PROGRAMMING SERIES

“STEP-BY-STEP

Y

PROGRAMMING

X SPECTRUM
SPECTRUM +

S Illlll"l_"'

T

PIERS LETCHER

QongeeSht

PROGRAMMING SERIES

STEP-BY-STEP

PROGRANSSS

= e
e

THE DK SCREEN-SHOT PROGRAMMING SERIES
Books One and Two in the DK Screen-Shot Programming Series
brought to home computer users a new and exciting way of
learning how to program in BASIC. Following the success of this
completely new concept in teach-yourself computing, the series
now carries on to explore the speed and potential of machine-code
graphics. Fully illustrated in the unique Screen-Shot style, the
Eeriﬁs continues to set new standards in the world of computer

00Ks.

BOOKS ABOUT THE ZX SPECTRUM+
This is Book Four in a series of guides to programming the ZX
Spectrum+. It contains a complete machine-code sprite-programming
course for the Spectrum+, and features its own sprite editor which
enables you to design and store sprites directly from the keyboard.
Together with its companion volumes, it builds up into a complete
programming and graphics system.

ALSO AVAILABLE IN THE SERIES
Step-by-Step Programming for the Commodore 64
Step-by-Step Programming for the BBC Micro
Step-by-Step Programming for the Acorn Electron
Step-by-Step Programming for the Apple lle
Step-by-Step Programming for the Apple llc

PIERS LETCHER
After graduating with a degree in Computer Systems, Piers
Letcher has worked in many areas of the computer industry, from
programming and selling mainframes to designing and marketing
educational software. He was Peripherals Editor of Personal
Computer News until May 1984 and has since written a guide to
peripherals and a number of other books for popular home micros.

|
s
t
0
PO
L/
:) ® J
L])
E! 2. O R @
¢ o B
i] 0 0 oR
=13 r . L J oL 50
i cl)
B) o
(5 4
D @ @
3 0
5 o 0
b= > o ATD ENE
r 0) "
D 0 ’ LE
L U o - et
ARA G
PO i OAV
G QSuR
~AD Q Db oid
O £
D D o :
READ = R ABS
0 [% OVEN p
Op o g E)
\ RH BORE
) U E) ®»
: [
DU B H
oP ‘
L
AD
4
y
4

(0K

PROGRAMMiNGSERIES e e

. S

En

E 1

PIERS LETCHER

DORLING

ABOUT THIS BOOK

g

USING THE
MACHINE CODE

WHAT ARE SPRITES?

The DK Screen Shot Programming
Series was conceived, edited and
designed by Dorling Kindersley
Limited, 9 Henrietta Street, Covent
Garden, London WC2E 8PS.

Editor Michacl Upshall

Designer Steve Wilson
Photographer Vincent Oliver
Series Editor David Burnie

Series Art Editor Peter Luff
Managing Editor Alan Buckingham

First published in Great Britain in 1985
by Dorling Kindersley Limited,

9 Henrietta Street, Covent Garden,
London WC2E 8PS.

Second impression 1985

Copyright © 1985 by Dorling
Kindersley Limited, London

Text copyright © 1985 by Piers Letcher

As used in this book, any or all of the
terms SINCLAIR, ZX SPECTRUM+,
MICRODRIVE, MICRODRIVE
CARTRIDGE, and ZX PRINTER are
trade marks of Sinclair Research

* Limited.

14

DISPLAYING
SPRITES

All rights reserved. No part of this
publlcation may be reproduced, stored
in a retrieval system, or transmitted in
any form or by any means, electronic,
mechanical, photocopying recording, or
otherwise, without the prior written
permission of the copyright owner.

British Library Cataloguing
in Publication Data

Letcher, Piers
Step-by-step programming
ZX Spectrum and ZX Spectrum-+
Graphics.
~ (DK screen shot programming
series) Bk. 4
1. Sinclair ZX Spectrum (Computer)
- Programming
1. Title
001.64°2 QA76.8.5625

ISBN 0-86318-104-X

Typesetting by Gedset Limited,
Cheltenham, England
Reproduction by Reprocolor Llovet
S.A., Barcelona, Spain

and F. E. Burman Limited, London
Printed and bound in Italy by

A. Mondadori, Verona

i 20

1 | 16)
THE SPRITEEDITOR 1 MOVING SPRITES 1
12 = === =
- - i T
THE SPRITEEDITOR 2 = e
| Wz H
o Bl g e
i £ = By
| & =
) 18 |
£ & £l MOVING SPRITES 2

TT!?I!T?T!??T!?!!Ti!!!f?f??!“

B0 o u.n e e i o Il o e

o\

KEYBOARD-
CONTROLLED SPRITES

DOUBLE-SIZED
SPRITES

35

ANIMATION 2

28

SCREEN SCROLLING

USING THE
SPRITE DIRECTORY

.“;i' g : ﬂ
Fa 11 n
‘?ﬁ l u'“

32]
s = 62
WINDOWS 2 ROUTINES CHECKLIST
34 e -
WINDOWS 3 | INDEX

~ ABOUT THIS BOOK

The Sinclair Spectrum is one of the most popular micro-
computers ever produced. One reason for its success has
been its remarkable ability to produce graphic displays
rivalling those produced by much larger computers
designed only ten or fifteen years ago. However, graphics
programming in BASIC under-utilizes the Spectrum. To
produce the kind of displays seen in commercially avail-
able games, you need to use machine code as well as
BASIC.

What is machine code?

The heart of the Spectrum, the Z80 central processor,
cannot understand BASIC. A BASIC program must first
be translated into a simpler language that the machine
can understand (hence the term “machine code”). This
code is in the form of binary 1s and Os. Before the
processor can execute a BASIC program line, all
keywords and variables are first converted to machine-
code instructions.

BASIC is an example of what is known as an “inter-
preted”, as opposed to a “compiled”, language — that is,
it is executed by the central processor line by line rather
than as a complete program. While an interpreted
language is easier to use, it is also slower in execution. By
writing programs in machine code, you can miss out the
BASIC interpreter altogether. In addition, machine code
allows you to utilize many features of your Spectrum
which cannot be reached from BASIC, so that you can
therefore achieve far more impressive results than would
ever be possible from the simpler, but more restricted,
BASIC. You can get an idea of how much faster machine
code is by seeing the time taken for the programs in this
book to run.

Disadvantages of machine code

Given all the advantages of machine code in both speed
and flexibility, why not ignore BASIC and use machine
code all the time? The answer is simply convenience.
Using machine code is time-consuming, difticult and
frustrating, and attempting to write your own code is only
for the expert. When you see machine-code listings, they
are usually in a “disassembled” form, thatis, with some of
the numbers translated into mnemonics such as LD for
LOAD, and JP for JUMP. But a special disassembler
program is required simply to give you a machine-code
listing in this form, and these mnemonics are themselves
far from simple. Using machine code even the simplest
operations in BASIC, such as drawing a line on the
screen, require many lines of programming. In additon,
machine code has no error-trapping routines such as
those in BASIC. If a mistake is made when keying in a
BASIC program, the program will not be lost (although
the program may refuse to RUN at some point); in

machine code, without error-trapping routines, a
mistake will probably cause the Spectrum to crash, with
the result that both the program and its DATA are lost.

The solution

This book combines the advantages of machine code
with the convenience and simplicity of BASIC. This is
done by giving the machine code in the form of ready-
made and tested routines, which you can then use in
your BASIC programs. The machine code is shown as
DATA statements in BASIC, which means it isn’t
necessary for you to understand anything about
machine code to be able to use the routines. The DATA
is given in the form of decimal numbers, rather than in
binary or hexadecimal (to base 16), so that the machine
code 1s in the form most convenient for you to key in.

The machine-code routines

The screen below shows an example of a machine
code routine (the double vertical sprite routine, FNJ,
given on page 17).

|_ DOUBLE VERTICAL SPRITEROUTINE |

745@ LET b=S2100: LET L==225: LET
Z=B: RESTORE 7458

7451 FOR i=@2a TO L-1: RERD a

7452 POKE (b+i) ,a: LET z=zZ+a
7453 MNEXT 1 "

7454 LET zZ=INT (((zZ L)} —INT CZ AL}
] ¥ L)

7455 READ a:
e S Sl -] =

IF a<>z THEN FRINT

~J Ul
S e SR s @ P

T~

ane
Qp
B

-

7465 CATA :
7469 DATA =,213,

747@ LATAH 252,17
7471 DRATH 2% ,93

=L NWE- i

06 M NNE- Fa- N
RO B -
P RRpREGRER

N Y& -
© WW- - v~
WON@O- N
n
0
&

n
Ny
o
by

a

, 285,86

Ul
)]

Each routine in the book is shown like this, in the
form of a BASIC program. The machine code is con-
tained as a series of DATA statements in lines 7460
onwards. At the beginning of the routine, in lines 7450
to 7455, there are a few lines of BASIC. This is a loader
program; variable b tells the computer where in
memory to begin loading the routine, and variable | the
number of bytes in the routine. When the loader routine
1s RUN, this routine is placed in memory from address
52100 onwards, and has a total length of 225 bytes.

Asshown here, of course, the routine is simply a list of
numbers, and has no visible meaning. These numbers
are the ready-tested and assembled machine code which
has then been converted to a sequence of decimal
numbers. Each number corresponds to a single

hence, all the numbers have values between 0 and 255,
the maximum range of a byte. All you need to know
about the routine is whatit does and what information it
requires so that you can call it correctly from your
BASIC program.

All the routines in the book are defined as functions.
Each function is individually coded by the letters a to o;
a complete list of functions is given on pages 62-63.
Demonstration BASIC programs can be found on
the same page as each routine; these give you an
indication of the kind of displays which are possible
using the machine code.

How to use the routines

To use any program in this book, simply key in a
machine-code routine together with a BASIC program
which demonstrates its use. You will find full details of
how to do this on pages 8-9. When you RUN the program,
you will begin to see the true power of your Spectrum.

As you progress through the book and the range of -

routines grows, the BASIC programs grow too by
calling several routines to produce increasingly complex
displays. By keying in each routine, and then SAVEing
it onto cassette or Microdrive, you will have a sophisti-
cated but flexible graphics capability at your fingertips.

The programs in use

A typical program from this book (the unicycle program
on page 23) contains two details which will be
unfamiliar to BASIC programmers who have not used
machine code before:

UNICYCLE PROGRAM

12 DEF FhN O J (XL, Y4,d,L,5,C,.0) =USR
S210a

i1@@ BORDER 2

11@ RANDOMIZE FMN ji{15.,7@.,1.,659.,0

9,1}

‘148 RAMDOMIZE FM jizza.,7e,a,7a,
a,a,3})

138 GO TO ile@

First, you will see in line 10 a DEF FN statement, which
is used to instruct the computer that a machine-code
routine with two parameters (x and y) is located at
address 52100 in memory. You will also notice two
RANDOMIZE FN commands (lines 110 and 120).
These are the calls to the double vertical sprite routine,
and the numbers in brackets which follow them are the

parameter values to be passed to the machine-code
routine (in this case, the start co-ordinates of the sprite,
its direction, how far it is to move and various other
instructions). When RUNning, the program is carried
out by the computer in this way:

HOW THE UNICYCLE PROGRAM WORKS

10 DEF FNj (routine
name and address)

¥

100 sets border colour

110 RANDOMIZE
FNj
v

120 RANDOMIZE
FNj

130 repeat sequence

sprite printed from co-
ordinates 15,70

sprite printed from co-
_ordinates 220,70

fi 1y

On the left side of this diagram is the main BASIC
program, and on the right you can see the machine-code
routines, called twice using a RANDOMIZE FN
statement. You will see from the diagram that the
machine-code is used here very much as a subroutine
would be used in BASIC, with variables passed to the
routines each time they are called.

What the routines do
The routines in this book free you from the limitations
of programming in BASIC. By using the machine-code
given here, you will be able to create and control sprites,
to control them on the screen and to animate them, and
to scroll both the entire screen and defined areas of it.
In addition, two of the later routines provide an intro-
duction to one of the most exciting aspects of machine-
code graphics: interrupt-driven routines, which operate
independently of BASIC, and which enable you to
program your Spectrum to carry out several tasks
simultaneously.

Creating and editing sprites

To make sprites even easier to use, a directory of over
200 sprites is included from pages 36 to 61. These
sprites can be keyed in and then edited with the sprite
editor routine and program, given on pages 11 to 13.
Using the sprite editor, you will find it easy to make your
own versions of the sprites given in this book. Using
single-key commands, for example, you can invert the
sprites, make them {ace another direction, or turn them
upside down.

* USING THE MACHINE CODE

The machine-code routines in this book can easily be
incorporated into your BASIC programs without you
having to understand the intricacies of how they work.
Simply choose a program from this book, and follow the
steps given here.

1: CLEAR memory
As soon as you switch on your Spectrum, type CLEAR
49000. This command resets RAMTOP, the top of the
area in memory free for BASIC programs, and ensures
that BASIC programs cannot overlap with the machine
code stored in memory from 49200 upwards. Now you
can safely use NEW to delete BASIC programs without
losing any of the machine code in memory.
Remember to use CLEAR before loading machine
code, since this command erases whatever is in memory
above the specfied address.

2: Load the machine code
Now type in whatever machine-code routines are

required by the BASIC program. After keying in the
routine, RUN the short BASIC program which accom-
panies it; this loads the code into memory. If you keyed
inthe DATA correctly, youwill see an “OK” message on
the screen; if not, you will see a couple of question
marks. In this case, look again at what you have typed in
to trace the mistake.

3: SAVE the routine
When you are sure you have keyed in the routine
correctly, SAVE it onto cassette or Microdrive. Always
SAVE machine code before using it, to mninimize the risk
of losing everything you have keyed in. When BASIC
errors occur, an error message is usually produced but
the program is not lost. Machine-code routines, how-
ever, donot generally have error-trapping facilities, and
afaultin the code will as often as not cause the Spectrum
to crash — deleting everything in memory.

The machine code can be SAVEd in two ways: either
in the form of DATA statements like any other BASIC

EXPLANATION OF A MACHINE-CODE BOX

FNf,/m

SPRITE PRINT ROUTINE | ™™

Address in memory at which
routine is located

point.

Start address 54100 Length 75

Other routines called Sprite editor routines (FNa-FNe).

Number of bytes in memory
taken up by routine

What it does Prints a single sprite-orrthescreemat a specifed

Purpose of routine

Using the routine This routine displays any single sprite from
the sprite buffer. The routine does not move the sprite. Note
that if the sprite is too far to the right of the screen it will
reappear one character below on the left-hand side of the
Number of parameters used S since the Spectrum PRINT routine is used in the transfer

by the routine, and letters of memo screen.
/’:|, What the parameters do

Points to note when using the
routine

used to describe these i MPARAMETERS
parameters
_ DEF FN - - Maximum and minimum

Xy H specify printposition (x<<29, y<<2I] 1 values of parameter to ensure
r the routine does not plor oft-

screen points

Hspeaﬁes number of sprite (1-10)

[
BASIC loading routine for the \

machine-code DATA ROUTINE LISTING

Number of machine-code
Start address for POKEin zoe. RESTORE sare o -7~ TET bytes (without check digit)
g 79@1 FOR i=® TO L-1: READ a
DATA 7902 POKE (b+i) ,a: LET z=z+a = =
NEXT Calculates check digit z
; 79@4 LET =z TTZ L1 —IMT (Z.,11
POKEs byte value a into) #L) o ST i e e S
location (b+i) 72es RERD - ad RINT READs next DATA item,
27 sSToOP . S
: the routine check digit; if this
: 791®@ DRATA 42,11.32,1,4 is not the same as z, two
Ines 7911 ODATA ©,3,35,1,3 4 ; h
Start of machine-code DATA %313 pATA o .0 04 347,83 question ma_rks are PRINTed
7913 DATA 143.,211.9,126,5 to show a mistake has been
7914 DATA 1S@.211,123,250, 24 piade
7915 DATA 245,64 ,103,123,23@ :
7916 DATA 7.133,.31.31.,31

listing, or, after you have loaded it into memory, as a
block of code. To save machine code, type:

SAVE “routine name” CODE start address, length in
bytes

The start address and length are given at the top of each
machine-code box. The diagram on the facing page
shows how this information is displayed.

4: LOAD a BASIC program

With the machine-code routine in memory, you can now
use it in a BASIC program. DEF FN statements are
used to tell the Spectrum the whereabouts of the routine
in memory, and what information it requires.

Using functions
A machine-code routine can be called simply by
specifying its start location, like this:

10 RANDOMIZE USR 54100

Aline like thisin a BASIC program, however, is not very
informative. It tells you neither what the routine does,
nor how many parameters the routine may require
when called. This information could be POKEd into the
appropriate memory locations — but the consequences
of a mistake could be disastrous. Much more reliable is
to pass information to the routines using a BASIC
function. Functions on the Spectrum are identified by a
single letter, and are followed by parameters in
brackets. When you define the name and location of the
function in your program, you must also specify the
parameters, if any, which are to be passed to theroutine.
For example, the sprite print routine, FNI, requires
three parameters:

10 DEF FN {(x,y,n)=USR 54100

Which letters are used after DEF FN is not important;
their function is only to tell the computer the number of
parameters which will follow the routine callin a BASIC
program.

A machine-code function can be called from BASIC
in two main ways, both of which require you to combine
the keywords FN or USR with a BASIC keyword. The
method used generally in this book is with the keyword
RANDOMIZE. Thus,

20 RANDOMIZE FN {(10,10,1)

would display the first sprite from the sprite buffer in
memory at co-ordinates 10,10. Note that using
RANDOMIZE also resets the random number
generator with a new seed; this may cause problems if
you are also using a random function in your program.

The second word you can use to call machine code is
RESTORE. However, RESTORE also resets the
pointer to DATA statements when you use it — which is
of course the purpose of the RESTORE statement. If

you opt to use RESTORE instead of RANDOMIZE
then be especially careful if there are any READ or
DATA statements in your program.

QUESTIONS ANDANSWERS

What if I make a mistake in keying in?

Don’t panic! Nobody keys in long lists of numbers
without making any mistakes. A check routine is
included with each machine-code routine to warn you if
you made any mistakes in keying in the DATA. This
routine compares the DATA you have entered with a
check number, which is placed by itself on the last
DATA line of each routine.

After the loading program has POKEd the DATA
numbers into memory, it looks to see if the check digit is
the same as the one currently calculated. If the two
numbers are different, the program prints two question
marks to show an error has been made. If this happens,
look through the numbers you have typed in to find the
mistake. Having corrected the error, you may still find
that the routine fails to load correctly; look to see if you
have made more than one error.

Can I start anywhere in the book?

Yes, you can start on any page, but obviously when you
key in a program it will not RUN unless the machine-
code routine it calls is present in memory. Check before
you begin if the program you want to RUN calls any
machine-code routines you haven’t already keyed in.
If you key in all the routines in this book as BASIC
DATA statements, you will find there isn’t room in
memory to store them all. By loading each routine as
machine code as soon as you have keyed it in, you can
avoid this happening. In the form of machine code, you
can, of course, use any of the Book Four routines
together, as well as any routines from Book Three — the
routines will not overlap in memory.

Can I adapt the BASIC programs?

Yes. You can edit the BASIC programs in any way you
want to produce different displays, and you will find
suggestions for variations throughout the book. One
suggestion, though, if you are going to experiment with
unusual or off-screen values for the machine-code
parameters, is to SAVE what you have keyed in before
experimenting. This will prevent you from losing hours

~ of work at the keyboard!

Can I adapt the machine-code routines?

Yes, but at your own risk! Without a good under-
standing of machine code, it is highly unlikely that you
will be able to alter any of the routines successfully.
Much more probable is that the Spectrum would crash,
with the result that both program and code are wiped
from memory.

~ WHAT ARE SPRITES?

Most of the computer graphics you have created up to
now have probably been stationary rather than moving,
though you will have seen all sorts of moving graphics in
arcade games and i commercial Spectrum software.
Before you can create moving graphics for yourself,
however, it is necessary to look at the ideas behind
movement.

What is movement?

You tell something is moving if its position changes
relative to something else. You know a train going past a
window is moving, because the window is still. This book
is about creating movement, and displaying moving
objects. The objects to be moved are called sprites: objects
which can move over a background without destroying it.
The diagram below shows a single sprite.,

EXAMPLE OF A SPRITE
| |
21
24
Creating movement

The problem in creating movement is not so much in-

making something move as in making it move smoothly.
You probably know that one way of getting something to
move in BASIC on your Spectrum is to PRINT an object
on the screen, wipe it off again, and PRINT it again in
quick succession. This method has several disadvantages,
the most important of which you will notice as soon as you
try it out — the movement looks jerky. This is because
there will be a space of one character between each
position where the objectis PRIN Ted. The other problem
with BASIC is that it is simply not fast enough in
operation to be used for smooth movement.

The jump of eight pixels between each position of the
object is easily visible, and the obvious solution is to print
the object every pixel rather than every character. This is
easier said than done, however, since printing objects
across pixel boundaries requires the step from BASIC to
machine code. Using machine code will also give you the
increase in speed which is necessary for implementing
smooth movement.

To use movement effectively you must first make a few

decisions on what you plan to move around the screen.
Firstly, you must decide the size of object you want to
move. The most obvious choice is a single character (8 by
8 pixels), but this looks very small in screen displays. On
the other hand if you pick a size which is too large you will
have the problem of trying to move thousands of pixels at
the same time, resulting in a very jerky effect. The
solution presented here is to use a shape 24 pixels wide by
21 pixels deep — or in character terms a little under three
by three characters. To create a practical illusion of
movement you must also make sure that the object to be
moved does not destroy the background over which it
passes.

Ways of implementing sprites

Some computers have sprites built into them as part of the
machine hardware. The Commodore 64, for example,
has a sophisticated chip dedicated to the implementation
of sprites, since the method used to display them is'so
complicated. The chip works by saving the area of the
screen underneath the sprite position (a block 24 by 21
pixels), printing the sprite, wiping off the sprite, printing
the sprite one pixel further on and then replacing that part
of the background which was uncovered by the
movement. Though it would be possible to implement this
process on the Spectrum, it would be very slow, or altern-
atively it would require a very long routine with many
hundreds of bytes of DATA to be typed in.

An alternative method of implementing sprites uses a
technique that you have probably used quite a lot already,
which is to print onto the screen using Exclusive/OR
plotting. If you do this with sprites you do not have to
worry about the background, asit will remain unchanged,
with the sprite appearing to move across the background
without interference.

SPRITE SCREEN DISPLAY

THE SPRITEEDITOR 1

In order to use sprites, you need some means of creating
them, and you need a location in memory where a number
of them can be stored for future reference. This is the
purpose of the sprite editor program. The program allows
you to design and edit sprites on the screen, and stores
them in memory for use by the sprite routines. Each sprite
consists of 504 pixels, and is stored in 63 bytes of the
Spectrum memory.

The sprite editor allows ten sprites to be defined at a
time, and gives you the option of transferring sprites from
one location in the sprite buffer to another. In addition,
sprites can be flipped horizontally and vertically, and
inverted (by switching the ink and paper attributes). The
program also allows you to load in previously edited
sprites from tape, and to save the current batch to tape for
future use.

The sprite editor is a combination of BASIC and
machine code. The code comprises six different routines,

all linked together. The purpose of each routine is
explained below.

The sprite editor routines

Routine FNa, at address 54200, is the base routine for the
editor. It converts the large grid on the screen to the small
display of the current sprite you see on the right. The
current sprite is temporarily stored in a buffer, and the
routine converts each dot in the buffer to a square on the
screen.

When you want to save the current sprite, you have to
decide which of the ten sprite positions you are saving to.
Aroutine at 54317 transfers the sprite stored in the buffer
to the appropriate location in the sprite table in memory.
Routine FNb, at address 54353, carries out the reverse of
this operation, transferring a sprite from its position in the
sprite table to the sprite editor buffer. Routine FNais then
called again to display the sprite.

SPRITE EDITOR PROGRAM

WM
"\WZZZ22
CRRRON
QWS

SUmNOE

RAMDOMIZE Fpr a (}

FRUSE 1.5

L FET D:S- LET .i=PEEK

IF gs="I", THEN RﬂNDDMIZE
RQNDDFILE FN oa il

IF 3%= COTHEM RQNDDHIZE

: RQNDDFIZE Fr .a

IF gH="U" THEN RQNDDHIZE

. RBNDOMIZE Fpl &

T 35:'2' THEMN GD T0O 435

IF g%+« OR gs»' O THEM

il

TOTU UL B 0 o o o o o o
G-OvE-EROOEE

it}
n
a

A TR O THERN GO

e
nan

Ao 0
I Camm wo
Wi
[RININ
(HRURNEL]

+ 1+
[NETATATS

(RN

%&EH LET s=s5+1:

L>24 THEM LET s=5-1:
s <a THEM LET s=5+32:
5}a—l$21*32 THEN LET =-=s5

SPRITE EDITOR PROGRAM CONTD.

s

S TEER LE® S
11683

THEN LET Ss=s+1:
THEMN LET s5=5-1:

= THEM LET =5 =5+32
IF =£3:>3-1+21%32 THEMN LET s=s

POKE 0,S85
POKE s,135: GO TO i4@
PRIMNT BT 1,26; "SAUE
PRINT AT 9,26 8-4"
LET g%= INFEYﬁ.
IF g%:"a'" OR %> i"
TO S8
S2p LET w=CODE 9&-96: POKE =233ef
RAMDOMIZE USR S4317
BEEF .4 ,20
&0 SUS ip@d

i B

THEMN GO

LET 9%= IH

IF g9&="

IF di:';“

IF g%+<°
sag

LET w=CODE 9%-96:

=0 SUB 196838
RBMNDOMIZE FN [
PRIMNT AT Ui o i

ol lalg ol

THEH G0
POKE 2350

@

=
=
=)
=1
=1
=3
=
-
=]
=]
=3
=]
=3

PRIMNT AT

PRIMNT BT

PRIMT MAT

RETIUAM

INPUT "SAWE ";n$: IF ng=""
50 TO 1109

5AUE nsCCDE S460@, 599

S e

" THE SPRITE EDITOR 2

The first two routines in the sprite editor enabled you to
draw, load and save sprites. The remaining sprite routines
have been written to give you the means of manipulating
the sprite you have drawn. The effect they have on the
sprite is shown in the displays here. Each routine is called
by a keypress. Thus, when CAPS SHIFT and I are

SPRITE EDITOR PROGRAM CONTD,

GO TO 4@

IHEgT YLOARER Ysng: LOAD ngs C

STOF
LET h=INT (535321 :

RETURN
FOR i=8 TO 2@ STERP &
i RAW @, 167

LLET " L=s=h

D EED STER. S
yi: DRAR 192

: DRAL 192,0

pressed together, a routine is called to invert every pixel of
the sprite. To change the direction in which the sprite is
facing, routine FNe at address 54436 is used, called by
pressing CAPS SHIFT and R. Finally, to turn the current
sprite upside down, routine FNf'is used (called by pressing
CAPS SHIFT and U).

The BASIC editor program
The BASIC controlling program (shown on this page and
on page 11) works as follows. Line 110 calls a subroutine
at line 1200 to draw the grid on the screen (a simple series
of lines). Line 120 calls a section of the program which
prints the menu to the right of the grid. From this section
blocks of the program at lines 1000, 1100 and 1130 are
called asrequired. Lines 1000-1020 wipe the menu off the
right-hand side of the screen. Lines 1100-1110 save the
current sprite table to tape, and return control to the start
of the program. A BEEP is heard whenever a sprite is
saved inmemory. Lines 1130-1140load a new sprite table
from tape into memory. If neither 1100 or 1130 is called,
control returns to line 130.

Line 150 prints a sprite on the screen. Lines 180-210
accept akeypress and check if it is one of the functions I, R
or U. If so, the relevant machine-code routine is called. If

FNa-e
24 x 21 SPRITE EDITOR ROUTINES

Start addresses 54200,54353,54422,54436,54482
Length 355 bytes

What they do The routines allow the user to design and edit up
to ten sprites, and save them for use by later routines.

Using the routines The routines work in conjunction with a
BASIC program shown on page 11. Editing the current sprite is
controlled by the 5, 6, 7 and 8 keys; used with the shift key,
pixels are inked in;_used without, pixels are unset or, if set,
changed to paper. The current sprite can be inverted (CAPS
SHIFT and 1), turned to face the other direction horizontally

(CAPS SHIFT and R), or turned upside down (CAPS SHIFT and
U).
S%rites are stored in a table from location 54600. Previously
defined sprites may be loaded from tape, altered, and then
saved as a new selection. When you save the sprite table,
remember that all ten sprites are saved, not just the one you
have most recently been editing.

the keypress is CAPS SHIFT and Z, control goes to the
short sequence at 480 to display the menu again. Lines
250 to 280 do the work of editing the sprite, The sub-
routine at line 1160 is called from this section. Notice how
line 1160 divides the address to be saved into two parts,
since 16 bit addresses will not fit into a single byte.

MANIPULATING THE CURRENT SPRITE

-

ROUTINE LISTING

P

m

o
W
nHE~10n

w oBID0
Z o+ M

a: IF acrz THEHN
=]

i LR 2 TRT SO

a
& L0
0~
- M
(VIR
VRe N}
S0 - -
s e WD
o
O
Loa AN
v e
(=3
D
.\J

OO
I
o

0
o~
& - e e
man- ~
e -
= g
~ O~
s Ud o W U 8- SO0 D0
NN
B w0 o~
o

b
n

RO WED- U ‘
s s AN RN P P

s =M no-
R0 -~ WS PL-

OG- - PN U= -~ 8RO |
qna
P

S RPDRs ORNODE OR~W- - - (-

MO ~J el
- MR- JQ-

s R

PR -
R
MW R
Pk s (M
mom

Wns ~ s BROER U DB~ - G- & e

S ONGNEEEN (r v s A O [

By RO -]~ P - L~ ~ W
0w
Wy~ ~ J1o- W

(R N S T
- AR HSOND

Sl Qoiknn-
S Y L AT (V]

v LS
Lo O&
(010

[TV ATETN VA | M
NES

~ =Jane
s @~
ot

RN IATER A
rORO

My

Womw- Wd ~Nd- s E- -

AepRURE

P

PRINT

EOJREUDEDE SORLDLODLON DOWONEWOEY DEUOED

Mer OWOGORW- M
(

=

me-

-
1D b 10

- g -
Mot -

9]

< T

R T

il
D -

D=nn

)~

Ly
b0 1=

-

1D OnpE
i
N

O e O 01) G5 1)
v LR

=0 G-

fi)-

-1

(=)
W T

RER (BN 1V]

- I

0
npopng i
DIELE- D06

sl EIA T ST STAT
= JUND AN b

Gl -d P G0

ER (V]

- 1o
S ReEOD-.

Fee -

LR
SN ENSUERO OO AN-L0 0D

S
e 2 0w il

BREGRNG- WL PO - -
BN REP R -

PO = DS RI0 D) B
wgmooo-

SORPOQSUIEHE- D-
= OO fas

B

GHEMmY
- 0

-~ WRrIRUREE
s O o

= 0~ U~

B | VR (VR (VA
U QW pPrOE- POREULD O~ 2O ~ (-

GO

1DNa kAN - (=

=N
o

fid> %
T~
1]
W

- M
o]

5

=@M~ A

& M-
BN e

e

n

- ma

- Wi

ne- -
T

__P__
RO E
W

%

My -

]
P o b
e

- O T

BN
i

-l

(VRS

P T o/ VI (O (VI
- BRe PO
[T T o [V
[l
N 0e P

- MO OGN
GRPOEGU. U B PO -

DISPLAYING SPRITES

Once your sprites are defined it is very useful to be able
to see what they look like on the screen. Obviously this
can be done using the sprite-handling routine, but it is
very hard to examine a sprite with a critical eye whileitis
moving across the screen! To avoid this problem, and
also to give you the chance of looking at the shapes and
designs of several sprites at once, the sprite print
routine, FNf, has been provided.

This routine prints a sprite from the sprite buffer onto
the screen at a specified position. Since any of the sprites
can be printed at any position on the screen you can use
the routine to preview the sprites you have designed,
and it is at this stage that you can decide the best sort of
starting and finishing positions for the sprites when they
come to be used.

You can also use the routine to preview the effects of
animation by calling the routine repeatedly to print

SPRITE DISPLAY PROGRAM

DEF FMN F(x,
BEORDER 4: P

9
a
FOR n=1 70 1
FOR k=1 TO 5
RAMNDOMIZIE FN

LS
REBNDOMIZE M
PRUSE 1@
RAMDOHIZIE &N
PRHUSE 1@

GO TG Sie

fiN¥x3-3, (k*4) —

Fela, ia,39)
fFlle, 1@, 1@

sprites in an animation sequence on top of one another.

This will give you an idea of how effective the animation
1s going to be, as well as allowing you to make any
changes to the sprites before you work out the
animation in detail.

How sprites are stored
Before examining the machine-code routine it is
important to understand how sprites are stored in
memory. As you know, a sprite table which stores ten
sprites can be found at location 54600 onwards in
memory. A 24 by 21 sprite has 504 elements (24x21),
and since any of these elements can have an ink
attribute either set or not set, this means that 504 bits of
information need to be stored away for each sprite.
Each sprite requires 63 bytes of memory (since there are
cight bits in a byte) and, as all ten sprites are stored one
after the other, they take up a total of 630 bytes.
Each sprite is arranged in memory as shown in the
diagram below. Numbers correspond to the byte
numbers (0-63), and the 1s and Os represent the
individual bits.

FNf
SPRITE PRINT ROUTINE

HOW SPRITES ARE STORED IN BINARY

Sprites are stored as binary numbers in 63 bytes (504 bits) of memory.
The Isand Os correspond to set and unset pixels respectively on the
sprite diagram shown underneath.

how memory
bits are 145
set : 160

n

S

i
COD000C0000000OD0C00a
CO000O00000D00D0O0CODOROOD
COORRHOOOOCOOQOOROOOO
COOCOCORROOCOORRHROOOOD
HHOOOCOORKOCOORODOOOOD
CORROCOCOROCORRODOOOOR
COOORMMKOKMHOOROOOQORRRO
COO0OORKORCRRORRRROOCO
COOCOOORORORORROOOOOO
ODOCCORRHEHOROROOOCOOOD
CCOCORRRRREPEBBORBRBOROOO
OCOORMRKHEREHRBREBREBERRROOOO
COOCORRRREHRRERHEEBORBRROROOO
COCOCOORRHEHOKBROROODOOODO
COO0OOOMOMORORKOOOOOO
COOCOORKRORORHORRREREOOO
COOCRRROPHROOROCOORRRGO
CORROOCOKROOORROOOOOOR
HROOOOCKKOOOOROOODOOO
COOCCORROOOOORRREROOCOC
COORMRBREROOOCODOCOOODORKOOOO
COD0CC000000oO0000OROCO
C0O00CC000000C000C000O0
CO000000000C0COOCOO0D

sprite = S
diagram [||

Start address 54100 Length 75 bytes
Other routines called Sprite editor routines (FNa-FNe).

Whatt it does Prints a single sprite on the screen at a specifed
point.

Using the routine This routine displays any single sprite from
the sprite buffer. The routine does not move the sprite. Note
that if the sprite is too far to the right of the screen it will
reappear one character below on the left-hand side of the
screen, since the Spectrum PRINT routine is used in the transfer
of memory to screen.

[ROUTINE PARAMETERS]
l DEF FNf(x,y,n) : |
| X,y “ specify print position (x<29, y<<21) ,
! n Hspecifies number of sprite (1-10) ,
I ROUTINE LISTING J

790@ LET bB=S4100: {0 L=7&. LET

Z = RESTORE 791a

79@1 FOR i-8 TO L-1: RERD &

792 POKE (b+il ,a3: LET z=%o

793 MNEXT 1

7904 LET Z=INMT ({((Z L) -—IMNT (i

) ¥ L]

7Te8sS READ a IF a«<>Z THEMNM PRINT

Lo e STOP

7912 DATA 42,11 /32,14

7811l bARATAHR ©,%,36.,1,3

7912 PARATR ©,3 .94 , 237,83

7913 DPRTR 145,211 ,9, 126,52

7914 DATA 1S@g.211.123,z23@,24

7915 DARATAR 248 .84 ,1@a3, 123,230

7916 DRTAR 7,133,31,31,31

e o [B By [R s (O 3 o O L 0 (Mo - Ll ™ ot 2o

7315 CATA =211i,53.15@.214,71

7919 DARATA 17,63, 00,33,939

7920 DATA 213,255,158 ,253,237

7921 DATAH 91,145,211, 19%, 1

7922 ATHA 212 ., 2al ,174 72,13

7923 0ATRr i4 ,3 ., ,9 ,06

7924 DATRHR 03,2 ,0 ., ,0

The BASIC program

The program on this page shows the contents of a sprite
buffer, containing ten different sprites, displayed on the
screen. The program calls the sprite print routine five

times in a loop, to display the sprites down the screen as
well as across it.

How the program works

Line 10 defines the sprite print routine, which has three
parameters: the x,y screen co-ordinates at which the
spriteis to be printed, and the number of the sprite (from
the ten sprites stored in the sprite table). Lines 90 and
180 set up loops to print the sprites. Line 190 prints the
sprite, using a combination of the two loop variables to
define the x,y co-ordinate.

Lines 300 to 330 show how animation can be
achieved using a print routine. A left and right mirror
image of a single sprite are printed one after the other to
produce a simple animation effect. You could produce
more complex animation in this way; the only limitation
to the method is the amount of time it takes to define
sprites, although the animation in this program can also
be speeded up substantially by leaving out the PAUSE
statements. Of course, the other drawback is that you

cannot move the sprite around the screen using this
method.

MOVING SPRITES 1

Now that you have routines to create sprites and display
them on the screen, you need a routine which makes the
sprites change position. The routines introduced here
enable you to get your sprites moving on the screen.

The master sprite routine

This routine enables you to move simple (that is, not
animated) sprites. The routine has no title since it s
always used together with the sprite-controlling
routines in this book; by itself, the routine does nothing.
When you use a sprite, it is this routine which causes the
sprite to move across the screen in the required way.
The main job of the routine is to print a sprite on the
screen using Exclusive/OR printing, wipe it off, and
print it again one pixel away until the program or
routine asks the sprite to stop moving.

The routine has been programmed to work whether it
has been called by a routine which is working within
BASIC (a normal routine) or by one working indepen-
dently of BASIC (an interrupt-driven routine).

The sprite-handling routine

This routine, FNg, allows you to control the movement of
sprites. The routine works in conjunction with the master
sprite routine, and both must be present in memory tor
sprites to move on the screen. The routine has a range of
parameters to control exactly how the sprite will appear
on the screen.

How to use the routines

Having produced some sprites, it is a simple matter to
display them against a background, and the ideal way of
creating backgrounds is to use a graphics editor program
such as that in Book Three. All the background displays
in this book were created using the graphics editor. The
programs in this book do not themselves create back-
grounds; you must add these yourself.

Interrupts
Most machine-code routines are called (as you will have
seen) from BASIC, and are then executed in much the

MASTER SPRITE ROUTINE

Start address 53700 Length 365 bytes

What it does Used in conjunction with the sprite-handling
routine (FNg), this routine takes a sprite from the sprite table at
location 54600 and moves it across the screen.

Using the routine This routine must always be used together
with the other sprite routines given in this book; if used by Itself,
you will not see anything happen on the screen. Whenever
sprites are used, the master sprite routine is called by the other
routines to do the work of moving the sprite.

i ROUTINE LISTING |

-8@@ LET b=53708: LET L=360: LET

z=@: RESTORE 781G
78@1 FOR i=@ TO L-1: READ 3
78@2 POKE (b+i) ,a: LET zZ=Z+a

i
28@4 LET zZ=INT ((fz 1) ~INT f(Zz.1)
>8@P5 RERD a: IF a<r»z THEM PRINT
haa .

oo g 862 DATA 21,147 ,128,71,205

S863 DATA 177.,34,24,167,193

7810 PATAH 229,213,19?,245,229 864 DATA 2@9,225,58,41,211

7811 DATA 221,22%, 120,255,177 7865 DATHA 2@1',237}57,21’211

7812 BATAH 24,40 ,82,237,67 2866 DATA 62,21,8,221,94

7813 DATA 15,216,500 ,222,289 7867 DATA @,221,86.21,221

7814 DATA 62,21.5,221.%94 7568 DATA 78,42,35,35,126

5215 DATA @,221.,86,21.221 2569 DATA 161, 196,533,211, 126

738316 DATA 7&5,42.6.1,175

7817 DATA =2053,27,203,26,203 —-57@ DATA 169,119,453 ,1256, 162

7818 DATR 25,31,16,247,3% - £3%1 pATE 196.33.211,1265,17@

7819 DATA 35,35,174,119.43 5852 pATA 1192,43,126,1683,186
2573 DATHS 353,211,126 ,171,119

78200 DATA 126,169,119,43, 126 7874 DATAR £.,61,46,281,

7821 DATA 17@,119,43,126,171 <875 pATA 221,355,586 ,124,230

7822 DATA 119.5,61,48,25 2876 DATA 7.32,2086,8,9%

7823 DATA 8,221,3%,36, 124 7877 DATA 8;1,2@8;45,52

7824 DATA 23@.,7,32.,285,1 <875 DATAH 21_.14-7,128_.71_.295

z82s bArG 43.9.5,95.0 4879 pATA 177,34.24,199,245

5506 DRATA 62.21,147,128,71 f8ia BATh 521,568,441 ,211

2327 DATA 205,177 ,34,24, 1592 785% BRATA Sai2@1.1.6.@

7528 DRTA 241’é$35§92i223é2a1 2855 BATh 83,8.0,0,0

. L2210, {

783@ DATH
7831 DATH
7832 DATAH
7833 DATAH
7834 DATAH

LI f = 0N
N2 LMW
e ~ ~ ~ 10~ P~
S AE- - W

~
o}
W
N
v)
I
3
D
0
n
WO M-

- s~ MO M

[V~ ~ & ~ NON O P~ - O~ 0
B8 HUP- @ - QPPN
M- QUSEUN s~ SO~ -

. MNED. -
G RN -~ PR - DN ~ NP

TS

~
o]
W
o
Q
I
_+
D
=
RPOW- ~ PO D

7839 DATA 147,1

S RN RN EN RV ANAN
jecdotfuidaiRecRerfu e
PPRPPRpRE
NONERNRE
lvivieleivlelofvl
ILIDDDDDD
== {44
IDDIDDIDD
VTSR VERR) el]
WU R
Fe REAINS S
DT D S 1]
e T I TRTEY SRS
EEERA -

78483 DRTA 1, »
7849 DRATAH 26,2035 ,2

78%8 DATA 247 ,3%,35,
7851 DATA 126,160,196
7852 DATA 126,165,119,43, 126
»as3 DATA 161, 196,335,211, 126

557 pATA 35,211,126.,171,119
7858 DATA 3,561,402 ,25,8
78549 DATA 221,35,36,124,230

same way as the BASIC program, line by line. When the
machine-code routine has finished running control is
returned to the BASIC program. However, there is a
much more sophisticated method of using machine code,
which is to make a routine run independently of BASIC.

This can be achieved by taking advantage of the fact
that at regular intervals the Spectrum interrupts the
running of any BASIC program or machine-code
routine which is being executed. It does thisso thatit can
print information on the screen, and perform various
other household chores, like memory management.
These interrupts occur at least fifty times a second, so
quickly in fact that if you carry out a machine-code

FNg
SPRITE-HANDLING ROUTINE

| ROUTINE LISTING

HOW A SPRITE MOVES

Sprites move in blocks of three pixels. On reaching an obstacle, and
with the collision flag set 10 1, a sprite continues to move for three

pixels before stopping.)
P2 2 T [' three-pixel
origmalspruite i
S moyement
P lt‘y\n
I i
|
) . obstacle
i T
I 1 ’_L

routine as well as a BASIC program using interrupts it
will appear that both things are happening simultan-
eously.

Two of these “interrupt-driven” routines have been
provided 1in this book. One is the keyboard-controlled
sprite, and the other is the interrupt-driven window
given on pages 32-33.

Start address 53500 Length 170 bytes
Other routines called Master sprite routine.
What it does Prints and moves a single sprite on the screen.

Using the routine The screen area is measured in pixel co-
ordinates from the top left-hand corner, rather than from the
bottom of the screen.

Sprites move in multiples of three pixels, so a value of 60 for |
moves the sprite 180 pixels. If the collision detection flag is set
to 0, the sprite will pass over obstacles (any pixels with INK set).
If cis set to 1, the sprite will stop when it hits an object (after an
overlap of three pixels). You can find out the precise position
where a sprite stopped by PEEKing locations 53498 and 53499
for the y and x co-ordinates respectively.

| ROUTINE PARAMETERS B
| DEF FNg(x,y,d,1,5,¢,n) |
X,y 1 specify top left-hand corner of sprite (x<C232, y<155)|

d direction of travel of the sprite (O=left, 1=right, 2=up,
3=down)

s stitch (s=1 to disappear, s=0 to remain on screen)

c H collision detection flag (1=stop, O=continue)

r | Hdistance moved (vertical <<=>51, horizontal <<{=77)
|
|
|

n H specifies number of sprite (1-10)

B R

LET b=S35@8: LET L=165: {5 =2
. RESTORE 7768@

FOR i=@ TO L -1: RERDC a

POKE (b+i) .a: LET Z=Z+3
NEXT i
LET Zi=TkT

~

T AN RN SR
B RN ENEN AN N |
S maad o

({(z Ly —IMT (ZL3

RERD c»z THEM PRINT

5T OP

=

]
w

= UNREE

'

52 DARTA
51 CATAHA
&2 DRATAH
7763 DRTAR
7764 DRTAH
7765 DRATH

L~

oy
Q

R LU
a

MWLImRIM- G- =

-

e

@~
D Mes ROds U

RS- -
S P PUERA. -

< pman- -

N~ - ~

- QRN
N B~ M W

URrEn

- oM DR AR
Ul

We s~ e @ S
LT (R (KR R Tu e

-
= M=z

N NN R LN E

m o~

i
WEAMY- QUs U

an W owe N
e a
in

CORGR QNGO FAEEND- O U
0
-~ B G-

~

~J

.\i

n

v}

I

-

D

AN R AL
s NRPRE-
e MOeE- - W
P)= - Qug -
SR R IR
S0AA0- P

fu

-J
N
o
[
D
D
_‘
i
(]
wan
POSON O~~~ N8R

SNENIN
~J-d=d
eiuige]
LI
Doo
DD
335
DD
b b i
iy
i)

o 1 M

- BUNE- -
noa

[

O [0~ O B)R
)
B

B~ R IRPRs - PR NER- - SMud-
WUEQRH DLW

NBUMRGNs « PORE W~ RO« P

S NeSMOE RN O

S PO ANE- - - -~ & DUARPNE- O
© 0~ Be o~ 1 > P

CPONOSORUNEADE B POG- B

CREIQUNDEEUNEE OAON RS DO D
[N N

M W@
Q8- Y- - WRENLE
R a B o (N NE =S RN (N

~

N

(1]

(]

Q

1]

._|

B
DN W N
T [PUT

* MOVING SPRITES 2

The sprlte handhng routine has many user-controlled
features built into it, as you can see from the long list of
parameters which are passed to it. It is a good idea to
become familiar with these, as otherwise you will under-
utilize the potential of this very powerful routine. The
train program, given here, is a good example of how the
parameters are used.

The train program

The large display on this page shows a train and some
carriages being shunted along a railway line. All the
movement in this program is controlled by the sprite-
handling routine. Lines 110 and 120 take the train
sprite and move it from left to right across the screen. A

mirror image of the train is then selected and driven
back to the start position, where it remains on the
screen. Lines 130-150 set up a loop which calls carriages
one by one. Since this contains the collision flag set to 1
each carriage moves across the screen .until it
encounters an obstacle—the previous carriage — when
it stops and remain on the screen.

More about the parameters
It is worth looking at the impressive range of parameters
available with the sprite-handling routine in a little more
detail.

The first feature which you will use, of course, is the
specification of the x,y co-ordinate at which you want

|]

-.......-*....-,.r.-....,-.ﬂ..

TRAIN PROGRAM

1@ DEF FM 9 i(x,9,d.,Ll,s.,c.n)=USR
sS352a

i1aa BORDER 4
11g EANDOMIZE FN 3(20S,139,8,65
'éég;aﬁnoanzzs FM g(1,139,1,7@,1
"14@ FOR x=1 TO 7

148 RANDOMIZE FN 5(1,139,1,70,1

S0 TO 11@

the sprite to start. Normally you can specify this simply
by looking at the screen, but more sophisticated
methods are available for determining the start point.

In the program example a train appears from the left
and crosses to the right-hand side. It travels a distance of
65 (that is, 195 pixels) and so you know that you can
start the second train off from a point 195 pixels to the
right of where the first started. But what if you didn’t
know where the first train had started or stopped? Since
the routine stores the last pixel position of the sprite at
two pointers in memory, the new sprite could then start
from position (PEEK(53499),(PEEK(53498)).

There is a case for making the distance moved by the
sprite (parameter 1) as short as possible with each call to
the routine, despite this producing some flicker because
of the volume of transfers from BASIC to machine code
and back. This is because while you are in BASIC you
can keep a check on the current screen, the position of
the sprite and so on, but while the sprite is moving you
do not have any control over it. This, of course, is an
advantage of interrupt-driven routines which allow you
to monitor the progress of other things on the screen
while a sprite or window is moving.

The value you give the switch, s, depends on what you
want the sprite to do after you have finished using it. In
the program the switch is off for the first train and on for
the second: after the first train has come on and travelled
across the screen it should disappear before the second
returns. On the other hand the second train must remain
on the screen after its journey as, if it doesn’t, the
carriage will have nothing to run into.

The bat program

The final program on this page shows how the sprite-
handling routine can be called a number of times in a
loop to move an object in four different directions
around the screen. Although you see the bat moving
continuously on the screen, the program listing reveals

that four different routine calls are being used, one for
each direction that the sprite is being moved, and three
different sprite shapes are used to give various views of
the bat’s body as it moves around the loop.

BAT PROGRAM

1@ DEF FN g@i(xX,4,d,L,s,¢c,n) =USR

1
]RF?NDDHI'ZE FN gt48,14@,1 4@,

g?NDOHIZE FN 9183, 14,3, 34
RANDOMIZE FMN 9 (l177.,25,@,40,
AMNDOMIZE FMN 9 (48,25,2,40.,@

RD-CONTROLLED SPRITES

The keyboard control]ed spr1te routine, FNh, enables
you to control the movement of sprites using the cursor
keys. The only difficulty with the routine lies not so
much in using it as in switching it off. Because the
routine is interrupt-driven it continues to operate after
any BASIC program has finished. Even as you edit a
program you will find that the sprite is still moving on
the screen. A subroutine is required to switch it off:

2000 DEF FN z(s)=USR 53100
2010 RANDOMIZE FN z(0)
2020 RETURN

This redefines the routine with just one parameter, the
switch. If the switch is given a value of 0, the routine will
be switched off. The maze program on page 20 gives you
a chance to try using the routine; you can create your own
maze with the Book Three graphics editor.

Controlling the routine

Although keyboard-controlled, the routine is quite hard
to control from within a program. Since the sprite
routine runs outside BASIC, it is only when the routine
stops that you can check its position. One solution is to
leave the collision detection off but to set up your own
collision detection instead. You can do this by switching

the sprite off, and looking at the last X,y €O~ ordlnaté
(stored at 53099, 53098). Then use the POINT
command to find if pixels at these co-ordinates are set:
X,y x+24y

x,y+21 x+24,y+21

If this is s0, a collision has occurred.

MAZE PROGRAM

DEF FN hi{s.,.x,4,cCc.,nl=U5R S5S31

e DEF FH ZESI—USP SEZ192
BORDER
QHNDDHIZE Fr R(1,1,5@,@,3]
QG TD 12e

RRNDDHIZE Fr oz (D)

FNh

KEYBOARD-CONTROLLED SPRITE ROUTINE

Start address 53100 Length 250 bytes
Other routines called Master sprite routine.

What it does Puts a sprite on the screen and allows it to be
controlled by the cursor keys.

Using the routine The routine is interrupt-driven, so it will
continue to respond to keyhoard presses until switched off by
calling the routine with the switch parameter (s) set to 0.

If not switched off, the routine continues to operate even when
you stop the program and attempt to, say, edit — you will see a
sprite moving whenever you use the cursor keys. It is advisable
to switch the routine off at the end of any BASIC program which
calls the keyboard-controlled sprite routine. This can be done by
defining the function a second time using a function title not
used elsewhere in the program, say FNz. This function is defined
as having a single parameter only, s, which means that the
function can then be called with this parameter only, set to zero.
The collision detection parameter, ¢, can be used to detect if
the sprite passes over any pixels with set INK attributes.

ROUTINE PARAMETERS
DEF FN h(s,x,y,c,n)

| |
| |
| s || switch (1=on, 0—off) |
i X,y H start position of sprite (0<C=x<(=231, 0<{=y<(154)]
| |
| |

c H collision detection (1=on, 0=0ff)

n H number of sprite (1-10)

The obstacle program

The final program again has the aim of avoiding
obstacles. Lines 10 and 20 define the routine twice as
before. Line 110 switches the keyboard sprite on. Lines
120-140 print a series of random graphics blocks on the
screen. The aim of the game is to avoid these blocks. Line

500 is a continuous loop which keeps the program
RUNning.

@: LET L=24%: LET

1L-1: RERDCD a
- L ET Z=Z+3a

T iz L3 =IMNT {(Z.-L3
IF a<»z THEN FPRINT

Q
o)
=
D
m
]

95,2488 ,32.,11
DATAH 42,96 ,2088,237.75
DATA 106,287,205, 196,209
LATA 201.,390.8.2%.,785

- BATA 5.70,25,126, 238

cARTAR 1,50 ,953,208.,25
cartTAe 126 ,33.9,2135, 17
CAaTA 5,8.,25 .61, 32

DATA 252,34 ,926.,205, 205
CATA 93,210,237 ,67, 106
CATH 207,243,175 ,71,5@
DATA 94,208 ,62,2@07,53
DATA 2.206,119,35, 16
DATA 252,62 .206 ,237,71
pATA 237,94 ,251,201,@
DATH @,2.@,8, 2

CATA @,2,8,8,0

DRTA @,2.a,2,255

DATA 243,245,197 ,213,229
DATA &,245,5.221,229
DATA S3&,395,205, 254 ,@

CATAR 40,24 ,205,7.,283
DATA S35 .54 ,2035,254 .2
DATA 40,14 ,53,393,248
DRATA 2SS4 ,8,40,7,28%

=
CATAR 123,207,177 ,5@2,95
CATAR 288 ,19%S ,252.,287 ,221
DRATAR 225.8,241,8,225
DARATA 289,193,241 ,251,2a1
DRTA 237.75,1@56,287.,42
DATA 96,208,682 ,239,219
DATA 254,203,185 .48 ,44
CATH 203,95 .40 ,31,2a3
DRTA 87,480,188 ,62.,247
CATA 219,2%4,203, 105,40
ePATA 1.2@1,13,13,13

CRATA 121,232,252 ,200 ., 24
DRATA 25,12,12,12,62

DRTA 251,145,216 ,24 ,165
DATAHA 5,5 ,5,120.,.230

DRTR 2S2 .20 ,24,7 ,4

CRTHR 4,4 ,62,153, 144

DATR 216,197,237 .,75, 136
CATR 207,295,196 ,229, 193
DATA 25,933,210 ,5S@,94
cRATRA 288,237,687 ,1@6 ,207
DRATR 2©81,1,8.@,93

CATR 25.@,8.,.a,a

OBSTACLE PROGRAM

CEF FMN his ,.x,3.,C,n) =USR S31

DEF FHN z s} =USR S5S3120
BORDER 1: PRPER S: IMK 2: C

RESTORE FN h (1,10 ,1@,1,35)
FOR x=1 TO 1@
@ PRINT INMK S;RAT (INT (RNDz20
(RND 320 ; "I

140 NEXT x

15@ GO TO 15@

499 STOR

S0 RANDOHMIZIE FMN z (@3

OBSTACLE DISPLAY

' DOUBLE-SIZED SPRITES

You have already seen what can be done with a sprite 24
by 21 pixels (504 pixels in all), but there are occasions
when you would like to use larger sprites still. This makes
great demands upon your Spectrum, but the two routines
that are provided here (FNi and FNj) each give you the
power to move over 1000 pixels at once. These routines
provide you with double horizontal and vertical sprites
respectively. In each case sprites from the sprite table are
attached to one another and are then moved together in
exactly the same way as a single sprite — though naturally
not quite as quickly.

The double sprite programs

Both the demonstration programs are straightforward.
In the first program, a double horizontal sprite has been
used, and this demonstrates the effectiveness of quite
large moving objects — it would take 18 user-defined
graphics to define the area of the car, let alone move it!
The program enables you to see the great improvement in
sprite visibility that can be obtained by doubling its size.

FNi
DOUBLE HORIZONTAL SPRITE ROUTINE

The two sprites which make up the car are stored as the
first and second of the sprite table — the routine simply
takes the sprite specified by the n parameter, together
with the following sprite from the sprite table that 1s
stored in memory.

AUTOMOBILE PROGRAM

DEF FN i1 (x,9,d,LlL,s,c,n) =USR

1a

sS24@a@

Ll@@ EORDER 3: PRPER 3: INK 6: C

BléalnﬂNDDHIZE FN i (1@,13@.,1,65,
1

126 RANDOMIZE FN i(205,138,0,65

2,8 ,3)

13@ GO TO 1l1@

Start address 52400 Length 235 bytes

Other routines called Sprite editor routines {(FNa-FNe).
What it does Displays and moves two sprites together hori-
zontally on the screen.

Using the routine The routine takes sprites n (left) and n+1
(right) from the sprite buffer. Parameters are as for the sprite-
handling routine (FNg). Bytes 52398 and 52399 specify the y
and x co-ordinates of the sprite's final position after calling the

routine.

[ROUTINE PARAMETERS |
[DEF FNi(x,y,d,l,s,c,n) |
[X,y J lstart co-ordinates [(0<<=x<=2310<=y<=154) I

d specifies direction of travel (O=left, 1=right, 2=up,

3=down)
[1 Hdistance moved (vert<<=51, horiz<{=77)
| s stitch (1=on, 0=off)
I c Jlflag for collision detection (1=on, 0=off)

E:H number of first sprite (1-10)

ROUTINE LISTING

L

75S@ LET =5242@: LET (=230: LET
z2=@: RESTORE 7Scad

7551 FOR i=@ TO (-1: RERD a

75S2 POKE (b+i) ,a: LET zZz=z+a
7553 MNEXT i

7SS4 LET zZz=INT €0 (z/L) —INT (Z -1
)

758585 RERD a: IF ac<>z THEN PRINT
cmEt . 5TOR

7560 DATA 42,11,92,17.,4

7561 DATA 8,25,78,30,8

7562 DATA 25,78 ,25,126,230
7563 DRATA 3.50,148, 205,25
7564 DATA 126,5@,149,205,25
7565 DATA 126.23@2,1,5@,15@
7566 DATA 205,25, 126, 23@,1
7567 DARATA S©.146,205,25, 126
?568 DATR 17,63,0,33.9

7569 DATRA 215.25,61,5=2.,252
7S7@ DATA 175,590,147 ,205,205
7571 DATA 93,210,205, 137 ,20S
7572 DATA 137,229,177 .63,

7573 DRATA 25.62.,24,123,79
7574 DATA 205,933,210 ,285, 137
7575 PATA 2@5,225,193,197 229
7576 PATA 6,1,118,16,253

TS77 DATH 225.193,0.,0,118

7578 DRTH 285,196,289, 197,229
7878 bRATR 17,653, ,25,62

7588 DRATAR 24 ,129,79,205, 196

(AL
PR DOBR

~
n
Q
2]
2
h}
=
D
b
1¥]
[y
n
=
= RO M- - NDLOG- 6§

S OERs AU B R DR

TR 1)

npon
OO0

=2
=2
=
a
2
195, 54
1
-
@
1
=
a

s ~ apAw- -
s NUWaPO- W
NeeEepE QUAUR- Q0E
ool s Ofgs . -
- N
PR RNE

)
g :-\ anee

- A OE0L

S INE SR

<~ WM
o
-
au

B+ ~ ~ P~ ~
s REpRpON NORSU- NRRN - OREGO

AUTOMOBILE DISPLAY

The other program shows a double vertical sprite — a
unicyclist — against a circus background, drawn using
the graphics editor from Book Three.

FN]

DOUBLE VERTICAL SPRITE ROUTINE

Start address 52100 Length 230 bytes
What it does Displays a double vertical sprite.

Using the routine Used in the same way as the horizontal
sprite routine, but final sprite position now specified by 52098

and 52099.

] ROUTINE PARAMETERS

[DEF FNj(x,y,d,l,s,c,n)

{ X,y Hstartco-ordinates[O<:x<:231,0<:y<=154)

UNICYCLE PROGRAM

EF FhN Jix.,4Y,d,L.,.s,c,n) =UsR

ORDER 2
ARNDOMIZE FN j1(15,7@.1,689,@2

ANDOMIZE FN (220 ,790,2,7Q,
QO TO 11@

ROUTINE LISTING

d specifies direction of travel (0=left, 1=right, 2=up,
3=down)
| 1 ||distance moved (vertical<<=51, horizontal<=77) |
| s]| switch (1=on, 0=0ff) |
I c ” flag for collision detection (1=on, 0=0off) !
| n ” number of first sprite(1-10) I
I

LET £=52109:
RESTORE_ 7460
FOR_ i=@ TO -1: RERD
tb#al) sar LET Z2==%

i
LET 2=INT
IF a<>z THEN

LET =22

0z LY —TINT

=P ONKLEE
T
0
X
m

RERAD a:

EN SV INEN IU RN
AR KPPRRRNR
I

N =madaan o

n ap

B @ PR (- Y
- e
(RIS

]

POR DR DO -
S W NWE- NOWw

= 0y &AL -~
nomad- -~ AN
= NRPOOD-)Nk
M- SR~ G~ 2
Nk DO~ ~J-
PEG « RO (-
s RPpROURER

s ths

NEQ- e QR p DA A0 ~ DD QRPN -0
i~ -

F& MW

DR BN 0O OG- 20~ N
-

FRELUAEQNEANN SOWD- U~

LAY WRNs @AY AN NDREs » v v~ v v s~ PRE YR
‘ NNEROBN ,EE WL~ U~ &~

NG FAD DW=
P- Opa @ Qo A Q- O~y mepoa- po

WOWD- ~ 0 F AR
Y e VR | R VTN
RN OG-
L [R

e

N RROR BPR
PROW- @k - U O~ - o
SR QAT
= U~ DA S
200
&

P DEOAND

B0 MEBR g PREM

N P TR P S S |V) B <o T |
N~ & ~
e & O O

-~ Nl U :
~ = AN PAN- @ReNEL FRORPEANNE

B Wms ~ Dk NE- - - HOO-

s Al PROAD

aa- N - 0N e- - ~
- QERE- Np 0

CNNNR QS B
N RO & UG- MR

Q- G P B BOMN -

v~ QY-

- ~ WK
SME-
Fa) [0

UEDLRELY ODNESDWAREN NUREUINERRO DEDDONE DD ORPEUNN0 & &
- @\. o

S @l NS RHONFRE SN0UE- AUV DEANGR- G0

< RO

98- -~ O
~ BRAN

B l- G~

PR] i

=1
+a

GZ A

PRINT

nne
A

-

=
o
N

4]
o

Y
P

Il

ANIMATION 1

So far the movement you have seen has been restricted
tomoving fixed sprites on the screen. Thisisall very well
if your sprite is an aeroplane flying across the sky, or a
car driving along, because these do not change shape as
they move. However, if you want to have a moving
person or a flying bird then something more sophisti-
cated is required: the sprites need to be animated while
they are moving on the screen.

Animation, like most techniques in computer
graphics, relies on tricking the eye. It is achieved by
displaying several stationary images in succession to
create the illusion of movement. Animation can be
achieved without any relative movement, as in an
animated figure of a man jumping on the spot, for

ACHIEVING SMOOTH ANIMATION

The body of the horse sprite stays in the same position in successive
frames (shown in red and blue); only the legs and tails of the horse are
moved.

SEam=i. EammEm=msa=s

T

example. You will immediately notice when you start to
animate your designs how only a small change in the
sprite shape is required to give an effective result. By
looking at the display in the figure above, for example,
you will see how only the legs and tail of a horse need to
be moved to give an animated effect; the horse’s body
remains unchanged. If the body was moved when the

ANIMATION PROGRAM

ot iy ad, L
PRPER S
@ RANDOMIZE FM k(1&.12,1,865,

S0 ,%d _
RANDCHMIZE £ R (28S .12, ,85,
-)

-, S
@ O TS 100

horse was animated, the effect would look very jerky.

In many cases you only need to take two frames and
switch between them to produce convincing animation,
but the animation routine, FNK, allows you to have as
many frames as you like, within the limits of the sprite
table — that is, up to a maximum of ten. Using ten
frames, each of which differs slightly, you can create
very effective illusions: unless you think about what is
happening you would never realize that the sprites are
being printed as stationary images.

The illusion produced by animation is also used in the
cinema, where stationary images are shown one after
the other at 14 frames per second. When watching a film
you don’t think of the picture as stationary, because the
images are changing too fast for your eye to register.
Since the animation routine allows you to vary the speed
at which images are replaced on the screen, you can
experiment by giving different values to the v parameter
to see how slow the animation can be before your eye
begins to detect the frames making up the movement.

"

L]

1T

FNk

St S
Otart PR
a IT
Wher dd E
r
tohat rou ess AN
e ot IM
U et oe es 70 A
si h] 0
ng?rg tn effgitezaa:"’é ?\RgtTION RO
nt W‘e 0 se h
S rol r f a 2
vSqu%'egF*;hs‘érntine al\;ﬁrﬁgpigeggg i UTINE
m ci h e e [it es
i 0 a-ad.o e te
Va”ggfp”irgvmrggnr;aquosgaof t ries fom |
Oon te fras_One om tt
| : e fa dermesp ftes. o the's
me t'grmiares. ngege . prite
[th nes use us to ara bu i
X R € h d"thgim Ll 35
| ou next. D ‘“thef"eyeter o st
‘ Sp- DE TIN 'Doquicke anramoulns ar ?321 3 LET ROU
d rite FF EP not ly t im ep Cree a ?3%2 mAs - i
st N A g he ati ar as S 3 53 pOHST: IN
|___, Pl ok K RA ive ro'oﬂ am ed 7§L‘* NE X FoRe EL
I 3:3if|85 co-or 'y!d MET thisutin,andeter '7‘21:, LE%E']E'i-_ESE—?@e ISTI
| | ow d|r dina ’l,s ER paresh the - "‘_Q Zi b+T53: NG
| an ion (0< WV et Id ?356 =e IN E 4 T
f E cem of t X<) £ra 735% DA op E ey L
witc oV rav 25 ;363 gFiT;:; T €0 LER =2
& I ”Umb(l= £l e Ul o ;ggé SEES a2 Sy g TE?r»?‘a-
Swi rti = 2 < 17 = ’
| Hf ber witch tical<< eft y<<] 7%5% Dg-g-g Eégél vz B e LE
| £ e o ST 0 il o ! L | 7383 cATA ?éégéﬁge Tﬁé”#f’ T
n | vel r coll es s hori t 2= 737 EHL:} geg“égéé%, h i
| ocit llsio USEd W|tC rzo =l 7‘:'357@ H-rp 282 ,g@gg,gJ é4 PR g
II'} y of nd in ho nta p, 7371 oa A 122’239’!2’226 TH ¥
umb ani ete th ff) 1< 73?% BAT 2@6*55 ,1192, 7
T er o imati oe € ani 7 7375 3@2 - E’E%I%éséeésg
h f fi ion n(l imati) 7%.{,5 DQTF' 992125‘3'-1%_‘2‘@25
Th'ea el (1< =0 1on 7376 D':'TF* 5:‘3, 7-5_1' ’Ségaa
is ni spri = ! (1 7377 DST“ 20 223 Eééeg,lgs
re) im ite v , 0= -10 ?g DQTQ 583’2352@3_ JQ) 281
masonfogr ati (1-10 =2 off)) l 73 BF@E gérééégéaﬁ Sézieg
ment that it oa > 55,1 7351 ATR gggglgaéﬁg;e??
prit in titi a pr he s | ;385 oA 4@§J1céa®§35}é6
prtsan e og e s o iéfJégz:séa‘ff’
the ct Ofnd d‘lh lfﬁct e a i st) | Esg% SF@Q 254 9?%332?,32,2
he attom 1splphotu1r en d | i
mlto o ove ay og to is 7388 EF‘TR 9.55532@4 ’eiéeée
ingr'Nm Of‘menstheraphcaptplay l 7389 Dg%ft %1$2é2§?’1 254 15
eve rc"ti o m i =y o 7290 cATA }53.*29 Liss 42
n hCe 'Tl fi z23 T dBBBAQ;BJSd
a h ¢ h n h th 0 S @ = = =
be n 0 pa {3 tu c e r th 739é oA a gaEJiB J%Bgéld
tte ges WS. ge ﬁv m prD eff‘ e -_7)393 gRTH 552’1858 1*1;é2ﬂ
r a imi a € to g ec ob e £108 i sJéa’mQ :
re re 11 S Sp g ra T V' 739 L T = ,15 '_B._’ 7'? 7]
§ n a th ri v m of 10 7 SE [',F*TFI 2o JaJd i :’5
ul e re e 1te € m u 73 = =] A @ ,1;®|a @ =
1, 1 ed ac y S a tak 0 S ?397 BF‘TQ 4’é12, & 9;2
) ed hh ap ar Ve ¢ ve- 255 aT iz T ’é‘}éSEs
Crea for ors peaeshrysni fiv 7499 8212 i”’%?éaf’s G'é?ﬂél
= 3 th ei) ow 0 & ‘io DQTR ?-.2’,3,11,*?3’5 22 e
t 18 0 0 7 2 A 23 418 = a 3
he ea to n‘(hna th ?431 = Tha 5@112’15’152’—’5
E n I'l' th e 10 74@2 C'RT 812)4’195’)ag
 uf u 1m en S ng 7,3_ b Dﬂ a 14)48 = 23@,4
= mb at ex pr 74_94 DﬂTR o :1*1,4'_253_18@2 r)
_— only ties SRt ggs
o o ly - BaT Ses ;gsgggfzg%lgg
<o 3:?3 32¥9 =61 ,;g,é@ 28
' 3:%? 8;13 %?1%%‘?%?3;2?
o E’gﬁ éliiiéz?@gegésﬁ
4 DQT':‘ aég:l;gggj’gd-’éa
DQTH 5838355'4 4 2.2 7
TS 86’5’,2.'55"4.:%9 .21
é%édéag‘},g,fg,a 2
',éeg.g‘z‘,%,l 7=
— ,@5—52323’58
- ’69%%3%5
'@-'8,275
4 1@’3@
-
= 2

L

1

FE
i

1

~ ANIMATION 2

How does the animation routine work? The answer is and critical about a sprite design if it is not moving across

simple for you, but not quite so simple for the the screen. If you print your sequence one after the other
programmer. What happens with ordinary sprites is that onto the same screen position in a continuous loop you
they are picked out of memory, printed on the screen and will get some idea about where changes need to be made
moved across it, according to the parameters passed to (if any) before the sequence is animated properly.
the routine. With animation the first sprite is picked out of Secondly, you will be able to judge more accurately the
memory, displayed on the screen, and moved one position sort of speed at which the sequence should be animated.
(three pixels in the case of the sprites in this book). The Put a PAUSE statement between each print statement in
sprite is then deleted from the screen, and the next sprite the loop, starting with values of about 20. You will then be
in the sequence (the equivalent of the next frame in a film, able to see how much the animation routine needs to be
or next drawing in an animated cartoon) receives exactly slowed down to be most effective. In practice you should
the same treatment. It is printed on the screen, moved multiply the results you get from tests with the PAUSE
three pixels and then wiped off again. statements by a factor of between five and ten (that is,
The sequence continues until all the frames in the PAUSE 20 converts to a value for v of 100), simply to
sequence have been displayed, and then starts again. compensate for the fact that machine code is so much
Some applications are ideally suited to two frames (like faster than BASIC.
birds flying), but obviously the more frames in the Itis a good idea to make use of the sprite print routine
sequence, the smoother the animation will be. For this for one more reason. Once a sprite is being animated with
reason itis best to choose to animate things which have a WILDLIFE DISPLAY: BIRD

regular and repetitive movement.

Transferring animation to the screen
Sooner or later you will want tostart designing your own
animated characters. The technique recommended is to
begin by reproducing the movement you see, as simply
as possible. Remember that your eye will help by per-
suading you that things resemble real life, even though
they are not. Secondly, remember that the effect youare
aiming for is a flowing movement. To achieve this it is
necessary to make sure that the last frame in the
sequence runs into the first, so that the sequence is
circular — after all this is the way it will be projected
onto the screen. One of the commonest errors made in
animation is to have an open-ended sequence, so that
when it is shown repeatedly on the screen the effect is
smooth during the sequence, but with ajerk at the end as
the sequence restarts.

You are fortunate enough to have the sprite editor and
the sprite print routine to help you with your designs. You THHER R HHHHE ; sisiiaiiata {
will find that designing on the screen is much easier than R R R R
sitting down and working out animage with a penciland a e TR R e
grid. As a further aid, several animated sequences have R L E R Y
been provided in the sprite design directory later in the THEHHEHET gl
book. Using the sprite editor, you can start a new sprite o HH R 3
design from a previous one and so create smooth and TR
flowing animation sequences with little difficulty. T O L

e
ey
¥

. 0755 |

ries

Trying out the animation HHHH R R i
When you have designed an animation sequence you can Hi R R RS R R RS
use the sprite print routine to preview your designs. You HH R '
saw this idea used with a robot earlier in the book, but the HER
point of using the print routine here is twofold.

The first point is that it is much easier to be analytical

v
xus
T

4

the animation routine it is impossible to stop it until the
distance | has been covered. This can take quite a while if
you have long pauses between each frame of the
sequence. However, with the sprite print routine you can
break into the program between single frames at any
point since the Spectrum is returning to BASIC between
each call to the print routine.

WILDLIFE PROGRAM

DEF FN kK(x,9,d,L,5,FfF,C,v,nl

FNM kKi{l1l€,12.,1,65,0
FN k(205,19 ,8,65,

FN k(18,148 ,1,65,
FN k (205,140 ,0,65

Once you are completely satisfied with the edited
results and the way that they work with the sprite print
routine then you should be sure to save the sprites
generated to tape, as a separate file. The reason for this is
that after all the effort you have spent getting the sprite
right it would be a pity to lose them through a clerical
error — or a momentary power cut.

The wildlife program

The displays on this page are both produced by a single
program. Both displays use two states of animation, and
both move the animated sprite across the screen and
back again. The movement of the hare (shown in the
large display below) is simplified to two states — the
elongated position, and the familiar crouching pose.
Alternating between these two provides a reasonable
approximation of movement. The two bird sprite states,
shown in detail in the close-up photograph, show how
both the wings and body of the bird are made to move.
You may find the bird’s movement rather jerky. One
way of overcoming this, without increasing the number
of frames, would be to reduce the displacement of the
body by keeping it more central, rather than rising and
falling within the 24 by 21 frame with each animation
state.

All the movement you have seen so far relies on the idea
of you being stationary and something moving past you.
But how can you create the illusion of moving past
something which is stationary? The most effective way
of doing this is by scrolling the whole screen. There are
several ways of doing this; the simplest can be seen
whenever you use the BASIC command LIST, which
scrolls the screen upwards one character at a time.

The scroll routines
To create a more effective and gentle illusion of move-
ment you need a smoother scroll, which moves the
screen one pixel at a time. The two routines given here,
FNI and FNm, allow you to scroll the screen a pixel at a
time in either a horizontal or a vertical direction.
Note that when using the two scrolling routines on
this page, it is inadvisable to use an interrupt-driven
routine (such as the keyboard-controlled sprite routine,

SCROLLING THE SCREEN HORIZONTALLY

SCREEN SCROLLING PROGRAM

EE R L]
DA ol
et adml gl

SCROLLING THE SCREEN VERTICALLY

FNh) at the same time. This is because the scrolling
routines are shifting the co-ordinates of screen memory
back and forth as the screen is scrolled, and an image is
displayed on the screen by interrupts being used to
“refresh” the screen at regular intervals. Obviously, this
can cause problems if the screen display moves its
Jocation in memory when the screen refresh routine
looks for it.

A similar difficulty arises when using PAUSE, since
this statement is also based on interrupts. Rather than
use PAUSE between two calls to a scroll routine, you are
advised touse a FOR...NEXT loop for a delaying effect.

Other scroiling effects

Several effects can be linked to scrolling the screen.
Both of the scroll routines have a wraparound effect,
which means that whatever goes off one edge of the

FNI
HORIZONTAL SCROLL ROUTINE

FNm

VERTICAL SCROLL ROUTINE

Start address 51500 Length 190 bytes -
g\.’hat it does Scrolls the screen left or right a specified
istance.

Using the routine Parameters d and | set the direction and
length of scroll. The routine has a wraparound effect, so that
whatever disappears off the left of the screen reappears on the
right, and vice versa.

| ROUTINE PARAMETERS
1 DEF FNI (1,d)
[1 |[specifieslength of scroll (0-255)

d ‘ specifies direction of scroll (O=left, 1=right)

Start address 50900 Length 215 bytes _
What it does Scrolls the screen a specified distance up or
down.

Using the routine Parameters are the same as for the hori-
zontal scroll routine. As before, a wraparound effect occurs
with the routine, but in this case when scrolling off the top and
bottom of the screen.

| ROUTINE PARAMETERS
l DEF FNm(l,d)

| ROUTINE LISTING

|
|
F |] [specifies length of scroll (0-175) ‘
|

ROUTINE LISTING |

] d 1[wmﬁbs&mdbndsudHO=mxL:mwm

TI3Da LET ©L=18% (K o
Ti= A

T3a21 . RERD a

T3az LET Z =2 +3

on3

T3a4 ALY —INT Z L)
Yo L1

T3aS »Z THEMN FPRIMNT
EO-r

[AEnIn NN

15 = [

VSR =
L 1, A4
= T 55, 9a e
229.,6,32,167 ,203
22,43,16.251,225
43,4 ,62,1,132

119, 17,52 ,0,25
13,885,553 ,193, 18
224,291,237 ,123, 141
201 ,251.0,.2.

P L - - W N 0 [
@,25,72,5@,3
25,126,254 ,0,32
383,14,191,197,33
@,64,229,6,3=2
167,205 ,508,35, 16
251,225,458 ,4,62
125,152,119, 17,32
@,25,13.32,233
193,116,224 ,201, 14
PO A B0 81, 64
224,68 ,32, 167,263
55,43,16.251,225
48 .,4,62,1,132
119,17, 32,8, 25
15,852,083 195, 16
524,201 ,.2,.02.0
E1L,08,@.8,@

screen then reappears on the opposite edge. Other
routines allow you to leave something stationary on the
screen while scrolling the rest — as used in popular
games like Defender and Pole Position. To do this
requires a much longer routine than those given here.

However, another type of scrolling effect has been
included in this book. This is a partial screen scroll, in
which the vertical dimension of the area scrolled 1s

LET b=5©0900: LET L=210: {] o
RESTORE 721@

FOR 1=@ TO L-1: RERD a

7202 POKE (b+1) ,a LET Z=Z +a
7283 NEXT 1

LET =z =INT
IF a<«<>z THEN PRINT

({(Z ALY ~TINT J(z-12
720S RERD a
AT . BTRE

8 DATA
1 DATA
2 DRATA
3 DRATA
7214 DATA

[
=
o
-

LW
(NI

o=
PR

s Mo W VW
NANWE- Wwod- ~
SN e AN
P 00 s -
U o~ U
m-
(@]
o

M« Qe P U
R dn-

\.[U,
W= M= =00
ie]

(.

N
n
[
N
0
D
—
D
f00r LUOORRAROAND
®

SO N~ s D0 O s p
s PE

S E (-

IR]
O RRW-N O RERR G

Rl ~ W

A~
n
SrUNOFU-

we

s WP EEE
@03&[06% QY rD N0 MR

W

o

N~
o
Y]
K
ol
hoks)
35
DD
o
N1
B
[y
n
n
Ohps ~ P U DDA -

P
W
o]
n

7228 DATA 32.33.162, 194, 17
160,87 ,126,158, 35

719,16,25@,193,16

7231 DATA 167,251,201, 197,33
7232 DATA 1b@,87,17,16=2, 199
7233 DATA 6,32,126,18,3
7234 DATA 19,16,25©,1,175
7235 DATA ©,33, 160,86 ,17
7236 DATA 160,87 ,213,229.6
7237 DATA 22,126,18,35,19
7238 DATA 16,250,22%5,209,37
7239 DATA 124 ,230,7,254,7
7240 DATAR 32,12,125,214, 32
7241 DATA 111,254,224 ,40,4
7242 DATA 62,5,132,183,21
7243 DATA 122 ,23@,7,254,7
7244 DATR 32,12,123,214,32
7245 DATA 95,254,224 ,48 ,4
7246 DATA 62,8,13@,87,13
7247 DRATA 32,201,17,0,64
7248 DATR 33,162,199 .6 ,32
7249 0OATAH 126,18,35,19, 1
7258 DRATA 25,193, 16,166,251
7251 DATA 201 .a,2,0,90

7252 DRATA 47 .,0,0,02.9

restricted to the size of the sprites used in this book. This
partial screen scroll routine (given on page 30) produces
what is in effect a window.

The program on this page shows scrolling at work.
You will notice that the routine has the effect of moving
ink attributes while leaving coloured areas unchanged.

WINDOWS 1

As you saw on pages 28-29, it is often more useful to be
able to scroll parts of the screen than to scroll all of it.
The window routine given here, FNn, enables you to do
this. With the routine, you can define an area of the
screen three characters deep of any width, and then
move a sprite across it. The routine enables you to make
sprites appear to move behind objects on the screen,
since they appear from outside the window and then dis-
appear the other side — rather like looking out of a
window and watching a train go past.

Repeating sprites

One additional feature of the window routine is that you
can repeat the sprite to give the effect of a chain of
sprites passing through the window. Alternatively, quite
spectacular effects can be achieved by having a variety
of sprites set up in the sprite table, like the sequence
produced by the cockpit program shown on this page.

Differences between sprites and windows
In many cases, you may find it more useful in your
programs to use this window routine than a standard
sprite routine. However, when using the routine, it is

scrolling, rather than a sprite routine, and that every-
thing contained in the window will be scrolled by the
routine, even if it was only part of the original back-
ground. To display a sprite moving against a static
background, or to move a sprite vertically, you must use
one of the sprite routines.

COCKPIT PROGRAM

1@ DEF FN ni(x,y,LlL,n,d,r) =USR 4
2609

198 FOR x=1 TO 1@

118 IF x<>2 AND X<>5 AND Xx<>7 T
HEN RANDOMIZE FN (18, X ,1,1
) : RANDOMIZE FN 1,8, 1,10

PRAUSE S©

I oRr T
i3,)
NDOMIZE FN n {1 3.,

SE_Se
138 NEXT x
149 GO TO 19@

DEE OC

FNn
WINDOW ROUTINE

ROUTINE LISTING |

Start address 49600 Length 290 bytes
What it does Moves one or several sprites across a window of
specified dimension.

Using the routine The routine carries out a partial screen
scroll: everything contained within the area defined by the
parameters is scrolled.

Note that the start co-ordinates x,y represent the top left hand
corner of the sprite if the sprite moves right, but the top right-
hand corner of the sprite if the sprite moves left. The repeat
flag, r, can be used to repeat a sequence of sprites moving
across the window. Repeated sprites can be seen in the window
game program on pages 32-33.

ROUTINE PARAMETERS
DEF FNn(x,y,l,n,d,r)
Xy || start co-ordinates (0<=x<=31, 0<=y<=21)

|
I
I
[1 |[width of the window (0<=I<=31)
|
|
[
I

Hnumber of sprite to be scrolled (n=1-10)

n
d Hspecifies direction of scroll (O=right, 1=left)

=

repeat flag (1=switch off repeat, O=repeat)

LET b=49620: LET L=258%: LET
: RESTORE 7110 .)
FOR 1=0 TO L-1: RERAD a
POKR {b+1i) ,a: LET zZz=Z+a
NE X 1

The cockpit program

The large display on this page shows windows at work.
From the interior of an aircraft cockpit, various air- and
spacecraft can be seen flying across in front of the plane;
the display shows one of these. What is particularly
effective is the way the sprites disappear behind the
centre pillar and reappear in the other window — an
effect which could not be achieved with the sprite
routines. This program, then, shows the real difference
between windows and sprites — using windows you can
make the sprites look as if they are behind a solid object
rather than in front of it.

How the program works
Line 10 of the program defines the window routine,
together with its assortment of parameters. As you can
see, three characters wide is a very effective width for
the routine. The program actually uses two windows,
three characters apart, with a barrier (the window
frame) in the middle of the screen. The eye, however, is
tricked into believing that the sprites are moving along
behind the windows when they are in fact disappearing,
stopping, and then reappearing as a result of a second
window call, Line 100 sets up aloop so that all ten sprites
can be made to appear across the window, one by one,
Line 120 deals with the sprites that are left facing —
thatis, all of the sprites which appear to fly from right to
left. This works by testing for the second, fifth and

LET z=INT

NEANNN N
DR PR RN R
NJO~8000106
A-RUNREE

5TOP

PRPRBRRRPRP
VONONPRNEE
49
D
NRrrPRPNNOE A

WO PR ~ W
v v @ v P

S EQNLDODO
NODNS PR QR

RVAVENENENENENENENEN |
PRRPBRRPPRRR

NOODY D DU ONDOOOSIRR
B MNBRO ~ - 0
7 o1 VR VT IS T T SO S TN

OU-JUUINRERE ORRPREDDODE RPRUDPRPRRAOWDR
v~ RRGOOS P

SNUEN- 9800~
sl D Qs

B 0
i

LI~
m
B E)b 6 O

WG QNTD- =

TR

NAND- A0~ P DRANOO- =D

NOWRs RO

= M-

(((z Ly —IWNT {(Z L}
RERD a: IF a«<:>z THEN PRIMNT

AONWNOYOO-
v~ QNRR- - D
NP U ~ PRR
P Py QDN R
MR e~ O p
s @UIDE R QO
Qp- QDN &
S0P~ OOE
o1 VI (VI

B WA

]
]

~ PRNW ~
(o]
W

e - 80~ hOO
NNORPNE 2O
N~ P ORRr
N e 0

0
IS

PUWE- DKW NW ~ OrEs QRO W
O OO PR

PO BB

AN~ NORAN- W
FROG - DAEO A~ OO0 0 WP

PR~ ~ Py NP P B0~ 0- U8

- fRE0y B Q- WRROU 0~ P s QR B
o
'S
[

;284

s~ QRUI- M-
W
0]
o

<~ RO Qo
“ - DRER
ANOY
] Vi

1)

P PO~ IRRR -~
o]
9]

O] 18]
1
N
]

=
o]
Loed
o
R
N
=

il

=Y
0
P
oo
=

DR B0~ 0
A0 B POPOL WP B~ R0 BOUNORDO-
TmNERR

fUs sJpfs ~ O ~
WAOWOp R
~ e IR

]
p
]

DN=i0- 0=
PEUNE-
[=1
o &
d

wa
e s s QNE pRR- O
w

QUHA- FH RO B~ O 0

R Y RO (VR R
Y I e o T LR T

n- -
Wo9- Dpe- -
W
N P w10

"]

~

=W WO RGN~ -

- AL~
0 M
n

=
]
s

s b = Ny = -

W~ v 10

S pe e
U‘L\

Q-
AR ol o PR

B R R e N A A I I B VRN RN N BN RN EV N ENEVEN EN ENENEVEN ENIREN ENEN EN EVEN ENVEN ENEN IRRN ENENENENENENENENEN|
ST

RBRERPRERRERE RRERBRRPEBRERE QRREpRpRRpRpl RRPRBRERPERRRE BRRRRRRRRR
mOQQOOON AOAAUANNNY pppppppppps QUEORARKWRWE NRNVRRVORDD
NONARUNRE VONOUAWUNES VEONONRINERE VINRARONEE VAONONALNRE

Q

D

_{

D

s RPUJINDWE B8UDNDOGO- 1)

o
I
3
I
FURNE (VR Vo TR AT Tk (0 F DT =)
B NP

U R QOE O

< k-l

-

NI (VR0 SR (S
OUWENNGE -
o e R0

9

seventh sprites which are right facing. If any other sprite
is to be used then it is first made to go across the right-
hand window, immediately followed by a call to make it
go across the left-hand window. A PAUSE statement
has been added to give you time to think about what just
flew in front of your eyes!

Line 130 behaves in the same way, but handles the
right facing sprites. Sprites 2, 5, and 7 and upwards
appear to face to the right, so these are made to fly across
the left-hand window first, immediately followed by a
second call to make them fly across the right-hand one.
Line 140 ends the loop, and finally line 150 starts the
whole process over again.

WINDOWS 2

The WindOW routiqe giVCﬂ on this page has all the features WINDOW GAME PROGRAM CONTD.
of the window routine, FNn, but with the added feature of
being interrupt-driven. Once switched on, it will keep
going until switched off again, regardless of just about

any BASIC command.

Your first priority with this routine must be to have a T
way of switching it off. As for keyboard-controlled See@ PRINT PAPER 6;
sprites, this is done by a subroutine: LR I,
2000 DEF FN 7(s)=USR 53100 RANDOMIZE FN

2010 DEF FN x(s)=USR 49200
2020 RANDOMIZE FN z(1)
2030 RANDOMIZE FN z(0)
2040 RANDOMIZE FN x(0)
2050 RETURN

This subroutine is slightly more complicated than you
would expect, since it is used both to set up theroutine and
to switch it off again. The routine also switches on the
WINDOW GAME PROGRAM keyboard-controlled sprite routine, since this sets up the
interrupt vector table required for the interrupt-driven
window routine to work correctly.
En RS ax ams oo R m0ER 551 The interrupt-driven routine can be used together
FN g ix,u.d,L,s,c,n) =USR with the other routines in this book to set up and run
FM o(s,%,9,L,n.d,r) =USK sophisticated games. A simple game is given here; you
gt e e will be able to improve it with a little effort.

The window game

sTel 2 gsl This game is based on the idea of shooting at moving
i, Tk oot Dt objects at the top of the screen. The game uses three
Sl 15T S.4m machine-code routines. An interrupt-driven window is
ise e R R = i WINDOW GAME SPRITE MOVEMENT
S E Rl LT
>
| T
UFOs controlled .
by window routine .
arrows controlled
RAMDOMIZE FH RI(1,32,15S@ ,0,1 by Sprite—handling : |
IF INKEY&$=" " THEMN GO TO 23 . :
GO _TO 21e f
LET x=p=PEEK 53998
LET HPEPEEK 53@99_ ’
PR T nF mOe FU . TR RHEREE scanner controlled by *
20 IE E =Rl B xedcas TAEM & keyboard-controlled sprite routine
IF XP »=142 AND xXxp<=15S2 THEH
s LET Rg=0
98 AND Xp (=208 THEN =
s =4 used to make flying saucers scroll across the top of the
BEC i LEl Qeeess screen, the keyboard-controlled sprite routine is used to
control your scanner, and the sprite-handling routine is
Soo 1B ThkETELTH used to send arrows towards the saucers.
scroLl7 One of the best parts about writing a computer game
is in deciding the scenario for the game. In this case you
could imagine, for example, you are trapped on earth
with only a scanner satellite, and your crew aboard it

INTERRUPT-DRIVEN WINDOW ROUTINE

Start address 49200 Length 315 bytes
((l):tNhrf)r routines called Keyboard-controlled sprite routine
What it does Moves either one or several sprites across a

window, and continues to operate whatever is happening in
BASIC.

Using the routine To use this routine you must first switch on
the keyboard routine, since this routine sets up tables of
interrupts where needed. The keyboard sprite routine can then
be switched off a%ain, unless it is called in the program else-
where. Use s in the same way as it is used in the keyboard
controlled sprite routine.

Note that the start co-ordinates x,y of the window routine
represent the top left-hand corner of the sprite if the sprite
moves right and the top right-hand corner if it moves left.

ROUTINE PARAMETERS
DEF FNo(s,x,y,l,n,d,r)

|
)
s H stop flag (1=stop, O=normal) |
xy |[start coordinates (0<=x<=31,0<=y<=21) |
|
J

|
[
|
|
|
[
{
|

I |[width of window (0<=I<=31)

n Hnumber of sprite to be scrolled (n=1-10)

d ”specifies direction of scroll (O=right, 1=left) J
r Hrepeat flag (1=switch off repeat, 0=repeat) J

have only a bow and arrow with which torepelinvaders.
You can also use other sprites with the same background
to change the feel of the game. Using different sprites,
you could convert this game to a fairground shooting
gallery, for example.

Several refinements could be made to the program.
One sensible one would be to stop the keyboard sprite
from going too high up the screen. This could be done by
testing the current y co-ordinate of the sprite (stored at
location 53098), and starting the sprite again at the
bottom of the screen if a given limit is exceeded.

How the program works

Lines 10-20 define the three machine-code routines.
Two of these routines are interrupt-driven and will
therefore have to be switched off at some point. Lines 40
and 50 are here for this reason. These extra function
definitions enable you to switch the interrupt-driven
routines off and on by calling the routine with just one
parameter, without bothering about specifying all the
other parameters normally required.

Line 110 sets up some variables. The current score is
held as variable sc, and the previous score (before the
current arrow was fired) as psc. Variables g and ng are
used to record the position of the keyboard sprite under

IF a«<r»z THEK FRINT

J
[
-
]
»)
D
_{
D
o
=

Ll

A A A
NORSE
iy

LU~
R

Sl el ol el
[0 = T = L) =
= O Nn i
[Ta}ls]
e L]
L]
-]

[N

TR L (T8 2N N

Qoonoo
SRR -
- WE

0 -
(]

- @
L
o

L LN -

-
N0 = =
- LGOI

Ul ppapas

Q-
«

BRI (T

“a
SRS
P PEY - DIDE EEG A
QR
Wew
]

LA M e

R TS T vl (A [H]

an
na
bp

=
=
=2
@
a
3

B
- - -

i
i
a

HEGOL 0 -
=Ll

N bR G s ORI

QL)

e -
v o

I

TA3S DATAH

- BRI
RPROSOOME k-] O
QR
0]
w

S QUNRDESI0 -~ G E)E-
WoPDW- - P

n
T 1]
S~~~ -

~J s

T
% =

S IR |
68 96
Wi W
P& 00
v}
D
_.J}
b
DM b b= Mok G e e
DREONUNEDERE -~

WLLW

SININEY
WNEE 0D
Q
i
_.{
T

AL O

e

o
[
@
~

S

any-

g

O TA T~ S || P V)]

L)

)
0

06
i

b -
NRP WU

L‘J

wa

R N ol R

5
]
B
m
)
T
-
I
VTSR U (Ve
WisdsJ e D oy

R UGy
Dk (I
&SN~

- Q-
T N = T |V

fav v

(T

M
N

e @ B oo
SN

]
)]

L]
pmLwe

& M-
[0

St o g
o

B e
o

= Ty -
Pl e e W

s -
- B W]

WO Wb O
S tpEnm - REOEs - s 0

< W00 & W -

-
[N
B B e

- B
RO Sul

[aquls]

5

i

=
U~

DRI

<
]

1T @AM
G

MNP
e G e
~JEm

[N

~J
Q
u)l
9
Q
D
3
I
FrhRROREDORED R QR SR s lneSnd
WE N mom
8 P

e R R RN R RV ENEN

GELEASRCE
IO -J MmNk
o0
I
_*

T

the gaps, with ng defining the gap under which the sprite
is resting, and g the previous gap. These variables can
have values between 1 and 4 (since there are four gaps
through which you can fire), and these variables are
used to restrict your firing. The program compares
variables g and ng in line 310, and if they are the same,
the fire sequence is bypassed. At the beginning of the
game, itisimportant that g and ng have different values,
sothat the fire sequence is not disallowed initially. Thus,
g is set at first to -1, a value which ng can never have.

WINDOWS 3

Lines 120 to 170 of the program draw the background,
with a loop used to create the sides and top, and line 170
creating the gaps through which you can fire. Line 180
calls the score subroutine at line 500.

Line 190 starts off the interrupt-driven window,
though it does not begin working until the interrupt
vector table has been set up by the keyboard-controlled
sprite routine. Because thisis the very next statement you
do not see any delay. but it is important to remember that
the interrupt-driven window will not function unless this
table is in place. The window routine will continue to
scroll a sprite across the window until something occurs to
stop it.

Lines 210-220 form the main program loop, which
simply waits for the space key (the signal to fire) to be
pressed, since everything else at this stage is interrupt-
controlled. The controlling keys for the keyboard sprite
must of course be ignored, as their function is handled by
the machine-code routine.

Lines 230 and 240 find out the current position of the
keyboard-controlled sprite. Given the position of the
sprite, and the gaps in the barrier, the program can
decide whether a shot fired would go through a gap.

Lines 250-280 work in the same way for each of the

four gaps. First a testis made to see whether the keyboard
sprite is under the current gap. If it is then the gap flag
(ng) is set to the value of the current gap. In addition the
current score is incremented by two — not one as you
might expect. Line 290 normalizes the score by taking
one away again. Note that if the keyboard sprite is not
under one of the gaps then the score is now one less than it
was before the shot was fired.

Line 300 looks at the past score compared with the
present score plus 1, and makes the gap variables
different from their previous values, if the sprite was not
under a gap. Line 310 deducts another one from the score
if the gap is the same as the last gap which was fired at. It
also skips the arrow-firing sequence, since arrows are only
fired if the gap is a new one.

Line 280 fires an arrow by calling the sprite routine.
Line 340 makes sure that the score cannot become
negative, however bad the player. Line 350 adjusts the
values of the previous score and the old gap value, ready
for the next time round the loop. Line 360 prints the new
score,

Finally, lines 1000-1020 switch off the interrupt-
driven routines. To break out of the program, key GO
TO 1000 to stop the routines.

USING THE SPRITE DIRECTORY

While using this book, you will have found that
producing good sprite designs is not always easy. To
overcome this problem, you can turn to the sprite
directory, which contains over 200 sprite designs. These
sprites can either be copied directly in your own
programs, or used as a model on which to base your own
ideas. Each entry in the directory includes the DATA
for the sprite and showsthe sprite on the screen.

Keying in the sprites
A sprite from the directory can be keyed in by using the

EXAMPLES OF SPRITES

] JOKER

0,60,0,0,195,224,1
64,48,2,36,76,4,31
76,4,31,224,12,223,144
29,57,136,62,16,132,126
68,130,126,170,226,118,0
94,100,0,67,68,40,67
196,16,64,194,130,128,2
108,128,1,17,0,0,130
0,0,68,0,0,56,0

following loading program (add DATA from line 100)

10 INPUT “Sprite number (1-10)”,a
20 IF a«0 OR 2010 THEN GO TO 10
30 LET b=54600+((a-1)%63)

40 FOR i=b TO b+20

50 READ n : POKE i,n

60 READ n : POKE i+21,n

70 READ n : POKE i+42,n

80 NEXT i

100 DATA 0,0,0,0,etc

The routine loads the sprite in the DATA statements
into the sprite location specified by you at the start of
this BASIC program. The routine requires you to key in
all 63 sprite DATA items, even if some of them are
zero.The sprite table can easily be corrupted by wrong
DATA being entered, but the easiest way to correct this
is by editing the sprite image with the sprite editor,

What the directory contains

The directory groups various kinds of sprite under
theme headings. Most of the sprites are designed to be
used individually, but the directory also contains some
double sprites, which are used in conjunction with each
other. In addition, a number of animation sequences of
sprites in two or three different positions are included.
The sprites can be entered either by keyinginthe DATA
numbers provided, or simply by copying the drawing
using the sprite editor. The sprite editor can also be used
to increase the number of frames in an animation
sequence, up to a maximum of ten designs (the
maximum number of sprites that can be held in the
buffer at one time).

PACIFIC-TYPE LOCO

PACIEICI Y EETE@EO

0,0,0,0,128,24,252
160,126,126,160,255,75,255
255,75,255,255,75,255,255
75,0,0,126,255,255,127
0,0,98,255,255,127,255
255,127,220,14,127,162,17
255,65,32,24,128,195,36
136,196,90,159,255,90,65
32,36,34,17,24,28,14

224,255,255,240,255,255,232
1,255,232,255,255,232,1
255,240,255,255,224,255,255
224,7,63,240,8,159,217
144,255,255,255,47,237,98

HOW SPRITES ARE SHOWN
e Tht_a dlagrarr_xs shown_ﬂlustrate how
15,64,9,255,224,255,255 sprites are displayed in the

directory. Each sprite is shown in
the top left-hand corner as it
appears on the screen, and in the

35,146,252,43,109,144,75 large display below as it can be

1B el keyed in on a grid. The 63 DATA
numbers which are POKEd into
memory are shown on the top right
of each sprite display.

Note that double sprites are

shown as two separate sprites;

obviously, the sprites will appear

joined when used with the double

horizontal sprite routine (FNi).

e T TS e e B i tatiam e

ALIENS

MICRO-MITE

255,60,255,127,255,254,42
165,84,42,165,84,127,255
254,63,255,252,31,255,248
1,255,128,2,255,64,4
0,32,8,0,16,16,0
8,80,0,10,188,0,61

165%,102,98,165,70,176,188
12,153,66,153,14,129,112
7,102,224,8,102,16,16
153,8,32,0,4,64,0
2,224,0,7,224,0,7

BUG ‘ BUG
0,129,0,0,66,0,0 2,0,64,129,0,129,64 6,0,96,1,0,128,0
36,0,63,24,252,33,255 153,2,32,126,4,16,195 129,0,0,66,0,0,255
132,76,195,50,255,255,255 8,9,24,144,15,231,240 0,1,219,128,3,255,193
159,66,249,176,189,13,102 7,189,224,7,90,224,6

60,96,63,126,252,103,231

230,69,153,162,196,255,35

12,36,48,8,66,16,56

66,28,96,102,6,0,0
0,0;,0,0,0,0

[I [i [

TRIPOD

HOPPER T

HOPPER J

B0,66,0,80,36,956,32
24,144,35,126,142,36,219
1,73,255,12%,75,255,222
40,25%,32,36,60,36,36
126,58,68,255,1,137,255
130,147,153,204,163,12,194
68,4,34,8,2,16,16
1,8,32,2,132,64,0
2,224,0,7,160,0,5

o=

= NN

T0,1%2 .9,127,80,5
255,208,15,190,248,95,255
253,111,34,123,124,34,31
108,34,27,54,34,54,59
0,110,28,200,220,6,73
48,2,235,160,126,213,191
0,201,128,17,126,196,47
8,122,0,20,0,0,34
0,0,65,0,0,65,0

ROBOT

ROBOT

ROBOT

8,60,16,4,255,32,3
255,1%2,7,0,224,7,0
224,3,255,192,0,60,0
115,255,206,118,152,110,63
151,188,63,247,188,55,247
172;5%5,119,172,55,248,108
51,255,204,97,66,134,131
231,193,147,221,201,101,9
166,4,24,32,7,255,224

128,240,0,131,252,0,143
255,0,159,224,0,159,224
n,143,255,0,128,240,0

209 ;255,10 9532553150122
0,249,58,0,25,57,255
242,28,0,16,31,255,240
15,255,224,1,254,0,2
1,0,15,255,224,27,109
176,27,109,176,15,255,224

0,126,0,0,219,0,0
219,0,0,126,0,0,0
0,2,255,64,7,255,224
2,129,64,2,165,64,2
255,64,2,165,64,0,255
0,2,0,64,2,231,64
0,231,0,1,231,128,0
165,0,0,231,0,0,0
0,0,231,0,0,231,0

~ ALIENS |

SQUAROID

j HUMANOID

"DALER” ‘

192,34,3,112,65,14,16
128,136,16,65,8,12,34
24,30,20,56,55,255,236
99,255,198,227,165,199,119
165,238,30,255,120,119,165
238,227,165,199,99,255,198
55,255,236,30,165,120,12
0,48,16,0,8,16,0
8,112,0,14,1%2,0,3

115,199,28,122,170,188,121
69,60,98,40,140,97,199
12,111,239,236,127,255,252
127,:255,252,27,255,176,2
238,128,1,1,0,0,254
0,0,130,0,0,254,0
1,255,0,1,239,0,3
199,128,3,199,128,7,131
192,7,.%,192,18, 131,224

0,16,0,0,56,0,0
68,16,0,131,232,128,254
16,65,109,0,96,254,11
145,1,20,8,254,36,13
1,96,7,255,192,3,255
128,1,171,0,0,170,0
1,85,0,1,85,0,2
170,128,5,85,64,10,170
160,31,255,248,31,255,248

SPACE-FLY

SEA MONSTER

0,0,0,0,0,0,0
0,0,128,0,2,96,0
12,24,68,48,70,238,196
459,41,24,11,109,160,34
108,136,27,109,17%,3,109
128,1,171,0,14,238,224
17,B5,16,18B,16,144,18
16,144,18,40,144,36,0
7z2,0,0,0,0,0,0

| INSECTOID
1,0,128,0,129,0,0
126,0,0,219,0,0,36
0,0,24,0,3,255,192
7,255,224,44,0,52,25
255,152,17,255,136,32,0
4,0,255,0,0,255,0
0,9,0,0,126,0,0
126,0,0,0,0,0,860
0,0,24,0,0,0,0

33,18,8,18,57,20,84
124,132,178,254,136,130,254
68,69,255,66,69,255,33
41,255,65,36,254,70,36
124,72,20,84,144,83,125
32,72,254,192,135,255,1
129,40,194,78,70,33,144
129,17,167,32,138,168,72
105,73,132,37,6,3,194

]
[
|
|
|
{
1

| -1 |

ANDROID

JELLY MONSTER

HYDRA MAN

0,248,0,32,248,0,33
172,0,253,252,0,188,13¢6
0,140,248,0,205,172,0
15,39,128,15,39,144,1
173,144,1,221,252,1,253
252,1,252,4,1,252,4
1,252,12,1,140,0,3

6,05 001251
128,24,0,192,16,0,64

128,60,6,128,189,9,65
255,144,35,255,204,71,24
226,143,219,241,143,255,243
71,255,228,111,255,248,19
52,192,2,66,32,12,66
64,16,129,32,32,70,16
24,68,16,9,35,8,50
192,132,66,2,685,129,5
198,129,8,1,129,4,1

12,0,48,37,0,164,22
36,104,12,90,48,4,60
32,5,36,160,7,219,224
0,66,0,2,126,64,7
25%5,224,120,60,30,144,24
9,48,60,12,72,126,18
96,231,6,1,195,128,1
129,128,0,195,0,0,66
0,1,66,:28,1,155,128

LANDER

SPACE FIGHTER

0,0,0,128,0,1,243
24,207,28,165,56,4,189
32,3,255,192,0,231,0
3,231,192,4,189,32,28
189,56,243,24,207,128,0

4,0,32,6,0,96,5
24,160,0,189,0,0,126
0,16,255,8,24,85,24
20,255,40,5,165,160,7
255,;224,13,255,176,21;195
168,46,255,116,110,165,118
258,255,255,16,255,8,16
60,8,16,66,8,56,129
28,56,0,28,56,0,28

1,255,224,0,3,128,0
3,128,0,3,192,0,3
224,0,7,255,0,7,25
0,3,240,48,28,8,12

727 ,.252,;255,239,252,122,227
252,48,28,8,0,3,240
0,7,255,0,7,255,0
3,224,0,3,192,0,3
128,0,3,128,1,255,224

SPACE FIGHTER

EXCURSION VEHICLE

0,0,12,0,0,24,0
0,48,0,1,204,0,0
112,0,0,224,0,64,225
2,193,63,2,247,249,63
234,52,242,6,60,62,234
52,2,247,249,2,193,63
0,64,225,0,9,224,0
0,112,0,1,204,0,0
48,0,0,24,0,0,12

0,60,0,0,66,0,0
¥o350% 1 1Re, 1 28,5951
220,127,24,254,255,255,255
199,24,227,197,153,163,198
126,99,127,255,254,46,255
116,21,126,168,14,60,112
12,0,48,4,0,32,14
0,112,10,0,80,59,129
220,59,129,220,0,0,0

$24,0,0
4,0,0,24
,102,0
9G,128,0

66,128,2,90
64,15,255,240,25,231,152
16,231,8,17,255,136,27
255,216,6,36,96,12,102
48,56,102,28,112,0,14

INTERGALACTIC CRUISER

INTERGALACTIC CRUISER

COMMAND SHIP

192,0.:3,192.°0,3,192
0,3,192,0,3,192,0
3,192,24,3,224,60,7
224,126,7,227,165,199,255
219,255,255,165,255,255,165
255,227,219,199,224,1256,7
224,60,7,192,24,3,192
0,3,192,0,3,1%2,0
3,1592,0,3,192,0,3

56,0,28,48,0,12,112
0,14,96,0,6,224,0
7,192,24,3,224,60,7
224,126,7,227,165,199,255
21%,255,255,165,255,255,165
255,227,219,199,224,126,7
224,60,7,1%92,24,3,224
0,7,96,0,6,112,0
14,48,0,12,56,0,28

79,229,0,143,247,255,255
245,255,255,231,120,15,253
127:255:255,0,002; 3,0
127,254,0,63,252,0,31
252,0,15,252,0,7,248

PHANTOMS

TRIBAL SPECTRE

SPOOKY SPIDER

SPYING SAUCER

9,0,0,31,0,124,32
128,130,32,128,130,32,65
2+39,85,114,40,201,138
0,127,16,40,221,130,41
127,74,42,34,42,42,34
42,42,34,42,42,34,42
42,20,42,42,0,42,74
0,41,74,0,41,82,0
37,82,0,37,84,0,21

8,3,0,192,0

,66 0,0,36

G,7,255,224

?40 Lg 9053 2, 755
127,255,;234,31;255

CDONMN O
ST s
pw=

VAMPIRE

VAMPIRE

129 71‘,?1 129 1
25,144, O,,,Aé 0,9

o
7 128,12,255,192,28,13
2,30,24,128,31,112,192
63,248,0,63,252,112,63
254,208,62,243,128,60,225
0,56,240,0,24,248,0
24,108,0,24,56,0,8
56,0,12,108,0,5,198
0,4,133,0,5,133,0

i
2
g

,64,4,129,32,12
66,48,12,36,468,28,90
56,30,36,120,30,36,120
62,60,124,63,24,252,63
189,252,63,255,252,63
252,62,60,124,62,60,124
62,255,124,62,165,124,30
36,120,28,102,56,24,0
24,2,0,16,8,0,1

GHOUL

1,24
,0,126,0
153,128,3
219,%6,14,219
5 0 5 64,2 9. ‘24
JD 126 255,255,255,
805195, 01129
0,231,0,0,36,0

R O O
Rl &

N b s

e

255730 ;253,255,191 203;255
211,198,255,99,206,126,115
2ﬂ4,69,;,,?0d 189,51,204
165,51,204,36,51,198,102
99,231,255,231,115,153,206
169,153,149,169,129,149,137
29,145,137,153,145,80,219
10,0,126,0,0,60,0

0,0,0,0,0,0,255
255,254,55,255,244,47,255
232,31 ,;255,240,7,57,192
7, 7.19? 31,215,240,127
255,252,97,85,12,193,85
6,197,13L,70,104,130,44
114,198,156,28,68,112,0
108,0,1,171,0,15,57
224,18,16,144,36,0,72

_ AIRCRAFT

HELICOPTER

HELICOPTER

,0,0,0
4,0,255,255
4,0,7,255,224
2,5,129,160,7
0,224,3,0,192,3,0
1592,3,0,199., . 3.200 . J 5
29,153,184,23,153,232,28
219,56,2,255,64,3,195
192,3,129,192,3,129,182

0
a
2
4

252,14

167,226,863
48,255,0,49,255
24,0,4,16,0

224,96,127,128,240,127,0
0,66,0,0,124,0,0
72,0,0,112,0,0,254
0,0,0,0,0,0,0

BIPLANE

BIPLANE

RECONNAISSANCE PLANE

0,36,0,255,255,255,255
255,255,36,0,36,38,24
100,35,126,196,33,231,132
33,255,4,33,255,4,255
255,255,255,195,255,1,126
128,1,24,128,1,36,128
3,66,192,3,125,192,3
0,192,2,0,64,2,0
64,0,0,0,0,0,0

152,3
63,255,121
52,48,15
8,64,0

4

0,12,0,0,14,0,0
15,0,0,15,0,0,15
0,0,15,12,0,15,14
0,15,14,63,127,254,126
79,254,254,203,241,126,79
254,63,127,254,0,15,14
0,15,14,0,15,12,0
15,0,0,15,0,0,15
0,0,15,0,0,12,0

SEAPLANE

SEAPLANE

SEAPLANE

0,0
64,0
,64,56,70
27,255,254,245
7,255,252,95,255
,65,8,0

0
0
3
1
.

'
0
1
2
0

66,4,0,2,4

2,0,4,2,0,127,255
248,127,255,240,63,255,224

0,16,0,0,56,0,0
40,0,2,41,128,0,56
0,3,57,128,255,255,254
251,125,190,59,125,184,15
255,224,3,57,128,3,57
128,3,57,128,1,17,0

.
8, 20, 240,31, 52
124,121, 62 79,105,247,203
8,255,136,8,156,136,29
136,220,21,136,212,28,28
28,0,28,0,0,20,0

32,0,0,248,0,0,252
0,0,254,0,0,126,0
0,127,0,0,127,0,0
127,128,0,127,224,0,1
240,240,127,255,143,1,255
255,127,255,255,1,255,255
127,255,128,1,128,0,127
0,0,0,0,0,0,0
0,0,0,0,0,0,0

212,0,0, $7,192,213
254,32,255,255,16,63,255
200,67,3,252,64,240,62
63,236,1,0,19,254,0
16,4,0,16,4,0,48
4,0,48,2,0,0,0

HELICOPTER

HELICOPTER

0,128,0,0,0,2,0

0,0,0,255,255,254,0
16,0,0,16,0,0,.16
0,0,56,0,4,56,64
7,199,192,4,124,64,0
254,0,1,17,0,1,17
0,3,17,128,5,17,64
29,147,112,28,254,112,2

128,2,0,128,0,0,0

0,0,0,0,0,0,0
0,0,255,255,252,0,32
0,0,32,0,0,112,8
0,240.5,7,252,18,10

131,254,18,129,145,98,254
4,255,8,0,127,240,0
15,96,0,0,0,0,1

125 0,1, 128 0,0,0
0,0,0,0,0,0,0

,0,0,0,0,0
,0,0,0,15,255
1,255,231,63,255,255
127,255,255,255,255,240,127
285 ,256,63;259,255,314255
231,15,255,3,0,0,0
0,56,0,0,253,0,0
125,0,0,0,0,0,0
0,0,0,0,0,0,0

0,0,0,0
0,0,0,0
3,31,25

MONOPLANE

TRANSPORTER

AN O DO

[=R-

0,16,0,0,56,0,0
56,0,0,56,0,0,56
0,0,56,0,4,186,64
4,186,64,251,125,190,251
125,190,63,255,248.:1,255
0,0,56,0,0,56,0
0,56,0,0,56,0,0
56,0,0,238,0,0,238
0,0,10B,0,0,16+0

0,0,0,0,0

0,0,0,0,0

128,1,0,184,3

4,7,6,250,15,31

248,14,151,255,254,147

255,61,240,255,195,128
254,0,7,252,0,0

0,0,0,0,0

0,0,0,0,0

SHUTTLE

,128,1
193,224,1,221
128,0,221,128

7,182,240,127,2321,255,1
255, 182,:2,8,.32,2,20
32,7,0,112,5,0,80

255,244,31,255,252,115,255
244,255,255,242,255,255,254
127,0,126,63,255,242,24
60,26,8,4,0,8,4
0,24,6,0,24,6,0

0,0,240,0,1,240,0
3,248,0,7,248,0,31
248,0,127,248,1,255,198
14,0,62,63,255,254,119
255,254,247,255,193,119, 255
254,63,255,254,14,0,62
1,255,198,0,127,248,0
31,248,0,7,248,0,3
248,0,1,240,0,0,240

[1

LUNAR MODULE

LUNAR LANDER

VIKING

0,0,0,0,0,0,0
0,0,3,255,192,5,245
19213, 245, 192,:29.,.745 106
61,245,207,125,245,223,253
255,255,229,255,255,253,255
255,125,255,223,61,255,207
29,255,195,13,255,192,5
62,64,3,255,192,0,0
0.0,0,0,0,0,0

0,24,0,12,24,0,13
60,0,3,255,192,1,255
0,3,255,128,3,255,128
11,255,1%92,7,255,224,7
255,240,15,255,248,7,251
248,3,248,240,0,60,128
15,255,248,19,255,200,43
255,212,39,255,228,123,255
222,64,0,2,224,0,7

0,128,0,0,192,0,0
196,0,3,244,0,0,212
6,0,212,0,0,148,0
0,21,0,30,149,120,34
151,68,67,255,194,131,24
193,131,36,193,125,231,190
57;2568156:3,255,192.4
21%,32,11,9.208,28,0
56,32,0,4,248,0,31

SKYLAB

SKYLAB

VENERA

128,24,1,96,60,6,24
60,24,6,60,96,1,153
128,0,60,0,0,126,0
0,74,0,0,126,0,255
215,255,128,86,1,128,126
1,255,255,255,128,126,1
128,70,1,255,255,255,0
126,0,0,126,0,0,24
0,0,60,0,0,126,0

4,68,32,10,34,32,25
18,32,36,137,64,18,70
238,9,33,240,4,205,224
2,223,208,1,63,44,0
127,147,0,255,136,1,255
4,0,254,194,1,253,33
7,250,144,3,210,72,1
129,36,0,128,146,0,0
76,0,0,40,0,0,16

0,0,2,0,0,4,0
0,12,0,0,24,0,0
16,255,248,32,146,72,64
74,144,128,42,161,0,31
194,0,15,132,0,1,63
0,7,243,160,13,191,15¢6
29,191,234,97,181,235,29
181,234,13,181,156, 7,245
128,0,63,32,15,255,224

CARRIAGE

| 440 LOCO

U.S. LOCO ‘

0,60,0,0,24,0,31
255,248,33,0,132,127,255
254,36,36,36,36,36,36
36,36,36,36,36,36,36
36,36,36,36,36,63,255
252,55,247,244,60,60,60
63,255,252,191,255,253,255
255,255,191 ;255 ;253,19 ,36
200,19,36,200,12,195,438

0,112,0,0,118,0,0
118,128,0,0,0,0,0
224,127,1,240,63,9,240
$,28,224,9,92,224,9
255,254,121.,255,254,255,255
255,255,255,255,255,256,254
231,159,254,216,96,0,164
151,255,91,105,155,91,106
101,36,146,101,24,97,152

0,0,96,0,0,240,2
32,240,255,113,248,127,113
248,73,112,240,73,244,96
73,255,240,73,255,240,127
225,248,127,255,252,65,1
248,255,255,240,255,255, 240
156,59,224,34,68,240,95
226,24,73,146,108,65,130
150,34,68,151,28,56,96

ROCKET

L TENDER]

CARRIAGE

216,0,0,80,0,0,80
0,0,80,32,128,82,33
192,87,35,128,95,247,0
95,254,0,88,41,0,95
213,224,95,173,224,95,93
224,111,189,224,17,93,224
34,45,224,228,53,231,34
40,56,32,38,68,32,32
84,16,64,68,15,128,56

0,7,128,0,11,64,0
23,160,1,28,224,5,28
224,15,151,160,31,203,64
127,255,254,127,255,254,98
36,70,98,36,70,127,255
254,96,0,6,127,255,254
110,60,118,255,255,255,32
129,4,36,129,36,32,129
4,17,0,136,14,0,112

127,255,255,33,8,66,63
255,254,51,156,230,33,8
66,33,8,66,33,8,66
33,8,66,115,156,231,51
156,230,51,156,230,51,156
230,51,156,230,51,156,230
63,255,254,255,255,255,7
9,112,8,128,136,10,128
168,8,128,136,7,0,112

PACIFIC-TYPE LOCO

£0,0,0,0

1 r1,13L,254,15,.255
254,31,255,254,63,255,254
48,0,2,47,255,254,48
0,2,47,255,254,63,255
254,63,255,254,191,255,254
255,255,255,191,255,254,9
36,144,22,219,104,22,219
104,9,36,144,6,24,96

0,0,0,0,128,24,252
160,126,126,160,255,75, 255
255,75 ,255,255,75,255,255
75,0,0,126,255,255,127
0,0,98,255,255,127,255
255,127,220,14,127,162,17
255,65,32,24,128,185,36
136,196,90,159,255,90,65
32,36,34,17,24,28,14

0,31,128,0,15,0,0
15,64,9,255,224,255,255
224,255,255,240,255,255,232
1,255,232,255,255,232,1
255,240,255,255,224,255,255
224,7,63,240,8,159,217
144,255,255,255,47,237,98
35,146,252,43,109,144,75
109,8,132,146,7,3,12

TRUCKS AND MOTORB!

VETERAN

[7 VETERAN - 41

SALOON

0,15,254,1,255,254,0
34,2,0,18,2,0,18
6,0,10,14,24,10,12
56,102,12,48,70,12,8
131,252,8,135,254,17,15
254,17,15,194,58,15,220
68,15,162,170,30,85,146
28,73,147,248,73,171,240
85,68,0,34,56,0,28"

1,255,254,0,129,254,0
129,198,0,128,198,0,160
198,0,144,198,0,168,254
32,192,254,63,255,134,61
128,132,61,176,132,61,129
140,55,129,24,123,129,62
5,131,97,50,130,204,72
255,146,180,255,173,180,0
45,72,0,18,48,0,12

3,255,192,7,255,224,8
0,16,8,0,16,16,255
£,17,129,136,63,255,252
127,255,254,127,0,254,204
126,51,133,189,161,133,255
161,204,0,51,255,255,255
128,0,1,230,0,103,254
0,127,255,255,255,240,0
15,240,0,15,240,0,15

MOTORBIKE

CLASSIC

TOURER

0,224,0,1,192,0,1
64,0,0,160,0,1,194
0,1,224,0,1,243,0
1,223,224,1,128,160,3
135,96,19,255,192,125,255
64,50,245,32,109,55,60
94,185,114,49,46,211,33
106,153,127,254,153,33,0
195,51,0,102,30,0,60

0,0,224,0,9,240,0
4,225,0,3,225,0,13
224,0,1,2560,0,193,253
1,254,235,3,255,115,4
31,245,11,239,158,23,247
250,119,251,254,239,251,128
239,27,255,142,172,0,254
77,255,126,175,255,3%,24
0,1,240,0,0,224,0

0,0,0,0,0,0,128
0,0,128,0,0,192,0
0,255,240,0,255,255,248
255,255,196,171,255,254,171
254,14,171,249,244,171,231
250,255,151,250,252,111,254
227 ,223,30,31,222,175,255
190,76,255,254,172,0,7
28,0,3,248,0,1,240

0
1

FORKLIFT

255;:255:255+4255,255; 280,255
255,255,255,255,255,255, 255
255,255,255,255,255,255,255
255,255,255,255,255, 255,255
255,255,255,255,255,255,255
255,255,255,255,255,255,255
255,255,255,152,255,25,164
2,36,90,6,91,90,0
91,36,0,36,24,0,24

0,0,0,0,0,0,0
60,0,8,16,0,19,254
0,11,252,0,18,68,0
10,68,0,19,194,0,11
195,194,19,255,254,11,2189
250,19,219,250,191,219,250
103,195,250,91,255,186,165
255,75,219,128,181,219,254
181,36,0,72,24,0,48

0,0,192,0,0,192,0
0,192,1,254,192,1,2
192,1,50,192,1,50,192
1,98,192,1,122,192,1
118,192,125,114,192,255,254
192,231,242,223,219,238,217
189,222,213,230,179,211,218
173,213,218,173,217,231,243
213,60,30,211,24,12,863

CARS, TRUCKS AND MOTORBIKES

SPORTS SALOON

FORMULA 1 !

1224

32,0
124,32,3,255,223,7,255
223,15,0,47,31,255,240
31,249,255,127,240,255,99
246,128,63,240,255,0,25
128,0,31,128,0,15,0

252,238,0,12,12,127,252
252,124,252,255,248,124,0
27,126,255,248,96,0,28
192,0,15,19%92,0,7,128

63,128,0,63,1.28,0,63
188,248,255,190,250,255,190
250,228,127,34,229,225,174
255,254,255,239,255,127,245
83,191,255,211,191,245,83
191,23%,255,127,255,254,255
229,225,174,228,127,34,255
190,250,255,190,250,63,188
248,63,128,0,63,128,0

LONDON BUS

TRACTOR

127,255,255, 255,255,255,196
33,19,196,33,19.196,33
19,255,255,255,234,170,191
213,85,95,255,255,242,196
33,18,196,33,18,196,33
18,196,33,30,255,255,255
252,255,207,251,127,183,244
191,75,251,127,183,251,127
183,4,128,72,3,0,48

0,0,0,7,0,0,66
24,0,194,111,0,34,237
0,19,53,128,10,242,192
7,191,96,30,185,224,46
255,176,127,255,248,209,136
136,123,223,248,85,168,136
91,216,138,254,127,255,133
160,0,133,160,0,6,96
0,3,192,0,1,128,0

127,249,0,568,49,0,68
51,128,36,19,128,37,19
128,36,147,128,60,177,32

| 63,255,252,64,255,254,158
112,6,191,55,254,63,183

{ 190,115,150,242,237,214,236
{ 222,215,222,222,215,191,237
255,243,115,131,51,127,128
¢ 63,63,0,30,30,0,12

FORKLIFT

BULLDOZER

0,0,223,0,0,217,0
0,213,1,254,211,1,2
213,1,50,217,1,50,213
1,98,211,1,122,223,1
118,255,125,114,192,255,254
192,231,242,1%92,219,238,192
189,222,192,230,179,192,218
173,192,218,173,192,231,243
192,60,30,192,24,12,0

§ 0,32,0,0,16,1,0

| 16,31,0,16,31,0,56

f 31,0,63,255,0,63,248
224,120,0,243,240,0,210

223,0,253,191,0,251,97

1 0,214,255,0,45,225,0

127,255,0,191,252,0,109

182,0,146,73,0,146,73

0,109,182,0,63,252,0

BULLDOZER

0,64,0,0,32,0,0
32,0,0,32,0,0,112
0,0,112,0,0,112,0
224,112,0,249,32,0,233
255,0,255,255,0,224,1
0,223,255,128,63,225,192
127,255,224,191,252,112,109
182,58,146,73,30,146,73
14,109,182,14,63,252,15

0,48,124,0,0,111,1
252,111,193,84,71,241,252
127,252,168,127,255,252,127
255,252,127,255,254,127,255
254,127,255,254,127,255,254

6,2,16,0,193,8,0
16,128,128,0,68,64,15
4,0,255,192,31,229,226
31,242,242,63,242,136,71
242,252,67,242,130,71,242
252,63,242,136,31,242,242
31,229,226,0,255,192,64
15,4,128,0,68,0,16
128,0,193,8,6,2,16

0,127,144,3,255,248,23
255,252,47,213,126,104,255
195,251,125,252,104,250,248
47,251,112,6,15,224,1%
4,36,15,255,248,0,0
0,0,0,0,0,0,0

]

LINER

SUBMARINE

YACHT

0,224,0,0,236,0,0
236,0,31,253,128,21,85
128,79,253,128,117,85,128
127,255,128,111,255,128,123
251,192,126,254,224,127,191
176,127,239,232,127,251,248
127,254,248,127,255,188,127
255,238,103,255,254,67,255
254,73,255,254,84,63,254

=]

16,0,0

12,0,0,120

0,0,120,0

255,255,226,143
41,255,255,127,255

o~
.

2

COoOONMNOO—O
[T N
CoODo 00O

0,

0,48,0,0,15
0,127,224,0,0,0
o,
2
1

o~ .

0,0,15,240,1
,240,0,0,0,3,240
,15,240,7,255,224
,0,15,240,0,0
192,31,255,128,0,0
,126,0,0,126,0

Ty
O CoWNNO®R

OrOoOONOR OO
ul -

HOVERCRAFT

HOVERCRAFT

TUGBOAT

0,0,0,32,4,0,32
4,0,24,3,0,40,5
240,40,5,192,8,1,248
8,1,248,63,255,252,53
85,92,53,85,92,127,255
254,127,255,254,0,0,0
127,255,254,255,255,255,255
255,255,255,255,255,127,255
254,63,255,252,63,255,252

0,0,0,4,66,32,2
125,64,1,0,128,3,189
192,5,0,160,1,126,128
1,126,128,15,255,240,11
66,208,11,90,208,31,219
248,31,255,248,0,24,0
127,219,254,255,195,255,255
255,255,255,255,255,127,255
254,63,255,252,63,255,252

0,4,0,0,4,0,8
4,128,4,5,128,2,5
128,1,7,240,2,128,208
4,71,240,4,101,96,8
127,230,16,127,254,63,255
254,127,255,254,0,0,0
127,255,254,223,255,252,207
255,248,199,255,240,255,255
224,0,0,0,0,0,0

TALL SHIP

MAN O’ WAR

FISHING SMACK

0,126,192,0,126,240,4
255,248,4,0,240,12,254
228,12,254,204,12,254,220
28,254,188,29,255,124,28
0,252,61,254,252,61,254
252,61,254,252,125,254,252
125,254,254,127,255,0,0
0,124,127,255,252,15,255
248,7,255,240,3,255,224

0,120,48,0,120,0,62
0,120,62,252,120,62,252
120,62,252,0,62,252,252
0,252,252,120,0,252,123
254,252,123,254,0,123,254
85,3,254,127,171,254,127
255,254,127,255,254,127,126
0,127,63,255,255,30,219
126,15,255,254,7,255,252

0,0,64,0,0,96,32
8,64,32,12,64,32,31
192,48,31,64,96,31,192
224,31,192,224,63,152,224
63,192,224,63,192,47,191
192,42,128,64,42,128,64
46,128,95,254,135,241,143
252,5,192,0,1,96,0
3,63,255,254,31,255,254

YACHT

STERN TRAWLER

6,131,129,68,66
5,132,33,225,228,30,17
92,42,143,34,32,0,31
255,255,29,64,0,15,255
255,7,213,251,7,255,255

0,0,16,0,0,16,0
0,16,0,0,16,0,0
16,0,0,48,0,0,96
0,0,224,0,1,192,16
3,192,32,7,160,64,15
16,141,158,8,133,30,4
25%,254,3,0,7,3,255
255,255,0,0,1,255,255
255,234,175,255,255,255,255

JUNK

ROWING EIGHT

ROWING EIGHT

14,248,0,0,0,0,14
248,0,0,3,188,14,248
0,0,3,188,14,2438,0
0,3,188,14,248,0,0
3,188,14,248,0,0,3
168,14,248,0,0,1,254
14,249,254,96,1,254,110
249,252,96,1,252,63,255
248,63,255,248,31,255,240

0,0,0,0,0
0,17,17,0,34
+68,68,0,136,136

p LT 16, 234,332,115
255,248,250,170,175,15,255
248,0,136,136,0,68,68
0,34,34,0,17,17,0
§,136,0,4,68,0,0
0,0,0,0,0,0,0

4,68,64,2,34,32,15
255,248,250,170,175,15,255
248,2,34,32,4,68,64
8,136,128,17,17,0,34
34,0,68,68,0,0,0
0,0,0,0,0,0,0

ANIMALS

ELEPHANT

0.,90.,.0.,0,0,0.,3
128,0,7,207,240,14,63

P2 = v b i s e s R cle e e
i i s M o R 254,159
323,254,159,31,254,183,255
255,233,255,253,16,255,253
32 ,255,252,;0,;127;252 /0
120,120,0,112 ;0,96
24,0,96,24,0,96,24

GIBBON GIBBON MOOSE

KANGAROO

3D O R R 0)

0
0

0 .0

3, ,224,95,255,240,255
255,248,127,255,244,159,25
244,7,255,244,1,255,244
2,248,250,3,96,221,3
96,102,6,192,102,13,128
204,0,0,0,0,0,0

V]
o]
3

224,15,207,128,27,193,192
32,0,48,192,0,8,0
0,6,0,0,0,0,0
0,0,0,0,0,0,0

BUFFALO

0,0,0,0,0,0,0
0,0,0,0,24,0,112
4,0,240,2,1,248,241
11,255,249, 255;255,254,63
255,252,95,255,252,143,255
252,31,255,248,25,254 248
16,252,124,0,248,52,0
208,36,0,144,68,1,32
132,2,33,3,0,0,0

0,30,0,0,11,0,0
63,193,224,95,223,240,255
223,248,127,223,244,159,12
244,14,255,244,13,255,244
11,252,244,7,227,122,12
193,185,24,193,140,24,195
12,12,1985,12,1.,134,24

,127,224,0
255,252,0,255,255,16,255
295,252, 255,255,951 255,25
255,255,255, 254, 255,255, 29
255,255,224,127,253,224,12.
60,248,120,60,120,55,28
8,55,28.0,60,30,0

CAMEL

CROCODILE

8,0,0,60,48,192,220
¥13, 182,252 111 E92 98
224,28,3251,2

5% d00,61,2

128,80,2,128,80,2,129
80,2,128,80,5,128,176

O DO

P
comwNuaoOoO

[ER=EN

SCORPION

SQUIRREL

0,0,0,2,4,0,25
9,0,60,146,64,108,146
240,196,84,190,136,85,159
128,45,140,192,219,7,226
219,128,126,219,192,62,219
182,2,219,128,0,219,7
0,45,140,0,85,159,0
84,190,0,146,240,0,146
64,1,9,0,2,4,0

0,0,56,36,0,124,8
0,252,56,1,254,92,3
254,252,7,255,254,7,239
31,135,231,31,227,227,15
243,243,15,249,242,63,253
242,38,253,244,33,252,240
3,254,240,7,254,224,7
255,192,7,255,192,0,255
0,3,254,0,15,248,0

0,0,30,0,0,51,0
0,97,0,0,193,0,0
591,0,0,219,0,0,919
0,0,106,0,0,56,0
0,28,0,15,156,0,124
204,12,192,44,51,0,24
80,62,48,252,255,224,15
255,240,3,248,240,1,128
112,1,0,16,2,0,32

MOUSE

FROG

0,0,0,0,0,0,0
0,0,64,0,0,163,252
0,71,254,0,175,255,24
31,255,144,63,255,160,63
255,224,63,255,240,63,255
218,63,255,254,63,255,254
31,255,254,15,255,248,13
247,6,6,6,0,6,4
0,2,4,0,1,2,0

8,16,128,4,9,0,2
13,0,2,7,0,4,3
226,8,3,220,16,7,248
32,15,240,32,31,226,32
31,244,32,63,250,32,63
252,48,127,248,24,127,240
€,127,240,12,127,240,6
127,224,3,63,224,3,255
192,1,255,128,0,31,224

0,0,1,131,0,30,1,.
128,49,135,192,96,1«
192,156,240,192,216,24
112,123,250,32,63,252,0
31,252,0,7,252,0,31
252,32,63,252,112,123,25
216,241,224,156,240,192,
224,192,135,192,96,135,1
49,131,0,30,0,0,1

255,0,12,6
192,8,28,0

255,236 5,248,17,255
484,47,207,0,27,129,196
32,0,48,64,0,8,0
0,0,0,0,0,0,0

FNOHONOO O

BUGS AND SNAILS

WASP

SPIDER

SNAIL |

0,1,224,0,6,24,0
8,6,0,16,1,0,112
2,12,246,12,157,249,240
175,254,0,175,253,192,121
203,160,50,167,112,18,162
232,4,174,220,9,17,186
1,16,246,2,16,237,4
32,123,8,32,63,0,64
15,0,128,2,1,0,4

4,0,64,2,0,128,2
0,128,67,41,132,33,17
8,17,57,16,17,187,16
28,214,112,7,57,192,1
255,0,0,56,0,3,255
128,14,124,224,25,255,48
19,125,144,34,56,136,34
16,136,36,0,72,4,0
64,8,0,32,8,0,32

0,1,192,0,3,240,0
7,248,0,15,252,0,30
62,0,29,223,0,61,239
0,59,231,0,123,55,0
122,166,0,246,238,32,246
220,145,247,60,81,239,248
51,239,248,115,239,240,252
223,192,127,0,64,31,255
128,7,255,224,3,255,252

CRICKET

0,41,28,3,154,32,7
223,112,15,255,224,7,223
112,3,154,32,0,41,28
7,200,130,24,8,121,96
8,4,129,240,2,6,0
1,8,0,0,0,0,0

1
9,128,2,8,221,236,11
110,184,43,110,188,107,186
236,235,183,228,235,245,1¢€
107,132,32,8,4,16,8
4,8,16,8,4,32,16
3,64,0,0,0,0,0

0,4,128,0,9,48,128
18,76,64,99,132,32,158
4,28,184,8,2,240,16
57,254,32,127,213,192,255
148,192,63,255,192,255,148
192,127,213,192,57,254,32
2,240,16,28,184,8,32
158,4,64,959,132,128,18
76,0,9,48,0,4,128

BUTTERFLY 4‘

DRAGONFLY

DRAGONFLY

96,0,12,248,130,62,206
68,230,219,41,182,209,17
22,81,187,20,118,186,220
41,215,40,57,57,56,22
56,208,24,186,48,15,255
224,2,56,128,15,255,224
24,186,48,50,146,152,53
147,88,51,147,152,25,17
48,15,1,224,6,0,192

0,56,0,112,56,28,140
0,98,131,57,130,96,254
12,24,56,48,7,255,192
3,125,128,12,146,96,16
186,16,33,17,8,67,17
132,76,16,100,48,16,24
-0,16,0,0,16,0,0

H 16,0,0,16,0,0,16
0,0,16,0,0,16,0

192,0,15,236,0,63,252
0,249,192,1,130,160,2
5,32,4,9,16,8,8
136,16,8,64,32,8,0

PELICAN

OWL

COCKEREL

15,231,240,30,0,120,31
231,248,92,0,58,92,0
58,92,66,50,76,255,34
167,255,229,147,255,201,143
255,241,71,255,226,63,255
252,7,255,224,63,255,252
67,255,194,141,255,177,144
126,9,160,0,5,160,0
5,16,0,8,8,0,16

0,0,120,0,0,246,0
1,255,0,1,254,0,3
254,0,3,243,0,7,241
G,15,225,0,63,225,31
255,225,127,255,242,255,255
242,255,255,244,255,255,240
255,255,240,255,253,224,255
249,216,249,243,216,252,3
220,126,3,140,31,143,135

: 0,0

127,0,0

52,0,1,248
+3,240,0,15,240,0

127,240,3,255,240,31,255

248,63,255,248,127,255,248

255,255,248,255,255,244,253

255,244,252,56,246,127,0

238,63,129,199,31,199,129%

0
3

0,
55
6,
3

0
0,0
0,

;0
0,126
126,0
,78,255,114,195
195,155,255,217,166,126
+161,255,133,166,36,101

164,230,37,164,129,37,180
145,37,146,74,105,81,36
106,8,144,144,4,77,32

EAGLE

DUCK AND DUCKLINGS

PENGUIN

0,4,192,0,9,0,0
18,96,0,148,158,1,85
48,2,85,62,98,86,113
224,46,198,240,127,152,127
255,224,127,255,192,127,255
224,240,127,152,224,46,198
98,86,113,2,85,62,1
85,48,0,148,158,0,18
96,0,9,0,0,4,192

0,6,0,0,15,0,1
247,128,7,251,128,15,253
2,31,254,6,61,255,78
126525%,158; 119,127,252 .63
127,248,223,127,252,126,127
254,126,255,174,57,255,70
31,254,198,15,253,130,3
251,128,0,240,0,0,24
0,0,0,0,0,0,0

3,224,0,6,28,0,11
254,0,23,253,0,47,15
0,94,2,130,124,1,65
248,1,194,216,0,196,232
0,164,244,0,228,122,0
230,63,0,162,31,193,194
154 103,198, 7 130 133
243,140,0,3,24,0,3
176,0,1,224,0,0,128

| T —— 1 |

WALRUS

0,224,0,1,223,255,1
240,0,1,255,255,0,227
254,0,112,254,0,56,28
15,158,0,31,207,128,63
247,192,63,255,224,127,255
240,127,255,240,127,255,240
255,255,240,255,255,240,255
207,224,195,135,192,129,0
0,1,24,0,7,244,0

0,16,64,0,15,128,0
18,64,0,45,160,0,45
160,0,34,32,0,18,64
0,56,192,0,119,64,0
248,224,1,247,96,3,240
96,7,224,96,7,224,192
15,128,128,14,1,0,28
14,0,21,178,0,38,66
0,12,231,0,0,148,128

0,1,160,0,3,192,0
2,224,0,0,160,3,129
240,3,193,192,7,227,176
15,231,176,31,255,128,31
191,192,31,223,224,31,223
96,29,231,96,25,248,224
8,255,192,0,63,128,0
15,0,0,4,0,0,4
0,0,4,0,0,11,0

OCTOPUS

3,128,0,5,192,0,31
224,0,1,224,0,0,96
0,0,225,128,1,195,0
3,143,192,7,31,0,14
63,224,28,127,128,56,255
112,121,255,128,255,248,127
255,247,252,254,15,240,255
255,224,255,255,192,63,255
128,31,255,0,15,254,0

'0,0,0,0,0,0,0
248,56,3,255,244,31,255
255,63,254,56,127,252,0
255,248,0,7,248,0,29
240,0,1,240,0,3,240
0,3,240,0,3,240,0
1,224,0,1,224,0,1
224,0,0,224,0,0,96
0,0,32,0,0,0,0

0,0,0,0,128,0,1
128,0,3,128,0,7,192
0,15,192,0,15,192,0
15,192,0,15,224,0,15
224,0,7,240,0,7,240
0,3,248,56,3,255,244
31,255,255,63,254,56,127
252,0,255,240,0,3,192
0,14,0,0,0,0,0

LOBSTER

PIRANHA

MORAY EEL

0,36,0,0,40,8,0
118,18,0,248,20,0,246
60,0,248,112,0,244,254
1,249,248,1,243,254,1
231,240,1,239,252,15,255
234,31,255,144,33,254,0
0,252,0,0,254,0,0
127,128,0,255,224,1,7
192,7,7,128,8,128,0

'
18,40,172,34,48,200,66
16,79,132,8,36,8,121
227,240,138,33,176,243,195
16,32,130,24,81,67,12

0,112,0,0,184,0,1
248,0,0,108,0,0,44
0,0,70,0,0,70,0
0,79,0,0,63,0,0
255,0,1,255,0,3,131
0,2,67,0,4,67,0
0;67,0,0,35,0,0
35,0,0,19,0,0,119
0ia 0 IE000:56 4128

CHARACTERS

SHERRIFF

SHERRIFF

SHERRIFF

0,60,0,0,126,0,1
255,128,0,126,0,0,126
0,0,126,0,0,60,0
7,129,224,9,0,144,18
0,72,36,0,36,72,0
18,144,0,9,255,255,255
15,255,240,7,255,224,3
231,1%92,1,231,128,3,231
192,7,231,224,7,231,224

0,7,128,0,15,192,0
63,240,0,14,128,0,12
64,0,8,140,0,4,148
0,4,100,0,10,24,0
20,136,0,9,4,0,18
2,64,20,2,132,23,254
134,20,30,255,7,252,255
3,248,252,1,240,68,0
224,170,0,248,145,0,184

0,7,128,0,15,192,0
63,240,0,14,128,0,12
€4,0,8,128,0,4,128
0,5,96,0,10,144,0
18,136,0,18,132,0,18
130,128,10,130,132,6,254
134,14,252,255,23,248,255
59,240,252,60,249,68,24
127,170,24,62,145,12,24

HUNCHBACK

HUNCHBACK

HUNCHBACK

,0,0,3,128,0
,0,55,64,0,78
0,132,64,1,16,64
€1,128,3,207,0,3
158,192,3,158,64,1,143
192,0,206,0,0,126,0
0,191,0,1,223,0,3
239,128,3,135,144,1,131
240,1,129,240,0,192,192

0,0
7,0
3z,
3,1

,55,64,0,78
132,64,1,15,64
,128,3,213,0,2
,3,246,0,1,246
46,0,0,246,0
,0,0,124,0,0
.0,112,0,0,112
2,0,0,92,0

,0,3,128,0
,55,64,0,78
132,64,1,16,64
,149,128,3,213,0,3
247,128,3,240,128,2,255
128,0,254,0,0,125,0
0,251,0,1,247,0,3
239,128,3,135,144,1,131
240,1,129,240,0,192,192

o]
o]

DWARF

DWARF

DWARF

0,248,0,11,240,0,7
232,0,1,196,0,0,72
0,0,32,0,0,72,0
0,204,0,0,204,0,0
204,0,0,66,0,0,152
0,0,156,0,0,132,0
0,68,0,0,76,0,0
80,0,0,112,0,0,112
0,0,120,0,0,88,0

0,248,0,11,240,0,7
232,0,1,196,0,0,72
0,0,32,0,0,72,0
0,204,0,0,204,0,0
204,0,0,66,0,0,34
0,0,92,0,0,68,0
0,70,0,0,138,0,1
18,0,3,235,64,1,135
192,1,131,128,0,193,0

0,248,0,3,240,0,7
232,0,9,196,0,0,72
0,0,33,128,0,78,128
0,152,128,1,63,0,1
60,0,0,156,0,0,72
0,0,56,0,0,72,0
0,68,0,0,164,0,1
18,0,3,235,64,1,135
192,1,131,128,0,193,0

SHERRIFF

SHERRIFF

0,7,128,0,15,192,0
63,240,0,14,128,0,12
64,0,8,128,0,4,128
0,5,96,0,10,144,0
18,136,0,18,68,0,17
34,64,8,146,132,7,78
134,15,188,255,31,248,255
63,240,252,60,233,68,24
95,170,24,62,145,12,24

0,0,16,7,128,32,14
0,96,14,128,240,12,65
224,8,134,64,4,138,0
5,114,0,10,148,0,18
136,0,18,68,0,17,34
0,8,154,0,7,78,0
15,1%0,0,7,252,0,3
248,0,1,240,0,0,224
0,0,248,0,0,184,0

0,60,0,0,126,0,1
255,128,0,102,0,0,90
0,0,66,0,0,126,0
7,153,224,9,60,144,18
126,72,36,126,36,72,60
18,144,24,9,255,231,255
15,255,240,7,255,224,3
231,192,1,231,128,3,231
192,7,231,224,7,231,224

HUNCHBACK

HUNCHBACK

03,1980, 7500
55,64,0,78,32,0,244
64,1,128,64,3,153,128
3,166,0,3,174,182,3
222,64,0,255,192,3,127
0,7,191,128,31,223,226
63,231,254,56,0,252,24
0,48,24,0,0,12,0
0,0,0,0,0,0,0

0,0,0,0,56,0,0
124,0,0,124,0,3,131
128,4,130,64,8,130,32
10,130,160,11,255,160,11
255,160,11,255,160,11,255
160,19,255,144,9,255,32
1,255,0,1,239,0,1
239,0,1,239,0,0,238
0,1,239,0,3,171,128

0,0,0,0,56,0,0
68,0,0,40,0,3,147
128,4,186,64,8,130,32
10,130,160,11,255,160,11
255,160,11,255,160,11,255
160,19,255,144,9,255,32
1,255,0,1,239,0,1
239,0,1,239,0,0,238
0,1,239,0,3,171,128

|

CHARLIE CHAPLIN

CHARLIE CHAPLIN

CHARLIE CHAPLIN

0,48,0,0,121,192,0
253,64,0,105,0,0,68
128,0,72,192,0,33,160
0,127,144,0,255,136,1
255,4,1,252,2,0,156
1,0,120,0,0,120,0
0,124,0,0,188,0,1
222,0,3,239,64,1,135
192,1,131,128,0,193,0

0,48,0,0,120,0,0
252,0,0,104,0,0,68
0,0,72,0,0,32,0
9,120,0,0,120,128,0
125,64,0,126,64,0,122
128,0,120,0,0,112,0
0,112,0,0,112,0,0
240,0,1,112,0,2,96
0,0,120,0,0,92,0

0,48,0,0,120,0,0
252,0,0,104,0,0,68
0,0,73,192,0,33,64
0,121,0,0,252,128,1
254,192,3,247,160,7,123
144,6,120,8,0,124,4
0,124,2,0,250,1,1
246,0,3,239,64,1,135
192,1,131,128,0,193,0

DINOSAURS

TYRANNOSAURUS i TYRANNOSAURUS [CHTHYOSAURUS l

0,0,224,0,1,208,0 0,7,0,0,11,128,0 v,254,0,0,127,0,0
1,248,0,3,204,0,3 31,128,0,51,192,0,47 63,192,0,127,96,0,223
244,0,3,200,0,3,192 192,0,19,192,0,3,192 176,1,191,216,3,127,248
0,2,224,0,6,120,0 0,2,232,0,6,112,0 2255948, 7, 225932, 7
7,224,0,15,224,0,31 7,224,0,15,224,0,31 131,120,15,3,56,14,4
224,0,29,240,128,61,240 224,0,29,240,0,61,240 4,12,0,2,8,0,1
64,59,248,96,123,248,48 59 248,0,123,248,128 $,0,0,8,0,0,28
247,184,25,255,48,15,244 ,184,65,255,48,99, 244 0,0,62,0,0,99,0
32,7,48,16,2,80,28 32,63,48,16,28,80,28 0,65,0,0,128,128,0

STEGOSAURUS

0,15,0,0,31,128,0

1,128,1,223,184,1,198
56,1,223,184,0; ",192
6,127,230,6,255,246,1
255, 748,1.,255, 7ﬂ0,:
124,23,254,254,13,253,
94,255,239,248,221,134, 128
193 140 T 135 152,0,129
T2 O,u,G,U,O,W

ALLOSAURUS

BRONTOSAURUS } ‘ PTERANODON

0,0, 3 0 0,7,0 240,0,0,248,0,0,254 254,0,0,15,128,0,7

Gl 5y c.e:,n] 0,0,255,0,0,255,128 192,0,3,224,0,1,240
2554 0 ;2550 3255 255,192,0,255,224,0 0,0,249,223,0,124,112
0,7,255,0,15,255,0 255,240,0,255,248,0,255 0,62,224,0,63,128,0
31,255,208,63,255,248,127 252,6,255,254,9,255,255 i 63,128,0,223,192,0,31
255,29,248,255,15,224,63 16,255,255,16,255,255,136 192,0,103,224,0,1,224
7,192,31,0,0,14,0 255,255,204,255,255,198, 14 0,0,112,0,0,48,0
0,12,0,0,28,0,0 127,227,199,3,243,195,24 0,48,0,0,16,0,0
24,0,0,56,0,0,113 127,195,24,62,135,48,28 16,0,0,16,0,0,16

WITCH

=

TL,Z\S /26

189,73, 1‘4,l26 3
?1,40,153,20,40,

§,0,240,8,3,240,8
7,152,28,15,248,28,31
196,127,63,184,34,127,120
67,255,204,39,255,242,31
255,156,239,255,232,7,255
240,13,254,0,25,62,0
49,62,15,35,126,48,110
127,127,255 255,240,80,63
127,0,9,48,0,24,15

,1,65,12 +2,36,255
61,255, 132 91,255,196
T0255, 232.103,255,240.63
7. 240,3,225,240,3,97
6,3,97,176,3,96,144
3,96,216,2,32,216,2
32,72,2,32,72,2,32
72,4,16,72,4,16,36

SPECTRE SPOOK SPOOK
48,60,12,120,126,30, 174 0,60,0,0,126,0,0
255,62, 255,255,255,255,255 255,0,1,255,128,3,255
G551258, 188,255, 238,24, 247 192,7,189,224,7,24,224
199,90,227,207,126,243,143 7,90,224,15,126,240,15

255,241 159 126,249,31,36
248,?1,129,248,53,231,252
63,255,252,63,255,252,127
255,254,127,221,254,245,204
223,164,136,85,164,136,8¢

255,240,31,255,248,31,231
248,31,129,248,63,36,252
63,126,252,63,255,252,127
255,254,127,221,254,245,204
223,164,136,85,164,136,85

BAT

o

BAT

20.0,1,64,0.2,95
§.48,0,12,56,
92,0,58,30, 0,120

36,24 G ‘5,165,240,23
232, 37255;192:3,219
ﬁb,iﬁﬂ,l,iZﬁ,lZd
,0,219,0,0
195,0,1,36

0,8,0,0,4,0,0
12,0,0,30,0,0,14
0,0,31,0,0,63,0
0,31,0,0,15,0,0
31,0,0,63,0,0,127
0,0,63,32,0,31,64
0,14,192,0,63,160,0
255,192,3,254,128,15,248
64,0,12,0,0,2,0

EHE

BANANA

APPLE

SPADE

0,1,192,0,1,255,0
0,127,0,0,54,0,0
80,0,0,208,0,0,208
0,1,176,0,1,160,0
3,96,0,3,96,0,6
224,0,14,192,0,561,192
0,1'23,128,1,231,128,15
223,0,126,62,0,129,252
0,127,224,0,15,128,0

0,64,0,0,32,0,3
147,224,15,215,240,31,255
1%2,7,151,0,0,16,0
3,215,128,7,215,192,15
254,96,15,254,96,15,255
224,15,255,224,15,255,224
74255,192,7,255,192,3
255,128,3,255,128,1,255
0,1,255,0,0,238,0

255,192,15,255,224,31,255
240,63,255,248,63,215,248
63,147,248,31,57,240,14
56,224,4,124,64,0,124
0,0,254,0,1,255,0

PINEAPPLE

PEAR

CLUB

0,16,0,0,214,0,1
125,0,0,56,0,1,255
0,2,124,128,4,56,64
0,68,0,0,170,0,1
17,0,2,170,128,2,68
128,2,170,128,3,17,128
2,170,128,2,68,128,1
171,0,1,17,0,0,170
0,0,198,0,0,124,0

0,15,0,0,63,132,0
255,196,0,63,232,0,31
16,0,0,40,0,3,204
0,63,238,15,225,238,24
15,239,57,255,239,121,255
207,127,255,135,255,254,3
255,248,3,255,248,1, 255
240,0,127,224,0,63,224
0,31,192,0,7,128,0

0,56,0,0,124,0,0
254,0,1,255,0,1,255
0,1,255,0,0,254,0
0,124,0,7,125,192,15
57,224,31,187,240,63,255
248,63,255,248,63,215,248
31,147,240,15,57,224,7
57,192,0,124,0,0,124
6,0,254,0,1,255,0

CHERRIES

STRAWBERRY

BELL

0,8,0,0,16,0,0
16,0,31,39,128,63,175
224,127,255,240,63,167,192
31,80,0,0,136,0,1
4,0,2,3,192,2,3
32,7,7,48,12,143,248
28,207,248,63,2359,248,63
231,240,63,227,224,31,193
152,15,128,0,7,0,0

0,32,0,0,16,0,0
16,0,1,255,0,3,255
128,7,111,192,15,255,224
29,189,176,31,239,240,30
254,176,27,219,240,31,255.
112,13,111,224,15,251,96
6,223,192,7,251,192,3
127,128,1,239,0,0,254
0,0,124,0,0,56,0

0,24,0,0,126,0,0
249,0,1,240,128,3,240
64,7,224,32,7,224,32
7,224,32,7,224,32,7
224,32,7,224,32,7,224
32,15,192,16,31,128,8
31,128,8,31,255,248,0
52,0,0,52,0,0,24
0,0,0,0,0,0,0

DIAMOND

0,16,0,0,16,0,0
56,0,0,56,0,0,124
0,0,124,0,0,254,0
1,255,0,3,255,128,7
255,192,15,255,224,7,255
192,3,255,128,1,255,0
0,254,0,0,124,0,0
124,0,0,56,0,0,56
0,0,16,0,0,16,0

241,128,7,251,128,3,255
0,7,249,128,15,255,192

0,0,0,0,0,0,6
205,128,6,205,128,7,243
128,7,241,128,1,254,0
1,250,0,3,243,0,1
250,0,1,250,0,1,250
0,1,250,0,1,250,0
1,250,0,3,253,0,7
241,128,7,251,128,3,255
0,7,249,128,15,255,192

HEART

KNIGHT

BISHOP

3,1,128,7,131,192,15
1959,224,31,199,240,63,239
248,63,239,248,63,255,248
63,255,248,31,255,240,15
255,224,7,255,192,3,255
128,1,255,0,0,254,0
0,254,0,0,124,0,0
124,0,0,56,0,0,56
0,0,16,0,0,16,0

0,8,0,0,56,0,0
220,0,1,250,0,3,249
6,0,253,0,1,61,0
0,121,0,1,250,0,3
242,0,3,228,0,1,252
0,0,120,0,1,238,0
1,250,0,3,253,0,7
241,128,7,251,128,3,255
0,7,249,128,15,255,192

0,48,0,0,48,0,0
120,0,0,252,0,0,124
0,1,58,0,3,157,0
3,191,0,3,255,0,1
254,0,0,252,0,0,120
0,1,254,0,0,252,0
1,254,0,3,253,0,7
241,128,7,251,128,3,255
0,7,249,128,15,255,192

JOKER

KING

QUEEN

0,60,0,0,195,224,1
64,48,2,36,76,4,31
76,4,31,224,12,223,144
29,57,136,62,16,132,126
68,130,126,170,226,118,0
94,100,0,67,68,40,67
196,16,64,194,130,128,2
108,128,1,17,0,0,130
0,0,68,0,0,56,0

0,120,0,0,180,0,0
252,0,0;,252,0,6,181
128,15,51,182,15,255,192
15,255,192,7,255,128,3
255,0,1,250,0,3,253
0,1,250,0,1,250,0
1,250,0,3,253,0,7
241,128,7,251,128,3,255
0,7,249,128,15,255,192

2,49,0,7,123,128,2
49,0,1,122,0,3,255
0,1,254,0,3,255,0
1,250,0,1,250,0,0
244,0,0,244,0,0,244
0,0,244,0,0,244,0
1,254,0,3,253,0,7
241,128,7,251,128,3,255
0,7,249,128,15,255,192

POINTING HAND

PALM TREE

112,0,14,208,0,11,144
0,9,232,255,23,21,129
168,11,0,208,6,0,96
2,0,64,2,0,64,2
231,64,2,231,64,2,0
64,1,24,128,3,0,192
5,219,160,10,189,80,20
129,40,232,66,23,144,60
9,208,0,11,112,0,14

0,0,0,0,0,0,0
0,0,127,255,0,128,0
195,128,96,111,115,130,27
14,4,11,2,24,11,3
228,11,1,4,11,1,26
11,0,226,11,0,77,11
0,49,11,0,38,27,0
24,107,0,7,143,0,0
3,0,0,0,0,0,0

7,208,240,15,225,192,28
243,248,56,55,224,99,190
120,79,252,60,159,255,26
60,63,205,120,119,228,113
211,196,195,145,226,135,16
160,134,144,32,70,16,16
2,48,16,4,48,0,0
96,0,0,224,0,1,192
0,7,128,0,15,128,0

ARROW

ARROW

0,2,0,0,7,0,0
4,128,63,254,64,96,0
32,224,0,16,224,0,8
224,0,4,224,0,2,224
0,1,224,0,2,224,0
4,224,0,8,224,0,16
224,0,32,255,254,64,255
254,128,255,255,0,0,14
0,0,12,0,0,8,0

06,0,0,0,0,0,0
248,219,1,241,182,3,227
108,7,198,216,15,141,176
31,27,96,62,54,192,124
109,128,255,255,224,124,109
128,62,54,192,31,27,96
15,141,176,7,198,216,3
227,108,1,241,182,0,248
219,0,0,0,0,0,0

PENCIL

PAINTBRUSH

SHAMROCK

0,1,128,0,2,64,0
4,32,0,12,16,0,30
8,0,59,4,0,119,130
0,238,194,1,221,228,3
187,184,7,119,112,14,238
224,21,221,192,19,187,128
17,119,0,16,238,0,16
92,0,24,56,0,28,16
0,31,224,0,0,0,0

0,28,0,0,58,0,0
50,0,0,50,0,0,50
0,0,50,0,0,20,0
0,20,0,1,255,192,2
0,32,2,0,32,2,0
32,2,170,160,1,85,64
2,170,160,1,85,64,3
255,224,3,255,224,7,255
192,7,255,192,15,255,128

1,199,0,3,199,128,3
239,128,7,239,192,31,239
240,63,239,248,63,239,248
31,255,240,15,255,224,0
124,0,15,255,224,31,255
240,63,239,248,63,215,248
31,215,240,7,147,192,3
147;128,3,33,128,1,32
0,0,64,0,0,64,0

—

CK

it

CHARIOT

, 240
220,0
' 1,128;3

233,224,1,245,208,1,255
200,3,255,228,15,131,98
22,0,184,40,0,72,80
0,36,160,0,18,32,0
1,0,0,0,0,0,0

0
,0,8,60
2,200,0
127,147,128,7,233,1%2,3
245,224,3,255,208,1,251
208,0,241,136,1,193,72
1,33,64,0,146,128,0
69,0,0,42,0,0,4
0,0,0,0,0,0,0

0,0,0
0,240
2,0,8

0,0,0,0,2,0,0
28,0,0,32,0,24,64
0,25,128,0,18,0,0
58,0,8,94,0,28,152
0,62,152,0,127,16,127
248,28,255,240,61,255,240
62,255,224,126,227,192,78
96,240,180,33,16,180,82
32,72,40,64,48,20,128

TROLLEY

TROLLEY

FROGMAN

0,0,12,0,0,12,3
0,132,3,1,76,4,56
60,12,24,12,28,96,4
54,152,12,49,24,20,40
24,36,72,60,34,136,60
33,204,126,97,255,255,255
243,255,207,140,0,49,18
0,72,45,0,180,45,0
180,18,0,72,12,0,48

48,0,0,48,0,0,33
0,192,50,128,192,60,96
32,48,24,48,32,6,56
48,25,108,40,24,140,36
24,20,68,60,18,132,60
17,134,126,51,255,255,255
243,255,207,140,0,49,18
0,72,45,0,180,45,0
180,18,0,72,12,0,48

8,128,3,96,64,1
132,0,128,16,0,0

oMo OO

BMX RIDER

BMX RIDER

0,56,0,0,40,0,0
16,0,0,198,0,1,147
0,3,57,128,0,56,0
7.,69,192,0,56,0,0
22,0,0,22,0,0,198
0,0,214,0,0,214,0
0,208,0,0,214,0,0
56,0,0,208,0,0,16
0,0,16,0,0,16,0

0,56,0,0,40,0,0
16,0,0,198,0,1,147
0,3,57,128,0,56,0
7,69,192,0,56,0,0
208,0,0,208,0,0,198
0,0,214,0,0,214,0
0,22,0,0,214,0,0
56,0,0,22,0,0,16
©,0,16,0,0,16,0

0,1
255,128,1,129,128,3,60
192,3,60,192,4,207,32
11,15,208,28,15,248,40
15,244,68,15,226,132,15
225,2,15,192,2,15,.192

' ROUTINES CHECKLIST

The table shown below gives a summary of all the
machine-code routines used in this book. This table does
not explain every detail of using each routine; it is
intended only as an aid when using the routines in your

programs. If you have not used a routine before, it is
recommended that you read the introduction to the
routine on the appropriate page of the book before using

it in your program.

page

routine

parameters

co-ordinates

sprite buffer

24 x 21 sprite editor

Fna()—e()

character

sprite print

ENf(x,y,n)

print position

master sprite

sprite handling

FNg(x.y,d.l,s,c,n)

start co-ordinates
direction
distance to be moved

switch
collision flag
sprite number

pixel

pixelx 3

21

keyboard-controlled sprite

interrupt vector table

FNh (s,x,y,c,n)

switch

start co-ordinates
collision flag
sprite number

22

double horizontal sprite

FNi(x,y,dL,s,c,n)

start co-ordinates
direction
distance to be moved

switch
collision flag
sprite number

23

double vertical sprite

FNj (x,y,d,l,s,c,n)

start co-ordinates
direction
distance to be moved

switch
collision flag
sprite number

pixel

pixelx 3

25

sprite animation

FNk (x,y,d.l,s,f,c,v,n)

o Fhoow

<

start co-ordinates
direction
distance to be moved

switch

number of frames
collision flag
animation speed
sprite number

29

horizontal scroll

FNI (L,d)

. length of scroll

direction

pixel

" —

29

vertical scroll

FNm(l1,d)

length of scroll
direction

pixel

31

window

FNn(x,y,l,n,d,r)

L

start co-ordinates
width of window
sprite number
direction

repeat flag

character
character

33

interrupt-driven window

FNo(s,x,v,l,n,d,r)

T = T e U e T — Rl B (ol Lot =)
et

switch

start co-ordinates
width of window
sprite number
direction

repeat flag

character
character

Before using a routine, you must first define it in your
program using DEF FN followed by the correct number
of parameters. Parameters passed to machine-code
routines must always be whole numbers; if a parameter
value is calculated by your program, then put an INT
statement in front of it to ensure a whole-number value
is passed to the routine.

ranges bytes address check

700 54600

355 54200 190

0-28 and 0-20 75 54100 60

1-10 365 53700 83

0-231and 0-154 170 53500 66
0-3

0-51 (vertical)

(-77 (horizontal)

0-1

0

-1

-1

-1 250 53100 26
-231 and 0-154

-1

-1

—_—o O oo

0
256 52736

0-231and 0-154 235 7 52400 53
0-3

0-51 (vertical)

0-77 (berizontal)

0-1

0-1

1-10

0-231and 0-154 230 52100 20
0-3

0-51 (vertical)

0-77 (horizontal)

0-1

0-1

1-10

0-231 and 0-154 275 51700 63
0-3 '

0-51 (vertical)

0-77(horizontal)

0-1

1-10

0-1

1-255

1-10

0-255 190 51500 61
0-1

0-175 215 50900 47
0-1

0-31and 0-21 290 49600 43
0-31

1-10

0-1

0-1

0-1 315 49200 154
0-31and 0-21

MEMORY MAP

This chart shows how the Spectrum memory is organized when all
the routines are present in memory. RAMTOP can be set to 49000
using a CLEAR command.

FNa- FNe

ENf

FNg

FNh

FNi
FNj
FNk

FNI

FNm
FNn

FNo

title

lowest book 3 routine

sprite buffer (700 bytes)

24 x 21 sprite editor

sprite print

master sprite

sprite-handling

keyboard-controlled sprite

interrupt vector table

double horizontal sprite

double vertical sprite

sprite animation

horizontal scroll

vertical scroll

window

interrupt-driven window

RAMTOP (after CLEAR 45000)

address

55500
54600

54200

54100
53700
53500

53100
52736

52400

52100

51700

51500

50900
49600
49200

49000

Main entries are given in
bold type

Aircraft 40-1
Aliens 36-7
Animals 48-50
Animation 24-7
Animation
program 25-7
Automobile
program 22-3

BASIC 6
BASIC programs
adapting 9
loading 9
Bat program 19
Birds 52
Boats 46-7
Bugs 51

Cars 44-5
Characters,

human 54-5
CLEAR 8

Cockpit program 30-1

Dinosaurs 56
Displaying
sprites 14-15
Double horizontal sprite
routine 22
Double vertical sprite
routine 23
Double-sized
sprites 22-3

Errors, while keying
m 9

FNa 11
FNa-e 13
FNb 11
FNe 12
FNf 14,15
FNg 16-17
FNh 20-1
ENi1 22
FNj 23
FNk 25-7
FNI 28-9
FNm 28-9
FNn 31

FNo 33
Functions 9
Games symbols 58-60
Horizontal scroll
routine 28-9

Human characters 54-5
matchstick men 61

Interrupt-driven window
routine 33
Interrupts 16-17

Keyboard-controlled
sprites 20-1
Keying in sprites 35

Loading

BASIC programs 9
machine code 8
Lorries 44-5

Machine code 6
adapting routines 9
disadvantages 6
loading 8

routines 6-7, 62
using 8-9

Master sprite routine 16
Matchstick men 61
Memory

clearing 15

map 63

storing sprites 15
Motorcycles 44-5
Movement, creating 10

Phantoms 39

Railway trains 43
RANDOMIZE 9
Repeating sprites 30
Routines 6-7
adapting 9
checklist 62
saving 8-9

using 7

SAVE 8

Screen scrolling 28-9
Scroll routines 28-9
Sea creatures 53

Ships 46-7
Snails 51
Spacecraft 38, 42
Spectres 57
Spooks 57
Sprite directory
aircraft 40-1
aliens 36-7
animals 48-50
birds 52
boats 46-7
bugs 51
cars 44-5
characters 54-5
dinosaurs 56
game symbols 58-60
matchstick men 61
motorcycles 44-5
phantoms 39
sea creatures 33
ships . 46-7
snails 51
spacecraft
spectres 57
spooks 57
trains 53
trucks 44-5
using 35
Sprite editor 11-13
program 11-12
routines 11-13
Sprites 10
animation
routine 24-7
displaying 14-15
double-sized 22-3
handling
routine 16-17
implementing 10
keyboard
controlled 20-1
keying in 35
moving 16-19
print routine 15
repeating 30
storing 15
Storing sprites 15

38,42

Train program 18-19
Trains 53
Trucks 44-5

Unicycle program 7, 23

Vertical scroll
routine 28-9

Wildlife program 26-7
Window game

program 32-4
Window routines 30-4
Wrapround effect 28

Acknowledgments

A number of people
helped.-and encouraged
me with this book.
‘Thanks to Alan and
Michael at Dorling
Kindersley, to Jacqui
Lyons for her
representation and to
Andy Werbinski for
reluctant assistance. I am
particularly grateful, as
always, to my parents,
and to Martine.

Piers Letcher
Spring 1985

The bestselling teach-yourself programming course now offers the
first complete full-colour book on creating sprites on the
ZX Spectrum.

[llustrated with over 300 screen-shot photographs, it contains
programs for single and double sprites, for animation, and for
- setting overlaps and detecting collisions, and includes an easy-to-
use sprite generator with which you can design and save your own
sprites. In addition, there is afull-colour design directory containing
over 200 original sprite designs complete with all the data needed to
program them.

Together, Books Three and Four in this series form a complete,
self-contained graphics system for Spectrum-owners.

Allthe programs in this book run on both 48K ZX
Spectrum and ZX Spectrum+ machines.

€€ Far betterthan anything else reviewed on these pages. . .
: Qutstandingly good 99
BIGK

€€ As good as anything else that is cvoif_dbie, and far
betterthan most 99
COMPUTING TODAY

€€ Excellent. .. As aseries they could form the best ‘basic
infroduction’ to programming I've seen 99
POPULAR COMPUTING WEEKLY

A new generation of software

Entertainment e Education ¢ Home reference
Send now for a catalogue fo Goldstar, 1-2 Henrietta Street, London WC2E 8PS

DORLING KINDERSLEY

£5.95 9 '780863"181047"

	Cover

	Contents

	About This Book

	What is machine code?

	Disadvantages of machine code

	The solution

	The machine-code routines

	How to use the routines

	The programs in use

	What the routines do

	Creating and editing sprites

	Using The Machine Code

	1: CLEAR memory

	2: Load the machine code

	3: SAVE the routine

	4: LOAD a BASIC program

	Using functions

	What are Sprites?

	What is movement?

	Creating movement

	Ways of implementing sprites

	The Sprite Editor 1

	The sprite editor routines

	The Sprite Editor 2

	The BASIC editor program

	FNa-e - 24x21 Sprite Editor Routines

	Displaying Sprites

	How sprites are stored

	FNf - Sprite Print Routine

	How the progam works

	Moving Sprites 1

	The master sprite routine

	The sprite-handling routine

	How to use the routines

	Interrupts

	FNg - Sprite Handling Routine

	Moving Sprites 2

	The train program

	More about the parameters

	The bat program

	Keyboard-Controlled Sprites

	Controlling the routine

	FNh - Keyboard-Controlled Sprite Routine

	Double-Sized Sprites

	The double sprite programs

	FNi - Double Horizontal Sprite Routine

	FNj - Double Vertical Sprite Routine

	Animation 1

	FNk - Sprite Animation Routine

	Animation 2

	Transferring animation to the screen

	Trying out the animation

	The wildlife program

	Screen Scrolling

	The scroll routines

	Other scrolling effects

	FNl (ef-en-el) - Horizontal Scroll Routine

	FNm - Vertical Scroll Routine

	Windows 1

	Repeating sprites

	Differences between sprites and windows
	FNn - Window Routine

	The cockpit program

	How the program works

	Windows 2

	The window game

	FNo - Interrupt-Driven Window Routine

	How the program works

	Windows 3
	Using the Sprite Directory

	Keying in the sprites

	What the directory contains

	Aliens

	Spacecraft

	Phantoms

	Aircraft

	Spacecraft

	Railway Trains

	Cars, Trucks and Motorbikes

	Ships and Boats

	Animals

	Bugs and Snails

	Birds

	Sea Creatures

	Characters

	Dinosaurs

	Spooks and Spectres

	Games Symbols

	Matchstick Men

	Routines Checklist

	Index

	Back Cover

