7705 RERD a: IF a«<:2z THERMN PRINT
o dl 5TOF
7718 DATA 62,1,50,184 ,232
7711 DARATAH 58,112,232 ,285,246
7712 DATA 232,237,83,117,232
7713 DATA 167,203 ,26.,283,27
7714 DATA 205,208,232 ,58,119
7715 DATA 232,548,113 ,232,285
7716 D0ATA 11,232 ,52,128,232
7717 DATA S8,114 ,232,205,11
7718 DATA 232,%0,121,232 .58
7719 DATAHA 113,232 ,205,1%,2532

7766
i =
7768
rard =3

s
F77L
=

252,285, 1
116,232 ;721 :
232,144,200 ,58
232,592, 122,232,568

on
mnin
o

n-

=]
558,116,232 .,5e, 124

232,185 .,7,231,58
116,232 ,71,.58,112
232,144 ,50, 124,232
195, 7,231,688 ,5@
123,232,558, 120,232
238,1,32,8,62
B,50,124 ,252, 13935
231,58.,1139 ,23=2
124,232,538, 120
,71,353,185.,.231

PN ~J
-

wNopLa -

2,255,116

, 125,232 ,58
2,232,1,402
122,232,582
32,205,653 ,23=2
S,232,233,205

WrUNRRDON 0E-
N

PN T IS AEY i

24 ,228,58, 122,232

71,558,113 ,232,167
144,58, 122,232,205
53,232.,42, 125,232
233,205,811 .,23=2,586
122,232,33,124 ,23=2
192,40 ,6,61 ,2528
98,231 ,24 ,228.,58
120 ,232,60,5S3, 120
232.,62,0,98, 122
232,555,123 ,23=2.,61

200,254 ,1,202,295
232,195,259 ,25e,87
S5 ,122,232,95,58
111 ,232,138,87,58
119 ,232,131,95,195
43,231,955 ,538, 122
232,87,58,11%1,23=2
138,87,58,110 , 232
131,95,195,880,231
95,58, 122,232,877

58,111,232, 145,87
58,11€,232,131,95
195,43,231,87.,58

=h

23%1,87,58,122,23=2
95,538,111 .,.282.,146
87,558,110 ,232,147
5,195 .43 ,231,85
58,122 ,232,87.,58
111,232,146 .87 .,58
118,232,147 ,95, 195
8@ ,231.95,53, 122
232.87.,583,111,232
13@,87,58,110,232
147 ,95,195.,43.,231
8?,58,}22;232,95
58,111,232, 130 .87
58,118 ,232.,147 ,995

195,88,231,6.,5
283,63, 16,252 .68
281,232 ,31,254.,@
2@ ,71,175,79,237
91,117,232 ,33,@
2,.25,48,4,12
32.,1,68,16,247
23,84 ,11% ,6,6
167,203 ,29,283,25
203,266,283 ,27 .16

245,205,205 ,232,201
58,122,232 ,205, 246
232,42,117,232.,167
237.,82,93,84,205
298,252,211 ,58, 184
252,254 ,0,40,8
175,590,104 ,232,237
83,106 ,232,237.,83
195,232,205 ,72.,248
201,28, ,96, 165
52,130 ,30,14@ , 3@
20,178,116 ,11, 132
3,21,7,6,@

1,16 ,213,231,0

234 ,0,2,0,0

CIRCLES AND ARCS 2

With the arc routine, FNj, given on this page, you will be
able to draw arcs more quickly and with more flexibility
than with the Spectrum DRAW command. The routine
can be used to draw either arcs or complete circles by
varying the final two parameters. _

To produce any circle-based program on this page,
you must first key in the machine-code routines and the
BASIC squares program on page 29, as well as the
routine given on this page, since the arc routine calls all
these routines.

Starting and finishing the arc

The only complication of the arc routine given here isin
specifying how much of the circle is to be drawn. The
start and finish parameters can have values from 0 to
255, instead of 0 to 360. This is because the parameters
are stored in a single byte in memory, and one byte can
have only 256 values (thatis, from 0 to 255). Thismeans

ARC PATTERN PROGRAM

1@ DEF FhoJg0x,d4,7 .,

@
i@ SORDER 1: PARAFPER 5
=,

78 .dC+IMNT
148 MEXT d

that s,f values of 0,255 will draw a complete circle,
values 0,127 will give a semicircle, and so on.

Since the routine begins drawing from a position
horizontally to the right of the selected centre point,
s,f values of 0,64 will produce a quarter circle from the
right of the centre to a point vertically above it. The
diagram below shows how the start and finish
parameters correspond to the more usual degrees.

CALCULATING POINTS ON A CIRCLE

Using . Using the
0 : 64
degrees routine
o 0° 0
180 j 360° 127 255
270° / 190

"“

gt

R bt ab e

™

L&A A A A A A LA A _A A A A A B A B A A A

N,
e,

"UM

FNj
ARC ROUTINE

Start address 58900 Length 45 bytes

Other routines called Master curve routines.

What it does Draws an arc or circle at a specified radius from
a centre point.

Using the routine The table on the facing page shows how
the s and f parameters specify the length of the arc. A dif-
ference of 255 will produce a complete circle, 127 a semi-
circle, and so on. The numbers themselves define the angle
from the centre of the circle at which the arc starts and
finishes. The arc is drawn from a position due east of the
centre of the circle, so that an s or f value of 1 is to the right of
the centre point, a value of 128 to the left, and a value of 192
directly beneath the centre of the circle.

Unlike CIRCLE in Spectrum BASIC, you can draw curves with
this routine which go some distance off the top or bottom of the
screen without an error message appearing.

Because of the way the screen memory works, there are
several screen positions where a curve cannot be drawn using
this routine. If you find the routine does not work in any position,
move the centre point one pixel in any direction.

-

ROUTINE PARAMETERS

[

DEF FNj(x,y,r,s,f)

XY

specify the centre point from which the arc is drawn
(x<<256,y<176)

[r ” specifies the radius of the arc (r<(256)

| s,f || specify the length of the arc(s<<f, s<<256,f<256)

. N8I

‘ ROUTINE LISTING
7850 LET b=5S89@0®: LET (=406: I T
zZ=0: RESTORE 736
7851 FOR i=©@ TO t-1: RERAD a
7852 POKE (b+i) ,a: LET zZz=z+a
7853 NEXT i
7854 LET zZ=IMNT (((zZ,0L) —INT £EZ 1)
) ¥ L)
7855 READ a: IF a<»z THEN PRINT
Z7 . STOP
786@ DATA 42,11,82,1.,4
7861 DATA ©,9,86,14,8
7862 DATA 2,94 ,237,33.,11@
7863 DATAR 232.9,126,5@,112
7864 PDATA 232,9,126,58,113
7865 DATA 232,9,126,5@3, 114
7866 DATA 232.,71,53,113,232
7867 DATAHA 176,202,195, 120,230
7868 DATA 17,0,0,0,0

CONES PROGRAM

P
W]

BEF £ G oM o

(o]

~

wip

TOHRAS | 1 3 e o it e ot 5 e i £
G Do O DI

LEOEOSEHEEGEE

Zre]

=Tc
FH Ji125,18+i 2,2

ZnnT

The cones program produces patterns by varying the
x and y co-ordinates of the centre of a circle each time it
is drawn. In the left- and right-hand patterns, the x co-
ordinate is a function of the variable i, while the y co-
ordinate is given by i raised to the power of 1.7. As a
result, the circles appear on a curve. In the third loop,
only the y co-ordinate is varied, so that the sequence of
circles rises vertically.

CONES PROGRAM Lines 120-140 draw the left-

hand circles.

Bﬂ? Fseconds

How the program works
Three circle patterns are
drawn, using the circle routine
within a loop.

Lines 150-170 repeat the
above loop, reversing the x,y
co-ordinates.

Lines 180-200 draw the
centre circles.

 SECTORS AND SEGMENTS

The two routines on this page are useful supplements to
the circle routine introduced on pages 30-31. Sectors
are constructed by drawing an arc and then joining the
end points to the centre from which the arcis drawn. A
segment differs from a sector in that the ends of a
segment are joined to each other, rather than to a centre
point. The advantage of the routine is that they enable

o
ol "I ."l“:i"‘t”l‘
ot L I o

ot

o
o I '.l‘ o

SECTOR PROGRAM

1@ DEF FMN kK(x,3.7,5,f) =USR S&s
g@@ EORDER @: PRPER @: IMHK 4
r=8@&: LET XcCc=25@: LET -
EJ:‘ STEP -1

STER =i
¥ KiXxe-ygyx2,9dc-IN

179 MNEXT

you to join the ends of an arc together without having to
work out the co-ordinates of those points.

Both the sector and the segment routines call the
master circle routine (page 29), the arc routine, FNj
(page 31) and the line draw routine, FNn {page 21).
This means that the sector and segment routines will not
work unless these other routines are present in memory.

The sector program on this page creates the illusion of
a third dimension by repeatedly drawing smaller and
smaller sectors while at the same time moving the centre
point upwards and to the right. Try varying iin line 120
to see a different number of sectors displayed.

The segment program repeats a pattern of segments
(drawn from a single centre pointinlines 140-150) three
times across the screen. The number of patterns can be
increased by varying the step size of x in line 120.

SECTOR PROGRAM

Ug :7 I?seconds

How the program works A
sector of a circle is drawn
repeatedly with decreasing
radius.

Line 120 sets up a loop to
vary 1, the number of sectors

drawn in one display.

Line 130 sets up a loop to
vary ¥, used to calculate the
centre point and the radius.
Line 140 draws a single
sector.

Line 160 waits for a key to be
pressed before drawing the
display again.

FNk
SECTOR ROUTINE

FNI
SEGMENT ROUTINE

Start Address 58800 Length 45 bytes

Other routines called Arc and line-draw routines (FNj, FNg).
What it does Draws an arc of specified radius, and joins each
end to the centre point.

Using the routine The sector is drawn anti-clockwise from a
point to the right of the centre. When the ends of the arc are
Joined to the centre, the result is a wedge shape if the difference
between s and f is less than 127, or a cut pie shape if the differ-
ence is greater than 128. Sectors plotted off the screen to left
or right may reappear rather unpredictably elsewhere on the
gcqeen, 50 11 is best to keep within the parameter limits given
elow.

L ROUTINE PARAMETERS I
| DEF FNk(x,y,r,s,f) |

- specify the centre point from which the arc is to be
Y |l drawn (x<256,y<<176)

| r “sTaecif%es the radius of the arc (r<256) J

[s, |[specify the length of the arc (s<f, <256, f<256) |

| ROUTINE LISTING |

7909 LET b=S3820: LET L=4@:. LET
z=@: RESTORE 7910

79@l1 FOR 1= TO L-1: REARAD a
7992 FPOKE (b+1) ,a: LET z=z+23a
7983 MNEXT i

7984 LET zZz=IMT (€(zs0) —INT (Z./L)
7985 READ a: IF a<>z THEM FRINT
B . S5STOR

CATA 205,20,
DATA 106,232
cATA 229,89 ,3
CRATA 205,51,
CaTA 188,232,
=
1

RV RN RNANENAN]
poooew 2
(BTSN |
(R ATTEY)

caTe 237 ,2
ceTe 91,1
CRTR 2 s
CRTAH 3

RYENEN}
Do
P b
AIRNTL]

Start address 58700 Length 30 bytes

Other routines called Arc and line-draw routines (FNJ, FNg).
What it does Draws an arc of specified radius from a centre
point, and joins the ends together.

Using the routine This routine works in the same way and
with the same restrictions as the sector routine, except thatin
this case the ends of the arc are joined together, rather than to
the centre.

Notice that, like the previous routine, you may get problems
trying to connect the ends of the arc together, if either of the
end points (and especially if both of them) are off the screen.
As before, segments plotted off the edge of the screen to left or
right will have unpredictable results: they may reappear on the
other side, or cause the Spectrum to crash.

] ROUTINE PARAMETERS J
l DEF FNI (x,y.r,s,f) |

specify the centre point from which the arc is to be
drawn (x<(256,y<C176)

[r | ’speciﬁes the radius of the arc (r<<256) |
{ s,f Hspecify the length of the arc (s<<f, s<C256, f<(256) |

X,y

l ROUTINE LISTING]

795@ LEY b=S87@@: LET L=25: LET
zZ=@3: RESTORE 796@

7951 FOR i=@@ TO L-1: RERD a
7952 POKE (b+i) ,3: LET zZz=z+a

i
7954 LET zZ=INT (({(zZ - L) -INT ¢(Z-1)
IF a<»z THEN PRINT

7955 RERD a:
=REty STOR

796@ DRATA 285,28.,2
7961 DRTA 186,232,
7962 DATA 232.2.82
7963 DATA 237,205
7966 DATA 281.,0.,Q
7967 DATA 183,6,0,

SEGMENT PROGRAM

B
]

CEF FN LIX,W,r,s.,F)=U3R S5S&7
EORDER 4: FAPER 4: IMNK 1: ©
LET gy=2@

5 TC 172 STEP 4S5

FOR i=1@® TDO S@ STEP 1@
RANDOMIZE FM L (x.,4,i, 125,18

r o
]
&

BB o o |2 2 (e O

Sl DR
GUS Qae6

™

RAMDOMIZE FN Lix,y,:,8,53)

NEXT i
NEXT x

SEGMENT DISPLAY

_ FILLING SHAPES 1

The fill routine given here, FNm, enables you to fill any
enclosed shape no matter how irregular. The routine
works by looking at the pixels adjacent to the specifed
start pomnt. If a pixel INK attribute is set, the routine
does not change it, and does not look at pixels adjacent
to this one; otherwise, the routine sets the INK attribute
to the current INK colour and moves to the next
adjacent pixels.

This method is known as the flood or grass-fire
method, since, as you can see from its characteristic
diamond shape, the INK spreads outwards until it
reaches a “trench”, which stops it from spreading
further. Any shape which is not completely enclosed,
even if only by a single pixel, will “leak” when filled.

Colouring irregular shapes
Since the Spectrum can only have one INK and one
PAPER colour in each character block, you may have

FILL PROGRAM

LET X2=19+: *2@: LET yz2=20
Fixi,ul,x2,42)

LET 9i=174

LET x2=i%20-18: LET d42=28
RAMDOMIZE FMN F(xl.41,22,42)
HEXT i

RANMDOMIZE FM F (12,20, 138,22}
RAMDCOHEIZE FH fF (200,20, 130.,2

PHUSE 1@
RAMDOMIZE FHM m(1 . 573

@:1

problems when there are more than two colours on the
screen, and you call the routine to fill irregular shapes.
If, for example, the shape has diagonal edges, you will
see a jagged effect corresponding to character borders,
instead of a straight line when the shape is filled. The
diagram below shows how a combination of INK and
PAPER colours can be used to overcome this problem.

FILLING SHAPES AT CHARACTER BORDERS

J i
N PANER L
LSRN ¥ -
| NPAPER INK
INK \\ der-ofrshape B =
-
P

__,,—-ﬁ T [BapEr

INK oF £ e\\ PAPHER

ein led \

Character bprder

BOX FILL PROGRAM

BORDER

LET x=1408

FOR J=1i@ TQ
RAMNDCHMIZE FN
IF = ~1@=INT

-
Ol 4 |2 (i

L
158 HNEXT

BOX FILL PROGRAM
.nc
:JL" LI T seconds

How the program works
Boxes are drawn in a loop, and

filled alternately.

Line 120 sets up a loop.

Line 140 fills a box if variable
X is exactly divisible by 10.
Line 150 reduces the value of
x by 3.

FNm

FILL ROUTINE

Start address 57700 Length 195 bytes
Other routines called Line-draw routine (FNg).

What it does Fills in an area bounded by a solid line of INK, in

the current INK colour.

Using the routine This routine fills in an area up to the edge
of any shape enclosed by an INK ling, or to the screen border.
Remember that if there is even a single pixel of PAPER colour
at the border, then the INK with which you are filling will leak
out, and you may fill the entire screen. Notice also that a
“wraparound” effect occurs when filling to left and right of the
screen, which means that when the routine reaches the left-
hand edge of the screen, it starts filling from the right-hand
edge inwards, and the same will happen when the routine

reaches the right-hand screen edge.

If some of the attributes for character squares within the area
to be filled differ from each other (as will happen, for example, if
you change some of the attributes using the window ink routine)
then the area will be filled with these colours, rather thanin a

single colour.

|

ROUTINE PARAMETERS

I

DEF FNm(x,y)

X,y

pixel co-ordinates of the point at which to start filling
(x<<256,y<176)

ROUTINE LISTING

LETFT b

REST

‘FOR i

POKE
NEXT
LET &

RERD
STOaP

oATAH

NBPRORPRENRR Rl

=5770a:
ORE 8010
=@ TO t-1:
(b+i) ,a:

T
=INT (((z L) —INT

LET (=19a:

RERD a
LET zZ=Z+a

LET

(z L)

a: IF a<>z THEN PRINT

205,207, 225,42 ,38
226,94 ,28,35,86

205,207,225 ,42 ,38
226,94 ,3%S, 86,28
285,297,225 ,42 ,38
226,94 ,29,35, 86
205,207,225 ,42,33
226,35 ,85.229.,1
76,229,167 ,237 ,66
32,5.,225,33.,44
226,229,225 ,34 ,38
226,237 ,75.,40 ,226

167,237 ,66,200, 195
135,225,237 ,83,42
226,62,175 47,216

=245

[SIEEN
~
H

~J=
P

< PN -
e e P

NERM- PO O - -

; RRL R Eo RN BN T

GUNG T -~ - PP

~ DN - WP~ O

MM VAW-IR

s (PO M

G- VP~ B N0 s 2

SO FORN WP

BrRONPRRRED
M= O
U~ 0~ N
WANO-JW-
now - 80
0

R

“ﬂ.{uﬂdﬂﬂnﬂﬂmhgﬁuhﬂ.ﬂuﬂr e e e e e e e e e A P B e B e e R 1

S~
v

s of the loop only.

Lines 160

ased
c

th
e

ur

from
circle.
sets a test which

fill routine on alt
fo
Y

ay.

a
abox b

ac

starts

Scts a centre pOiﬂE

isplay (x
ine 130
draw the boxes and
Line 140 draws
190 fill
f the displ

c
8s¢

S0

on an increment
centre point.
Line 150 draws
Line 155

calls th

Line 120
for the di
nate pa

corner

L

£

sing size is drawn, and

cles o

cir

¢ boxes and

seconds

e called inside

s and

TSECTL.

0

'
i
At}

ch th
T
10-30 define the

f boxe
routines.

routin
mi i

2
i

it

1
s at whic
sER
i
.
T
i

i
i

0

a
cles inte
ines

SQUARES AND CIRCLES
How the program works A

PROGRAM
series o
increa

fil

Iy
[h]
are

|
e

in
the

|

ar
cir
L

I

:
i
i

|
I

il

ch
hole numbers a
the formula for the co-ordinate

the point is placed in brackets and an INT statement

il
A

a
S

Kly.

given
\F
f the

cope with
is the
s to

c
calculation of the point from which the fill routine 1

et

a o0

y qui
e
am
e
it

olntone

rogr

doesit
s them ver
chp
Sp

at w

N
[
(=
o
H ==
s ==
G
m.
—
=
B

fill

grams on this page give an id

abilities.

Not only

11.

it also

apestofi

cated detail in ea

it.

rogram has to calculate thi

compli
nt of

e loop. To ensure th

gular sh

cap

t. Each p

s of th
passed to the routine,

ced in fro

ghlyirre
The only

S

a

The fill routine really comes into its own when it is

T
hi

|

these shapes with ease,

The two pro
routine’s

star

pa

e -

The squares and circles program fills in the inter-
sections between a series of boxes and circles. The
program is interesting for the different final displays
which can be obtained by changing the values of a few

parameters, caused by different shapes created each
time the boxes and circles are drawn. The boxes and
circles are drawn in a loop at lines 140-150, and the
intersections filled at lines 160-190.

SQUARES AND CIRCLES PROGRAM

& .
(i-21
SYI—TINT (121,14 ,12
158 RABNDOMIZE FM j(x1,91,INT (i
2 ,8,255)
E (i 481 «32=INT ((i+&) #32)
aa

meExL+A1-INT (i~

£i s
2) , 91 +1-INT ¥ 3
S8 RﬁNDDMIZ{f‘E ZP;I}!‘E(){!.—1+INT (i
i/
RANEDOMIZE FH m(x L+1-INT (1~
(1 /2)}

The spiral program

The spiral program is an effective use of the fill
routine to colour in alternate portions of the circle. The
two displays were achieved by varying n, which deter-
mines the number of spirals to be drawn.

the sequence repeated. The
number of spirals is set by

SPIRAL PROGRAM

v 5 .
QU S U d variable n.
seconds Lines 10-20 definc the
How the program works routines.

Only the arc and fill routines
are used in this program. A
circle is drawn and then two
BASIC semicircles are drawn
to join the centre point to the
circumference. After two of
these curves have been drawn,
the space between is filled and

Line 120 draws a complete
circle (centre 128,88).

Line 180 draws two curves in
BASIC, using PI to specify
semicircles.

Line 190 fills the area
between two curves on
alternate passes of the loop.

SPIRAL PROGRAM

DEF FMN (X,

DEF FN miX,
BORDER 1: P

LET n=1@
RANDOMIZE FN 1125 ,835,51,@,

p=@: LET pd=2+FPI-n

IMNK 6: C

(4P xC0S P
(4@ %S IN p)

=

AE

The OVER command in BASIC is one of four “logical
operators” on the Spectrum; its more formal title 1s
Exclusive,/Or, or XOR for short. XOR forms the basis
of the machine-code routine, FNn, on this page. You
will recognize at once the other logical operators, since
they occur in Spectrum BASIC with the same titles:
AND, OR and NOT. Logical operators give a result
depending on the way particular bits are set. The table
below shows how the four operators make decisions.

TABLE OF LOGICAL OPERATORS

AND OR NOT XOR

A B AANDB/A B AORB|A NOTA|A B AXORB

00 0 00 0 0 1 00 0
0 1 0 01 1 1 0 01 1
10 0 1 0 1 L) 1
1] 1 e i 5l 0

Thus, the XOR-line routine (FNn) looks at the screen
before setting a pixel. If the pixel is currently set, the
routine clears it; if the pixel is not set, however, the
routine sets it.

18 DEF FN
102 BORDER
LS

XOR ELLIPSE PROGRAM

U i: 1D minutes

How the program works
Lines are drawn from a centre

to points on an ellipse.

Line 130 specifies how many
lines are to be drawn.

Lines 140-150 calculate the
co-ordinates of a point on the
circumference.

INTERFERENCE CIRCLES PROGRAM

12 DEF FN n(x,
1908 SBORDER @

o
I
o
)]

m
i

WO e K
R S TR TR N
8 s 3 G
+ P
+ O A0
[b Pt
ZHA-mnr
wm
= O
Xz
I
TR

V]
m

b g
BE X

BE B M+ + -G

PO O N0 2 ot o s i
W= &0 -] am
GLERAEEGERE

The interference circles program shows how, by
using XOR lines, two overlapping circles can produce an
interesting pattern instead of an area of solid colour.

FNn
XOR-LINE ROUTINE

Start address 57600 Length 20 bytes

Other routines called Line-draw routine (FNg).

What it does Draws an Exclusive/OR line on the screen
between two specified points.

Using the routine This routine works in the same way as the
line-draw routine, except that Exclusive/OR allows you to erase
what has been drawn. Using the routine you can draw lines over
an image and then remove them again, without affecting the
original image. As for the line-draw routine, the routine incor-
porates some error-trapping.

| ROUTINE PARAMETERS |
| DEF FN n(x.y,p.q) |

X,y specify the start pixel co-ordinates of the XOR-line
(x<<256,y<C176)
P.q specify the end pixel co-ordinates of the XOR-line
(p<<256, q<<176)
[ROUTINE LISTING

82590 LET b=5S7600: LET L=15: LET
z=0: RESTORE SO06Q@
8051 FOR i=0@ TO L-1: RERD a
8252 POKE (b+i1) ,a: LET zZz=z+a
8053 NEXT i

80S4 LET z=INT (((zZ L)Y —INT ¢€z-/41)

1] L2
8855 READ a: IF a<>z THEMN PRINT
ettt SO

ses@ DATA 62,168,500 ,223,237
8861 DATA 205.,28,237.62,176
862 DATA S@,223,237.201.,8
8863 DATA 13,0.0,2,0

OVERPRINTING PROGRAM

DEF FHN n(x,
EORDER 1: 2
cLS

FOR i1i=5 TO 185
PRINT HT i ,3;"!

G
b 2 U b o 2
GO0 ST G e
G080 0006 ALY

FOR J=:
RAMDD
RAMDOM

MEXT i
PALUSE @

U o

=0 Ta 15@

OVERPRINTING DISPLAY

Finally, the overprinting program gives an example of
the XOR-line routine being used to draw over some text
and cover it (lines 160-170), and then “undraw” the
lines by calling the routine again in lines 200 and 210.
leaving the text intact.

COMBINING ROUTINES

i i hc programs on this page give some further examples
of combining the routines used earlier in this book. You
will see from the programs used here that, in a program
of any length, it is a good idea to separate the machine-
code routines clearly at the beginning of the program, as
has been done here.

Although the programs look complicated, they both
consist mainly of machine-code calls. The repeated
circles program is a symmetrical pattern; the small
circles on the circumference of the large ones are drawn
in lines 230-380. Variables x,y, which are points on the
circumference of a large circle of radius rz, are used to
determine the centre of the small circles. The actual
centre points of the small circles are obtained by adding

REPEATED CIRCLES
PROGRAM

"_-}L7 ;'8 seconds

How the program works
This program displays circles circles and the centre box.

with smaller circles on their Lines 250-380 draw the small
circumference. Each of the circles.

small circles is then half-filled. Lines 400-440 set the colours
Line 100 defines ad, the step of the four quarters of the

size. screen.

Line 120 defines x0 and v0,
the offset from the centre for
the four large circles, and rx
and rz, the radius of the small
and large circles.

Lines 140-200 draw the large

or subtracting an offset (x0,y0) from x and y in lmes
270-340. Variables xm,ym are used to calculate the co-
ordinates for the fill routine.

The kite program is even simpler; the only compli-
cated part is the drawing of the tail (drawn by a sub-
routine in lines 500-600). The number of bows in the tail
can be modified by changing the variable s in line 110.

REPEATED CIRCLES PROGRAM

bix.,.d,h.,.%w,Cc,b, f}=U3R
(x,d9,h,v,c,b,) =U5SR

[x,g h,w) =SSR E2400
bty g,r,s,il:USR 589

dx .40 =USE S77ea
8:PT 128: LET a=@
27: LET y1=87

£: LET yo==7: LET r
IMK &: ©

: “ —
'BOEDER B: PAFER 1:

RQNDQ%‘;E FM §(x1-xoc,4Yyil-dgo,
rz,s8,255
3=a HHNDDHIZE Frd 3 (H1I+MO.,494l-9G,
rZ,a,285
163 WQNDDMIZE Frd j{x1+X0.,d1+y90o,
rz,g,2ss
179 PQNDDHIZE Frl ji{x1l-Xx0.,4941+40,
FZ,8,255)

sCcrot L7

REPEATED CIRCLES

o8 F*RNDFHI;E Frd
rx L8 ,255)
28 RAMDOMIZE

(=]
31@ RAMDOMIZE

Frl

SCreLiL=

SES:
RANDOMIZE
RANDOMIZE
S

RANDCGHMIZE
RANDOMIZE

RAMNDOMIZE
LET, a=a+ag_
MEXT i
RAMCOHMIZIE
RAMNDOMIZE

[
-

G pe P B PLOGOG WO

“POUENEEEEWDM-IT (- O
m

RENDOMIZE
)

RRMDCMIZE
FAMDOMIZE

e ne

O O-R- GYEREGEH GaNE 68
Q]

3
RAMDOMIZE

a
u]
x
]
[

KITE PROGRAM

0.7
Ulg L) | seconds

How the program works
The program draws a kite
using coloured triangles, and
then adds a tail with bows.
Lines 120-130 draw the kite
using triangles.

Lines 150 and 180 sct values
for the subroutine variables.
Line 190 sets colours for the
tail.

Line 500 is the start of the tail
subroutine.

Lines 510 and 520 calculate
the point x,y, at which an
ellipse is drawn.

Lines 530-560 draw and fill
in each bow.

Line 570 draws a line between
each bow.

Lines 580 and 590 set values
for the next bow to be drawn.

15@ RAMDOMIZE FM jixdl,9l, T +rx,
& ,255)

19&@ RANDOMIZE FhN O JixXl,d1,7Z-rx+
1,@,255})

Z@E@ RANDCHMIZE FMN h (117 ,7&,20,18
218 REBMNDCOHMIZE FN mLl2E,55)

228 FOR i=@ ToO 255 STER 148

238 LET x=x1+IMNT (rzxS5IK a1

248 LET 2=491+INT irz OS5 a)

258 LET =xm=x1+INT ((frZz-31%5IN a
268 LET uym=yl+INT ({rz-53 *CO3 a
|

272 BRHCOMIZE FM 4 (x -0 ,4-4d0 7%
) s5:

258 RAMDOMI Fal om{xXm=X0 ,dMm—34C3

PROGRAM CONTD.

JEX+HKO+1.0d-d3,

MmixXm+xo+1 ,.dm—'3

JIX+XO+1 .9 +40 .

B ixXm+xXo+1, dm+g
JiX —HOo ,d4+30, 7%

Mol —xNO YR +Y0)
3 By H,Fm,ﬁ,

mlxm . dml

KITE PROGRAM

Fh
Fr a
FM 1
5]
EDRDER -

g LET ==16:
LEFT a= ad*h¢fs-

i (®i1-4Q,291,x1+

mix1,sll
158 LET /2 143 T yz2=4B: LET
wi=w 47 LEF Y Ll= Q@
168 GO SUE S8@
17@ RENDOHIZE FN 31047 ,5@,47F,49)
5 LET. ®1=xi+95: LET Lt=172: i
ET %Z=143: LET y4y=2=4@: GO SUB S@¢

scrol L7

9@ RAMDOHIZE FH
RANDOHMIZE EFN b
RANDOMIZE FMN b

RAMNDOMIZE FN biZ2

RANDOMIZE FN bi(5,1

A+5,9-3)
S5@ RAMDOM
55@ LET =2
59@ LET &
E@D MEXT

2 Ok, @:1

nwemm mm Mm+

ad
F-"ETUg'N

Perhaps the most effective way of using machine-code
routines like those in this book is in a single program
which enables you to use the routines together.
Although by this stage in the book you have enough
routines available to create the kind of sophisticated
displays seen in much commercial software, you do not
have what the professionals use: a complete graphics
editor. This is the purpose of the following program.

The graphics editor program

Each stage of the editor program incorporates routines
from this book. The final program includes a facility for
SAVEing and LOADing individual screens. The
displays accompanying the program on this page and on
the following few pages will give you some idea of the
sort of pictures you can produce using the completed
program.

How the program is built up
The graphics editor is shown in five stages, with each
stage complete in itself. By keying in the lines on this
page, you will have enough of the program to be able to
move two cursors on the screen. These are used for
plotting points and drawing lines in future stages.

PRPER @:
RANDOMIZE
GO T 1002
LET CcL=2@: LET cr=23
IF cx<28 THEWN LET <l=c=x: GO
S& g
228 IF cx:235 THEM LET cr=255-C
x
23530 RAMDOMIZE FH nicxE-—-<CL,cg,Ccx+

cb=2a@: LET cr=2@
€ <28 THEM LET cl=cd: GO

a3
268 IF cy>155 THEN LET cr=175-~¢

=

278 RAMDOMIZE FHM nicx,cy-Ccl,Ccx,
cYy4+ci)

=28 RETURM

Z2@ LET me=7: LET mw=7:

LET mu=

Scrolb L7

How stage one works

Only two machine-code routines are used in stage one.
Thebox-draw routine, FNh, draws a line round the edge
of the drawing area, to prevent the fill routine (added
later) from “wrapping around” the screen edge.

-

GRAPHICS EDITOR STAGE 1 CONTD.

Z: LET md=7
218® IF mx <7 THEMN LET mw=0: LET
muU=mw: GO TO 338

=20 IF mx>248 THEN LET me=0: LE
T md=me

83@ IF muc¢mwe OR my<md THEN LET
mw=0: LET md=mw: GO TO 358

4@ IF 17S-my:<muy OR 1L7S-md <me T
HEN LET mu=0: LET me=@U

ZSE RAMNDOHMIZE FMN n (mx -—mwW ,myd—me ,
i +Eme , My el

S5G REBNDOMIZE FH o (mx+md,my-nd,
M =T, Ed M)

@ RETURHN

LET md
GO]
LET 4F
(6] = .

*

TR

&

=cy
B m
k=3:
=2
b=:

C Lk
LET
LET cy=1a2:

T - G0
L]

ia
ED SUE mar
=" THENMN LET d=8: GO 7T
129
G LET ke=CODE a%: LET d=d+1
ke <>3 THEM @0 To 1178

SUS cur: LET cCx=fXx+d
cx% »255 THEMN LET <x=2S5:

GHE
o

HGH

R=R

— HE HOHD HOEE

SUS cur: GO To 1100

ke<>83 THEN GO TO 121@
Elle LET Ccx=cxx-—-d
FTHER LET

SUUs cur

1 L e o [12 2 e o) 10 o
| el L el e e e Y =
_&&mmﬂm%mpGMPwamx

8 e

SUB cur:
cy <8d THEN LET

SUB cur
ke ¢ 1%

o MOMa MoOTNo0e

)

A g s

The other routine included here is the XOR line
routine, FNn, used to draw the two cursors. Exclusive/
OR plotting is used because the cursors have to be able
to move around the screen and remain visible, without

disturbing whatever has already been drawn. Try
moving one of the cursors in this program to a corner of
the screen to see the XOR effect. The screen border
remains unchanged when the cursor is moved away.

Line 1000 is the beginning of the main routine. It
gives initial values to all the variables used in the
program. These, for example, store values for INK,

CURSORS DISPLAY

PAPER, FLLASH and BRIGHT. After setting initial co-
ordinates for the two cursors (points ¢x,cy and mx,my),
the program moves to the subroutines. These are stored
carly in the program to increase the running speed.

The cursor subroutine is at lines 200-280, and the
cursor is positioned at point cx,cy. The second cursor is
placed on the screen using the subroutine at lines 300-
370 (points mx,my). These cursor subroutines (called
cur, mar) are used to delete the cursors before any rou-
tine is called, and again to put the cursors back on the
screen afterwards.

GRAPHICS EDITOR PARAMETERS

A artribure edit L line

I ink

P paper Q window paper

O bright/flash

ENTER toquitattributeedic S save screen
B box T triangle (press T

: again for second

C circle corner of triangle)

S start

F finish partial screen clear
D dot X text
E Aoy ik ENTER to quit text
F fill
G id All these instructions

& require you to press CAPS

J T, SHIFT followed by the

letter shown, in upper case.

GRAPHICS EDITOR 2

Th; secqnd stage of the graphics edltor_ adds routines for GRAPHICS EDITOR STAGE 2 CONTD.
points, lines and boxes, as well as adding the ink, paper
and partial screen clear routines.

Colour is set by the subroutines in lines 400-850.

These allow you to select colour, BRIGHT and FLASH mxzex . LET mu=cu

values. Points are drawn using the point-plot routine, in 2ri9 Ik Fon THOH 5O WO aSpm
lines 1320 to 1350. Some of the details in these lines Teon SEU ESENc LR e THEN LET
reappear throughout the program. Line 1320, for R, ey B sxmen FHEN LET
example, checks to see if key D has been pressed (ASCII ”'SGQSS”[E‘?;‘%%EB e b N ieibe e

Sa
O 170©
> 7L THERM S0 TO 1584
THEN GO TO 1780

code number 68). If it has, the two cursor subroutines
are called, and the values of cx and cy are used as the co-
ordinates of the point to be plotted. Lines 1360 to 1490
work in a similar way for the line draw, fill and box rou-
tines. Line 1500 is a “dummy” line, where other
routines will be inserted.

ZE LSRR S55D0B8
i1@e
ZE US5R S5531
GO TO llea
4 GO TO 2198

CFOQDCHHGE
MDQDMATMQCN
v
Qw7 wf
Coma Qo o

o 1
e] ot e e

H
Bl
-

]
Qo
=

“
T
m

[nln|

WO T Fnrn
6 6l pa

gl

Q

SUB cour o GO

The grid subroutine
Lines 1730 to 1790 set up a grid on the screen, by

GRAPHICS EDITOR STAGE 2

Lsi B R
- -3
]

noon

W
o
.-

c
M ow

FG% rox
I T T i

=
DED

o=

'DOZ DT O

2 a
126 GCQ _SUS &
408 PRINT BO;
41 FRUSE @
agi'a” OR a%s’
426 INPUT B
430 PRIMT 86.°
44 PRUSE @:
as<"d"” OR as>'
45@ ENPLER
46@ PRINT 28;'
478 FPRIUISE O
age@” OR ak:"7
4@ TIrPJT 2
490 RETURM

&4@

WQ% # O

: Y EF
+7@
FL=UREL 3%

r
[=H
m -
=+
Tw
M
z
H
Wz
s
m
_]
u]

sSErotLT

8@ LET x=xc=IMNT (cx~/ 8): LET gc=2
(mx 81 : LET wm=2

62 LET xXx=xc: IF =xc:xm THEMW LET
X =
532 LET y=4yc: IF yc:ym THEM LET

Y =4
648 LET hR=ABS HXec-xm)+1: LET wv=
RES {gc-um) +1
S@ RETURMN
IF ke{>68 THE®N GO TO 1360
0 SUB cur: GO SUB mar
RAMDOMIZE FH F (Cx , cu:
S0 TO S22

IF ke <:>756 THEMN GO TO 1420

G0 SUB cur: GO SUB mar

RRNDGHIZE Frl g (mx ,my . Cx ,CQ3
PO

cur: GO SUB mar
DHIZE Frd omicx ,cdl

printing character squares in normal and BRIGHT
alternately. When key G is pressed, a grid drawn by a
machine-code routine appears. The routine is POKEd

into memory by the subroutine at lines 6000 (called in
line 120). The grid is used to show character borders on
the screen while you are drawing a display.

GRAPHICS EDITOR STAGE 2 CONTD.

M=
@ RAMNDOMIZE FM C(x,4.h,v,C.b,

GO T 91

IF ke<»87 THEMN GO TO 2240
GO SUE cee

GO SUB cur: GO SUE mar
RgNDgHI%E Fh 3 6%,.9,.k,%]

ke <>68 THEN GO TO 1106
Sus 2a
SUB 4@2@:

B
22?8 RRMDDHIZE FH bBilx,9,h,v.C,b,
A3
2288 G0 TOo 9i@
S@0@ RESTORE G@2359:

GO SUB cur: 5O

FOR n=5S55S@@a 7
n.,a
,iL,192,2,47,35,;

GRAPHICS EDITOR STAGE 2 CONTD.

SeémggﬂTn 35,247,216 ,17.,0,35,1,6
6@5% DRTA ?3 @,858,1,125,2,237.17
&,2@al
SéSB LHRTH 35.55,217,17.8,88,1,19
qu,l?S,Eﬁl
E FOR n=555S43 TO S5574 STER 2
FOKE n,128: POEE n+l,55
NEXT n
FOR nr=5S557% TO SSoBS STEFR 2
B : POKE mn+1.128

USING THE GRAPHICS EDITOR GRID

The graphics editor grid (CAPS SHIFT and G) is used to display
character borders by setting the BRIGHT attributes of alternate
characters. The grid does not delete anything currently on the
screen. The cursor shows the current pixel position, superimposed
on the grid. In the diagram, the cursor is on the leftmost pixel of a
character square.

10 A
1 &

GRAPHICS EDITOR FILL DISPLAY

GRAPHICS EDITOR 3

The third stage of the graph1cs editor adds routines for
drawing circles and triangles. These routines give you
many new possibilities for your displays, as you can see
from those shown here.

Drawing circles

Line 1500 is the start of the circle routine. Lines 1510 to
1530 enable the user to enter start and finish parameters
between 0 to 360 degrees, rather than the machine
code’s 0-255 parameter values. Lines 1570 and 1580

contain some BASIC error-trapping to prevent a circle
being drawn too far off the screen and causing the
Spectrum to crash. These lines could be incorporated
into any BASIC programs which call the circle routines.

Adding triangles

Lines 1610 to 1720 are used to store corner co-ordinates
for a triangle before calling the triangle routine, FN1.
The parameters of the three corner points are held as
variables cx,cy, mx,my and tx,ty.

GRAPHICS EDITOR STAGE 3

DEF FN Jj(xX,4Y.,r ,5,f}=U5Rr 5389
DEF FMN i1 (X.4d,P.,q9.r . ,35) =UsR &

IF ke :87 THEN GD TO 1519
INFUT "s 5 F f
IF s5:@ DR F:@ OR ;)36@ Oﬂ F
OR S<¢y»INT 5 OR f<>INT F THE
TO 1T5:i@
LET 3 =INT 255+% (8 -368@)): LE

=INT (2SS*(f~ 364011}

1S54 GO SIS cur

155@ LET z=ABS (cx-~mx): LET 4=RAB

S fcy-mdl

éSEB LET ¢ =IMT (S3GR {(%1+2+Ut32 +Q.

3

157@ IF r»285 THEMN BEEFR 2,3: INP
uT Y. B0 3UB cur: GO TO 11@@
158G IF r+mx 275 0R my-—r {-26 OR
r4my >1395 0OR my-—-¢ (-28 THEN LET =
275: G0 TOo 1570

1598 RAMDOMIZE FR Jimx .md .7 .5, F)

SCro kL7

GRAPHICS EDITOR STAGE 3 CONTD.

3@
lﬁ¢$ LET a=C0oDE as
1658 GO S8 cur
1668 LET {x=cxX+lxia=39 AND <x <255
I-1l¥i{3=8 RND <cx>@)
1678 LET ty=cy+lxi(a=1% AND cu<i?
H51-1#%fa=1@ AND c4y:@1

GO TO 16GE
LET tx=mx:

LET mxX=p:
. B SUB mar :
RRNDDHIZE FIN 140X ,cd . mx by,

GO TOo 9o

BILLIARD BALL DISPLAY SPACE STATION DISPLAY

Lines 1660 and 1670 take advantage of Spectrum third corner of the triangle, by calculating new values
BASIC’s facility for writing conditional statements in for cx and cy as a key is pressed. You will notice from the
an abbreviated form. Line 1660 could be rewritten as: movement of this cursor how much slower BASIC
T EENTE a0 ANT v (25€ THEN T BT cv— ot movement is than the usual cursor speed, which is

carried out by machine code. This speed advantage alone
would be sufficient justification for using machine-code

_GRAPHICS EDITOR 4

The designs on this page show one method of producing
a typical display. One general point is worth noting
before beginning any large-scale graphics editor
display. Each photograph of the cocktail display
represents a point where the screen was SAVEd before
going further to add more details. The reason for this is
simple: even when you have a little experience with the
editor, it is easy to ruin a display by adding an
unintended line, or by filling a shape that is not totally

ground. This effect can be obtained by changing the
initial graphics editor screen to black INK and white
PAPER colours. A simple change like this can be very
effective.

Building up a display

The cocktail display shown here is an example of how a
graphics editor display can be developed in stages. Stage
one of the display uses only lines, squares and triangles.

BLACK PAINTBOX DISPLAY

COCKTAIL DISPLAY 1

PAINTBOX DISPLAY

COCKTAIL DISPLAY 2

enclosed. Rather than risk losing an entire display, it is
sensible to take a few seconds and SAVE what has been
drawn before continuing,

The paintbox displays

The paintbox displays above show the difference in effect
which can be obtained by drawing in white ink on a black
background, rather than using black ink on a white back-

Even at this early stage, however, the design has been
planned so that there will be no problem with character
borders when colour is added. The position of character
borders can of course be checked by using the grid
(CAPS SHIFT and G). The grid does not delete
anything which has been drawn, so it is a simple matter
to flick between the grid and the normal screen as
necessary at this stage to ensure that lines and points are

drawn in the correct position on either side of a char-
acter border.

The second stage uses circles and arcs to draw, for
example, the cherry in the glass. Because of the
relatively low resolution of the Spectrum screen display
a small circle such as that which forms the cherry may
not be completely enclosed. Four single points were
plotted on this circle to prevent the INK from “leaking”

when the shape is filled. The umbrella in stage three was
COCKTAIL DISPLAY 3

also drawn to take advantage of character borders when
filled with colour. The colour change on the umbrella
lies along a horizontal and vertical acter border,
although it appears from the display to be diagonal.
The picture was completed by filling areas and then
adding colours. When drawing a complex display, it is
always best to keep the filling and colouring operations
until last. Remember also that colours should not be
added while you are using the grid.
COCKTAIL DISPLAY 4

GRAPHICS EDITOR 5

Text is added by lines 1800-1890 of the program. Line
1810 takes the current pixel position (variables x,y) and
converts these to character co-ordinates. This is because
text 1s printed in character positions rather than using
pixel co-ordinates, Line 1820 deletes the cursors, and
line 1830 prints a flashing text prompt at the character

BOXES DISPLAY

position. Text is then entered in lines 1840-1870, which
include BASIC controls for deleting mistakes in keying,
and ending the text string when ENTER is pressed.

Attribute editing
Lines 1900-2030 give you the option of setting INK,

PENCILS DISPLAY

PAPER, BRIGHT and FLASH attributes of any
character square on the screen. As with text, the current
pixel position is converted to character co-ordinates
(held as variables lin, col) for this routine. Lines 1970
and 1980 simply move the cursor (a flashing character
square, printed in line 1960) onto the next line or
column when the end of either is reached.

Saving and loading screens

Finally, lines 2040-2130 of the program enable you to
SAVE and LOAD your displays, using the Spectrum
SCREENS command. An advantage of this method is
that you should be able to load onto the graphics editor
the title display of many commercial games, since these
programs often begin with a SCREENS display. This
will enable you to make your own versions of these
screens.

GRAPHICS EDITOR STAGE 5

PRINT #8;"8-7 7Y
LET as=INKEY$: IF asf="'" THE
TO S1i@
LET asc=CODE aw% o
IF asc<d? 0OR a=c3>S5SS THEWN GO
TO S1@
S48 INPUT
S5a RETURHMN
1Z@@a IF ke <:335 THEN GG TO 1980
181@ LET x=INT {cx-,8%: LET y=21-
INT {iCy -8}
18283 G0 SUS cur: GO SUB mar
183@ PR MT AT 4,x, OUER L1; FLASH
i; """, CHRs 8;
1849 PHUSE B: LET as=INMHKEYs: IF
U OR a2 $<CHRE$ 12 THEM GO TO 1

@
18uB IF as=CHR% 13 THEN &GO TO 18
1866 IF as=CHRg 12 THEM FPRINT CH
RE BT ‘+CHR% S+CHR$ 8; : LET as

=Ccrobl”

”WWmeW‘ HEH
:gr‘mfa T
it i i :i?
%gﬁ cﬁ;ﬁ!ﬁd,ﬁ;mﬂ e

'm'j'i’"“F it i i 2

ﬁmgn i i %
$it HemaEE

mn

TreITIITiTITIT

i fﬁi%
s
il il

,}f‘é?ﬁ:

Eiadanis

- ,ﬁ“‘iiwﬂ::%z ‘*‘f

Higa

..:'"'- iEmEET
-E»é"ﬁ'_:-"_:'- .::'.

~m?-
it

E.,s :
ﬂ". i‘lh

i'

GRAPHICS EDITOR STAGE 5 CONTD.

187B PRINT
" =

|1
1902 IF ke<:>5S OR a=1 THEWM G5O TO
a4
191 GO _SUB cur: GO SUBS mar
192@ LET cobl=INT (cx,8): LET Lin
=21-IMT (482

PAPER pap;

194@ LET as=INKEYS$:

BN GO TQ 1946

195@ LET asc=CODE a

196@ PRIMNT AT Lin,
BRIGHT

2080 IF asc=73 THEM SUE S
LET ink=asc-45
2@1a IF asc=32 THEM SUB S

5UB 430
TS 2820

3 5 mar
SAUE pESCREENS

3 Re<>74 THEN GO TO 2148
EMNPUT "LCRD ", p%

5 5US cus: GO SUB mar
LOAD 2 sSCREEMNS

GG TO 91i@

FORrEreTieTte s
R

il
i BHOHL

i

When using the line-draw routine (INg), you must
specify both the start and the end points for each line
drawn. Where only a few lines are involved, this is not
difficult, but if you are drawing a complicated shape
with many lines joined together, you will find yourself
continually specifying each point twice: once as the end
of aline, and then again as the start of the next line. This
can be avoided by using the multiple line-draw routine
(FNo). This routine takes a series of co-ordinates which
have been stored in memory, and joins each point in
turn to the one before.

Having drawn your complex series of lines so quickly,
you now need a way of wiping them off without
damaging the rest of the display. For this reason an
Exclusive/OR version of the routine is also included
" (FNp). This routine is the same as the multiple line-
draw routine, but plots XOR lines, The XOR routine
will enable you to repeatedly draw and undraw a whole
series of lines on the screen in a few seconds.

Putting the points in memory

Before using the routines, you must specify the co-
ordinates of the points to be linked, which are stored in a
buffer. In operation, the routine takes a point from

memory and joins it to the next point, and continues
until it reaches a y co-ordinate of 255. Points can be
POKEd into memory by using a loading routine such as
the one below, which accepts pairs of co-ordinates:

10 LET n= 57200

20 INPUT “x=";x: INPUT “y=";y
30 POKE n,y : POKE n + 1,x
40LETn=n+2

50 GOTO 20

400 bytes from 57200 are reserved in memory for this
purpose, so you can draw 199 lines with the routines.

These routines are especially useful for plotting the
same shape on the screen repeatedly, since points once
stored in memory can be called by the routine almost
instantaneously.

ellipse. The shape is then filled.
Lines 140-330 POKE into
memory the values of points
around the edges of the screen.
Lines 350 to 400 POKE into
memory points on an ellipse.
Lines 410 and 420 POKE
values of 255 to complete the
table of points.

MULTILINE PROGRAM
4 |
gg !_3!: seconds

How the program works An
explosion effect is obtained by
drawing a continuous line
joining points on the edge of
the screen with points on an

SRR R
4G FEO D
W @ 220

Lm

5 L L

FrHom (2 E,9d)
{4 B2

The multiline program draws a long sequence of lines,
which are then filled by the fill routine. Both routines
must be in memory for the program to RUN.

FNo

MULTIPLE LINE-DRAW ROUTINE

Start address 57100 Length 40 bytes

Other routines called Line-draw routine (FNg).

What it does Draws a series of lines on the screen, from a
specified list of co-ordinates.

Using the routine Co-ordinates of lines to be plotted are
stored in a table at memory location 57200. Up to 200 lines can
be stored in this area of memory. Points in the table must be
specified by the y co-ordinate gO < =y<(=175) followed by the
X co(—jordinate (0<{=x<C{=25b), rather than the other way
round.

To stop the routine POKE specify a y co-ordinate of 255. The
routine will continues plotting points until it reaches this y co-
ordinate; if you omit the 255, the routine will continue to plot
points using whatever numbers are in memory after the co-
ordinate table.

ROUTINE LISTING J

810@ LET b=57108: LET L=35: LETF
z=0@: RESTORE £110
8121 FOR i=@ TO t-1: RERD a
102 POKE (b+i) ,a: LET z=zZ+3
8183 NEXT i
?1?? LET Z=INT (((Z-/sL)Y -INT (Z,-L)

*
8185 READ a: IF a«<»>z THEN PRINT
7. S5TOPRP
81l1@ DATA 33.,112.223,94,35S
8111 DATAHA 86 ,237,83,26,237
8112 DATA 35,126,254 ,255,32
8113 DATA 1,201,955, 3%,86
8114 DATAH 43,229.,42,26,237
811% DATA 205,51,237,225.,24
8116 DATA 228,0,0,2,0
8117 DRTA 17,8,0.,0,0

FNp
MULTIPLE XOR-LINE ROUTINE

DISPLAY BEFORE FILLING

Start address 57000 Length 20 bytes

Other routines called Multiple line-draw routine (FNo).
What it does Draws a series of Exclusive/OR lines on the
screen, using points specified in a table.

Using the routine This routine works in the same way as the
multiple line-draw routine, but can be called twice with the same
table of co-ordinates to erase the lines drawn. Remember as
before to POKE points in the order y,x. Co-ordinates are stored
in memory from location 57200, and the final point must be
followed by a y co-ordinate of 255.

| ROUTINE LISTING l

]

LET b=S5S7000@: LET L=1%: LET
RESTORE S160©

FOR i=@ TO L(-1: RERD a
POKE (b+i) ,3: LET zZ=zZ+a
NEXT i

LET zZ=INT (((z L) —INT ¢€z.-L)

10~ QOON
1~ R G

RERD a: IF a<x>z THEN PRINT
;. 5TOP

DATA 52,168,50,223,237
DATA 205,12 .,223.,62,176
DATA 5,223,237 .,2&1.,8a
DATARA 13,2, ,28,8

e Lkl md ol ol
QOO gn~annunadn

uigeifuifel
WNEE

~ MAGNIFICATION AND REDUCTION 1

One of the most dramatic uses for machine code is to
magnify a portion of the Spectrum screen. The principle
behind magnification is straightforward. To double the
size of a single byte, for example 00110010 (a value of
50 in decimal), simply rotate it left one bit, thus making
01100100 (which is equivalent to 100 in decimal).
Using this principle of doubling, you can magnify whole
sections of a screen. The magnification routine, FNg,
given here, is based on this idea. The routine simply
requires you to specify the screen area to be enlarged.

The magnification routine is accompanied by a
reduction routine, FNr, which is used to reduce an
already-magnified area. The reduction routine actually
forms part of the magnification routine, with the start
address of the second routine being a call which “hooks”
into the main routine. The reduction routine restores
the screen as it was before the magnification, and works
by the magnification routine saving the entire screen
each time it is called before magnifying any area; the
reduction routine simply displays this area from
memory on the screen. Each time the magnification

cation is deleted from memory, so the reduction routine
can only be used to reduce a magnified area once.

The magnification program

This program uses the magnification routine to
repeatedly enlarge a part of the screen. By adding the
following lines:

30 DEF FNr()=USR 56957
280 RANDOMIZE FNr()

you can incorporate the reduction routine into the
program. This will have the effect of reducing the
enlarged area to its last state.

routine is called, therefore, any former stage of ma—)

Remember that the magnification program calls the
multiline routine, FNo, to draw the background
pattern; this routine must also be present in memory for
the program to RUN correctly.

MAGNIFICATION PROGRAM

<
R==]

+ U

Il =
[

N4+ 4+ ONE -G

X E ALK
'I'l}»-—“- w o |_|UI

mTn

mmooom —x n-
W XAE

4
]
a

<1
o

MMM e--Ju
|+ XXX
0N

M s b e 310 1] =

[N (V] 13}

O 4 | usu -
b0 8

-

o
Sl rromnEom

UM paps DEZ
-

) HEW s Q44+~ D0
WOAr @O O AL -0 00

nommmooc
TVZXEXAAXEXE
com-
Wl

=3
=]
P
L
L
[
=]
R
I

ra

Z.2,3%

1S i)

o
s e V)
H
=
= T
[

T

QM- M e = - =]
A
I

MAGNIFIGATION
PROGRAM

I--”B: "-75 seconds

(to magnify area)

How the program works
Lines 110-220 use the
multiline routine to draw a
series of lines.

Lines 130-200 POKE co-
ordinates of the lines to be
drawn.

Line 230 waits for text to be
entered.

Lines 240-270 magnify the
area with text five times.

FNg
MAGNIFICATION ROUTINE

Start address 56/00 Length 290 bytes
What it does Magnifies a specified screen area to double its
previous size.

Using the routine The routine uses character co-ordinates,
as in the window ink and paper routines (FNb and FNc), rather
than pixel co-ordinates. Remember that these start from the
top left-hand corner of the screen. The routine can be used to
magnify the same area repeatedly, increasing the enlarge-
ment each time.

Since an area is doubled in size by the routine it is easy when
magnifying to make part of the area disappear off the screen.
To prevent crashes occurring, use the tests in the parameter
table to make sure that the area when enlarged will not be off
the screen. These tests can be incorporated into your

programs.
| ROUTINE PARAMETERS |
| DEF FN g(x.y;h,v) |
X,y specify top left-hand corner of area to be magnified
z (x<<32, y<<22)
by specify horizontal and vertical sizes of area
: (x+(2xh) <32, y+(2xv) << 22)

F LISTING FOR BOTH ROUTINES

8221 FOR i
Szaz2 POKE
8203 MNEXT
32094 LET =z

8z2@S REARD
TR tta ST OPR

821@ DATA
8211 DATAH

200 LET b=567080: LET L=285:
Z=0: RESTORE &§21@

=@ TO t-1: READ a
fb+1) ,2: LET zZz=zZ+a
i

=INT (((zZ-L) —-INT (zZ

LT

s L)

a: IF a<»>z THEN PRINT

42,11,92,1.,4
2,3,86,14,8
9,984,257 ,83, 137
222 9 125 5@ 14
222,9,126,5@,139
222,588,138 ,222.,71

2p2,42,14%1 ,222,237
31, 143,222,555, 1539
555,712,197 ;1,2
4,197,205 ,2@,222
183,16 ,249,42,141
222,205,792 .,222, 34
141 ,222,.6,4 ,13
32,235,237 ,91,143
222, 285,89, 222,237
83, 145,222,193, 16

217,201,588, 140,222
71,34 ,145,222,237
83,147 ,222,197,2085
54,222,193 ,16 ,249
42,145 , 222,237,911
147 ,222,229,205,99
222,225,336, 36, z@
201,26, 1 2

197, 2&5 175 119,241
23, 245 2@3 22 241

283 ,22,16,247,395
193 . 13.32. 837,19
201 ,62,32,133,111
Z2es8,62.8,132,1a3

33 @,64,17,8

118,1,0,26,237
176,201 .35.0, 115
17 :80:6% ;1 .8
558,257,176 ,201,2
2,.5,10.,130 .72
226,118 .98 .,78, 194
125,090,222 .0,
38,0.,0.,&,0

FNr

REDUCTION ROUTINE

Start address 56957 Length 290 bytes

What it does Reduces a previously enlarged routine to its

original size.

Using the routine Each time the magnification routine is
called, it saves in memory the screen as it was before magnifi-
cation. The reduction routine simply displays this saved screen.
Thus the reduction routine cannot repeatedly reduce an area on
the screen; it will only show whatever was on the screen before

thelastrnagn|ﬁcah0n

MAGNIFICATION AND REDUCTION 2

The program on this page gives an indication of the
capabilities of the magnification routine. From an
initial display, the magnification routine is called three
times to enlarge different areas of the screen. As a
further sophistication, these enlarged areas are then
coloured using the window paper routine, and a line is
drawn around the edge of each area.

The various shapes are drawn by different sub-
routines at lines 300, 400, 500 and 600, and each shape
is drawn higher up a column by increasing the y co-
ordinate before calling the subroutine. After a single
column has been completed with five shapes, the display
is repeated by the loop beginning atline 110 which setsa
new value for the x co-ordinate.

After the subroutines have been completed, line 700
uses the magnification routine for the first time. Each
time an area is magnified, the box routine is then called
to draw a black line around the edge of the enlarged

SWEETS PROGRAM

.
£
-

Ml « e

» F3 =LSR
AT

I o
o
&
B
a
=)

b 1 e 0 K
Zhs Ccom
x

=

SR S389

i wzo
o wCcc o~

28
S5700
v B B

mrn
- C
4 [IT~]

DEF FN
ECRDER
FCR x=9 TO 288 STER 40
LET xi=x: LET 91l=i&
GEC SUE S2a

E=ESE '51:%1%35

PAUSE 58
GD TO 7@a2
STOP

@ RANDOMIZE

LD, 2S5])

31@ RANDOMIZE

Z2@ RANDOHMIZE

15,8 ,255!)

358 RETURHN

PEMI+IS ,J1l+1T,

7
Ex14+15,91+1572
EXx1+15,91+15,

o2

area (in this case, line 710). After a pause, the new area
is coloured, and another area is enlarged.

Relocating areas in memory

The magnification routine works by storing in memory
whatever is on the screen in the specified area. It uses 8K
of memory, stored from location 30208. If your BASIC
program is particularly long, you may find that this area
isrequired by your program. By POKEing the following
three numbers:

POKE 56793,176
POKE 56950,176
POKE 56959,176

you can place the code about 18K higher in memory.

RRMOOMIZE
RRAMDOMIZIE

RANDOMIZIE
RETUREN

RAMNDOHMIZE
RAMNDOMIZE

RRMDOMIZE
RAMODOHMIZIE

FERHDOMIZE
RETLIRM

scrol L7

(=x1,21,25,15:3
t=xl,21+5,25,5

(1 +1,91+672

Ix1,9l,25,25])
(®x1,4941+5,235.5

2 FTZFE E XX

1i£.t,.,

#4404

P4 PEEEREREELEEELS
JratiteraRatfeed

SWEETS PROGRAM CONTD.

e@® RAMDOMIZIE

.2, 2551

&ilg RAMDOMIZE

8,258

s52@ RAMDOMIZE

, @, 258)

E3@ RANDOMIZIE

+21,91+1}

S48 RANDOMIZIE

1+21,u31+13)

S58 E?NDDHIZE
RAENDOMIZIE
RETURHN
RAEMNDOHMIZE
RAMDOMIZE

PRUISE 108
RAMNDOHMIZE

PHUSE 120@2
RAMNCOMIZE

[

TLo2 @ W@ oL

(X1+25,.,91+7 .65
(1425 ,91+7,7
ixl1+25,491+7.5
EXI1+5,4l+1,x1
EX1+S,414+13,X%
(X147 ,914+7,7 .,
fXi+7,941+7}
tL,4,4,5)
(8,176-112. .64
i1L,4,5,1€.,4 .8

(A o Ado, B3

SWEETS PROGRAM CONTD.

752 REeNDOoOHMIZ
T7A RANDOMIZ
25 ,96)

78 PRUSE 16
7o RANDCHMIZ
L8,z
S@e PAUSE 106
S5i@ RAMNDOMIZ
S20 RAMDOMIZ
8@ ,48)

850 PRUSE i@
S40 RRMDO#MIZ

me mme me mm

,8,08)
E58 STOP

1S

it

i fiii

b Lty e e

A A e

c£11,1,16,12,5

1S, 14,5 ,3)
L1238 ,176-160,
-

(16,14 ,180,6,3

SWEETS PROGRAM
1>
ﬂ Q * § < seconds

How the program works
A series of objects is placed on
the screen, and the
magnification routine used to
enlarge various parts of the
display.

Lines 130-220 call
subroutines to draw the
pattern of sweets.

Lines 300-670 form the
subroutines which draw the
sweets.

Lines 700-710 magnify the
top left-hand area (coloured
green in line 730).

Lines 750-770 magnify the
top right-hand area (to four
times its normal size).

Line 790 colours this area
cyan.

Lines 810-820 magnify the
third area.

Line 840 colours this area
magenta.

® & &

i T il
y -, - -
.

s S L

SAVING AND LOADING DISPLAYS

The BASIC commands SAVE SCREENS and LOAD
SCREENS, used to save and load displays, have the dis-
advantage that they require nearly 8K of memory to
save any display, no matter how simple. The screen
compaction routine, FNs, allows you to store screens in
a fraction of this space: the simpler the display, the less
memory is required by the routine to store it. Even
highly complex screen displays are stored in
considerably less than 8K. As a guide, the three displays
on this page require a total of just under 12K.
Previously saved displays can be displayed again

COMPACTION (30000) where the first display
PROGRAM is 1o be stored.
Line 120 PRINTS this

4 DU 03 seconds address.

Line 140 compacts the

How the program works di_SP]aY- i

Three screens are loaded using Line 150 PEPKS start values
SCREENS, compacted, and fo_f the next display.

then displayed again in quick Lines 160-200 repeat the
succession. operation for the other screens.

Line 110 sets values for high Lines 300-350 display the
and low bytes of the address SCreens In turn.

using the decompaction routine, FNt. For both
routines, the memory location of a display is specified by
two parameters, containing the high and low bytes
respectively of the start address.

COMPACTION 'DECOMPACTION PROGRAM

FMN s ith,1) =USRE S560a
FH_tLih,1] =U5SR SESO0
i8@ LET a=S&€538: LET b=S£5S99
11@ LET hi=117: LET {l1=d485
128 LET acd=-tl+ihlx255}
153@ PRINT ad: LORD """ SCREEMS
id@ RAMNDOHIZE FMN = k1, L1}
158 LET LE2=PEEE a: LET h2=PEEK
E: LET ad=L2+ (h2*x2S62
1&@ PRINT ad: LORD ""ISCREERMS
178 RANDOMIZE FR = (h2.LZ)
182 LET L3=PEEX a: LET hoS=PEEK
= LET ad=L3+ih32x256)}
19@ PRIMT ad LORD ""SCREEMS
202 REMDOHMIZE FM = (h3, L35:
212 FPRIJSE S0 :
SRe RAMDOMIZE Frl t (h1, 1)

F1e PAUSE S
328 RAMDOMIZE FM 1L {(hz., L2])
330 PARAUSE S&

Zd@ RAMDOMIZE FM t (h3I, L3]
S50 PRUSE S TO Zaa

FNs
SCREEN COMPACTION ROUTINE

FNt
SCREEN DECOMPACTION ROUTINE

Start address 56600 Length 65 bytes

What it does Saves the current screen in acompacted formin
memary.

Using the routine Parameters h and | are calculated by the
formula

10 LET h=INT (store/256) : LET |=store—256:h
where “store” is the address in memory at which the screen is
to be stored.
After storing a screen, you can find the start address for the
next screen to be stored by PEEKing locations 23297 and
23296 (for h and |, the high and low bytes respectively of the
(ajddress). This should be done immediately after compacting a
Isplay.

Start address 56500 Length 45 bytes

What it does Decompacts a screen previously stored at a
specified address.

Using the routine This routine puts back onto the screen a
routine previously stored by the compaction routine. The
decompaction routine loads screens much more quickly than
the LOAD SCREEN$ command.

To obtain the start addresses (h and) of each screen com-
pacted by the compaction routine (FNs), PEEK locations 23297
and 23296 (for h and |) after compacting a screen.

| ROUTINE PARAMETERS
] DEF FN t(h,I) ‘]

| ROUTINE PARAMETERS

[DEF FN s(h,])]

hi specify the high and low bytes of the data for the
! screen respectively (h,1<C255)

| ROUTINE LISTING

S30@@ LET b=SE5EQ0: LB, & ZEn 1L ET
Z=: RESTORE S31&

8321 FOR i=9 TO L-1: REAL a
S32 POKE [(b+i) ,a: LET zZ=Z+a
8303 NEXT 1

S3@4 LET =z =INT ¢i((z . L) —IMNT (Zz - L]

5395 READ a:. IF a<:z THEN PRINT
i, ST

S31@ DATR 42,11,92,1.,4

8311 DATR @.,2,36,14 .8

5312 CATA 9.94,257.53,582
8313 £ATA 221,33,0.64,6
5314 DATR 1,126,44,32,5
5315 DATAR 35.245,124,254,21
8316 CRTAR 48,15,241,75,185
5317 DRTA 32,4.4,52,235
8318 DRTA $,313,1%,120,13
8319 DATAH 19,24 ,227,241,18
83329 DARATA 12, 128,18 ,237,83
8321 DATR 22,221,211, 2.
8322 CATA S$S6.,0,0.@.0

hl specify the high and low bytes of the data for the
. screen respectively (h,|<C255)

[ROUTINE LISTING]

[(Z 2L} ~INFE (2L}

- MM
Lk GIL)LI0 1)

=

a

S

52

S3 NEXT i
sS4

4

=

-

)
S READ a:
o _TOR

IF 3«<»>z THERK PRINT

=

M

ST
W

LA

vl
T
....‘
i
10 10~ T 0 63
(18] (VS
RS
- B
wm
]

0 fo (1 pi i~

s B
L e ol [V

OOMNN60-

< fas

= @D

&~ Ulo- - -
@ W
S LR B
S0

r:-J“- -
TG

COMPACTION PROGRAM: SAMPLE DISPLAY 2

COMPACTION PROGRAM: SAMPLE DISPLAY 3

The displays on this page were produced using the
graphics editor, stored by the compaction program and
then displayed in succession. The start addresses in
memory (variables h,1) of any screens you draw will
obviously differ from those given here.

ROUTINES CHECKLIST

The table shown below gives a summary of all the
machine-code routines used in this book. This table does
not explain every detail of using each routine; it is

programs. If you have not used a routine before, you are
recommended to read the introduction to the routine on
the appropriate page of the book before using it in your

intended only as an aid when using the routines in your program.
page title parameters parameters co-ordinates
11 partial screen clear FNa(x,y,h,v) X,y start co-ordinates character
h,v horiz. + vert. increment character
11 window ink FNb(x,y,h,v,c,b,f) Xy startco-ordinates character
h,v horiz. + vert. increment character
c colour —
b.f BRIGHT or FLASH e
13 window paper FNc¢(x,y,h,v,¢,b,0) Xy start co-ordinates character
h,v horiz. + vert. increment character
c colour —_—
b.f BRIGHT or FLLASH c
15 enlarged horizontal text FNd(x,y) Xy start co-ordinates character
15 enlarged vertical text FNe(x.y) X,y start co-ordinates character
17 point-plot FNI1(x,y) X,y start co-ordinates pixel
2l line-draw FNg(x,y,p,q) X,y start co—ordinate; pixel
p,q end point co-ordinates pixel
25 box-draw FNh(x,y,h,v) X,y start co-ordinates pixel
h,v horiz. + vert. increment pixel i
27 triangle FNi(x,y,p,q,r,s) Xy start co-ordinates pixel |
pP.q co-ordinates of second point pixel |
I,s co-ordinates of third point pixel J
29 squares table |
29 master curve
31 arc FNj(x,y,r,s,f) Xy start co-ordinates pixel
r length of radius pixel
s,f start and finish point of arc e
33 sector FNK(x,y,r,s,f) X,y startco-ordinates pixel
r length of radius pixel
s,f start and finish point of arc £ om
33 segment FNI(x,y,r,s,f) X,y startco-ordinates pixel
t length of radius pixel
s,f start and finish point of arc o
35 fill FNm(x,y) Xy start co-ordinates character
39 XOR-line FNn(x,y,p,q) X,y start co-ordinates pixel
p,q co-ordinates of second point pixel
53 multiple line-draw FNo()
53 multiple XOR-line draw FNp()
55 magnification FNqg(x,y,h,v) X,y start co-ordinates character
h,v horiz. + vert. increment character 4
30 reduction FNr() '
59 compaction FNs(h,]) h,l highand low bytes = j
59 decompaction h,l high and low bytes = J

FNt(h,1)

Before using a routine you must first define it in your
program using DEF I'IN followed by the correct number
of parameters. Parameters passed to machine-code
routines must always be whole numbers; if a parameter
value is calculated by your program, then put an INT
statement in front of it to ensure a whole-number value
is passed to the routine.

L ranges bytes address check
0-32and 0-24 100 63000 82
(0-32and 0-24
0-32and 0-24 135 62800 53
0-32and 0-24
0-7
i O=off, 1=0n
0-32and 0-24 150 62600 19
0-32and 0-24
0-7
) (O=off, 1=0n
0-32and 0-24 220 62200 0
0-32and 0-24 215 61900 125
0-255and 0-176 65 61500 24
d 0-255and 0-176 215 60700 192
0-255and 0-176
0-255and 0-176 110 60400 86
0-255and 0-176
0-255and 0-176 80 60300 68
0-256and 1-176
0-256and 1-176
60 59600 3
525 59000 234
0-255and 0-176 45 58900 17
0-255
0-255
0-255and 0-176 45 58800 35
0-255
I 0-255
0-255and 0-176 30 58700 18
0-255
0-255
i 0-32and 0-24 195 57700 57
0-255and 0-176 20 57600 13
3 0-256and 1-176
j 40 57100 17
1 20 57000 13
| 0-32 and 0-24 290 56700 38
L 0-32 and 0-24
56957
0-255 65 56600 56
! 0-255 40 56500 28

This chart shows how the Spectrum memory is organised when all
the routines are present in memory. RAMTOP should be set to

MEMORY MAP

55500 using a CLEAR command.

Code

Title

FNa

partial screen clear

FNb

window ink

FNc

window paper

100-byte buffer

FNd

enlarged horizontal text

FNe

enlarged vertical text

300-byte buffer

FNf

point plot

FNg

line draw

FNh

box draw

FNi

triangle draw

600-byte buffer

squares table

FNj
FNk
FNI
FNm

EFNn

FNo
FNp
FNg
FNr

FNs

master curve

arc

sector

section

fill

exclusive,/OR-line draw

400-byte buffer

multiple line draw

multiple XOR-line draw

magnification

reduction

compaction

FNt

decompaction

Address

63000

62800

62600

62500

62200

61900

61600

61500

60700

60400

60300

59700

59600

59000

58900

58800

58700

57700

57600

57200

57100

57000

56700

56957

56600

56500

Error trappmg in BASIC 18 Carrled out when an error
message is displayed to show a mistake has occurred.
This message is produced by a routine in the Spectrum
ROM which prints on the screen the nature of the error.

When using machine code, however, it is often
difficult to place restrictions on the way the routines are
used. In most cases a determined user will be able to
make the routine crash simply by passing it information
which it does not understand. This could be checked
within the machine-code routine itself to ensure that
whatever is inputted is within the possible ranges you
can type in, but to do this for all the routines in this book
would require each routine to be perhaps doubled in
length to incorporate the error checking required.

Preventing likely errors

In some cases it is quite easy, as well as helpful for the
user, to add at least some error checking. A check
routine has been added to the point-plot routine, for
example, which means that although you may get
rather unexpected results when you plot off-screen
points, the routine is unlikely to crash. Try plotting a
point which is off the screen and you will see the effects
— a point will appear, but since the point specified is off
the screen the routine will try to make sense of the data
and plot a point at a position on the screen.

Error-trapping with the line-draw
routine

Another part of the machine code which contains
some error checking is the line-draw routine, as you can
see from the error demonstration program shown here.
Specifying lines off the top or bottom of the screen will
result in “Integer out of range” being displayed, as
happens when the program below is RUN with the co-

ERROR DEMONSTRATION PROGRAM

DEF FMN 9ix.4d.,p.9q
BORDER 1: FiRPEﬂ

FOR =2 70O 1Sz STEP B
B RANDOMIZE FN g iS6,24+j, 165,

NEXT J

mUSﬁ 53723
INK 5: C

3
E

D]
D ————
e At srarer e T rre———
e e e
S L e
e e e e
)
st s e e
e e e
P
e e £ e
e et e o

E Integer out of range, i20:1

ordinates shown. Errors in horizontal co-ordinates are
more difficult to trap, since these co-ordinates lie
between 0 and 255, the range of numbers that can be
contained in one byte. If you use a number larger than
255 it is likely to be treated as if it were 255 less than its
actual value, with the result that the line wraps round to
the other side of the screen. This effect can be seen in the
screen below, the result of specifying parameter values
which are off the screen horizontally.

PLOTTING OFF THE SCREEN HORIZONTALLY

A similar effect can be seen with the curve routines,
which cause odd effects when they go off the sides of the
screen, but which will work within limits off the top and
bottom of the screen.

The error trapping in these routines covers only the
most likely errors you may make when using the
machine code. As far as possible, you should keep to the
limits and parameters specified for each routine.

GRAPHICS GRIDS

This grid shows screen divisions for both pixel and
character co-ordinates. Points on the screen are defined
by co-ordinates x (horizontal) and y (vertical).
Character co-ordinates are measured from the top left-

175
168
160
152
144
136
128
120
112
104
9

88

80
72
64
56

hand corner of the screen across and down. Pixel co-
ordinates are measured from the bottom left-hand
corner across and upwards. Pixel co-ordinates do not
cover the bottom two lines of the screen.

48
40
32
24
16

Pixels

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 y
7 y
/ '
VN &
4 4
- - -
=T 7
@ /A
o | i
2 1V
o) I
Q
©
- ——
Q | A
—
i
1
|
i
- 4 !
/ |
~ N

6
4

ok S

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160168 176 184 192 200 208 216 224 232 240 248 255

0

12
13
14
15
16
17
18
19
20
21

INDEX

Main entries are given in

bold type

AND 38

Arc pattern program 30
Arc routine 30-1
Attribute editing 50-1

Background colour 12
BASIC 67,05
Billiard ball display 47
Box-draw routine 25
Box fill program 35
Boxes 24-5
BRIGHT 10, 12

Characters
co-ordinates 63
enlarging 14-15

Circles
graphics editor 46
master curves

routine 28-9
ways of drawing 28

Cityscape program
18-19

CLEAR 8

Cocktail displays

Colour 10-13
background 12
changing 10
irregular shapes 34
partial screen clear

routine 10-11
window ink
routine 10-11

Compaction
program 58-9

Cones program 31

Cosine curves
program 16

Cube program 20

Cursor subroutines 43

48-9

DRAW 20

Enlarged horizontal text
routine 14-15
Enlarged vertical text
routine 14-15
Erasing 38-9

Error trapping 62
Exponent curves

program 17
Fill routine 34-5
FLASH 10, 12

[Functions 9

Graphics editor 7,
42-51

attribute editing 50-1
cocktail displays 48-9
cursor subroutines 43
drawing circles 46
grid subroutine ~ 44-5
loading 51
paintbox displays
parameters 43
program 42
saving 51
triangles
Grids 63
character
co-ordinates 63
pixel co-ordinates 63
graphics editor
subroutine 44-5

48-9

46-7

INK 10
Interference circles
program 39

Kite program 41

Line-draw routine
20-3, 52
error trapping 62
Line graphics 20-3
Line interference
program 23
Line pattern
program 22
Loading
displays 51, 58-9
machine code 8§, 9

Machine code 6-9
boxes &
disadvantages 6
error trapping 62

loading §&,9
saving 8-9
using 8-9

Machine code
routines 6-9

checklist 60-1
Magnification program
54-5
Magnification
routine 54-5
Master curve routines
29
Memory
clearing 8
map 61
Mondrian painting
program 12-13
Multiline program
Multiple line-draw
routine 52-3
Multiple XOR-line
routine 52-3

323

NOT 38

OR 38

OVER 38
overprinting 38-9
Paintbox displays 48-9
PAPER 12

Partial screen clear
routine 11
Perspective boxes
program 25
Pictures

with lines 20-3
with points 16-19
Pixel co-ordinates 63
Planet program 17
PLOT 16
Point-plot program
flowchart 7
Points

pictures with 16-18
storing 52
Pyramid program 22

Radiating box

program 25
RANDOMIZE 9, 16
Reduction routine 54-5
Repeated circles

program 40-1
Repeated triangles

program 26
RESTORE 9. 12

Saving
displays 51, 58-9
routines 8-9

Screen compaction

routine 58-9
Screen decompaction
routine 58-9

SCREENS$ 51, 58-9
Sector program 32
Sector routines 32-3
Segment program 33
Segment routine 32-3
Shapes, filling 34-7
Space station display 47
Spiral program 37
Spotlight program 27
Squares, drawing circles
using 28
Squares and circles
program 36-7
Sunset program 20-1
Sweets program 57-8

Text, enlarging 14-15
Triangle curves program

Triangle draw routine

26-7
Triangles, graphics
editor 46-7

Window ink routine 11
Window paper
routine 13

XOR ellipse program 38
XOR-line routine 38-9

Acknowledgments

A number of people
helped and encouraged
me with this book.
Thanks to Alan and
Michael at Dorling
Kindersley, to Jacqui
Lyons for her
representation and to
Andy Werbinski for
reluctant assistance. I am
particularly grateful, as
always, to my parents,
and to Martine.

Piers Letcher
Spring 1985

The bestselling teach-yourself programming course now takes you
beyond BASIC to the world of advanced machine-code graphics.

Using a combination of simple BASIC programming and a
collection of tailor-made, ready-to-run machine-code routines, this
book shows you how to produce precision, high-resolution graphics
in a fraction of the time they would take in BASIC alone. A keyboard-

driven graphics editor and a wide variety of demonstration
programs will help you open up the full potential of the ZX Spectrum

—without the need for any knowledge of machine-code
programming.

Together, Books Three and Four in this series form a complete,
self-contained graphics system for Spectrum-owners.

Allthe programs in this book run on both 48K ZX
Spectrum and ZX Spectrum+ machines.

€€ Far better than anything else reviewed on these pages. ...
Outstandingly good 99
BIGK

€¢ As good as anything else that is available, and far
better than most 99
COMPUTING TODAY

€¢ Excellent ... As aseriesthey could form the best ‘basic
introduction’ to programming I've seen 99
POPULAR COMPUTING WEEKLY

A new generation of software

Entertainment e Education ¢ Home reference
Send now for a cafalogue to Goldstar, 1-2 Henrietta Street, London WC2E 8PS

DORLING KINDERSLEY

	Cover

	Contents

	About This Book

	What is machine code?

	Disadvantages of machine code

	The solution

	The machine-code routines

	How to use the routines

	The program in use

	What the routines do

	The graphics editor

	Using The Machine Code

	1: CLEAR memory

	2: Load the machine code

	3: SAVE the routine

	4: LOAD a BASIC program

	Using functions

	Screen Colours 1

	Colours on the Spectrum

	Changing colours with machine code

	FNa - Partial Screen Clear Routine

	FNb - Window Ink Routine

	Screen Colours 2

	FNc - Window PAPER Routine

	Enlarged Text

	FNd - Enlarged Horizontal Text Routine

	FNe - Enlarged Vertical Text Routine

	Pictures With Points 1

	FNf - Point-Plot Routine

	Pictures With Points 2

	The cityscape program

	Line Graphics 1

	The line-draw routine

	FNg - Line-Draw Routine

	Line Graphics 2

	Triangles

	FNi - Triangle Draw Routine

	Circles and Arcs 1

	Using the routines

	Master Curve Routines

	Circles and Arcs 2

	Starting and finishing the arc

	FNj - Arc Routine

	Sectors and Segments

	FNk - Sector Routine

	FNl (f-n-el) - Segment Routine

	Filling Shapes 1

	Colouring irregular shapes

	FNm - Fill Routine

	Filling Shapes 2

	The spiral program

	Overprinting and Erasing

	FNm - XOR-Line Routine

	Combining Routines

	Graphics Editor 1

	The graphics editor program

	How the program is built up

	How stage one works

	Graphics Editor 2

	The grid subroutine

	Graphics Editor 3

	Drawing circles

	Adding triangles

	Graphics Editor 4

	The paintbox displays

	Building up a display

	Graphics Editor 5

	Attribute editing

	Saving and loading screens

	Multiple Lines

	Putting the points in memory

	FNo - Multiple Line-Draw Routine

	FNp - Multiple XOR-Line Routine

	Magnification and Reduction 1

	The magnification program

	FNq - Magnification Routine

	FNr - Reduction Routine

	Magnification and Reduction 2

	Relocating areas in memory

	Saving and Loading Displays

	FNs - Screen Compaction Routine

	FNt - Screen Decompaction Routine

	Routines Checklist

	Error Trapping

	Preventing likely errors

	Error-trapping with the line-draw routine

	Graphics Grids

	Index

	Back Cover

