THE
SPECTRUM

PROGRAMMER

The Spectrum
Programmer

The Spectrum
Programmer

S. M. Gee

Editorial Adviser: Henry Budgett

GRANADA

London Toronto Sydney New York

Granada Publishing Limited - Technical Books Division
Frogmore, St Albans, Herts AL2 2NF

and

36 Golden Square, London WIR 4AH

515 Madison Avenue, New York, NY 10022, USA

117 York Street, Sydney, NSW 2000, Australia

100 Skyway Avenue, Rexdale, Ontario, Canada M9W 3A6
61 Beach Road, Auckland, New Zealand

Copyright © 1983 by S. M. Gee

British Library Cataloguing in Publication Data

Gee, :SiM

The Spectrum programmer.

1. Sinclair ZX Spectrum (Computers)—Programming
1. Title

001.64°2 QA76.2.S62

ISBN 0-246-12025-8

First published in Great Britain 1983 by Granada Publishing Ltd
Reprinted 1983 (twice)

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed in Great Britain by Mackays of Chatham. Kent

All rights reserved. No part of this publication may be reproduced.
stored in a retrieval system. or transmitted in any form or by any
means, electronic. mechanical, photocopying, recording or otherwise,
without the prior permission of the publishers.

Granada®
Granada Publishing®

Contents

Preface
1 Before You Switch On

What is a computer?
Programs and programming
The history of the ZX Spectrum

2 Getting to Know Your Spectrum
A new acquaintance
Setting up the Spectrum
Using the keyboard
Entering a program
More about the keyboard
Using a tape recorder
Editing and our second program
As you go along

3 First Steps - Variables, PRINT, LET and INPUT
Variables
Storing things in variables - LET
Finding out what’s in a variable - PRINT
Arithmetic
Understanding expressions - the order of evaluation
Variables and constants - the full expression
A short program
Arother way of altering variables - INPUT

Variables and constants as expressions

1X

0 NN N W A

10

14
17
19
22
23
23
24

26
27
28
29

30

Describing BASIC
INPUT prompting
Mixed PRINT

Some sample programs

4 Looping and Choice - the Flow of Control

The flow of control

Looping - the GOTO

Choices and conditions - the IF statement
Using IF

The FOR statement

Using the FOR loop

IF . .. THEN and the colon

A final example

The flow of control summarised

5 Handling Text and Numbers

Strings

String expressions

Arrays

A word game

Initialising variables - DATA and RESTORE

Saving data on tape

6 Functions and Subroutines

The idea of a function

The Spectrum’s functions

User-defined functions DEF FN and FN
Subroutines GOSUB and RETURN

Using subroutines

7 Graphics

Controlling PRINT
PRINT functions - TAB and AT
A full screen - CLS and scrolling
Controlling INPUT

31
32
32
33
38
38
38
41
44
49
52
52
54
55
57
57
58
63
67
68
69
71
71
73
80
83
84
86
86
88
90
91

The graphics characters 93

User-defined graphics characters 96
Changing the way characters look - INVERSE
and OVER 99
Character attributes - FLASH and BRIGHT 101
Colour - BORDER, INK and PAPER 102
Display commands in colour 104
Temporary colours 105
Using graphics in games 106
8 Sound and Games 107
Simple sounds - BEEP 107
Programming tunes 109
Resting - PAUSE 112
Some sound effects 113
Attack the saucer - the SCREENS function 114
<9 High-resolution Graphics 118
The high-resolution screen 118
The graphics commands - PLOT, DRAW and
CIRCLE 119
High-resolution colours 124
Un-plotting -~ OVER and INVERSE 125
Finding out what’s on the screen - POINT 126
Using hi-res graphics 127
10 Logic and Other Topics 130
Logic and the conditional expressions 130
Inside the Spectrum - BIN, PEEK, POKE, IN, OUT,
USR and CLEAR 133
Finding out the colour - ATTR 136
REMark and good programming 136
Where next? 137
Further Reading 138

Index 139

Preface

This book has been written for all Spectrum users who want to learn
to write their own programs. Programming your Spectrum can be
great fun and very rewarding and learning BASIC is by no means a
daunting undertaking. This book is intended to take you from very
fundamental routines to proficient programming by clear and easy-
to-follow stages.

Chapter One introduces some ideas that are relevant to all
computers and programming in general and looks at the Spectrum’s
family tree. Chapter Two deals with getting ready to learn
programming on your Spectrum and it includes a program that
provides your Spectrum with its very own test card for tuning the TV
set. We start to learn programming in Chapter Three which
introduces variables and some of the essential keywords, such as
PRINT, INPUT and LET that are used to handle them. Chapter
Four introduces the idea of the flow of control which is central to
computer programming. Chapter Five shows how your Spectrum
handles both numbers and words and how you can combine both in
your programs. The uses of the Spectrum’s functions and the related
idea of subroutines are the main topics in Chapter Six and this is
where the very important commands RND, RANDOMISE and
INKEYS$ are discussed. The book pays a great deal of attention to
the Spectrum’s graphics and colour starting in Chapter Seven.
Sound is added in Chapter Eight which also presents a games
program which uses colour graphics and sound with exciting effects.
Chapter Nine explains the Spectrum’s high-resolution graphics
capabilities and includes lots of short programs that show off its
features in this respect. The final chapter covers the topic of logic
and also introduces some commands that allow the programmer to
control the Spectrum’s inner workings in a direct way.

As you will already realise, this book covers a lot of ground.
However, it is not meant to be hard going - it is meant to be fun.

x The Spectrum Programmer

More importantly, it is not meant as a reading book - it is meant as a
try-it-yourself book. There are lots of programs and program
snippets included and they are all there for you to use. So stand by
your Spectrum and enjoy learning BASIC.

I've actually had a good deal of fun writing this book and have
also learned some interesting things both about the Spectrum, which
I think is a remarkable micro, and about BASIC, which has long
been the best computer language as far as I'm concerned. I would
like to express my thanks to Jane Patience who helped with the not-
so-enjoyable stages of presenting my publishers with a readable
manuscript.

Chapter One
Before You Switch On

When you first set eyes on the Spectrum you may be surprised by
just how small it is. You may be even more amazed if you know that
only twenty years ago a computer with a similar memory capacity
would have filled the whole of a family house. You may wonder
whether the circuitry inside so slim and compact a case can really do
all the things the adverts claim for it. Well it can do all those things -
it can tackle complicated calculations, produce colour graphics and
emit a variety of sounds - and come up with many more extras
besides, and any limitations it has are not really to do with its small
exterior although they are governed by its price. However, the fact
that modern micro-technology has enabled so much to be squeezed
into so small a space is a fact that the Spectrum user can cheerfully
ignore, for at the same time as computer design is becoming more
sophisticated, computer use is becoming accessible to everyone who
wants to join in.

What is a computer?

This question is one that can be answered at many levels. Whole
chapters, even whole books, can be devoted to the subject. In order
to use your Spectrum, however, you really do not even need to ask
this question. After all, we all watch TV but few of us ever question
exactly what a television is. If you want to know every detail of the
way the Spectrum works then there is no choice but to learn about
electronics. However it is not difficult to gain an understanding of
what a computer does and roughly how it does it without knowing
anything about electronics or the ever present chip! The point is that
a computer is something that would exist even if electronics had
never been invented. Indeed the first computers were built using
cogs and gears and it took one hundred years before a valve (an early

2 The Spectrum Programmer

electronic component) found its way into such a machine. Although
in practical terms the computer seems to be a product of micropro-
cessor technology, the idea that lies behind a computer doesn’t
depend on the materials that you choose to build it from.

Every computer is composed of a number of parts that each
perform a well-defined function. Any computer has to have some
way of communicating with the outside world. In the case of the
Spectrum this need is met by a keyboard, on which you type, and the
TV screen, which the Spectrum can use to show you what you have
typed and anything else it needs to tell you. The keyboard is an
example of an inpur device and the TV screen is an ourput device.
These are not the only input/output or 1/0O devices that can be used
with a computer. You can buy a small printer that can be used with
the Spectrum for example and you can direct the Spectrum to
produce its output on this printer instead of, or as well as, the screen.

A machine that could only receive information and pass it on
unchanged wouldn’t really be worth calling a computer. Rather it
might be classed as a telephone or a telex! Inside every computer
there has to be some mechanism that can change or process
information before it is printed out. This mechanism usually takes
the form (these days at least) of complex electronics hidden inside
the computer. What we are talking about is often referred to as the
Central Processing Unit or CPU but it also has a traditional English
name that betrays the fact that computers were once made of cogs
and gears - the mill.

In the Spectrum the CPU is contained in a single chip known as a
Z80 and this is of course the origin of the Z in the Spectrum’s full
name - the ZX Spectrum. Whar exactly the Z80 does isn't of too
much importance from the point of view of programming in BASIC
and the way that it does it certainly isn’t! In general, however, what
the Z80 does is to perform arithmetic and other operations on
information input from the keyboard and stored within the
machine. What operations it does are controlled by a list of
instructions called a program. This aspect of a computer is so
important that you could almost say that a computer is a machine
that will obey a list of instructions - but any sort of definition of a
machine as complicated as a computer is dangerous! What sort of
instructions the Spectrum can obey will occupy the rest of this book,
so for the moment the subject will be set aside.

If a computer is going to obey a list of instructions concerning
what to do with various pieces of information it must obviously have
somewhere to store not only the information but also the list of

Before You Switch On 3

instructions. This part of a computer is known as memory but the
slightly less general term RAM (standing for Random Access
Memory) is almost universally used instead. You can think of RAM
as a sort of note pad where the CPU can record its list of instructions
and any data that it needs. Obviously every memory has a limited
capacity and this is an important measure of how powerful a
computer is. The larger the memory the larger the list of instructions
that can be stored. The most convenient unit of measurement to
apply to computer memory is the byze. Roughly speakinga memory that
can store one byte, can store one character. (Here the term character
means a letter, a digit or any punctuation that you might find in a
normal text - such as this book!) So a 400 byte memory could store
enough characters to hold about a quarter of a page of this book.
The only trouble with this convenient unit of measure is that it is a
little too small. Computers normally have memories that can store
thousands of characters and so it makes good sense to think in terms
of thousands of characters. The unit used for this is the kilobyte,
which is often shortened to kbyte or even just K. For various
reasons, however, | kbyte isn’t 1000 bytes as its name suggests, but
1024 bytes. (You may notice that this strange number is the nearest
power of two to 1000 and, as you might already know, computers
work in binary which is based on /wo states.) There are two versions
of the Spectrum that differ only in the amount of memory that they
can use —either 16K or 48K. So even the smallest Spectrum can store
roughly 16000 characters which is enough for a wide range of
interesting applications. (Early computers that were used by the
military to calculate missile trajectories, etc., often had less than
16K!)

This combination of 1/O devices, CPU and memory is all that
there is to a computer. The I/O communicates with the outside
world, the CPU calculates and generally processes information and
the memory holds the list of instructions that the machine obeys and
the data that the CPU acts on. In practice, there is one addition that
we must make to this list. When you switch your Spectrum off it
forgets everything stored in its memory. To keep information stored
accurately, most computer memories need a constant supply of
electricity. If you switch off the supply, the information is lost. This
sort of memory is often known as volatile memory. This loss of
memory is something of a problem because it implies that we have to
type in the list of instructions every time that the Spectrum has been
switched off. To overcome this difficulty most computers have a
second form of memory that is — non-volatile. In the case of the

4 The Spectrum Programmer

Spectrum, this takes the form of a standard cassette tape recorder
that can be used to save programs and data in a form that exists even
when the power has been switched off. A second advantage with this
type of memory is that it is removable. You canrecord a program on
a cassette and then take it out of the recorder (and even send it to
someone else). The Spectrum is ihen ready for you to start on a new
program or go back to an old one, which you can do by loading it
from an earlier recorded tape. The Spectrum can also use a second,
but less common form of removable storage - the Microdrive. This
can be purchased as an addition to the basic Spectrum and it works
very much like a cassette recorder except a lot faster! If you are
serious about computing, or become serious by the end of this book,
then a Microdrive is a must.

Programs and programming

As mentioned earlier, a computer obeys a list of instructions stored
in its memory. This list of instructions is known as a program and
writing such lists of instructions is known as programming. It is
often thought that programming is an activity that started with the
modern digital computers, but people have been writing lists of
instructions for other people to obey since writing was first invented.
In this sense, programming is nothing new and can be seen in the
form of recipes and knitting patterns in almost every home. Perhaps
one of the best examples of traditional programming is written
music. You can think of sheet music as being a program that will
instruct a musician to play a specific tune. In fact written music is
very like a computer program in that it relies on using a special
language that is much more precise than ordinary language. Just one
note out of place and you have a different tune! A computer
program is written using a special and equally precise language. In
the case of the Spectrum this language is BASIC, the most popular
programming language in the world. Just as with written music,
slight changes in a BASIC program can alter its meaning
completely, so it is important to realise as you learn BASIC that you
must pay attention to the fine details right from the very beginning.
Unlike learning English, where you can first learn words and
sentences and then add punctuation, you have to take notice of every
comma in a line of BASIC for it to make any sense at all!

If all this talk of strict rules is worrying you it is worth saying that
the rules are usually very simple and very regular. Unlike English

Before You Switch On 5

there are rarely any exceptions to spelling and punctuation rules in
BASIC! In addition, there are some powerful underlying ideas
behind BASIC. Once you have recognised these they make it easy to
understand why the rules are there at all. As you progress through
this book there are therefore two types of thing that you will learn -
the fine detail concerning the exact form of each BASIC statement
and the general features that all programming languages share. The
final detail is important to actually getting a program working but
understanding the general details makes the act of programming a
sensible occupation.

The history of the ZX Spectrum

Before moving on to a discussion of the Spectrum it might be of
interest to take a brief look at its family tree. In 1980 Sinclair
Research launched a small plastic-cased computer, the ZX80, that
brought computing within the reach of nearly everyone. The trouble
was that it was very limited. It was a revolution, but in many senses it was
just a little before its time. It could be used to run small programs
written in BASIC but the sort of arithmetic that it could do was
restricted to whole numbers. It could display information ona TV
screen but only while it wasn’t processing data. If it was doing
anything at all useful the TV screen flickered disturbingly. This
meant that a lot of people who bought the ZX80 for various reasons
were disappointed to discover that it just couldn’t live up to their
expectations of a computer.

In 1981 Sinclair launched the successor to the ZX80, the ZX81.
The ZX81 is the first really useful computer to figure in this brief
history. It had very little memory (1K) but at least its screen didn’t
flicker and for the first time it was possible to use good graphics -
both static and moving! The ZX81 is also notable because it
introduced Sinclair- or ZX-BASIC which is used in a slightly
extended form in the Spectrum. ZX-BASIC is a fully developed
version of BASIC that has many advantages over the BASIC on
other machines. To make up for the small memory size Sinclair
produced a 16K add-on RAM pack and to extend the machine’s
range of use a small low cost printer was offered. The 16K RAM
pack can only be used with the ZX81 but the printer is still available
and works very well with the Spectrum. (The program outputs in
this book were produced using just such a printer.)

In 1982 Sinclair announced the Spectrum to complement the

6 The Spectrum Programmer

ZX81. The Spectrum added sound, colour and high-resolution
graphics to the capabilities of the ZX81 and generally offered an
improved performance for a slightly higher price. In addition to the
Spectrum, Sinclair also introduced a very low cost storage device,
the Microdrive, and a communications interface (neither of which
can be used with the ZX81). The availability of these two extras
guarantees the Spectrum a place in both popular and serious
applications for some time to come.

Seen as a steady development of the Sinclair range, the Spectrum
is a logical and well-designed machine that builds on the experience
gained both from the ZX80 and the ZX81. This ensures it a place as
an important and popular computer. ZX-BASIC has also
progressed steadily and has taken its place as an important and
popular programming language. Learning this BASIC is, therefore,
likely to stand you in good stead for now and for the future.

Chapter Two
Getting to Know Your
Spectrum

There are two problems in using a computer. The first is simply
getting it set up and getting used to its idiosyncrasies. The second is
writing working programs. This chapter deals with both these
problems so that we can get them out of the way before we get down
to the main task of learning BASIC.

A new acquaintance

Getting to know a computer is a problem that exists even if you're an
expert. For although there is a lot in common between different
computers, there are always enough little differences to mean that
there has to be a period of adjustment when moving from one
machine to the next. For example, nearly every computer uses a
standard typewriter (or QWERTY) keyboard but most place extra,
but very important, keys in slightly different places and this can
make even the most expert look silly at first! Now, if you're an
expert, then you know that this early phase soon passes but if you're
a beginner you may panic and think that computing is always going
to be this tricky! The trouble is that not being ‘at home’ with your
computer can make easy programming ideas seem difficult.

There is no way to avoid this early barrier to programming
because being on friendly terms with your computer is simply a
matter of time and a matter of using it. You’ll come through this
rather frustrating period more easily if you bear in mind the
following advice:

(1) Separate in your mind any difficulty that you encounter in
using your Spectrum from any difficulties that you have with
programming.

(2) Don’t immediately assume that any stzrange behaviour on the
part of your Spectrum is its fault - at first the chances are that
the mistake is yours!

8 The Spectrum Programmer

(3) Don’t immediately assume that any unexpected behaviour of a
program means that your Spectrum is illogical - computers are
ruthlessly logical. Try not to confuse typing errors with
programming errors.

To try and help you identify this initial difficulty and to help you
overcome it, this chapter includes two short programs that you
should try to get running on your Spectrum before moving on to the
rest of the book. They are presented as complete and working
programs for you to use to find out about the non-programming
problems of using the Spectrum. At this stage you are not expected
to be able to understand how they work and you might like to return
to them as you read through later chapters to see how you're
progressing.

Setting up the Spectrum

The Spectrum is one of the world’s easiest computers to get going.
All you have to do is to plug the power supply (the small black box
marked ZX POWER SUPPLY) into the mains and then insert the
small cylindrical plug into the socket on the back of the Spectrum
marked 9V DC. At this point you should be able to hear a high
pitched whine, sounding rather like a persistent mosquito, coming
from your Spectrum! If you can’t hear anything then check that the
mains power is switched on. If it is and you still cannot hear anything
then press the key marked ‘A’ on the left of the keyboard. If you keep
this key pressed you should hear a low clicking noise coming from
your Spectrum. This test should not fail with any working Spectrum.

Connecting the mains to your Spectrum is the only thing that is
required to make it start working. However, if you want to see what
it is doing you will have to connect it to a working UHF TV set! This
operation is a little more difficult than connecting the mains to the
Spectrum because it involves a piece of equipment that will vary
from house to house - the TV set. When connecting the Spectrum to
the TV set, it will help to think of it as being an extra channel. Yes, the
Spectrum is not only a computer, it is a small television station!
When your TV set was first delivered it had to be tuned-in to receive
the channels that are used in your area. In the same way, when you
first use your Spectrum you have to tune the TV set to receive it. If
your TV set has push button tuning then you will have to decide
which button is going to be the Spectrum channel and find out how
to tune it in from the instruction manual that came with the

Getting to Know Your Spectrum 9

set. If your set has dial tuning then finding the Spectrum channel
is exactly the same as finding any other channel. However,
before you connect the Spectrum to the TV set, either tune the
channel button that you are going to use or set the dial to receive
BBC 2. (Non-UK readers must consult the tuning information that
comes with the Spectrum to discover their equivalent of BBC 2.) The
reason for this is that (in most regions) the Spectrum channel is just a
little higher than BBC 2 and rather than start the search from
anywhere it is easier to start from BBC 2 and then tune the set away
from the other BBC and ITV channels toward channel 36 — which is
the one Spectrum uses.

With the set tuned to BBC 2, take the lead that came with your
Spectrum, with the TV aerial plug on one end, and plug it into the
TV’s aerial socket (removing the original aerial’s plug first!). Then
plug the other end into the socket at the back of the Spectrum
marked TV. Now with both the Spectrum and the TV switched on
(you should turn the TV’s sound right down to avoid unpleasant
noises) start tuning the TV set. As you get close to the Spectrum
channel you will begin to see a fuzzy picture. Keep going until you
can see the message:

© 1982 Sinclair Research Ltd.

clearly on the bottom of the screen. Just as with any TV channel, if
you haven’t tuned-in exactly the picture quality will be poor, so take
care and be patient with the fine tuning until you have a nice sharp
image.

If you are using a colour set then you may have to adjust the
brightness, contrast and colour controls to get the best possible
picture but don’t do this until you have finished tuning for the
sharpest picture or things will get hopelessly confused. If you're
using a black and white set then you won’t be able to see the colours
that the Spectrum produces but you still might have to adjust the
brightness and contrast on your set to produce a satisfactory picture.
A black and white set will work perfectly well with the Spectrum but
instead of seeing its different colours you will see eight different
shades of grey ranging from black to white.

If you want to, you can leave any final adjustments until after you
have entered the program given later in this chapter, because it will
produce the Spectrum’s very own test card pattern which will help to
check the fine tuning.

10 The Spectrum Programmer
Using the keyboard

After getting your Spectrum going the next thing to do is to start to
learn your way around the keyboard. Perhaps the most off-putting
feature of the Spectrum is the number of letters and words that are
written on and around the keys of the keyboard. The idea of having
each key on a keyboard perform more than one job is not a new one.
Most typewriters use a single key to print lower case and capital
letters (upper case) and no-one seems upset by the idea of selecting
between the two by pressing an extra key - the shift key. Notice that
the shift key doesn’t actually print anything if you press it all on its
own so it’s not the same as the other keys on the keyboard. As it
conirols what the other keys produce, it is known as a control key.

The Spectrum actually has a number of control keys which are
used in different combinations to give access to all its characters,
commands and features. The diagram (Fig. 2. 1) shows their location
on the keyboard. The function of all these control keys will be
explained in this chapter, starting with the ones needed most
frequently.

= | <l
s i =
ZX Spectrum
= =

DEC < D> GRAPHICS DELETE

v A
OO0

D VIDEO

mimlw

SYMBOL
SHIFT

77
Ul

Fig. 2.1. The position of the control keys

The Spectrum uses two control keys to select between three of the
sets of characters printed on each key. The CAPS SHIFT key works
in the same way as the shift key on a typewriter. If you pressa key on

Getting to Know Your Spectrum 11

its own you will get the lower case version of the letter written on it.
However, if you press the key while holding the CAPS SHIFT key
down you will get the upper case letter printed on the key.

The second control key is the SYMBOL SHIFT at the far right of
the keyboard. Pressing any key while holding this down produces
the red word or symbol written on the key to the right of the main
letter or digit.

The use of the two shift keys seems easy enough but if you have
just switched on your Spectrum and press the ‘A’ key you will be
surprised to see the word NEW appear on the screen - something has
clearly gone wrong! By the above rules pressing just the ‘A’ key
should print a lower case ‘a’. The reason for this anomaly is that
every line of BASIC begins with one of a small set of words, the
keywords. To make life easier, the Spectrum interprets the very first
letter key that you press as a keyword. The keyword produced by
each key is written in white at the bottom. The keyword on the ‘A’
key is NEW and this is why the word NEW appears on the screen
when the ‘A’ key is pressed for the first time. If you press the ‘A’ key a
second time when the letter ‘a’ is printed on the screen exactly as
predicted. To let you know what any key is going to produce when
you press it the Spectrum displays a different letter in the flashing
square. This is known as the cursor. Its position on the screen
indicates where the next printing position is and the letter displayed
gives information about which set of keyboard characters will be
used. At the start of every line the cursor is a flashing K] until a
keyword is entered and then it changes to a flashing[].([€” stands for
keyword and’ |stands for letter.) While the cursor is a flashing[L] the

two shift keys work as described above.
To summarise, let’s look at one particular key, the one shown

below:

WHITE wnnw..ﬂ <—__ RED
RUN

The white keywords printed on the bottom of each key are
produced when the cursor is a flashing [K]. In the case of our
example key the word RUN is produced.

Upper and lower case letters are produced when the cursor is a
flashing[L], lower case when the CAPS SHIFT isn’t pressed (that

12 The Spectrum Programmer

is ‘r’ in this example) and upper case (that is ‘R’) when the CAPS
SHIFT is pressed.

The red symbols/words printed on the top right hand corner of
the keys are produced by pressing the key at the same time as the
SYMBOL SHIFT key. In this case < (the less than symbol) is
produced. This works with the cursor showing either K] or[L].

We now know how four of the symbols or words that surround
each key can be produced and this is enough to enter a short
program. There is more to using the keyboard but we will return to
this later.

Entering a program

As explained in Chapter One, a program is a list of instructions that
a computer can obey. In BASIC this list of instructions is built up by
typing in lines of commands, each one beginning with a number -
the line number. The easiest way to understand this is to try out a
short program. Don’t worry if*you don’t understand how the
program works, just concentrate on entering it correctly. Before you
begin, switch your Spectrum off and then, after waiting a moment,
on again. This will produce the familiar copyright message on the
screen and ensure that anything you may have typed in while
experimenting is cleared out of the machine. Now type the following
line taking care not to make a mistake. (If you do make a mistake
then switch off and start again. This is only a temporary way to
overcome mistakes. More satisfactory methods will be explained
shortly.)

10 LET a=¢

Notice that the word LET is a keyword and is produced by pressing
‘L’ while the cursor shows a flashing & |. Also notice that the second
and last characters are zeros, not a letter ‘O’ (the zero (f)) is on the far
right of the top row of keys). The ‘=" sign is in red on the ‘L.’ key and
so to enter this you have to press SYMBOL SHIFT and ‘L.
After you have typed this line you have to press the key marked
ENTER on the far right of the keyboard. The purpose of this is to
tell the Spectrum that you have finished typing the line and that it
cantrytoincorporate it into any program that you may have already
typed. The word ‘try’ is used because, even though you may think
that what you have typed is correct, the Spectrum checks it and, if it

Getting to Know Your Spectrum 13

finds that you have typed nonsense, it will refuse to accept it. When
the Spectrum accepts the line it disappears from the bottom of the
screen and appears at the top. Now enter the following line:

20 PRINT a

Once again the word PRINT is a keyword and is entered by pressing
one key, in this case ‘P’. Press ENTER, and the second line will
appear, again in the upper part of the screen, just below the first line.
Next, enter the following line:

30 LET a=a+t1

This time, before you press ENTER, let’s see how you could correct
any errors that you might have made. Suppose, for example, that by
mistake you had typed ‘b=a+I’. You might then be pleased to know
that the Spectrum offers you a backspace facility and enables you to
change the line you have typed very easily. If you press the left arrow
key (the 5 on the top row) while you press CAPS SHIFT you will see
the cursor move over the letters that you have entered. If you press
the DELETE key (the § on the top row) while pressing the CAPS
SHIFT, the letter or even a whole keyword to the left of the cursor
will vanish (i.e. will be deleted). You can insert a new keyword or
letters by simply typing them in. You can move the cursor to the
right by using the right arrow key (the 8 on the top row) and any new
characters that you type will be inserted to the immediate left of the
cursor. (This is all a lot easier to see happening than itisto explainso
don’t be afraid to experiment - you can’t hurt your Spectrum.)
Finally, when you have finished entering the line, press ENTER.
Next, type:

49 GOTO 2¢

Notice that when you type the key marked GOTO the two words GO
TO appear on the screen.

You should now have the following program in the top part of the
screen:

19 LET a=¢
20 PRINT a
30 LET a=a+1
49 GOTO 20

This is a list of instructions that you can make the Spectrum obey
by entering the keyword RUN and then pressing ENTER. But
before trying this it is worth noticing that there are two ways that the

14 The Spectrum Programmer

Spectrum can obey commands. If you type a command without a
line number and press ENTER then the Spectrum will obey the
command at once - this is called immediate mode. However, if you
precede the command with a line number and press ENTER then the
command is added to whatever program already exists ready to be
obeyed at some later time — this is called deferred mode. When you
type RUN there is no line number so the Spectrum obeys the
command immediately.

When you do type RUN you will find that the numbers from § to
21 are printed on the screen and then the Spectrum prints what looks
like a question, “Scroll ? y/n”. If you press the ‘Y’ key you will
discover that the screen is shifted up by one line to make room for
more information to be printed. After this has happened 22 times the
question is asked again. The reason for this is that the Spectrum tries
to give you the opportunity to view what is on the screen before
moving it off the top.

You can keep on saying ‘y’(es) to this “Scroll?” question until you
get tired of seeing numbers. When this happens answer ‘n’ (no) to the
next question and then press ENTER. You will see a listing of the
program appear on the screen once again. If at any time while a
program is running you want to stop it, then press the key marked
BREAK while pressing CAPS SHIFT. As another example of a
command in immediate mode type LIST (the key marked ‘K”) and
press return. This will cause the program you have typed in to be
displayed on the screen.

More about the keyboard

If you want to enter a program that is in any way complicated, there
are still some symbols and words that we need to know how to
produce. In particular, we don’t as yet know how to produce any of
the words or symbols written on the Spectrum’s case, as opposed to
on the keys. In fact all of these new symbols and words are entered
with the cursor in a different mode. In the same way that the
keywords are produced when the cursor is showing a flashing &7, the
red and green symbols and words are entered in the so-called
extended mode with the cursor showing a flashing[l!. You can put
the Spectrum into extended mode by pressing both shift keys
together. The green words above each key are produced by pressing
the key while in extended mode and the red words below each key
are produced by pressing the key along with the SYMBOL SHIFT

Getting to Know Your Spectrum 15

key. This is easy to remember because to produce any symbol or
word in red you have to press the SYMBOL SHIFT key which is
also lettered in red. So to enter RND (above the “T" key) you first
have to enter extended mode by pressing CAPS SHIFT and
SYMBOL SHIFT and then press “T". If you want to enter BEEP
(below the ‘Z’ key) first enter extended mode and then press
SYMBOL SHIFT and ‘Z’. You automatically leave extended mode
as soon as you type anything but in case you want to leave it without
typing anything you can press the two shift keys again.

To summarise this new information, let’s extend the example we
looked at before. The illustration below shows the ‘R’ key and its
surrounding section of case.

GREENLETTERING |NT
i 74
RUN
VERIFY RED LETTERING

The words in green above each key are produced when the cursor
is a flashing 7], after both CAPS SHIFT and SYMBOL SHIFT
have been pressed. Once [| has appeared typing the ‘R’ key will
result in INT being displayed.

The words in red below each key are produced when the cursor is
a flashing[l| and the SYMBOL SHIFT key (or the CAPS SHIFT
key) is depressed. Such action would result in VERIFY in our
example.

Now you know how to enter nearly all of the symbols and words
on the keyboard. The only ones left that cause any trouble are those
written in white on the top row of keys. These have to be entered in
yet another mode - the graphics mode. While the subject of graphics
is treated in full in Chapter Seven it is worth saying how to get into
graphics mode here. To enter graphics mode all you have to do isto
press GRAPHICS (over the 9 in the top row) and CAPS SHIFT at
the same time. This changes the cursor to a flashing ¥i] and if you
press any of the keys on the top row apart from 9 and ¢ you will find
that the shapes printed on the key in white are produced on the
screen. If you press any of the keys on the top row while holding
down CAPS SHIFT you will find that the shapes are produced
inverted, i.e. white becomes black and vice versa.

You may be wondering what happens if you press any of the

16 The Spectrum Programmer

number keys on the top row with the CAPS SHIFT held down in the
normal T~ mode. After all there is no such thing as an upper case
number! The answer is that no new characters are produced.
Instead, you gain access to the rest of the control functions shown in
Fig. 2.1. Pressing the 1 key and CAPS SHIFT moves the line that
has the flashing cursor in it into the input area of the screen where
you can edit it. More about this later in the chapter. Pressing the 2
key and CAPS SHIFT activates the CAPS LOCK. The first time
you press it you will see the cursoras ai | where you would expect an
[L] and all the letters you type on the screen will be capitals. To get
back to lower case again you have to press CAPS SHIFT and 2
again. You'll see INV.VIDEO printed above the 4 key. Again this is
accessed with the CAPS SHIFT and has the effect of reversing the
screen display of any new characters entered. They then show as
white on black rather than black on white. To regain the normal
display you type CAPS SHIFT and 3 which gives TRUE VIDEO.
Pressing CAPS SHIFT with 5, 6, 7 and 8 lets you use the cursor
control keys which allow you to move the cursor around the screen.
These are used in games as well as in editing text. We have already
met the left (5) and right (8) arrow keys and the other two will be
introduced soon. As mentioned above, pressing CAPS SHIFT and
9 allows you to enter graphics mode, signalled by a flashing [G]
cursor. If you are already in this mode, pressing this combination
will restore you to the ordinary] | mode. CAPS SHIFT and § allows
you to delete the character to the immediate left of the cursor while
entering or editing a line.

The number keys have a rather different appearance from the
others on the Spectrum so it is worth examining one in detail before
leaving the topic of the keyboard for a while. The diagram below
shows the key that is at the top left hand corner - the | key - and the
following is a summary of the ways of producing all the words and
symbols on and around it and the other number keys.

EDIT

WHITE LETTERING

DEF FN

RED LETTERING

When the [K] or[L] cursor is flashing, pressing a number key on its
own will produce the number on it, in this case 1.

Getting to Know Your Spectrum 17

Pressing it with the SYMBOL SHIFT key will produce the red
symbol on the bottom right of each key, in this case an exclamation
mark.

Pressing it with CAPS SHIFT has the effect of calling the control
function indicated in white above it. The control function
associated with each number key has been detailed above. In this
case it will cause a line of the current program to be displayed at
the bottom of the screen, preparatory to editing.

When the T cursor is flashing and the SYMBOL SHIFT key is
held down the commands printed in red on the Spectrum’s case
below each key are executed. In the case of the | key the command
allows a function to be defined.

The graphics symbol on the top left of each key is produced when
the key is pressed in graphics mode. In the case of the 1 key thisisa
solid square with the top right hand quadrant missing.

One other facility of the keyboard is worth mentioning before
leaving this section. It is the ability to repeat any key by holding the
key down for a prolonged period. If you try keeping your finger on a
key when the[i] cursor is flashing you will see the line filling with the
character and hear a clicking sound from your Spectrum.

At this point you might be thinking that the Spectrum’s keyboard
is the most complicated thing that you have ever come across. And
indeed it is complicated, but as you get used to it you will find that it
is very logical.

Using a tape recorder

The next demonstration program is considerably longer than the
first and as it is likely that you will be loath to simply switch the
machine off and so lose it altogether once you have finished entering
and running it, now is the time to learn how to use a cassette recorder
to save and load programs. The Spectrum can use almost any
standard tape recorder to store programs, but it is true that the
better the tape recorder, the more reliable the result. So if you are
thinking about buying a cassette recorder for use with your new
Spectrum, invest at least £20 or so and try to buy a model that uses
miniature jack sockets for earphone and microphone connections. If
the tape recorder that you plan to use doesn’t use miniature jack
sockets then you will have to buy an adaptor from your local hi-fi

18 The Spectrum Programmer

shop because miniature jack plugs are all that the Spectrum comes
equipped with.

To connect the Spectrum to your tape recorder simply plug the
two jack plugs on the twin audio lead that came with your machine
(you can easily recognise it because it’s the only lead not already in
use by this point) into the two sockets marked MIC and EAR on the
back of your Spectrum. It doesn’t matter at this stage which plug
goes into which socket. Next plug the same colour jack plug that is in
the MIC socket into the microphone socket on your tape recorder.
You are now ready to record your first program.

To give the Spectrum something to save type in

1§ REM this is a test
20 REM this is the second line
30 REM this is the third line

and then type
SAVE “test”

and press ENTER. The message “start tape and press any key” will
appear. At this point your Spectrum is all set to record a program on
tape but it is waiting for you to tell it that the tape recorder is
running. Insert a blank tape, set the record level to about half way
(this is unnecessary if your recorder has an automatic volume
control) and set it recording. When you press any key you will see a
pattern of horizontal lines appear around the edge of the screen -
this means that the Spectrum is recording a program. When the
message “OK” appears on the screen the program is saved on tape.
However, it is still possible that although the program is recorded on
tape it may not be good enough to be read back into the Spectrum
for one of a number of reasons. For example, you may have the
record level set too high or there may be a fault in the tape.

To check that the program has been successfully saved rewind the
tape, unplug the jack plug from the microphone socket on the tape
recorder and plug the orher jack pluginto the earphone socket. Now
type:

VERIFY “test”

and press ENTER. Set the tape recorder running and if everything
has gone to plan the next message that you should see on the screen
will be another “OK” meaning that the program recorded on tape
not only can be read but it is the same as the one still in the
computer’s memory. If everything hasn’t gone well you might get an

Getting to Know Your Spectrum 19

“R Tape loading error” or simply nothing. This means that for some
reason the Spectrum has misread the information on the tape or
cannot even find it. In this case the best thing to do is to wind the tape
back and listen to it (taking the jack plug out of the earphone socket
on the recorder in order to hear what is happening). At the start of
the tape you will hear a steady tone. This should be loud but not
distorted. If this sounds all right then wind the tape on and listen to
an unrecorded patch at the same volume. You should hear a very
soft hiss. If it sounds like a rain storm then reduce the volume and
perhaps alter the tone control and try again. If an unrecorded patch
gives absolute silence then you should try again with the play-back
volume increased.

After using VERIFY to check that the program has been saved
correctly you can try loading the program for real. First switch your
Spectrum off and on again to convince yourself that the test
program has been lost and then type:

LOAD “test”
or
LOAD *”

and press ENTER. The first version of LOAD will search the tape
until a program with the name “test” is found, but the second version
will load the first program on the tape irrespective of its name.
Once you have the tape system working don’t alter the volume
controls or tone controls unless it is necessary and remember to
change the jack plugs each time. Plug in the microphone socket for
SAVE and plug in the earphone socket for LOAD. This is very
important as the tape system won’t work reliably otherwise.

Editing and our second program

At this stage you should feel confident enough to tackle entering a
longer program. The program given below will produce the test card
pattern shown in Fig. 2.2. Apart from being quite an interesting
pattern you could use it to adjust the TV set that you are using with
your Spectrum to produce the sharpest image with the best colour.
Before you start typing in the program the following notes might
help. First, type NEW to clear out any previous program.

Every word, apart from “SPECTRUM TV” in line 130 and
“Channel 36” in line 140, is entered using a single key, so search the

20 The Spectrum Programmer

*1/’.

=

— Ehanne L 36

"q.\-‘ "

T
|
I

Fig.2.2. Spectrum test card

keyboard until you find the word! Also, notice in line 11§ the minus
sign which precedes 175 is obtained by pressing the ‘J* key at the
same time as the SYMBOL SHIFT key. Because of the difficulty in
printing the characters which are entered in graphics mode, a special
notation is used. Wherever you see a character in square brackets
this indicates that you should enter the character in graphics mode.
If the character is preceded by an up-arrow “t” then press CAPS
SHIFT at the same time. So the “[18]”in lines 170, 180, 190 and 200
means, “enter graphics mode and press 8 while holding CAPS
SHIFT”. The result should be a solid black block.

10 FOR i=0 TO 249 STEP 16

20 PLOT i,0

30 DRAW §,175

49 NEXT i

50 FOR i=p TO 175 STEP 16

60 PLOT 0.

70 DRAW 2550

80 NEXT i

99 PLOT 0,175

109 DRAW 255,0

110 DRAW §,—175

120 CIRCLE 127,81,64

130 PRINT AT 10,6;“SPECTRUM TV”
140 PRINT AT 12,11;“Channel 36”
150 FOR ¢=¢ TO 7

Getting to Know Your Spectrum 21

160 INK ¢

170 PRINT AT 3+2%c,2;*{18]”
180 PRINT AT 4+2%c,2;(18]"
199 PRINT AT 3+2%c,28;{18]"
200 PRINT AT 4+2%c,28;[18]”
210 NEXT ¢

220 INK ¢

When you have finished entering the program simply press RUN
and you should see the test card pattern appear on the screen. If it
doesn’t look like Fig. 2.2 then it is likely you have made a typing
error so check the whole program very carefully against the listing.
Press the LIST key so that the program is displayed on the screen.
You may have omitted a line. This is easy to remedy. To insert a line
just type it, with its line number, and it will appear at the bottom of
the screen. Press ENTER and it will automatically assume its correct
position in the program listing. Numbering in computer programs is
normally done in jumps of ten so that you can easily insert extra lines
if you need to. If you want to delete an entire line from a program
just type its number and press ENTER and the line will automatically
disappear - so do be careful not to delete the program lines you want to
keep. If you find an error in a line you do not have to retype the entire
line. Instead you canedit it. With the program listed on the screen, if you
use the up-arrow and down-arrow (7 plus CAPS SHIFT and 6 plus
CAPS SHIFT respectively) you will find that you can move the
cursor up and down the screen to any line that you desire. If you
move the cursor to the line with the error init and then press EDIT (1
plus CAPS SHIFT) you will find that it appears back at the bottom
of the screen (the input area) where you first entered it. You can now
use the right and left arrow keys (on 5 and 7) and the DELETE key
(0 plus CAPS SHIFT) to edit it and hopefully correct any mistakes.
When you have finished editing the line simply press ENTER and
the corrected line will take its rightful place back in the program.

You can sometimes save time when entering a program by making
use of the editing facility. For example, lines 170 to 20§ are very
similar. So instead of entering each one in turn, enter line 17¢) and
then (with the cursor over it) press EDIT. This will copy the line
back into the input area where you can change the line number to
read 180 and the 3 following the AT to read 4. If you then press
ENTER you will find that line 180 appears in the program without
you having had to type it all in.

22 The Spectrum Programmer
As you go along

As you learn BASIC and the special features of the Spectrum from
the rest of this book you are bound to improve, both in your
understanding and your use of the keyboard until you cannot
understand what all the fuss was about. However, until then it is wise
to recall the advice given at the start of this chapter and try not to let
the frustration produced by typing errors interfere with your
understanding of computing in general and BASIC in particular.

Chapter Three
First Steps - Variables,
PRINT, LET and INPUT

A program is a list of instructions that your computer can carry out.
The question that this poses is what sort of instructions can you use
in a computer program? It is clear that instructions like ‘go and make
a cup of tea’ are too vague for anything other than a human to cope
with! Instructions used in a computer program must be precise.
They have to specify exactly what must be done and, perhaps less
obviously, they have to specify what it has to be done to. In other
words a computer instruction tells the computer what to do and
what to do it to. In this chapter we will look at the simplest objects in
BASIC and some very simple things that you can do with them.

Variables

The idea of a variable is the most important single idea in
programming. A variable is an area of computer memory that is
used to store information. This sounds like an easy idea but it has
one or two subtle points. If you are going to store information inan
area of memory you are going to need some way of referring to it.
You’'re going to have to give it a name! This is not such an unusual
idea if you think about other, more traditional, ways of storing data.
For example, each file in a filing cabinet is normally given a name
that identifies it and it alone. Just think of the confusion of asking
for a file if two files had the same name! It is just the same with
BASIC. An area of memory that is used to store information, a
variable, must be given a unique name that can be used to refer to it.
The only additional difficulty with a BASIC variable is that you
must also define what sort of objects you are going to store in the
memory area. One reason for this (we will meet others later) is that
the amount of memory set aside to store the information depends on
its type. For the time being the only sort of information that we will

24 The Spectrum Programmer

store in memory will be numbers of any type. A variable that is used
to store a number is called a numeric variable or a simple variable.

You cannot give a variable any name that takes your fancy
because this would lead to confusion on the computer’s part. For
example, suppose you gave the name ‘I’ to a variable. How would
the Spectrum know the difference between the variable 1 and the
number 1? In the case of the Spectrum you can give a simple variable
a name of any length as long as it starts with a letter and thereafter
uses only letters and digits. You can use both upper and lower case
letters but the Spectrum will not distinguish between them (i.e. the
variable name ‘A’ is treated as being the same as ‘a’). You can also
insert spaces anywhere in the name to make it more readable but the
Spectrum ignores them. Here are some examples of simple variable
names that are allowed:

sum, SUM, Sum

Totalscore, TOTAL SCORE, TOTALSCORE

This is the longest name that anyone would ever want to use
Totall

total2

day2month3year80

Notice that all the versions of ‘sum’ are treated as the same name and
so are all the versions of ‘total score’. It is often difficult to think up
names for variables that suggest the nature of the information to be
stored in them but it is well worth doing. If you come back to read a
program after a long time, clear and obvious variable names can
make it a lot easier to re-understand your own program! Even so you
should try to avoid very long variable names - they can be very
boring to type out over and over again ina program. Some examples
of names that the Spectrum would not allow are:

name reason for rejection

lday starts with a number

*date starts with an * which is not a letter

date* contains * which is not a letter and is not a digit

answer? ?1is not a letter or a digit
over-time - is not a letter or a digit

Storing things in variables - LET

Now that we know about variables and how to give them names it is

First Steps - Variables, PRINT, LET and INPUT 25

time to discover how to store information in them. This can be done
using the BASIC command LET. For example:

10 LET total=56

will store the number 56 in an area of memory called ‘total’. If you
recall, lines of a program are entered with /ine numbers that control
their order in the list of instructions that make up the program.

This example is in fact our first program! If you enter it exactly as
written nothing will happen until you enter RUN when the
Spectrum will start obeying the list of commands. In this case there
is only one command and this is very easy to obey - the number 56 is
stored in an area of memory called ‘total’. If you think about it, just a
little more than this has happened. Before the program was run there
was no area of memory called ‘total’ to store 56 in! When the
Spectrum comes across the name of a variable that you wish to use
to store something in, it checks to see if it already exists and if it
doesn’t it sets aside an area of memory of the right size and
remembers its new name. So this innocent single line program has
two effects — it creates the variable called ‘total’ and then it stores the
number 56 in it.

Finding out what’s in a variable - PRINT

The one-line example in the previous section is a little disappointing
because we have to take on trust that the Spectrum has actually
stored the number 56 in a variable called ‘total’. What we need is a
command that will make the Spectrum find the variable and print its
contents on the TV screen. The BASIC command with this effect is,
most reasonably, called PRINT. If you add a new line, numbered
line 20, to the previous example you will have the following two line
program:

10 LET total=56
20 PRINT total

If you RUN this program you will be pleased to find that the number
56 is printed in the top left hand corner of your TV screen.

It is important that at this point you understand exactly what is
happening as a result of this two line program. Later on when you
have absorbed BASIC almost as a second language you will
understand what is going on without even thinking about it, but for
now it is all too easy to read this two line program and think you

26 The Spectrum Programmer

understand it because it sounds all right! So, to recap what we have
already learned, the first line creates a variable called ‘total’ and
stores 56 in it. The second line finds the area of memory with the
name ‘total’ and prints what is stored in it on the screen. (Notice that
it is easy for a beginner to think that PRINT ‘total’ would print the
word ‘total’ on the screen. So, if you already understand why this
interpretation is incorrect you are no longer a beginner!)

For the PRINT statement to work it has to be possible for the
Spectrum to find the variable that it refers to. If for some reason you
try to print a variable that hasn’t been created then the Spectrum
will, quite rightly, give you an error message — to see this, delete line
10 from the previous program (simply by typing 1§ and ENTER)
and RUN it. You should be able to understand why you get a
“variable not found” error message at the bottom of the screen. This
1s your first bug!

Arithmetic

Our programs are slowly becoming more interesting but they are
still a long way from being useful. We can now store numbers in
variables and print out what is stored in any variable but so what! To
be of any use we have to be able to change what is stored in a variable
and print out something that we regard as an answer. The key to
doing this lies in the idea of an arithmetic expression. An arithmetic
expression is nothing more than a piece of arithmetic that you
haven't yet worked out. Forexample, 3+6 is an arithmetic expression
that works out or evaluates to 9. You can write an arithmetic
expression on the right hand side of the equals sign in a LET state-
ment with the effect that the Spectrum will evaluate the expression
and store the result in the variable. For example try:

10 LET total=3+6
20 PRINT total

You will see 9 printed in the top left hand corner of the screen. As
promised the Spectrum has evaluated the expression and stored the
result in ‘total’.

As with most things to do with computers, there are rules
governing what makes a correct expression. You can use the four
operations that you should be familiar with from simple arithmetic.
Addition and subtraction are indicated by the usual symbols, + and
—, but multiplication and division use the symbols, *, and /. The

First Steps — Variables, PRINT, LET and INPUT 27
reason for using * to mean multiply instead of a cross is that the
traditional symbol is too easy to confuse with the letter ‘x’. Some

examples of correct arithmetic expressions are:

expression evaluates to

3--2 5
3*0 6
6/2 3
3+2-4 1
2:113.3 5.4

Apart from the four usual operations of arithmetic there are two
others that can be used on the Spectrum - the unary minus and raise
to a power. The unary minus sounds rather grand but it is simply the
normal subtraction sign used in front of a single number. For
example, the ‘—" in 3—2 is the normal subtraction sign but the ‘—’
used in —3is the unary minus. Although the same sign is used in both
cases, as we will see later, they are treated slightly differently. The
raise to a powersignis . For example, 212 is read as two raised to the
power of two, i.e. two squared, or four. The raise to a power sign is
not used very often and it is mentioned here more for completeness
than for its importance.

Understanding expressions - the order of evaluation

Although the idea of an arithmetic expression seems straight-
forward, there is a hidden complication. For example, if you write
the innocent-looking expression 3-+2*4 does it mean three plus two
(i.e. five) times four (answer twenty) or does it mean three plus the
answer to two times four (i.e. three plus eight, answer eleven). It may
seem strange to you that there are two possible ways to work out this
expression because you may feel that one of the two methods is
obviously correct and the other is equally obviously incorrect.
However, even in arithmetic, there are no absolute answers! The
correct interpretation is a matter of convention and isn’t something
that is handed down from on high. The question of whether we do
the + or the * first in an expression like 3+2*4 is settled by a general
agreement that multiplication is more important than addition and
so it should be done first, making the correct answer eleven. This
agreement that multiplication is more important than addition can
be formalised in terms of assigning priorities to each operation and

28 The Spectrum Programmer

carrying out the operation with the highest priority first. The
assignment of priorities can be extended to every operation that can
be used in an expression (even some that we haven’t metas yet). The
priorities that the Spectrum uses to sort out the order in which
arithmetic should be carried out are:

operation priority
t 10 - highest
unary — 9
*,/ 8
T 6 - lowest

The reason why the priorities start at 10 and finish at 6 is to allow
other operators that we have yet to meet to be assigned priorities. To
evaluate an expression you should always work out the operators
with the highest priority first. If two operators in an expression have
the same priority then you should do the one furthest to the left first
(i.e. in the absence of any other preference, you work from left to
right).

All this may seem over-complicated just to carry out a little
arithmetic but it is necessary if you want to write unambiguous
expressions. However there is another way of specifying the order of
evaluation that can be used to override the usual priorities - brackets
(). It is a longstanding convention that any parts of an expression
enclosed in brackets are carried out first. For example, although
3+2*4is 11, (3+2)*4 is 20. If you're ever in any doubt about how the
Spectrum will evaluate an expression then put brackets around the
parts that you want worked out first. Brackets sometimes waste time
and effort but they can never cause trouble!

Variables and constants - the full expression

So far we have looked at arithmetic expressions involving only
numbers but there is no reason why we cannot use variables in
expressions. If you write an expression such as ‘total+3’ the
Spectrum will find the variable called ‘total’ and retrieve the
number stored in it. It will then add three to this number. For
example, if ‘total’ had 32 stored in it, the expression ‘total+3’ would
evaluate to 35. Notice that there is no suggestion that what is
stored in the variable ‘total’ is in any way altered. Its contents
are simply used in the evaluation of an expression. A number

First Steps - Variables, PRINT, LET and INPUT 29

such as 32 is known as a constant (because its value never changes)
and now we can see that an expression can be made up of variables
and constants with the arithmetic operators, +, —, /, * 1. An
expression always evaluates to a constant and it is this constant
that is stored in a variable by a LET statement.

A short program

Using all that we have found out so far about constants, variables
and expressions we can now write a short program that adds two
numbers together:

10 LET number1=23.34

20 LET number2=44.32

30 LET answer=numberl+number2
49 PRINT answer

If you enter and RUN this program you will see that the sum of the
two numbers in lines 1§ and 2 are printed by line 4Q. Although this
is a simple example it demonstrates a wide variety of programming
ideas. In lines 10 and 20 the by now familiar LET statement is used
to store two constants in two variables. In line 3¢ the arithmetic
expression ‘number |-+number?2’ is evaluated and the result is stored
in a third variable ‘answer’. Line 40 prints the contents of ‘answer’ on
the screen. If you think this is easy, so far so good! Try changing lines
19 and 20 to add different numbers together and change line 3¢ to
give you different arithmetic expressions.

Another way of altering variables - INPUT

In the previous example the two variables ‘number1’ and ‘number?2’
had numbers stored in them by use of the LET statement. This is
convenient unless we want to use the program many times with
different values. As suggested, the only way that it is possible to
change the values stored in the variables is to edit each line before
running the program. Obviously what we need is a statement that
will allow us to enter any value into the variable while the program is
running. This is what the BASIC statement INPUT is for. For
example try the following program:

10 LET numberl=5

30 The Spectrum Programmer

20 INPUT number2
3¢ LET answer=number |+number2
40 PRINT answer

When you run this you might pe surprised to find that nothing
happens! Don't panic! What has happened is that line 10 was carried
out and 5 was stored in the variable ‘number1’. Then the Spectrum
moved on to line 20 where it obeyed the command INPUT by
waiting for you to type a number and this is why nothing is
happening. The Spectrum is waiting for you to type a number and
then press ENTER to signal that you have finished typing/ correcting
the number. It then stores the number that you have typed in the
variable ‘number2’ and proceeds to the next instruction. So if you
haven’t already done so, run the program and type in a number of
your choice. You will be pleased to see your number with five added
to it printed in the usual place.

We now have two ways of storing numbers in a variable - LET
and INPUT. It is important to understand the difference between
the way LET and INPUT work. As in the case of LET, if a variable
doesn’t exist before its use inan INPUT statement the Spectrum will
create it. If you always want to store the same value or the result of
an expression in a variable then use a LET statement. If you want to
store a different value in a variable each time the program is run,
then use an INPUT statement.

Variables and constants as expressions

One of the most powerful features of BASIC is the way that almost
anywhere you can use a constant or a variable, you can use an
expression as well. For example, in the PRINT statement you can
write:

30 PRINT numberl+number2

and the Spectrum will evaluate the expression and print the result.

It is also true that the simplest forms of an expression are the
constant and the variable. For example, the number 3 can be
thought of as either a constant or an extremely simple expression.
Similarly, the variable ‘total’ can also be thought of as an expression.
So not only can you use an expression wherever you might use a
variable or a constant, you can use a variable or a constant anywhere
that you can use an expression! For example:

LET numberl=number2

First Steps — Variables, PRINT, LET and INPUT 31

and
PRINT 3

are both valid BASIC statements.

Describing BASIC

It is difficult to describe any language and BASIC is no different.
The trouble is that, while it’s easy to give an example of what is
correct, it is difficult to explain all the possible correct variations.
For example, at the start of this chapter the LET statement was
introduced by:

LET total=56

but this gave no hint that you could write things like:
LET total=number

or
LET total=numberl+number2

To try to overcome this difficulty it is usual to give a definition
involving the general types of things that a statement allows. For
example, the general form of the LET statement can be written as:

LET ‘simple variable’ = ‘arithmetic expression’

where the things between the single quotes are not to be taken
literally but replaced by an example of the stated type. So in a real
LET statement ‘simple variable’ would be replaced by a variable
name such as total, sum, number, etc.

Throughout the rest of this book, BASIC statements will be
introduced by examples and then defined in the same way as the
LET statement above. As we learn more about a statement it may
prove necessary to redefine it to include a wider range of features. So
far the two other BASIC statements that we have introduced,
PRINT and INPUT can be defined as follows:

PRINT ‘arithmetic expression’

and
INPUT ‘simple variable’

but as we shall see later these are not the final definitions!

32 The Spectrum Programmer
INPUT prompting

Although we can now use INPUT to store information in variables,
the way the Spectrum just stops and waits for someone to type a
number in is a little unsatisfactory. What is required is the ability to
print a message on the screen saying something like “type in a
number now” or “what is your number”. Such a message is often
called an input prompt and BASIC provides two similar ways to
print such messages. Try the following short program:

10 PRINT “this is a prompt”
20 INPUT “what is your number ? ";number|

Line 10 will display “this is a prompt” in the top left hand corner of
the screen and iine 20 displays “what is your number ?” at the
bottom of the screen and then waits for you to type a number. In
both cases the characters printed on the screen are the ones inside the
double quotation marks. A set of characters in double quotes is
known as a literal string or simply as a string. You can use either
PRINT or INPUT to produce prompt messages on the screen
depending on which is more convenient. As an example of the use of
both, consider the following version of the number addition
program given earlier:

10 PRINT “what is your first number ?”

20 INPUT numberl

30 INPUT “what is your second number ? ”;number2
49 PRINT numberl+number2

Mixed PRINT

The ability to print messages on the screen is clearly a very useful
facility for other things than just printing prompts. For example, in
the last program it would have been better to print a message saying
that the number about to be printed was the sum of the two
numbers. You can in fact use a single PRINT statement to print
more than one thing at a time. For example, change line 40 in the
previous program to:

49 PRINT numberl;“+";number2;“=";numberl+ number2

and you will see that the contents of ‘number!’ are printed, then a
space and a plus sign, followed by another space, then the contents

First Steps - Variables, PRINT, LET and INPUT 33

of ‘number?’ followed by an equals sign with a space on either side of
it and the answer. You can consider this PRINT statement as a list
of items to be printed, each item in the list being separated by a
semicolon and printed in the next free printing position. Our general
definition of PRINT can now be updated to read:

PRINT ‘print list’

where ‘print list’ is a list of items separated by semicolons. The items
can be either expressions or strings. Each PRINT statement starts
printing on a new line. In Chapter Seven we will return to the
definition of the ‘print list’ and expand it to include ways of
formatting the information on the screen but this simple version of
the ‘print list’ will satisfy all our requirements until then.

Some sample programs

Even with so little BASIC it is possible to write some useful, if
simple, programs. For example, if you want regularly to work out
how many dollars you would buy for a given number of pounds then
a currency conversion program would be useful. The overall outline
of this program is easy to explain as follows:

ask the user for the conversion rate
ask for the number of pounds to be used to buy dollars
print number of pounds times conversion rate

By now you should realise that this program is a simple one for your
Spectrum, so before you look at the version given below, try to write
your ‘own version. Remember to include input prompting and
explanatory messages. There is no one perfect way to write any
program, so don’t worry if your version is different from the one
shown. It could well turn out to be better!

10 PRINT “Pounds To Dollar Conversion”

20 INPUT “What is the conversion rate ? ";rate

30 INPUT “How many pounds do you want to spend ?”;amount
40 PRINT

50 PRINT “For ";amount;* pounds ”

6 PRINT “you can buy “;rate*amount;* dollars”

Line 10 simply prints a title for the program. Lines 20 and 3 prompt
and accept the necessary input. Notice how line 49 is used to print a

34 The Spectrum Programmer

blank line to space the output into an input and a results section.
Lines 50 and 60 print the answer with some explanation.

As another example, consider the problem of calculating the
stopping distance of a car travelling at any speed in miles per hour.
The main problem in writing this program is knowing how to
calculate the stopping distance. It is important to realise at this stage
that no computer can calculate something unless you can explain to
it how to do the calculation. Looking at the highway code reveals
that the stopping distance is made up from two components - a
thinking distance and a braking distance. The thinking distance in
feet 1s roughly the same as the speed in mph. The braking distance is
a little more complicated and is given by the square of the speed
divided by 20. However both of these quantities are very easy for the
Spectrum to calculate, so to add to the usefulness of this short
program it is reasonable to print out the thinking distance, the
braking distance, the overall distance and how many car lengths it
takes to come to a stop. This last calculation is based on the fact that
the average (UK) car is 14 feet long. The program is now easy to
write:

10 PRINT “Stopping Distance”

20 PRINT

30 INPUT “Speed in mph=";speed

49 PRINT “At ";speed;“mph”

50 PRINT

60 PRINT “Thinking distance=";speed;* feet”

70 LET brakdist=speed*speed /20

80 PRINT “Braking distance=";brakdist;* feet”

90 PRINT “Overall distance=";speed+brakdist;* feet”
109 PRINT

110 PRINT “Which is ";(speed+brakdist)/ 14;* car lengths”

Line 10 simply prints a title for the program. Line 30 prompts for the
only information needed by this program - the speed in mph. This is
stored in the variable ‘speed’. Lines 40 and 50 start giving the answer
to the user by printing the speed that the calculation is for and
leaving some space. Line 60 prints the thinking distance, which
requires no calculation as it is numerically the same as the speed in
mph. The braking distance is calculated by line 7§ and printed in line
80. The overall distance is calculated and printed by line 9. Notice
that this is anexample of using an expressionina PRINT statement.
Line 110 calculates and prints the overall stopping distance in terms
of car lengths. Notice that you have to put brackets around the

First Steps - Variables, PRINT, LET and INPUT 35

addition to make sure that it is carried out first.

The final example in this chapter is a sizeable and really useful
program if you are interested in DIY. A very common problem is
that of estimating how much sand, aggregate and cement you should
buy to cast a slab of concrete. To help with this difficult task the
following program is a “Concrete Calculator”. Once again our first
problem is knowing how to do the calculation before we begin
writing the program. Looking up the relevant information in a book
on building reveals the following - one cubic metre of concrete made
up from one part cement, x parts of sand and y parts of aggregate
(i.e. a l:x:y mix) needs

1
0.025*(14+x+y)
bags of cement and

S anl) e,
(1+x+y)
cubic metres of sand and

3

(1+x+y)

cubic metres of aggregate. (It’s not too important to understand why
these equations work, it is often the case that a program is written
from information that the programmer doesn’t fully understand -
and why should it be otherwise!) Converting this information into a
program is, once again, relatively easy. The first part of the program
should ask for the dimensions of the concrete slab and then calculate
its volume. The program should then ask for the mixture ratio and,
using the equations given above, work out the number of bags of
cement and the volume of sand and aggregate required. Finally, the
results should be printed out in a form that the user will find
acceptable. The details of the program are:

10 PRINT “Concrete Calculator”

20 PRINT

30 INPUT “What is the thickness in mm ? “;thick
49 INPUT “What is the length in m ? ”;len

50 INPUT “What is the width in m ? ";width

60 PRINT

70 LET vol=thick*.00 1*len*width

8{2) PRINT “Total volume = ";vol;* cubic m”

90 PRINT

36 The Spectrum Programmer

100 INPUT “How many parts of sand to one of cement ?
”;partsand

110 INPUT “How many parts of aggregate to one of cement ?
”;partagg

120 LET total=I1+partsand+partagg

130 LET cement=vol/total/(.025

140 LET sand=vol*partsand*1.5/total

150 LET agg=vol*partagg*1.5/total

160 PRINT “Using a 1:";partsand;*:”;partagg;* mix”

170 PRINT “you need ”

180 PRINT cement;* bags of cement”

199 PRINT sand;“ cubic m of sand”

200 PRINT “and ";partagg;“ cubic m of aggregate”

Lines 3080 ask for the dimensions of the slab and both calculate
and print the total volume. Lines 10§ and 110 ask for the ratio of the
mix and line 120 calculates 1+x+y used in all of the following
calculations. The most interesting lines of the whole program are
130-20¢. The first few lines (130-150) carry out the main
calculations and the last section (160 -20) prints the results. If you
look carefully at the calculations you will see that an arithmetic
expression in BASIC doesn’t always look like the equation that it
comes from. For example, you might fall into the trap of writing:

1
0.025*(1+x+y)

as 1/0.025*(1+x+y)

but the result of this BASIC arithmetic expression is given by
dividing | by 0.025 and then multiplying the answer by (1+x+y)i.e.
it works out:

* ,
0,025 X))

rather than the equation that we are interested in. The correct
expression is:

1/0.025/(1+x+y)
or if you want to use extra brackets to clarify matters:

1/(0.025*(1+x+y))

First Steps — Variables, PRINT, LET and INPUT 37

In the section that prints the results, notice the way that each answer
is embedded in the printed message. Remember that you do not have
to write programs that produce results in a standard way -
experiment with what looks good and seems natural.

Chapter Four
Looping and Choice -
the Flow of Control

So far we have written programs that are a list of instructions that
are carried out one at a time from the top to the bottom. Although it
is possible to write useful programs using nothing more, program-
ming really only becomes interesting when you can change the order
in which instructions are carried out.

The flow of control

If you look at any of the example programs at the end of Chapter
Three it should be possible for you to follow through with your
finger the order that the instructions would be obeyed by the
Spectrum. You can think of this as tracing the flow of control
through the program. Each instruction has its turn at governing or
controlling what the Spectrum is doing and it then passes control to
the next instruction. In the absence of any other information the
next instruction is taken to be the next line down. So the default flow
of control is a line starting at the top of the program and finishing at
the bottom. The following is a very simple program that
demonstrates this default condition.

10 INPUT a |

20 PRINT a

30 INPUT b

49 PRINT b ‘
Fig. 4.1.

Looping - the GOTO

BASIC provides a single statement for changing the default flow of

Looping and Choice - the Flow of Control 39

control - the GOTO statement. Try the following program:

A
10 LET test=0 %
20 PRINT test R
30 GOTO 20 Fig. 4.2.

If you run this program you will see the screen fill with zeros (one
to each line) and then the Spectrum will stop and ask “Scroll ?y/n".
If you answer y to this question the screen once again fills with zeros
and so on. This program is our first example of a loop. Tracing the
flow of control through the program soon shows why the word /oop
is appropriate. First line 10 stores zero in the variable ‘test’, then line
20 prints the contents of ‘test’. Line 30 is new in that it uses GOTO
but its meaning should be clear from just reading it. The statement
GOTO 20 causes the Spectrum to obey line 20 as the next
instruction. So after line 3Q control is transferred to line 20 and the
contents of variable ‘test’ are printed on the screen for a second time,
After this line 30 is again carried out. This transfers control back to
line 20 and so on ... until the screen is full of zeros and the Spectrum
asks for permission to move the screen on to make room to print
even more zeros! The repetition of lines 20 and 39 will continue
forever and tracing the flow of control shows it to take the form of a
loop. Not a very useful loop however and, because the only way to
stop it is to press the BREAK key or answer n to the “Scroll? y/n”
question, it is usually called an infinite loop.

A GOTO statement can be used to force the Spectrum to carry out
any instruction next. Its general form is:

GOTO ‘arithmetic expression’
so you can write things like:

GOTO 2*1¢

40 The Spectrum Programmer

(meaning the same thing as GOTO 20) but this sort of thing is not
used very often and it is better to think of GOTO as:

GOTO ‘line number’

You may be wondering what happens if you write something like
GOTO 50 and line 50 doesn’t exist. Most versions of BASIC would
simply stop and give you an error message to the effect that you are
trying to transfer control to a non-existent line but the Spectrum’s
version of BASIC is a little different. If the line number doesn’t exist
then control is transferred to the line with the next highest line
number. For example, if you use GOTO 50 and line 50 doesn’t exist
but line 55 does, then control will pass to line 55. If there is no ‘next
highest line’ i.e. the GOTO tries to transfer control out of the
program then the program stops without an error message. This
means that it is virtually impossible to get anerror by usinga GOTO!
You may think that this is an advantage but take great care because
if you have made a typing error in a GOTO the Spectrum won’t tell
you that you are transferring controlto a line that doesn’t exist. This
might not cause any problem at first because the next highest line number
might just be theline you wanted to GOTO anyway, butif youinsertany
lines of program later on trouble might appear from nowhere!

Although the example of the infinite loop serves to introduce the
idea of transferring control to a different point in the program, it
doesn’t really indicate the sort of thing that a loop is used for. An
important idea in programming is the repetition of series of
operations. This is often called iteration. For example, the
instruction LET count=countt1 simply adds | to the contents of the
variable ‘count’ and stores the answer back in ‘count’. In other words,
it increases the number stored in ‘count’ by 1. If you repeat this opera-
tion by using a GOTO you have something more than adding | to a
variable - you have a program that counts! Try the following:

10 LET count=0

20 LET count=count+1
3¢ PRINT count

40 GOTO 20

Y ou will see the screen fill with the numbers | to 21 and thenthe usual
“Scroll? y/n” question. By answering y to this you can keep the
numbers coming for a very long time.

Notice that by addinga GOTO to aninstruction that adds oneto a
variable we actually seem to produce a program that does a bit more
than just count. In fact, we generate a sequence of numbers. This is

Looping and Choice - the Flow of Contro/ 41

much more the flavour of real programming than the one-after-the-
other programs in Chapter Three. To see looping doing something a
little more useful try:

10 LET count=0

20 PRINT “x= ";count;* x squared= ";count*count
30 LET count=count+1

40 GOTO 20

This program will print out two lists of numbers, the second being
the square of the first.

Even if you are very familiar with the idea of a loop you can be
confused about what the current value of a variable is at any point in
the loop. For example, in the case of the counting loop program, the
first value of ‘count’ that was printed was one but in the squares
program the first value was zero. This difference is simply due to
where in the program the line that adds one to ‘count’ is placed and
also what value ‘count’ is set to before the loop starts. If you change
line 19 in the squares program to read 19 LET count=1 then the first
value to be printed will be one.

Understanding what goes onin a loop gets easier with practise but
it’s all a matter of following through the action of the program
clearly and without rushing.

Choice and conditions - the IF statement

Although the GOTO is a very useful statement the only thing that
you can do with it is to form infinite loops. This is fine for simple
things like printing tables of values but it is a bit too crude for many
applications. What we are lacking is a statement that will stop the
loop when a condition is satisfied. For example, suppose we want to
write a program that will add ten numbers together and then print
out the answer. At the moment the best that we can do is to type in
each number in turn and add it to a running total which we print out
each time, as in the following example:

10 LET total=9

20 LET count=§

30 INPUT “number = ";number
40 LET total=total+number

50 LET count=count +1

60 PRINT count;* total =";total
70 GOTO 3¢

To stop this program type STOP when it asks for the next number.

42 The Spectrum Programmer

If you run this program you will find that it produces rather a lot of
output that you don’t need. What we really want to do is read in the
ten numbers, keep a ‘running’ sum and only print out the answer at
the end. This can be achieved using the IF statement:

10 LET total=¢

20 LET count=§

3¢ INPUT “number = “;number
4 LET total=total+number

50 LET count=count+1

69 IF count=19 THEN GOTO 8
70 GOTO 3¢

80 PRINT count;* total =";total

The only difference between this and the first program to add ten
numbers together is the use of the IF statement in line 6. Each time
through the loop formed by the lines from 30 to 79 the IF statement
is obeyed. This takes the form of comparing the contents of the
variable ‘count’ to 10. If it isn’t equal to 10, control passes to the next
statement, i.e. line 7¢), and the GOTO following the THEN has no
effect. However if ‘count’ is equal to 10 the GOTO following the
THEN is carried out and control passes to line 8) printing the
answer and ending the loop.

There are many ways of using the IF ... THEN GOTO statement
to alter the flow of control depending on whether or not a condition
is true. Before we can go on to investigate the sort of thing that can
be done with IF we have to find out what types of conditions we can
use.

All of the conditions that you can use in an IF statement take a
very simple form:

‘arithmetic expressionl’ ‘relation’ ‘arithmetic expression2’

We already know what an arithmetic expression is so the only new
element is the relation. In BASIC there are six relations:

relation meaning
= equals
> greater than
< less than
<= less than or equal to
>= greater than or equal to
<> not equal to

Notice that on the Spectrum each of these symbols is entered by a

Looping and Choice - the Flow of Contro/ 43

single keypress. You will get an error if you enter a < and a > to
make up a single <>! The meaning in BASIC of each of these
relations is the same as their normal meaning.

Conditions are very often called conditional expressions and a
condition is like an expression in that it evaluates to a value, but in
its case there are only two possible results, true or false. It is
important to read conditions in the right way to avoid confusion.
For example, the condition ‘count=3’ is nor an instruction to make
count equal to 3, it is a question about what is stored in ‘count’. If the
value stored in ‘count’ is 3 then ‘count=3" is true, but if the value is
anything other than 3 then ‘count=3’ is false. Thus the Spectrum
uses the sign = in two different ways - as an instruction to store a
value in a variable and as a relation in a condition. The only way to
tell which is the correct meaning in any case is to look at the rest of
the instruction. Some examples of conditions are:

count<>4 false if count is 4, otherwise true
count*2>10 true if count*2 is greater than 10, otherwise false
3>1 ALWAYS true
1>6 ALWAYS false

To reinforce the idea that a condition is an expression that evaluates
to one of two values (true or false) it is worth saying that the
Spectrum represents both values as numbers. True is represented by
1 and false is represented as 0. In other words, ifa condition is true it
evaluates to | and if it is false it evaluates to 0. To prove that this is
the case try the following program:

10 INPUT “first number”;a

20 INPUT “second number™;b

30 PRINT “the result of ™;a;“>"1b;* is ";a>b

49 GOTO 19
You will find that either a 1 or a ¢ will be printed depending on
whether ‘a>>b’ is true or false in the case of the numbers you typed.
You might be surprised that you can write a condition ina PRINT
statement where you would normally write an arithmetic
expression. This is simply another reflection of the fact that a
condition is an expression just like an arithmetic expression and it
can be used anywhere that an arithmetic expression can. Indeed you
can mix conditional and arithmetic expressions with no problems as
long as you pay attention to the order in which they are evaluated.
(Relations have priority 4 which means that any arithmetic is done
before they are evaluated.) For example:

44 The Spectrum Programmer

PRINT (1>2)+(3>1)+(3=2+1)

will print 2 on the screen because (1>>2) is false and evaluates to 0,
(3>1) is true and evaluates to | and (3=2+1) is also true and
evaluates to |, which gives 0+ 141 i.e. 2. (Notice that the conditions
all have to be enclosed in brackets to stop the Spectrum trying to do
the arithmetic first!) This sort of thing is fairly advanced BASIC so
don’t worry if you don’t understand it fully - what is important is
that you understand that something like 2=3 is an expression and
evaluates to true or false rather than an instruction to do some
operation.

We have taken a slight detour around the subject of the IF
statement to examine the idea of a conditional expression but armed
with this new information the remainder of this chapter should seem
easier. The general form of the [F ... THEN GOTO statement is:

IF ‘conditional expression” THEN GOTO ‘line number’

If the conditional expression evaluates to I, or true, thenthe GOTO
following the THEN is obeyed. If the conditional expression
evaluates to 0, or false, then the statement following the IF is
obeyed.

There are so many ways of using the IF ... THEN GOTO apart
from breaking out of loops, that it is difficult to give examples of
everything. But if you understand the ideas of flow of control and
the way that IF and GOTO can be used to change it then you should
have no trouble in understanding the examples in the rest of this
book.

Using IF

The only way to find out how useful IF can be is to write your own
programs that use it. In this way you’ll slowly pick up all the
standard ways that you can change the flow of control depending on
the result of a conditional expression. However, to speed up this
process and avoid clumsy ways of using the IF statement, it might
help to give examples of some of the most common ways that it is
used.
An IF statement can be used to skip a section of program

10 INPUT a

20 IF a>0 THEN GOTO 49
30 LETa=—a

40 PRINT a

Looping and Choice - the Flow of Control 45

This short program refuses to let you enter a negative! The
IF statement in line 20 checks to see if the number in ‘a’ is greater
than zero and if so control passes to line 40 - effectively skipping line
3. If ‘a>’ is false line 39 changes the sign of the contents of ‘a’. In
another program a different list of statements might be skipped
according to some other condition. The shape of the skip is depicted
in Fig. 4.3 which illustrates how the result of the condition decides
whether or not the list of instructions is carried out or skipped.

Fig. 4.3.

An extension of the idea of skipping some lines of BASIC is to
choose betweentwo different lists of commands. Inthiscaseitiseasier
to understand the idea after lookingatthe shape of the flow of control
(see Fig. 4.4).

List List
one two

Fig. 4.4.

Which list is carried out depends on the condition used in the IF
statement. The reason why it is useful to look at Fig. 4.4 before
looking at an example of an IF statement to select between two sets
of instructions is that it is a little difficult to see the simple division
into two in the BASIC. Consider the following program:

46 The Spectrum Programmer

10 INPUT a

20 1F a< THEN GOTO 60
30 PRINT *“a is positive”
40 LET b=a

50 GOTO 8¢

60 PRINT *“a is negative”
70 LET b=-a

8) PRINT a,b

According to the value of ‘a’ either lines 30, 40 and 50 are obeyed or
lines 6¢) and 70). The division point in the diagram corresponds to the
IF statement itself (line 2)). The join up point is line 8) because this
is the first statement that will be carried out no matter which of the
two lists of instructions is selected. If you try to superimpose Fig.
4.4 on the program you will see that, although it represents what
happens, it is difficult to fit it. The reason for this is that it is
impossible in BASIC to write the two alternative lists next to each
other, so the flow of control diagram is more like the one in Fig. 4.5.

- <- .

List one
Y
N .
v List two v
[

Y
Fig. 4.5.

If you look at Fig. 4.5 you should be able to see that it is a
‘mangled’ form of Fig. 4.4 Using the IF to select between two

Looping and Choice - the Flow of Control 47

alternatives is easier to understand from Fig. 4.4 but Fig. 4.5 corres-
ponds more closely to reality.

We have already met the only other important use of the IF
statement, that of breaking out of a loop. The flow of control
diagram for that circumstance can be visualised as shown in Fig. 4.6.

R O
E<Xlt Loop A
v -
R

Fig. 4.6.

You should be able to see the familiar shape of an infinite loop. The
path that leads out of the loop and back to the normal flow of
control corresponds to a GOTO taken when the condition in the [F
statement is true. Notice that the point at which the IF statement
breaks out of the loop can be placed anywhere. In other words, you
can break out of aloop anywhere from the first statement to the last.

For example:

10 LET a=9

20 LET a=a+|

30 IF a=20 THEN GOTO 60
40 PRINT a

50 GOTO 20

60 PRINT “finished”

has its exit point in the middle and

48 The Spectrum Programmer

19 LET a=p

20 LET a=a+1

39 PRINT a

49 IF a=29 THEN GOTO 6
50 GOTO 20

60 PRINT “finished”

has its exit point at the end of the loop.

In general, although it is possible to place the exit point of a loop
anywhere, it is better to place it either right at the beginning or right
at the end. The reason for this is that it is better to avoid carrying out
part of a loop. (Technically a loop with only one exit point placed at
the beginning is known as while loop and a loop with only one exit
point at the end is known as an until loop. However, these names
come from other computer languages and are not important when
programming in BASIC.)

A loop that has its exit point at the end can be simplified by
turning the cond:tion round the other way, for example:

10 LET a=¢

20 LET a=a+1

39 PRINT a

40 IF a=20 THEN GOTO 60
50 GOTO 2¢

60 PRINT “finished”

can be turned into

19 LET a=p

20 LET a=a+1

30 PRINT a

49 IF a<>20 THEN GOTO 20
50 PRINT “finished”

The loop in the first example comes to an end when ‘a’ is equal to 20
and line 50 contains the GOTO that otherwise makes the loop
continue. In the second example the GOTO has been eliminated by
turning the condition around to make the loop continue when ‘a’ is
not equal to 20. After seeing this sort of thing a few times you will
adopt the shorter, neater form without thinking, but it is worth
occasionally remembering where it derives from.

As stated at the beginning of this section, there are many ways of
using an IF statement to alter the flow of control of a program and
you shouldn’t feel restricted to just those that have been introduced
in this section. However, it is wise not to experiment too much

Looping and Choice - the Flow of Control 49

because the more ways that you use the IF statement the more
difficult it will be to understand your program. In essence the rule is
to make the flow of control diagram as simple as possibleso that your
programs will be easy to read, understand and debug.

The FOR statement

Apart from the position of the exit point, loops differ in two other
ways. All loops continue until a condition is satisfied but in many
cases this is equivalent to carrying out the loop a fixed number of
times. For example, if you wanted to print the word “Hello” on the
screen five times you could do it using:

10 LET a=1

20 PRINT “Hello”

30 LET a=a+1

49 IF a<=5 THEN GOTO 2§
However, this is such a common situation that BASIC provides two
extra statements - FOR and NEXT - to make repeating lists of
statements easier. Using FOR and NEXT the program that prints
“Hello” on the screen five times can be written:

10 FOR a=1TO 5
20 PRINT “Hello”
30 NEXT a

The meaning of the FOR and NEXT should be clear from the
program. The variable ‘@’ is used to count the number of times that
the loop has been obeyed in the same way as in the earlier example.
The difference is that everything is done automatically. The FOR
statement first sets ‘a’ to one. Each time the NEXT statement is
carried out one is added to ‘a’ and, as long as its value hasn’t
exceeded 5, control is transferred back to line 20 (i.e. there is an
implied GOTO 20). The result is that the PRINT statement at line
20 is executed five times before control passes on to the statement
following the NEXT.
The general form of the FOR ... NEXT loop is:

FOR ‘index variable’=‘start value’ TO ‘end value’

NEXT ’index variable’

50 The Spectrum Programmer

The ‘index variable’ is initially set to the ‘start value’. Each time
NEXT is reached the ‘index variable’ is increased by one and as long
as the value hasn’t exceeded the ‘end value’ control is transferred to
the statement just after the FOR. The only restriction is that the
name of the ‘index variable’ can only be a single letter - so ‘index
variable’ can be any one of ‘a’ through to ‘z’. To make sure that you
understand exactly what a FOR loop can do try the following
examples:

10 FOR i=1 TO 1¢
20 PRINT i
30 NEXT i

10 FOR z=100 TO 110
20 PRINT z
3¢ NEXT z

In general both the ‘start value’ and the ‘end value’ can be full
arithmetic expressions but it is important to realise that these are
only evaluated once at the start of the loop. This becomes clear if you
think of the FOR statement as only being carried out once at the
start of the loop. The value of the ‘index variable’ can be used in
arithmetic expressions during the loop but its value must not be
changed. In other words, you can use the ‘index variable’ina LET
statement on the right hand side of an = sign but not on the left. For
example, the following short program will print a multiplication
table

10 INPUT “Which table (e.g. enter 2 for two times table) 7;t
20 INPUT “Starting at ;s

30 INPUT “Ending at 7’;e

40 FOR i=s TO e

50 PRINT i;“ x ";t;* = ";i*t

60 NEXT i

Notice that both the start and end values of the FOR loop are
arithmetic expressions, simple variables in fact! Also note the use of
the ‘index variable’ i’ in line 50.

The simple FOR loop serves for most purposes, however there is a
slightly more advanced form that is occasionally useful and is
certainly worth knowing about. In the simple FOR loop each time
through the loop one was added to the value of the index variable.
This is sensible if you are using the index variable to count the
number of times that the loop has been carried out. However, it is

Looping and Choice - the Flow of Contro/ 51

sometimes the case that a calculation carried out inside the loop
needs a value that changes by something other than one each time
through the loop. This is catered for by the addition of the BASIC
statement STEP, the general form of which is:

FOR ‘index variable’=‘start value’ TO ‘end value’ STEP
‘increment’

The ‘increment’ specified following STEP is the amount that is
added to the index variable each time through the loop. So the
simple FOR loop is equivalent to STEP 1. The only thing that you
have to be careful of when using FOR STEP is to make sure you
know when the loop will come to an end. The rule is that the loop
terminates when the value of the index exceeds the ‘finish’ value. So
the value of an index variable in a FOR loop can never become
larger than the ‘finish value’. To see this in action try the following
examples:

10 FOR a=.4 TO 10 STEP .01
20 PRINT a
30 NEXT a

or

10 FOR a=1 TO 109 STEP 25
20 PRINT a
30 NEXT a

The value of the increment following STEP can be negative, in
which case it is better called a decrement. For example:

19 FOR a=10¢ TO § STEP —15
20 PRINT a
30 NEXT a

You may have some slight difficulty in working out when this and
similar loops end. However, the rule is almost the same as for a
positive increment. Each time through the loop the value of the
index variable decreases by the increment and the loop ends when its
value first drops below the ‘end’ value.

As well as having a negative increment, it is possible for either the
‘start’ or the ‘end’ value to be negative and this is where things can be
confusing. Consider this short program:

10 FOR a=—109 TO 50 STEP 1¢
20 PRINT a
30 NEXT a

52 The Spectrum Programmer

At first sight it may not seem to make sense. However, if you keep a
cool head then you should be able to see that the same rules apply.
The value of the increment is added to the index variable each time
through the loop until its value exceeds the ‘end’ value if the
increment is positive, or is less than the ‘end’ value, if the increment is
negative.

Using the FOR loop

There are one or two rules that govern the use of FOR loops. As you
can use any valid BASIC statement within a FOR loop itis possible
tousea GOTO or an IF toleavea FOR loop before it is finished (i.e.
before the index variable has reached the ‘end’ value). This is quite
permissible in Spectrum BASIC but many other versions of BASIC
will complain if you leave FOR loops in an unfinished state. Because
of this it is better not to fall into the habit of using sloppy FOR loops.

It is often the case that FOR loops are used in combination. This is
easy to understand as long as you think logically about the way each
loop works. For example:

10 FOR a=1 TO 1§
20 FOR b=1TO 1§
30 PRINT a,b

40 NEXT b

50 NEXT a

is correct because the FOR loop formed by lines 20, 30 and 40 is
completely contained within the FOR loop starting at line 19 and
ending at line 50. This means that the inner loop is carried out each
time through the outer loop. It is all too easy to make a slight
mistake and end up with:

10 FOR a=1TO 1§
20 FOR b=1 TO 19
30 PRINT a, b

49 NEXT a

50 NEXT b

which will give you an error message.

IF ... THEN and the colon

There is an even more general version of the IF statement than the
one we have examined so far. As well as being able to follow the

Looping and Choice - the Flow of Control 53

THEN by the BASIC command GOTO, you can in fact use any
valid BASIC command. For example:

10 INPUT a

20 IF a<) THEN PRINT “a is negative”
30 IF a=@ THEN PRINT “a is zero”

40 IF a>@0 THEN PRINT “a is positive”
590 GOTO 19

The best way to think of this is as a sort of easier version of the IF to
skip an instruction. Only in this case the instruction is only carried
out if the condition is true. There isn’t very much to add to this
description except to emphasise the fact that you can follow THEN
by any valid BASIC statement - including another IF!

This extended version of the IF statement seems very useful at
first but you quickly come to the conclusion that it’s not often that
you want to execute a single statement as a result of some condition.
Clearly what is needed is some way of writing a list of BASIC
statements following the THEN. Spectrum BASIC does provide a
way of doing this although it is important to realise that not all
versions of BASIC do. You can group together a number of BASIC
statements on a single line, separating each one by a colon and they
will be obeyed in turn from left to right. For example:

10 PRINT “first™:LET a=1:PRINT “second”;a

will be carried out as a single line of BASIC working from left to
right and is equivalent to:

10 PRINT “first”
20 LET a=1
30 PRINT “second”;a

This use of colons to group a number of BASIC statements
together effectively extends the rule for the default flow of control.
Now instead of just obeying instructions in order of increasing line
number (i.e. effectively moving down the screen) instructions that
are grouped together on a line are obeyed from left to right. This
is exactly the same way that a human would read a list of
instructions from a sheet of paper (i.e. left to right and then
downwards). Although this extension can make life much easier it
should be remembered that, as other versions of BASIC do not have
this facility, over-using it may make you very dependent on the
Spectrum’s version of BASIC.

As mentioned earlier, the place where it is really useful to have the

54 The Spectrum Programmer

ability to put more than one BASIC instruction on to a line is
following a THEN. For example, at the end of most games
programs it is usual to ask if the player would like another game. In
the following example of a routine that could be added to the end of
a program the answer is expected in the form of 1, to mean yes, or §,
to mean no. Any other value as a response will be taken to be a
mistake and a message to that effect will then be printed and the
question asked again.

119 INPUT “do you want another game (yes=1,no=§)";a

120 IF a=1 THEN GOTO xxx

130 IF a<>@ THEN PRINT*“you must answer 1 or
0”:GOTO 11¢

140 PRINT “bye!!”

Notice the use of the colon to group two BASIC commands together
in line 130. The xxx in line 120 should of course be replaced by the
line number of the start of the program.

There is a simple BASIC statement that we have not dis-
cussed so far that is very useful when used in conjunction with the
IF statement. Suppose that as a result of some condition you should
want the program to stop, then currently the only way that we know
of achieving this is to GOTO a line number that is at the end of the
program. The BASIC statement STOP can be used anywhere in a
program to return control to the user. For example:

1) PRINT “Do you want to continue Y=1,N=§¢”

20 INPUT a

30 IF a=@ THEN PRINT“bye bye”:STOP

40 1IF a<<>>1 THEN PRINT “I don’t understand - you must
enter either 1 or 0”:GOTO 19

50 PRINT “I continue - master”

60 GOTO 10

Notice the use of the colon to group commands together in lines 3¢
and 40 and the use of STOP in line 30.

A final example

As a further example of both the [F and FOR statements consider
the problem of turning the stopping distance program given in
Chapter Three into a sort of quiz. For a range of speeds the playeris
asked for the thinking, braking and total stopping distance in feet.

Looping and Choice - the Flow of Control 55

10 PRINT “Stopping distance”

20 LET mark=0

39 FOR s=1¢ TO 80 STEP 1§

40 PRINT “What is the thinking distance at ”;s;* mph ?”
590 INPUT t

60 IF t=s THEN LET mark=mark+1

70 PRINT “What is the braking distance at ”;s; mph ?”
89 INPUT b

90 IF b=s*s/20 THEN LET mark=mark+1

1090 PRINT “What is the total stopping distance 7’

110 INPUT d

120 IF d=s*s/20+s THEN LET mark=mark+1

130 NEXT s

140 PRINT

150 PRINT “You scored ”;mark

160 PRINT “out of a possible 24”

The flow of control summarised

Y f

Default Skip Select

Conditional loop

Fig. 4.7. Flow of control diagrams

56 The Spectrum Programmer

It is difficult to say exactly what goes on in the mind of an
experienced programmer. Whatever it is, it is a process that marks
the difference between a beginner and an expert. One thing that does
seem certain is that, in addition to the catalogue of programs that
have been seen before and a collection of handy tricks, the standard
forms of the flow of control diagrams that we have been studyingin
this chapter are ever-present. It is worth mentioning at this point
that it has been proved that you can write any program using only
the default, select and conditional loop. This is so important that it is
worth gathering together the flow of control diagrams so that you
too can store them away in your personal memory.

Chapter Five
Handling Text and
Numbers

So far the only programs that we have written have used numbers. If
this was all that computers could do they would be little different
from pocket calculators! In this chapter we will look at how the
Spectrum can handle characters and text just as easily as digits and
numbers. In the last part of this chapter some other ways of
extending the things we can do with data are introduced - arrays and
tape storage.

Strings

In Chapter Three the idea of a string — a collection of letters within
double quotes — was introduced as a way of printing messages and
prompts. In fact what we have been calling a string is really a string
constant. The use of the word constant might alert you to the fact
that there are such things as string variables. A string variable is
similar to a simple variable in that it is a named area of memory that
can be used to store information. In this case, the information is a
collection of characters instead of a number. The rules for naming
string variables are different from simple variables. A string
variable’s name consists of a letter followed by a dollar sign. The
dollar sign is used to distinguish between a simple variable and a
string variable (e.g. ‘b’ is a simple variable but ‘b$’is a string variable
and therefore different). The LET statement can be used to store a
string constant in a string variable and the PRINT statement can be
used to print its contents.

10 LET a$=*this is a string”
20 PRINT a$

In fact, a string variable can be used anywhere that a simple variable
can as long as it makes sense. For example, you canuse INPUT a$ to

B8 The Spectrum Programmer

store a string typed in from the keyboard while a program is running
but LET total=3+a$ is obviously nonsense (you cannot add a string
to a number!). Notice in particular the difference between:

10 LET a$=*1"
and
20 LET a$=1

Line 10 is fine because the I is enclosed in double quotes and is
therefore a string but line 2¢) will give an error message because a$ is
a string variable and 1 is a number.

The introduction of string variables is exciting because it opens up
the possibility of the Spectrum handling text and even dialogues. So
far, however, the only sort of program that we can write is:

19 INPUT “What is your name ?”;n$
20 PRINT “Hello ”;n$;*, [am your Spectrum computer”

which is all right for a start but it can result in unnatural dialogues
like:

What is your name? Fred Bloggs
Hello Fred Bloggs, I am your Spectrum computer

The trouble is that although we can INPUT, PRINT and store
strings, we have no way of changing them. This is rather like being
able to INPUT, PRINT and store numbers but having no way of
doing arithmetic - it’s obvious that this would limit the programs
that we could write! The answer lies in inventing an ‘arithmetic’ for
strings so that as well as having arithmetic expressions we can use
‘string expressions’.

String expressions

Before introducing the Spectrum’s facilities for handling strings it is
worth considering what sort of things you might like to do and then
see if the Spectrum can actually fit the bill. If a program had
someone’s first name in f$ and their last name in 1$ then it would be
useful to be able to join them together to form one longer string.
Such joining together of strings is known as concatenation. Another
thing that would be useful is the ability to exzract part of a string.
For example, you could extract the last name from a string
consisting of an initial and surname i.e. extract “BLOGGS” from

Handling Text and Numbers 59

“F.BLOGGS”. A string that is part of another string is often called a
substring. For example, BLOGGS is a substring of F.BLOGGS.
Another useful facility would be to replace one substring with
another. For example, if we were trying to keep F.BLOGGS a secret
we might want to replace the surname with asterisks giving
“F **x**x» Finally it would be a great advantage to be able to test
for the presence of a particular substring within a string, for
example, to see if the substring “BLOGGS” occurred in the name
stored in n$. To recap, the string operations that we would like to
find are concatenation, substring extraction, substring replacement
and substring searching.

Our first requirement, string concatenation, is immediately satis-
fied by the Spectrum’s concatenation sign +. If a$ contains the string
“abcd” and b§ contains “efgh” then after:

LET c$=a$+b$

c$ contains “abcdefgh”. Notice that we now have two uses for the
symbol +, as the sign for addition and as the sign for concatenation.
You can use the + sign more than once in a string expression:

LET c¢$=“Mr "+f$+* "+ 18

will join up the four strings involved and if f$ contains a first name
“Fred” and 1$ a last name “Bloggs” then ¢$ will contain “Mr Fred
Bloggs”. Notice the use of a single space between the two strings to
avoid the result being “Mr FredBloggs™!

Extracting or changing a substring can be done by using a single
new operation, slicing. Most other versions of BASIC use methods
that are much more complicated than the Spectrum’s string slicing.
Although the Spectrum may be on its own when it comes to
handling strings, in fact it offers a distinct improvement over other
BASICs. A stringslicer specifies a substring by giving the position of
the first and last letters. For example:

PRINT “12345678” (3 TO 6)

displays the substring “3456” i.e. starting at the third character and
ending at the sixth. Remember that TO must be entered by a single
keystroke (it is to be found on the ‘F’ keypad). Typing the letter ‘T’
and the letter ‘O’ just won’t do! The general form of a slicer is:

‘String (‘arithmetic ‘arithmetic)
expression’ \expressionl’ expression2’

and the substring that the slicer specifies starts at the character given

60 The Spectrum Programmer

by ‘arithmetic expression 1’ and ends at the character given by
‘arithmetic expression 2’ in the string that ‘string expression’
evaluates to. This may seem like a complicated definition, and
indeed it does go further than the most common forms of the slicing
notation found in other BASICs. For most of the time the ‘string
expression’ is either a constant or a single string variable and the
arithmetic expressions are again simply constant numbers or single
variables. For example:

“abed™(2 TO 3)
or
“abed”(count TO 3)

However, by now you may have realised that one of the most
powerful principles in BASIC is that anywhere you can use a
constant or a variable you are also allowed to use an expression.
String slicing is no different in this respect and you can write things
like:

(“abed”+*“efgh™)(start TO start+3)

which first concatenates the two strings “abed” and “efgh” to form
the single string “abcdefgh™ and then extracts four letters, starting
with the character at the position stored in ‘start’. You shouldn’t be
frightened to write complicated string expressions any more than
you would be over complicated arithmetic expressions.

There are a number of special cases of the slicing notation that are
well worth knowing about. The start and end of a string are so often
used in forming substrings by slicing that if you leave ‘arithmetic
expression 1’ out the start of the string is assumed and if you leave
‘arithmetic expression 2’ out the end of the string is assumed. So:

“123456”(TO 5) means “123456”(1 TO 5) which is “12345”
“123456”(3 TO) means “123456”(3 TO 6) which is “3456”
*123456”(TO) means “123456”(1 TO 6) which is “123456”

There is also a very useful abbreviation that will extract a single
character at any position in a string. Instead of having to write (n TO
n) to extract the character at position n in the string you can simply
write (n). So:

“123456”(3) means “123456”(3 TO 3) which is 3

It is possible to get things wrong when using slicing. For example,
if you specify a character position that doesn’t exist you will get an

Handling Text and Numbers 61

error message saying “Subscript wrong” or “Integer out of range”.
For example, “123456”(4 TO 7) or “123456”(—1 TO 3) will both
produce error messages. However, if you use a starting position that
is less than the final position, e.g. “123456”(3 TO 1) you might be
surprised to discover that you do not get an error message. Instead
the answer is a very special form of string — the null string. The null
string has no characters in it and plays a very similar role in string
expressions to that of zero in arithmetic expressions. The string
constant that corresponds to the null string is written “”i.e. a pair of
double quotes with nothing in between. Notice the difference
between “” and “”. The first is the null string and has no characters in
it, the second is a string consisting of one character—ablank orspace.
From the point of view of a computer a space is just as much a
character as a letter of the alphabet, it takes up one position to print
and needs just as much computer memory to store it. If you print a
null string it has no effect whatsoever. The statements PRINT a;b
and PRINT a;*”’;b produce the same result.

As an example of using slicing consider the problem of printing
the name of a month given its number (i.e. you should print Dec for
12 and May for 5 etc.). Try the following short program:

10 LET y$=“JanFebMarAprMayJunJulAugSepOctNovDec”
20 INPUT “Month number 7’;mon

3¢ PRINT “month ”;mon;“is ” ;y$(1+3*(mon—1) TO 3*mon)
49 GOTO 20

If you enter in the range | to 12 the program will print the correct
abbreviation for the month in question. The way that it works is by
slicing out the three letter name from the long string y$. The best way
of understanding the slicer in line 3@ is by working it out by hand for
a few values of ‘mon’. if ‘mon’ is 4 then (1+3*(mon—1)) is 10 and
3*mon is 12 and (10 TO 12) specifies the three letters “Apr”.

Slicing can not only be used tc extract a substring but also to
change all the characters in the substring. You can use the standard
slicing notation to define a substring to be changed on the left hand
side of the = in a LET statement. For example:

10 LET a$="123456"
20 LET a$(3 TO 4=“ABCDEFG”
3¢ PRINT a$

will print ‘12AB56’ on the screen. This feature is a very logical
extension of the normal use of LET to store a string in a string
variable. The slicer simply restricts the range of the characters that

62 The Spectrum Programmer

are altered by the LET. If the string on the right hand side of the =in
the LET is bigger than the substring specified the extra characters
are ignored and if it is shorter then it is padded with blanks. For
example:

10 LET a$="123456"
20 LET a$(2 TO 5=“ABC”
30 PRINT a$

will print the string “l1ABC 6” on the screen. (Notice the blank
following the letter C.)

The only thing left from our initial list of string handling
requirements is testing to see if a particular substring is present in
another string. Spectrum BASIC doesn’t provide a direct method of
achieving this but it does extend the use of conditional expressions
(see Chapter Four) to strings and this can be used to achieve the
same ends. You can use all of the relations that were introduced in
that chapter with strings. The meaning of=and <“are easy enough
to understand. Namely, two strings are equal if they are of the same
length and contain the same characters in the same order otherwise
they are not equal. However, what do the relations <, >, <= and
>=mean when applied to strings? The answer to this question varies
from BASIC to BASIC. In the case of the Spectrum, however, they
are defined so that a$<b$ is true if the string in a$ would come
before the string in b$ in an alphabetically ordered list of strings. The
trouble is that we are all so familiar with alphabetically ordered lists
that we tend to forget how they work! If the two strings being
compared are single letters, then a$<b$ if the letter in a$ comes
earlier in the alphabet than the letter in b$. For example, “a”<“b” is
true but “d”<*b” is false. What about comparing strings that
contain single characters that are not necessarily letters, for example
what do we make of *“*”<*$”? In the case of the letters, the alphabet
provided us with a readymade order so what we need is to extend
this order to include all the other symbols that the Spectrum can use.
In other words we need a super alphabet! This is already available
for the Spectrum. If you look at Appendix A in the Spectrum
Manual you will see a listing of the complete set of Spectrum
characters in a predefined order and it is this that is used as the super
alphabet to decide if a$<b$. If you don’t have the Spectrum Manual
to hand, or if you are just interested, you can print all the characters
in their proper order by using the following program:

Handling Text and Numbers 63

10 FOR i=34 TO 255
20 PRINT “character ";i;* = ";CHRS(i)
30 NEXT i

Line 1§ specifies 34 as the starting point as the characters before that
are unprintable. Don’t worry about the use of CHRS in line 20 this
will be explained later. If you run this program you might be
surprised to see words like PRINT and FOR appearing on the
screen as characters! This is simply a reflection of the fact that the
Spectrum treats everything that can be entered as a single keystroke
as a single character even if it appears on the screen as a word!
Coming back to the question of whether or not “*”<<“$” is true or
false, “*” is character 42 and “$” is character 36 so “$” comes before
“*” in the order and “*”<“$” is false. You can decide the truth or
otherwise of any relationship in the same way.

If the two strings contain more than one character they are
compared one character at a time until the first pair of different
characters is found. The relationship between the two strings is then
decided on the basis of those two characters. For example,
ABCD<AZCD is true because the first pair of letters that are
different is B and Z and B<Z is true. If one of the strings is the same
as the other apart from the addition of a few extra characters then
the comparison is based on length, i.e. ABCD<ABCDEF, because
there is no pair of letters that is different and ABCD is shorter than
ABCDEEF.

The idea of the length of a string is quite important and so the
Spectrum provides a very simple way of finding the length of any
string. Try the following program:

10 INPUT a$
20 PRINT LEN(a$)
30 GOTO 1§

you will see that it prints the number of characters that you type in
response to the INPUT. In general:

LEN(‘string expression’)

will give the number of characters in the ‘string expression’. (The use
of LEN will be discussed in more detail in Chapter Six.)

Arrays

Strings and numbers are the only two types of data that the

64 The Spectrum Programmer

Spectrum can handle and this is quite sufficient for most purposes.
However, the Spectrum does provide a way of using the basic types
of data in a more sophisticated way, the array.

Consider the problem of reading in five numbers and printing
them out on the screen in the reverse order. So far the only method
that we could use is:

10 INPUT al,a2,a3,a4,a5
20 PRINT a5, a4, a3, a2, al

which is not too bad for five numbers but think what the program
would look like if the problem was to reverse 100 numbers!

What we need to be able to do is to refer to a variable like ‘a(i)’
where i can take values from 1 to 5in a FOR loop. Then we could
write:

20 FOR i=1 TO 5

30 INPUT a(i)

40 NEXT i

50 FOR i=5 TO 1 STEP —1
60 PRINT a(i),

70 NEXT i

This is in fact exactly what BASIC allows you to do. The collection
of variables a(1) to a(5) is called the array a and a particular variable
a(i) is called an element of the array, (see Fig. 5.1).

DIM a(10)

1 2 3 4 5 6 7 8 9 10

a(7)

Fig. 5.1. A one-dimensional array

The only complication is that before you canuseanarray you must
tell your Spectrum how many elements the array is going to have.
This is done using the DIMension statement:

19 DIM a(5)

which should be added to the previous program to make it work! If
you define a variable as having only five elements and try to use a(6)

Handling Text and Numbers 65

then you will get an error message for trying to use something that
doesn’t exist! It is tempting to think that it is better to define arrays
larger than you need to try to avoid such error messages but be
warned, arrays can quickly use up all the memory that your machine
has to offer! There is a similar restriction on the names of arrays as
on index variables i.e. they can only be one letter long! This means
that you can only have 26 different arrays called ‘a’ to ‘z’, but this is
usually more than enough. Using the DIM statement destroys any
arrays that already exist with the same name and creates a brand
new array initialised so that each element stores zero.

In addition to being able to define arrays that can be thought of as
rows of variables (see Fig. 5.1) you can define arrays that correspond
to organising variables into tables made up of rowsand columns. For
example:

DIM a(10,10)

defines a collection of variables organised into 1§ rows and 10
columns. A particular element of this array can be referred to as
a(i,j) where the two indices select the row and column.

The idea of a two-dimensional array can be extended to three-,
four- ... up to 255-dimensional arrays. It is difficult to think of an
arrangement of variables that corresponds to the higher-dimen-
sional arrays but they are defined and used in roughly the same way
as one- and two-dimensional arrays. For example:

DIM a(19,29,5)

is a three-dimensional array and typical element is a(2,1,4). There is
not much use for arrays with dimensions greater than two. This is
fortunate because they tend to use up memory very, very fast.

You can form arrays from string variables as well as numbers and
these can be used to store and manipulate lists of words. There is one
complication, however, in that in some senses a string is already a
one-dimensional array of characters. If you define a one-
dimensional string array, in fact what you get is a string of fixed
length. For example:

DIM s$(10)

is a string variable that always stores 10 characters no matter what
(even if some are blank). To see the difference between the string r$
and the string array s$ try the following program:

66 The Spectrum Programmer

10 DIM s$(10)

20 LET s$="abc”

30 LET r$=*abc”

40 PRINT s$;“x™;r$;“x”

You should see that s$ is ten characters long no matter what you
store in it. Notice that for string arrays you can store values in more
than one element at a time. You can also store single characters in
elements, however. The following lines store z in s$(5).

50 LET s$(5)="z"
60 PRINT s$

You might be able to see a similarity between this and the slicing
notation introduced earlier.

You can handle lists of words by using two-dimensional string
arrays. For example, the number reversing program can be used to
reverse a list of words:

10 DIM a$(5,10)

20 FOR i=1 TO 5

30 INPUT a$(i)

40 NEXT i

50 FOR i=5 TO | STEP —1
60 PRINT a$(i)

70 NEXT i

Notice that if you leave out the last index in a two- (or more)
dimensional string array this is taken to mean that you want to treat
the array as a collection of strings. For example:

a$(5,2) is a single character
but
a$(5) is a string of 10 characters.

You can even use the slicing notation to pick out substrings. For
example:

a%$(5,1 TO 2)

is a substring starting at character | and ending at character 2.
Sinclair BASIC allows very flexible uses of strings and arrays.

These can be difficult to understand at first but once you have

become accustomed to them you will find that they are very

powerful.

Handling Text and Numbers 67

A word game

As an example of using string arrays consider the problem of writing
a program to play the game of hangman. Because the computer
cannot ‘think up’ alist of words for you to guess, it is necessary to ask
someone else to type in a list for you to guess. Once the list of words
has been entered the player must try to guess each word in turn letter
by letter. Each letter that is entered must be checked against each
letter in the word. If it is present then the letter in the word must be
replaced by a blank to make sure that the player cannot guess it a
second time. When all the letters have been guessed the program
moves on to the next word, or if there are none, comes to an end.
After this description you should be able to make a good attempt
at your own hangman program before looking at the one below:

M DIM wS(5,10)
2§ FOR i=1 TO 5
30 INPUT “Word = ";w$(i)

40 NEXT i

50 FOR i=1 TO 5

69 LET g=¢

70 LET t$=wS$(i)

I8¢ LET g=g+1
.90 INPUT “guess=";a$
AP0 LET =0

W@ FOR j=1 TO 1§
420 IF a$(1)=w$(i,j) THEN PRINT“YES! - ";a$(1):LET
wi(ij)=""
130 IF w$(i,j)<>*” THEN LET f=1
40 NEXT j
\¥50 IF f=1 THEN GOTO 8¢
“160-PRINT “You got it in ";g;* 117
/79 PRINT “The word was ";t$
480 NEXT i
JH90 PRINT “game over”

Line 10 defines the array w$ so that it can hold five words of up to
ten letters each. Lines 20 to 40 are used to input the words. The FOR
loop starting at line 5¢ and ending at line 18Q repeats the guessing
part of the program five times, once for each word. The variable t$ is
used in line 70 to store the word until the end of the game so that the
array element can be modified by storing blanks in the place of
letters that have been guessed. The guess is input in line 99. Each

68 The Spectrum Programmer

letter in the word is checked against the current guess by the FOR
loop starting at line 11§ to line 14¢). The variable ‘f* is used to check
that there are still letters left to be guessed.

Initialising variables - DATA and RESTORE

It often happens that a standard set of values needs to be stored ina
set of variables or an array for a program to work properly. For
example, suppose we want to print the number of days in a given
month we could set up an array of 12 elements and STORE the
answer in each element - i.e. the number of days in Jan would be
stored in the first element of the array, the number in Feb in the
second and so on. This is a very simple and useful idea but how do
you initialise each element of the array to the correct value? You
could use a FOR loop and an INPUT statement to read in the
answers or you could write 12 LET statements. To make life slightly
easier, BASIC provides the facility to store data within a program so
that it can be transferred to any variable of your choice. The data is
stored in a DATA statement that is composed simply of the word
DATA followed by a list of values separated by commas. For
example, the days in each month could be written as:

10 DATA 31,28,31,30,31,30,31,31,30,31,30,31

To transfer these data values into variables the READ statement is
used. A READ statement is simply the keyword READ followed
by a list of variables separated by commas. Each time a READ
statement is encountered data values are transferred into variables
in the variable list - one data value per variable. The best way to
think of this is to imagine a pointer initially set to the first datum
value in the DATA statement. Each time a READ statement
transfers a datum value into a variable, the pointer is moved on to
the next datum value. Whenever a READ statement is obeyed data
is transferred, starting from whatever datum value it has reached
after previous READ statements. So the array holding the 12 data
values in the example DATA statement given above can be
produced using:

20 DIM m(12)

30 FOR i=1 TO 12
49 READ m(i)

50 NEXT i

Handling Text and Numbers 69

You can have as many DATA statements in a program as you like,
anywhere that you like, and they are treated as if all the data that
they store was contained in one big DATA statement. So when the
pointer moves past the end of a DATA statement it moves to the
beginning of the next DATA statement. If there isn’t one, however,
you’ll get an error message.

There is no restriction on the types of data that you can store in a
DATA statement (i.e. you can use strings or numbers) but you must
always be careful to READ data into variables of the same type, i.e.
strings into string variables and numbers into numeric variables.
Strings in DATA statements have to have double quotes around
them otherwise it wouldn’t be possible to tell where one datum item
ended and another began. As an example of using strings in DATA
statements consider the following:

9 66 LRI T

10 DATA “jan”,“feb”,“mar”,“apr”,“may”,“jun”,“jul”,“aug”,
“sep”,“oct”,“nov”,“dec”

20 DIM m$(12)

30 FOR i=1 TO 12

49 READ m$(i)

50 NEXT i

and compare it to the example given earlier.

Sometimes, especially in games, it would make things easier if we
could alter the position of the imaginary pointer in data statements.
This can be done using the RESTORE command. If you use
RESTORE followed by a line number, then the next READ
statement will start taking its data from the beginning of the next
DATA statement following the line number specified (if there isn’t
one you will get an error message). If you just RESTORE without a
line number, then the pointer is moved to the beginning of the first
DATA statement in the program. For example try:

10 DATA 1,2,3,4
20 READ a,b,c,d
30 PRINT a,b,c,d
40 RESTORE

50 GOTO 20

Saving data on tape

We have already seen that it is possible to SAVE and LOAD
programs on tape. It would seem to be logical to extend the facility

70 The Spectrum Programmer

to include SAVEing and LOADing data stored in variables to and
from tape. In fact the Spectrum only allows SAVEing and
LOADing of arrays but this is no disadvantage as any simple
variable that you might want to save can be first transferred to free
array elements and then the array saved. All you have to do to save
an array on tape is to proceed exactly as you would for saving a
program but use:

SAVE ‘filename’ DATA ‘array name’ ()

Where ‘filename’ is a string constant or variable that is the name of
the file of data and ‘array name’ is the name of the array, numeric or
string to be saved.(Notice the empty brackets at the end of the
definition.) Similarly, to load a previously saved array use:

LOAD ‘filename’ DATA ‘array name’ ()

This will search the tape until a previously saved array is found with
the correct file name. Any existing arrays with the same name are
deleted and the saved version of the array is read in. Notice that both
SAVE and LOAD can be used from within a program. You can
also use:

VERIFY ‘filename’ DATA ‘array name’ ()

to check that data has been saved without error in the same way as
for programs. As an example of saving and loading data try:

10 DIM a(10)

20 FOR i=1 TO 1§

30 LET a(i)=i

40 NEXT i

50 PRINT “rewind tape and”

60 SAVE “test” DATA a()

70 PRINT “rewind tape and press play”
80 LOAD “test” DATA a()

99 PRINT “data loaded OK”

Apart from remembering to press the correct controls on the tape
recorder, it’s as easy as that.

Chapter Six

Functions and
Subroutines

At this point in learning BASIC you should be in a position to see
that the expression is the main way that programs change data.
Without expressions - arithmetic, conditional and string - BASIC
would be reduced to moving values from one place to another. It is
only by the use of expressions that values can be combined and
compared to produce new results. To make expressions even more
useful, BASIC provides a large range of operations that can be used
to make expressions, in the form of functions. You can also extend
the range of functions by creating your own, user-defined
functions. This creation of new operations can be taken one stage
further in BASIC by using the GOSUB and RETURN statements to
group statements together into functional units or subroutines.

In the first part of this chapter we will look at the general idea of a
function and then move on to examine some of the more common
functions available to the Spectrum programmer. The sections that
deal with particular functions can be read very quickly or even
skipped until you need to use them or until they are used in an
example. However, don’t skip the section on special functions
because these are particularly important.

The idea of a function

Before dealing with the way the Spectrum handles functions, it is
worth looking at functions in general. You may already be familiar
with the idea of a function from mathematics. For example, sin(x) is
a function. However, the idea of a function isn’t really anything to
do with advanced mathematics. At its most simple, a function is an
operation on data that produces a single value as its result. For
example, finding the larger of two numbers is an operation on data
that returns a single value - the maximum of 3 and 42 is 42, the

72 The Spectrum Programmer

maximum of 2 and 2 is 2 - and maximum is therefore a function.

The Spectrum doesn’t have a maximum function but it is
nevertheless a useful one to consider as an example because it is easy
to understand and, as we will see later, it is easy to remedy the
deficiency and program a maximum function of our own.

The standard way of writing a function involves writing its name
to the left of the values on which it is to operate that are enclosed in
brackets. In the case of finding the maximum of two numbers a
sensible name for this function is ‘max’ and so the previous two
examples can be written:

max(3,42)
and
max(2,2)

Following the usual BASIC convention that anywhere that you can
use a constant or a variable you can use an expression, the following
is also allowed:

max(count+3,total*20)

The data values that follow the name of the function are called
parameters. It is possible for functions to have any number of
parameters but all of the functions supplied on the Spectrum only
have one.

Functions can be used in expressions just as if they were variables
or constants. For example:

LET result=max(3.3,4.2)

would evaluate our function ‘max’ and store the answer (4.2) in
‘result’. (Remember that the Spectrum doesn’t have a ‘max’ function
so don’t try this example.) You can now see why the condition thata
function should give only one result is so important. If a function
gave more than one result, which one would be stored in the
variable ‘result’ or which one would be used to evaluate the rest of
the expression? As we want to use functions in expressions they can
only return one answer. Sometimes it is possible to change
something that isn’t a function into a function by simply choosing
one of the possible answers. For example, the Spectrum has a
function SQR which gives the square root of a number. Now if you
ask for the square root of four the answer is obviously two i.e. two
times two is four, but it is all too easy to forget that minus two is also
the square root of four. A minus times a minus is a positive and so
—2*—2 is 4 (not —4). The objection that the square root operation

Functions and Subroutines 73

isn’t a function can be overcome by simply deciding that SQR will be
a function that returns the positive square root of a number.

The Spectrum’s functions

The Spectrum has a very wide range of functions and some of them
are so specialised that it is better to deal with them in detail in other
chapters. However, there is a central core of functions that you
would expect to find in any BASIC and these will be explained in
this chapter. A fulllist, with brief explanations, of all the Spectrum’s
functions can be found in Appendix C of the Spectrum Manual.

The core functions can be divided into three groups: the
arithmetic functions such as SQR and ABS; the trigonometrical
functions such as SIN and COS; and the string functions such as
LEN and CHRS. In addition there are a number of unclassifiable
but very important one-off functions such as RND. All of the
functions are entered by a single keystroke and the use of brackets
around the parameters is optional. The most important thing is to
have some idea of what functions are available, so a brief reading of
the description of each function listed below is recommended.
However, it is difficult to appreciate, let alone remember, the subtler
details of the use of a function until you actually need to use it! If you
want to see the effect of any of the functions use the following
program:

10 INPUT x
20 PRINT SIN x
3¢ GOTO 19

but change the PRINT SIN x to the function that you are interested
in.

Arithmetic Functions

ABS - ABSolute value of a number

The absolute value of a number is obtained by ignoring its sign and
treating it as positive, i.e. ABS(—2) is 2 and ABS(2) is 2.

EXP - EXPonential function
EXP(x), the exponential number, which has the value 2.718281, is
calculated by raising ‘e’ to the power of ‘x’. That is, EXP(x) is the
same as e’.

It is difficult to explain why this function is so important but it

74 The Spectrum Programmer

crops up in just about every area of mathematics, (see also the
function LN). When using EXP it is well worth being aware of the
fact that EXP(x) gets very big for even small values of ‘x’. The
largest integer that EXP(x) can accommodate on the Spectrum is 88.
Larger numbers will cause the message “Number too big” to be
displayed.

INT - INTeger value of a number

The INT function is probably the simplest and most used of all the
arithmetic functions. It will remove the fractional part of a number
and turn it into a whole number or an integer by rounding it down.
For positive numbers this corresponds to chopping off the fractional
part, e.g. INT(3.21) is 3 but for negative numbers things are a little
more complicated. Rounding a negative number down looks a little
strange, e.g. INT(—4.7) is —5, but this is simply because —4>—5 i.e.
—5 is smaller than —4!

LN - Natural Logarithm of a number

The natural logarithm of a number is the power to which you have to
raise ‘e’ to give the number. Most people are more familiar with a
slightly different form of the logarithm. The logarithm that is given
in most log tables is in fact the logarithm to the base 10. In other
words it is the number to which 10 has to be raised to give the
original number. Some versions of BASIC include the log to the
base 10 in the form of the LOG function. The Spectrum lacks such a
function but this is no great disadvantage because you can obtain the
log to the base ten by using LN(x)/LN(10). As LN(x) is the number
to which you have to raise ‘e’ to get X you should be able to see that
EXP(LN(x)) is x.

Pl ()

This is a very odd function in that it has no parameters and always
returns the same result (m=3.14159265) but it is very useful. As
everyone knows, the area of a circle of radius r is given by 7rr2 and this
translates to BASIC as:

10 LET area=PI*r*r

SGN - the SiGN of a number
The sign of a number is +1 if the number is positive and —1 if it is
negative. For example, SGN(—232) is —1 and SGN(3239) is 1.

Functions and Subroutines 75

SQR - the SQuare Root of a number
The square root of a number is a result that when multiplied by itself
gives the original number i.e.:

SQR(x)*SQR(x) equals x

Notice that negative numbers do not have square roots because if
you multiply any number, even a negative one, by itself you will get a
positive number. If you try to take the square root of a negative
number you will therefore get the very precise error message,
“Invalid argument”.

Trigonometrical functions

The best known examples of functions are probably the trigono-
metrical or trig functions. It is beyond the scope of this book to go
into detail about the theory of trigonometry and anyway the need to
use such functions always arises from a very specific problem. There
is, however, one use for the trig functions that is important to nearly
every computer user interested in graphics, namely drawing circles.
If you want to know more about this topic then see Chapter 10 of
the Spectrum Manual. Spectrum users are particularly lucky,
however, in that Spectrum BASIC includes a command that will
plot a circle. This is covered in Chapter Nine and its presence avoids
the need to go into any detail about using SIN, COS and TAN to
draw circles.

If you do need to use any of the trig functions, it is important to
realise that the Spectrum doesn’t measure angles in degrees but in
radians. (Radians as a measure of angle is dealt with in Chapter Nine
where it is explained with reference to drawing parts of circles on the
screen.) If you want to convert an angle in degrees to radians then
use:

radians=degrees*PI/ 180

and to convert radians to degrees use:
degrees=radians* 180/ P1

The three trig functions available on the Spectrum are:

SIN - SINe of an angle measured in radians
COS - COSine of an angle measured in radians
TAN - TANgent of an angle measured in radians

The Spectrum also has available the inverse function related to these
three.

76 The Spectrum Programmer

ASN - ArcSiNe

The arcsine of a number is the angle in radians whose SIN is equal to
the number, i.e. x=SIN(ASN(x)). Because SIN gives a result
between+1and - 1, ASN(x)can only be worked out for x in thisrange.

ACS - ArcCoSine
The arccosine of a number is the angle in radians whose COS is
equal to the number, i.e. x=COS(ACS(x)). Because COS gives a

result between +1 and —1, ASN(x) can only be worked out for x in
this range.

ATN - ArcTaNgent
The arctangent of a number is the angle in radians whose TAN is
equal to the number, i.e. x=TAN(ATN(x)).

String Functions
We have already met some of the string functions in Chapter Five.

CHR$ - CHaRacter function

CHRS n will give the ‘character’ that is at the nth position in the list
of all the Spectrum’s characters. Notice that as keywords such as
LET count, from the Spectrum’s point of view, as a single ‘character’
the function CHRS$ can return a string of more than one letter.
CHRS will return all the characters that the Spectrum can use even if
they cannot be printed on the screen. So, if you type CHRS$(8), or
any number up to and including 33, all you will see is a blank screen.

CODE - the code of a character

The CODE function does the opposite to the CHRS function in that
it returns the position in the list of characters of any particular
character. For example, CODE “A” is 65 and CHR$(65) is “A”. If
CODE is applied to a string of more than one letter the code of the
first character in the string is returned as the result. If the string is
null, i.e. contains no characters, the code returned is zero.

LEN - the LENgth of a string
The LEN function returns the length of any string. For example,
LEN “computer” is eight and LEN “” (the null string) is zero.

STR$
The STRS is a function that is useful for advanced applications. It
converts any number (or the result of an expression) to the string of

Functions and Subroutines 77

characters that would be displayed if the number (or the result of the
expression) were printed. The STR$ function provides a link
between numbers and strings - for example, “July "+STRS$(31)
works out to the string “July 31”.

VAL - eVALuate arithmetic expression

The VAL function is the opposite of the STRS function in that it
converts a string into a number. The string can be any correct
arithmetic expression and the resulting number is the value of the
expression. For example, VAL “34” is 34 and VAL “3+3*6” is 21.

Special functions

There are two functions, RND and INKEYS, that are so generally
useful that it seems worthwhile to treat them on their own and at
some length. RND is a function that returns a number so it could
have been treated in the section on arithmetic functions. INKEY$
returns a character so it could have been treated as a string function.

RND

RND is a function with no parameters that returns a number in the
range 0 to less than 1 which can be treated as if it were random. To
say that a computer can give a number at random always sounds like
a contradiction and indeed to some extent it is. The point of
confusion comes from the use of the word random. If you are using
the computer to play a game then all that you need is a sequence of
numbers that are not predictable by anyone playing the game. In
other words, for most purposes a list of numbers can be said to be
random if there is no detectable pattern. If you run the following
program:

10 PRINT RND
20 GOTO 16

you should see a list of numbers that shows no obvious pattern. (In
fact there is a pattern but it is so complicated it takes a Spectrum to
follow it!) This sort of randomness is more correctly called pseudo
randomness and the RND function is a pseudo random number
generator. The numbers that it produces are evenly spread
throughout the range 0 to less than 1, i.e. any number is just as likely
to come up as any other and there should be no discernible pattern
that would help someone predict the next number that RND will
produce.

The main trouble with RND is that it’s not often that we need a

78 The Spectrum Programmer

random number in the range 0 to less than I. We normally need the
program to do one of a number of different things at random. The
best way of doing this is to change the RND into a random whole
number between | and n where n is the number of anything we want
to select from, using the formula:

INT(RND*n)+1

For example, if you want to program a six-sided dice then you
would choose six as the value of n - and:

10 PRINT INT(RND*6)+1
20 GOTO 19

will print numbers 1 to 6 with approximately the same frequency
and in such a way that there should be no obvious pattern.
The subject of how to use random numbers in programs is too
vast to cover in this book but examples will crop up in later
chapters.

The RND function is also special because it is associated with
anotheir BASIC command, RANDOMISE. The list of numbers that
RND produces doesn’t go on for ever. Eventually after 65536 values
it repeats itself. Every time you switch the Spectrum on the list starts
from the same place. If you want to check this, first switch your
Spectrum off and on again and then enter the program that prints a
screen full of random numbers. No matter how often you repeat this
procedure, remembering to switch off and on again each time, you
will get the same numbers in the same sequence. Obviously this is not a
good idea if you want to play games because you might eventually
learn the sequence that is produced when the Spectrum is first
switched on. On the other hand, you might actually want to generate
the same sequence each time and if this meant switching the machine
off between each run this would also create difficulties. To overcome
both these problems, you can use the RANDOMISE command
(entered by pressing the key marked RAND) to start the sequence
off. The command RANDOMISE n will start the sequence off from
the nth random number in the Spectrum’s fixed list. For example, if
you enter:

1) RANDOMISE 3¢
20 PRINT RND
3 GOTO 2¢

you will get the same sequence of numbers every time you run it
without switching the machine off. However, If you use RAN-

Functions and Subroutines 79

DOMISE ¢ or RANDOMISE without any starting number the
Spectrum will use a number that is related to the time that the
machine has been switched on to start the sequence. To see this in
action try:

10 RANDOMISE ¢
20 PRINT RND
30 GOTO 10

which prints the first number in the sequence produced by
RANDOMISE § over and over again. You should see that the
numbers printed slowly increase, counting the time that the
Spectrum has been switched on. The most random sequence that
you can produce using RND and RANDOMISE can be seen by
running:

10 RANDOMISE ¢
20 PRINT RND
30 GOTO 26

INKEY$

The function INKEYS is closely related to INPUT in that it can be
used to read in a single character from the keyboard. The difference
is that INPUT AS waits for something to be typed on the keyboard
until the ENTER key is pressed but INKEY$ doesn’t wait. If you try
the following program:

10 INPUT A$
20 IF A$<>“" THEN PRINT A$
30 GOTO 1¢

you will have to press ENTER before you see anything on the screen.
(To stop this program you will need to delete the left hand quote
marks and then type in STOP.) However, if you change line 1 to:

10 LET AS=INKEYS

the character corresponding to any key that you press appears on the
screen at once. (While running this second version of the program
try pressing more than one key at a time and try pressing SH!FT and
the other keys.) Notice that another difference between INPUT and
INKEYS is that INKEYS$ doesn’t automatically print anything that
you type on the bottom of the screen.

Whenever the Spectrum meets the INKEYS$ function it immedi-
ately examines the keyboard. If there is a key already pressed the

80 The Spectrum Programmer

appropriate character is returned by the function. If no key is
pressed the function returns the null string. No matter what has
happened the INKEY$ function does nor wait for a key to be
pressed.

The main use of INKEYS$ is in games where the arrow keys used
for editing are used to control the movement of something on the
screen. For example:

10 LET a$=INKEY$

20 1F a$=*" THEN GOTO 1§

39 1F a$=“5" THEN PRINT “left”
40 1F a$="6" THEN PRINT “down”
50 IF a$=“7" THEN PRINT “up”
60 IF a$="8” THEN PRINT “right”
7% GOTO 1§

Line 10 gets the character corresponding to any key pressed on the
keyboard, if any. Line 20 tests to see if a$ is the null string, i.e. no key
has been pressed, and if it is, sends control back to line 19. Thus the
loop formed by line 1§ and 20 only stops when a key is pressed. Then
lines 20 to 50 test to find out which of the arrow keys are pressed and
print an appropriate message. Line 7)) repeats the whole program.
Notice that if any key other than an arrow key is pressed the loop
formed by lines 10 and 2§ stops but nothing is printed on the screen.
In Chapter Nine an example is given where the same sort of program
is used to drive a dot around the screen.

User-defined functions - DEF FN and FN

In our general introduction to functions, the idea of a function to
find the maximum value of two numbers was discussed but it was
pointed out that, although the Spectrum has a wide range of
functions, such a ‘max’ function isn’t among them. Spectrum
BASIC does allow the definition of new functions but there are
some tricky ideas involved.

You can define a new function in terms of an expression. For
example, the Spectrum lacks a square function, i.e. one that will
work out the square of any number. The names of all user-defined
functions are ‘FN’ followed by one letter, so you can define the new
function ‘FN s’ to fill this gap by:

DEF FN s(x)=x*x
(DEF FN is entered by one keystroke. You’ll find it at the top left

Functions and Subroutines 81

hand corner of the keyboard, on the 1 key.) The word DEF is used to
indicate that this is a function definition. The meaning of this
function should be clear — whenever the Spectrum sees the function
called ‘FN s’ it squares the parameter within the brackets next to it.
For example:

LET a=FN s(2)

would result in 4 being stored in the variable ‘a’. (The FN is again
entered as one keystroke. It is on the 2 key.) This is all fairly
straightforward but what about the following:

1p DEF FN s(x)=x*x

20 LET x=3

30 LET z=4

49 LET a=FN s(z)

50 PRINT “x= ";x;“ z= ";z;“ a= ";a

before you run this program try to work out what the values of ‘x’,‘z’
and ‘a’ will be. The correct answer is that ‘x’is 3, ‘2’ is 4 and ‘a’ is 16.
Any possible confusion comes from the fact that ‘x’ is used in the
definition of the ‘FN ¢’ function and in the program. A point to note is
that the names that you give to parameters in the definition of functions
are nothing to do with any variables that you might use in the rest of
the program. In this sense DEF FN s(a)=a*a, DEF FN s(z)=z*z,
etc., all define the same function! In a function definition the
parameters merely show what is to happen to the real parameters
when the function is used - because of this they are often called
dummy parameters.

If you've managed to cope with these ideas, you might like to try
to work out what this program’s result is:

10 DEF FN t(i)=total+i
20 LET total=0

39 PRINT FN t(30)

40 LET total=1¢

50 PRINT FN t(30)

In this case the variable ‘total’, used in the expression to define the
function isn’t a dummy parameter and it is therefore taken to be a
variable in the main program, i.e. ‘total’ in the function definition is
the same as ‘total’ in the rest of the program. The idea of a dummy
variable gets easier after you have had time to think about it.

To summarise, the rules for forming a user-defined function are:

82 The Spectrum Programmer

(1) Every function that you use must be defined using a DEF FN
statement somewhere in the program (not necessarily before it
1s first used).

(2) Both numeric and string functions are allowed. Numeric
functions, i.e. functions that return a number as a result have
names of the form ‘FN’ followed by a single letter. String
functions, i.e. functions that return a string as a result have
names of the form ‘FN’ followed by a single letter and a dollar
sign.

(3) A function definition can include any number of dummy
parameters (or none at all) which can either stand in place of
numeric parameters or string parameters. All dummy para-
meters have one-letter names and dummy parameters standing
in place of string parameters must end with a dollar sign.
Brackets must be used even if there are no parameters.

(4) Any valid BASIC expression can be used in a function
definition.

These four rules may seem like a lot to remember but they all
accord with common sense. Some examples of functions may help
to clarify matters:

DEF FN m$(a$,i,j)=a$ (i TO i+j—1)
DEF FN 1(x)=LN x/LN 19
DEF FN d)=INT(RND*6)+1

The first function ‘m$’ is a string function with one dummy string
parameter and two dummy parameters. It will extract ‘j’ characters
starting from character ‘. For example, m$(“Hello”,1,4) gives
“Hell”. The second function ‘I’ is a numeric function with a single
numeric dummy parameter that will calculate the logto the base ten
of x (see the notes on the LN function earlier). Notice that ‘any valid
BASIC expression’ in point (4) includes expressions that involve
other BASIC functions! The third and final example has no
parameters but notice that the brackets () are still necessary in the
definition. It returns as a result a random number in the range | to 6
(see the details of the RND function above). You even need the ‘()’
when you use the function ‘d’, e.g. PRINT d().

We can now use what we’ve learned about user-defined functions
to create the ‘max’ function that was used earlier to introduce the
idea of functions. If you think about it, it seems as though a user-
defined function couldn’t be used to produce a ‘max’ function. After
all how can you write an expression that will choose between one of
two numbers? If, however, you followed the discussion of

Functions and Subroutines 83

conditional expressions in Chapter Four, and remember how they
evaluate to 1 if true and to O if false, the answer to this problem
should be easy to understand:

1§ DEF FN m(a,b)=a*(a>=b)+b*(a<b)
20 INPUT a

30 INPUT b

49 PRINT FN m(a,b)

50 GOTO 20

If you run this program you will find that line 40 always prints the
larger of the two numbers that you type in response to lines 2¢) and
30. The function itself works because only one of the two conditions
‘(a>=b)’ and ‘(a<b)’ can be true and hence one will work out to 1
and the other to 0. As zero times any number is zero you should now
be able to see how one of the two numbers is selected. This example
once again emphasises the fact that any valid BASIC expression can
be used in a function definition.

Subroutines GOSUB and RETURN

The idea of creating new operations by defining functions is a very
powerful one but it is already possible to see its shortcomings.
Sometimes it would be an advantage to give a name, not just to one
line of BASIC in the form of a user-defined function, but to a whole
collection of lines. This is the idea behind a subroutine. A subroutine
is nothing more than a group of BASIC statements that can be used
as often as required just by writing their name. (In the same way
that a single line of BASIC can be used as often as required by using
a user-defined function’s name.) The trouble with BASIC sub-
routines is that they are very limited. You cannot even give a one-
letter name to a subroutine. It has to be referred to by the line
number of its first line and there is no provision for parameters of
any sort. Even with these restrictions the BASIC subroutine is still
well worth knowing about and using.

If the lines of BASIC that go to make up the subroutine start at
line ‘n’ then you can use the subroutine by:

GOSUB n

Where GOSUB stands for GO to SUBroutine. Indeed, the action of
a GOSUB is very like GOTO in that it transfers control to line ‘n’.
The difference between a GOTO and a GOSUB is that the GOSUB

84 The Spectrum Programmer

command causes the Spectrum to store the line number of the
GOSUB in a special area of memory set aside for the purpose. This
stored line number is used by the RETURN statement to transfer
control to the line following the GOSUB when the subroutine has
finished. For example, the effect of a GOSUB and a RETURN on
the flow of control is:

10 GOSUB 19p§ - - - — - — - .
-—> 20 PRINT a

: [
| I
: rest of program :
| ey |
| lste ,
: 1009 LET a=56 <------ '
-—---1019 RETURN

Line 10 transfers control to the subroutine that starts at 10§, which
simply stores 56 in the variable ‘a’. The RETURN statement at line
1019 ends the subroutine and automatically transfers control back
to line 20.

You can use any BASIC statement that you can use elsewhere in a
program within a subroutine. In particular, there is nothing to stop a
subroutine from using GOSUB and transferring control to another
subroutine. If you do this then the next RETURN will transfer
control back to the statement after the most recent GOSUB. In other
words, if one subroutine calls another, then RETURN behaves as
you would expect it to, by transferring control back to the place that
each subroutine was initiated, i.e.a RETURN never forgets where it
came from!

This pair of instructions GOSUB and RETURN are all that there
is to the BASIC subroutine. All the variables in a subroutine are the
same as the variables in the rest of the program, there are no
parameters of any kind. As suggested earlier this might lead you to
believe that subroutines are not very useful - this is far from the
truth.

Using subroutines

If you read the Spectrum Manual (Chapter 5) you are led to believe
that the most useful way to use a subroutine is to replace any piece of
program that is needed more than once. For example, if in a large
program you need to print the same message over and over again,

Functions and Subroutines 85

then it is better to turn that line into a subroutine and GOSUB to it
every time it is needed. Although this is an important use of
subroutines it is often the case that it is a good idea to form parts of a
program into subroutine even if each part is only used once! The
reason for this is that programs that use subroutines are easier to
understand, easier to find mistakes in and easier to modify. This is
not the sort of statement that anyone can prove because what is
easier in this context is clearly a matter of opinion. The use of
subroutines in writing BASIC programs will be illustrated by the
examples in the rest of the book. If you discover some other method
of programming that yor !'ke better, then no one will be able to
argue with you! All I can say is that many programmers agree that
subroutines are a good thing!

Chapter Seven

Graphics

The main delight of programming the Spectrum is usingits graphics
and sound! This chapter starts by introducing the sort of graphics
that can be produced using PRINT statements, low-resolution
graphics. Chapter Eight adds sound and Chapter Nine deals with
drawing pictures in finer detail, high-resolution graphics. You
shouldn’t be misled into thinking that high-resolution graphics are
in some way more useful than low-resolution graphics. They are not
more advanced, just different and it’s amazing how often a program
works better and is easier to write using low-resolution graphics.

Controlling PRINT

So far we have used the PRINT statement to print numbers and
strings on the screen, either one to a line or next to each other on the
same line. Although this is sufficient for most programs there is
often a need to control exactly where something will be printed on
the screen. In Chapter Three the PRINT statement was defined as:

PRINT ‘print list’

where ‘print list’ was explained to be a list of items, each one
separated by a semicolon. The need for the semicolons is simply to
show where one item ends and another begins. Forexample, PRINT
total sum will try to print a single variable called ‘totalsum’
(remember blanks are ignored in variable names), while PRINT
total;sum will try to print two variables ‘total’ and ‘sum’ next to each
other on a single line.

The Spectrum actually allows the use of three symbols to separate
print items and each one has a different effect on the layout. The
semicolon, ; , that we have been using since Chapter Three simply
means print the next item without leaving any space. Using a comma

Graphics 87

, as a separator means move to the next print zone before printing
the next item. The Spectrum’s screen is divided into two print zones -
the first sixteen printing positions on a line and the last sixteen
positions on a line. So PRINT “a”,“b” will print “a” in column one
and “b” in column seventeen. The third and final separator is the
apostrophe, ’, which the Spectrum interprets as an instruction to
start a new line before printing the next item. So:

PRINT G‘a’! ,Sib’,
has the same effect as:

PRINT “a”
PRINT “b”

You can replace more than one separator between any two print
items without any ill effects, e.g. PRINT “a”,,“b” will cause the
Spectrum to move on two print zones before printing “b”. If you
think about it, this means that “a” will be printed at the beginning of
a line and “b” will appear at the beginning of the next line. The
most important case of using a separator more than once is the
repeated use of apostrophes to leave a number of blank lines. There
is one special case that is worth commenting on. If any of the three
separators are placed at the end of a list of print items the automatic
starting of a new line is suppressed. For example:

BPRINI a7
PRINT “b”

is the same as PRINT “a” “b”
and

PRINT “a”;
PRINT “b”

is the same as PRINT “a”;*“b”

Of course, ending a PRINT statement with an apostrophe
suppresses the automatic starting of a new line but the apostrophe
itself forces a new line so there is no noticeable difference between
PRINT “a” and PRINT *a™’.

To summarise:

separator effect
print next item without
leaving any space

’

88 The Spectrum Programmer

, move to next print zone

bl

start a new line

PRINT functions - TAB and AT

The use of different print list separators has certainly increased our
control over how things are printed on the screen but we still cannot
easily make a print item start at a particular column on a particular
line. To achieve this we need something more than different
separators. Two special functions, TAB and AT, are provided to
control exactly the place where any item starts printing. (They are
special in the sense that although TAB and AT are written like
functions, they produce no value as a result of their use and they can
be used only as part of a ‘print list’.) TAB can be used to control the
horizontal position on the current line and AT is an entirely general
function that can produce output anywhere on the screen.
The general form of the TAB function is:

TAB ‘arithmetic expression’

and its effect is to move the printing position on to the column given
by the value of ‘arithmetic expression’. For example:

PRINT “a”;TAB 10;“b”

will print “a” at column one and “b” at column 10. You can have as
many TABs in a PRINT statement as you need so:

PRINT “a”;TAB 10;“b”;TAB 20;“c”

will print “a” at column 1, “b” at column 1§ and “c” at column2§.

There are two possible problems that can arise when using TAB.
What happens if you have already gone beyond the column specified
by a TAB and what happens if you specify a column that doesn’t
exist, like TAB 35 (there are only 32 columns)? The answer to the
first question is that the Spectrum will move to the correct column
on the next line. You can see this if you try the following:

I PRINT “a™;TAB 15;“b™; TAB 10;“c”

which prints “a” at column 1, “b” at column 15 and “c” at column 10
on the next line. The answer to the second question is that the
Spectrum subtracts 32 from the column number that you specify
until it gets a number in the range 0 to 32. For example, TAB 46 has
the same effect as TAB 14, because 46—321is 14, and TAB 126 has the

Graphics 89

same effect as TAB 30, because 126 —321is94,94—32is 62 and 62 —32
is 30!
The most powerful print function is AT because it can position

output both at a particular line and a particular column. The general
form of AT is:

AT ‘arithmetic expression 1’,‘arithmetic expression 2’

The value of ‘arithmetic expression 1’ is the line number that the next
item will be printed on and the value of ‘arithmetic expression 2’ is
the column number. (If the line or column specified is off the screen
then you will get an “out of screen” error message.) Unlike TAB,
which numbers printing positions 1 to 32, with AT the columns are
numbered starting with 0 and ending with column 31. Similarly, the
line numbering goes from 0, for the top line, to 21, for the bottom
line. For example:

PRINT AT 3,5;“a”

will print “a” on line 3 (i.e. the fourth line down) and column 5 (i.e.
the sixth printing position). (This might seem a little difficult if you
are used to x,y co-ordinates where x is horizontal distance and y is
vertical distance, because to move to printing position X,y you have
to use PRINT AT y,x.)

An interesting difference between TAB and AT is that if you use
TAB to move to a printing position it c/ears all of the screen from the
current printing position. For example, try:

lp P RIINTT €% s s ke ke ok s s o ke e 2 e s ke ke 2 o e ke e o b e ke ok o ok ok ok ook ok ok

20 PRINT AT §,0;
39 PRINT TAB(10);“a”

It doesn’t matter exactly how many asterisks you use in line 19, they
are only there to show the effect of TAB. There are two interesting
points about this demonstration. Firstly, you can use AT to move
the current printing position anywhere on the screen without
actually printing anything and secondly, line 19 shows that the TAB
to column 1§ erases all the asterisks from the beginning of the line to
column 1§. If you want to see the effect of AT (it doesn’t erase the
asterisks but prints the “a” in place of the tenth one) substitute:

30 PRINT AT §,1¢;“a”

for line 39.
You can have as many ATs in a ‘print list” as you desire. Each one
moves the printing position to the place indicated before going onto

90 The Spectrum Programmer

the next item. Not only can you have more than one AT, you can
mix AT, TAB and all the other print control symbols in a print list in
any way that makes sense to you. For example:

19 PRINT AT 10,5;“a™; TAB(5);“a™;AT 3,10;b™“c”

is accepted without qualms by your Spectrum.

As an exercise in using AT try to write a program that draws a
square made of asterisks on the screen. In case you have any
problems, one of the many possible answers (there is always more
than one way of writing a program) is:

10 FOR i=p TO 1¢

20 PRINT AT 5,i+1¢;“*”
30 PRINT AT 15,i+10;“*”
49 PRINT AT i+5,10;*”
50 PRINT AT i+5,20;*”
60 NEXT i

o
B
#;
*
“h
£
o
#
*
%

POPTRVEUR R B O O
s o o ok ok ohi ok b B O

FEIEFRFEIRFF
Fig. 7.1. Square using asterisks
Lines 20 and 30 print the two horizontal rows of asterisks and lines
40 and 50 print the two vertical columns of asterisks.

A full screen - CLS and scrolling

The Spectrum’s screen is 32 characters by 22 lines and sooner or later
you are bound to use all the space and still want to print yet more
information. If you have finished with everything already on the
screen you can use the CLS statement (CLS stands for CLear the
Screen), which simply wipes everything off the screen and sets the
current printing position back to the top left hand corner of the
screen.

If you are printing things on the screen working from top to
bottom there will come a time when you reach the bottom line. If
you try to print another line the Spectrum will print the message
“Scroll ? y/n” and wait for your answer. If you press any key apart

Graphics 91

from “n”, SPACE or STOP, the whole screen is moved up one line,
the top line is lost and the new information is printed on the newly
created bottom line. This technique of moving the screen up by one
line is known as scrolling and was introduced briefly in Chapter Two
in connection with listing programs. After this first scroll new
bottom lines are introduced, i.e. the screen is scrolled, every time a
PRINT tries to take the printing position off the bottom of the screen.
After 22 scrolls the line created by the first scroll is about to
disappear off the top of the screen and the Spectrum once again asks
if it’s all right to scroll. In this way, the Spectrum makes sure that
you always have a chance to see each screen full of numbers before
they start vanishing off the top. To see this in operation try, for
example:

10 PRINT RND
20 GOTO 10

If for any reason you want to make the screen scroll before it would
normally do so you can use:

PRINT AT 21,9”

which first moves the current printing position to line 21 and then
tries to move it on one more line.

Controlling INPUT

It may come as something of a surprise to find that the INPUT
statement can use all of the items that a PRINT statement can. This
is a pleasant discovery because it greatly increases the range of input
prompts that we can give. The general form of the INPUT statement
is:

INPUT ‘print list’

There are, however, some additional rules and important differences
in the way that the ‘print list’ is interpreted when used in the INPUT
statement. The first change that is necessary is to indicate which
variables are to have their values changed by the INPUT and which
are to be printed out as part of the prompt. The rule that the
Spectrum uses is that any ‘print items’ that begin with a letter are
treated as input variables. (Notice that TAB and AT don’t begin
with letters because they are single keystrokes.) For example, the
INPUT statement:

92 The Spectrum Programmer

1¢ INPUT “a=":a;“b=":b

will print a prompt, then wait while you type in the value for ‘a’, print
a second prompt and wait while you type in a value for ‘b’. You can
short-circuit the first letter rule by enclosing any variables or
expressions in brackets. The meaning of an expression isn’t changed
by wrapping it up in an unnecessary pair of brackets but then it no
longer begins with a letter. For example:

10 LET a=1¢
20 INPUT “a="(a);"b=":b
3p PRINT a,b

will print the value of ‘a’ on the bottom line and then wait for you to
type in the value of ‘b’.

By now you will have noticed the strange way that PRINT and
INPUT work in separate parts of the screen. This division of the
screen applies to the way AT works. If you use AT in a PRINT
statement then you count lines starting at the top of the screen from
zero. However, if you use AT in an INPUT statement then you have
to start counting lines from the bottom of the screen starting from
zero at the first line in the input area (see Fig. 7.2). For example try:

10 INPUT AT 0,5;“top line”;AT 1,5;“next line”;a

line O for
PRINT AT »| 1
2
3
Standard PRINT area
line 21 >_§2 ___________ o line O for
Standard INPUT area INFUT AT
e o - |ine 1

Fig. 7.2. Screen areas
This prints two prompts, one on each line of the input area, and then
waits for you to type in the value of ‘a’. At this point you might be
wondering what happens if you try to print on lines in the input area
other than lines § and 1. The answer is that the Spectrum will scroll
the input area up to bring the line onto the screen. To see this in
operation, try:

10 INPUT AT 10,0;“this line is normally off the screen”;
AT §,0;“and this is the top line”;a

Graphics 93

If there is anything printed on the upper part of the screen and an
INPUT wants to print something in the same area, then the print
area of the screen is scrolled up to make some space for the input
area. This is something that is a lot easier to understand once you
have seen it happen:

10 PRINT AT 15,0;“This is printed on line 157

20 PRINT AT 16,9;“This is printed on line 16"

30 INPUT AT 20,0;“This is printed on line 2 of the input
area”; AT 0,0;“this is the top line of the input area”;a

You can write an INPUT statement that only prints on the screen
but you are unlikely to see the message that it prints because every
INPUT statement clears the input area when it is finished! This
means that your message will be briefly flashed on the screen, which
is then cleared and your Spectrum moves on to the next instruction.
Not only does every INPUT statement clear the input area of the
screen it also restores it to its original size, i.e. the bottom two lines of
the screen.

The division of the screen into two different areas, the print and
the input area, is sometimes said to be a problem with the Spectrum
(and the ZX81) but if you understand how it works you should be
able to turn it to advantage!

The graphics characters

The combination of PRINT and AT can obviously be used to place a
character anywhere on the screen and, as we saw earlier in this
chapter (in the program that prints a square), this can be used to
produce limited graphics. This ability really only comes into its own
when used with the Spectrum’s range of graphics characters. These
can be produced by pressing CAPS SHIFT and GRAPHICS (9) to
change the cursor tof~ and then pressing another key. You can leave
graphics mode by pressing GRAPHICS again. Although something
is displayed on the screen for every key that you press in graphics
mode, there are only 37 graphics characters. Eight of these are
printed in white on the top row of keys alongside the numbers. You
can get eight more by pressing any of the top row of keys together
with CAPS SHIFT. These additional eight are simply the original
eight reversed, i.e. black changed to white and vice versa but it is
important to realise that they are distinct characters. This set of
sixteen graphics characters can also be printed on the screen by

94 The Spectrum Programmer

using their character codes in the CHRS function. To see this
complete set of sixteen try the following program:

19 FOR i=128 TO 136
20 PRINT i,CHRS$(i)
30 NEXT i

The other 21 graphics characters are produced by the keys ‘A’ to ‘U’
entered while in graphics mode and they correspond to the character
codes 144 to 164. As will be explained later, these can be changed to
produce any shape that is required, that is they are user-defined but
initially they reproduce the upper case character set. Soif you typea
graphics ‘A’, an upper case ‘A’ appears on the screen. Apart from
these 37 graphics characters, pressing a key while in graphics mode
simply produces a character that can be entered by some other
method. To be specific, while in graphics mode, pressing any key
enters the character that is 96 further on in the list of characters. In
other words if the key produces character CHR$(n) it will produce
CHRS$(n+96) in graphics mode.

Apart from having to be entered in a different mode, the graphics
characters behave like any others. For example, they can be used in
PRINT statements and strings. The program that printed a square of
asterisks can be changed to print a better looking square using
graphics characters:

10 FOR i=1 TO 9

20 PRINT AT 5,i+10:3]”
30 PRINT AT 15,i+10:(3]”
40 PRINT AT i+5,10:[5]”
50 PRINT AT i+5,20;[5]”

60 NEXT i
VTR RATRIARIRE LI AR

Fig. 7.3. Square using graphics characters
(As explained in Chapter Two, because of the difficulties of printing
graphics characters in a book, they are represented by the main
character on the key enclosed in square brackets, e.g. [1] is the
graphics character on the key marked ‘I’. If the character has to be

Graphics 95

entered using CAPS SHIFT to produce the required graphics
character then a‘t’ will be written before it. So [11] is the graphics
character produced by pressing ‘I’ with the CAPS SHIFT held
down.) The trouble with this square is that the corners are missing
and putting them in is a matter of printing at the correct positions
the L-shaped graphics symbols. This is left for you to remedy.
As you can imagine, drawing more complicated shapes using the
graphics characters is very difficult. Fortunately, apart from
drawing the occasional ‘thick’ horizontal or vertical line, the
graphics characters on the top row of the keyboard are normally
used in small numbers to print special shapes. For example, if you
want to print the outline of a ship during a game you could use:

PRINT AT y,x;*{12][t3][13]”

which will print a ship at line y and column x.

[x2] [+2] [4¢]

Fig. 7.4. Ship graphics

s Homn Hene olmes odleems | olene o
[T T S T S S——_ -
M SRS T S S S S r
g e Mool ey P gl B Mg
P U A TR T S S S
B e e e
s b ol odhems hees | chess | ollees
e shusw slew chees dleees alless
F NI N S - hl ‘—I e
2 o — - S ' S S R — h‘
J— o

shevee ohmsss owess ohesss sheess wlemes
s lee e shees deme shees e

Fig. 7.6. Ship graphics

If you would like to see a ship move across the screen try

10 FOR x=0 TO 27
20 PRINT AT 5.x;* [12][13][13]"
30 NEXT x

96 The Spectrum Programmer

Notice the space left before the first graphics character in line 2. If
you want to know what the space is for try leaving it out!

User-defined graphics characters

The range of shapes that can be made up of combinations of the
graphics characters on the Spectrum’s top row of keys, discussed in
the previous section, is fairly limited. For example, how would you
make up the shape of a man? Fortunately the Spectrum has 21
graphics characters that can be altered to produce any shape that
you could ever want.

Before we can go on to explain how to define new characters we
first have to examine how characters are produced on the screen.
Every character that the Spectrum can display on the screenis in fact
produced from a grid of 64 dots arranged into a square grid, eight
dots by eight dots. The pattern of any character depends on which
dots in the grid are displayed as black and which are displayed as
white. By analogy with printing or writing on paper, black dots are
referred to as ‘ink’ dots and white dots are referred to as ‘paper’ dots.
For example, the letter ‘a’ is produced by the pattern of dots shown
in Fig. 7.6 (i stands for ink and p for paper).

pPppRpppp
P RpRPPRPPPR
ppdd i /pipip
popop R op PP

A% i pop

pep. S iy pop
PP RPRPPRPPRPP

You might find it difficult to see the pattern of the letter ‘a’ among
the ‘I’s and ‘p’s but it becomes very clear if each ‘1’ is replaced by an
asterisk and each ‘p’ is replaced by a blank as in Fig. 7.7.

Graphics 97

X X X
X

Fig. 7.7.

Obviously, if we are going to define the shape that corresponds to
a user-defined graphics character, there must be some way of
specifying which dots in the 8 by 8 grid are ink and which are paper.
The Spectrum provides a very simple way of doing this by use of the
USR and the BIN functions. The user-defined character which
replaces the existing definition for the character [n], where n is an
upper case letter from ‘A’ to ‘U’, involves the function:

USR “n”

Forexample, if we are going to define a new character in the shape of
a man and we want it to be produced when [M] (graphics M) is
typed, the function:

USR 6‘M”

is used. The definition of the new character has to be donearow ata
time. Each row in the grid can be written as a sequence of eight digits
by writing a § for every paper dot and a | for every ink dot. For
example, the row ‘ppiiippp’ would be written as §111000. Using
this representation each row of the new character can be redefined
by

POKE USR “M”+r,BIN ‘dot pattern’

where ‘r’ is the row number to be defined (the first row is numbered
@) and ‘dot pattern’ is the sequence of @s and 1s that correspond to
the ink and paper pattern. The command POKE and function BIN
will be described in Chapter Ten but exactly what they do is
unimportant for defining characters - they are always used in the
same way. To define a complete character you have to define eight
rows and so use the above statement eight times but remember there
is nothing to say that you have to change all eight rows from their
existing definitions.

All this will be easier after an example. The little man character
introduced earlier could be defined using the following dot pattern:

98 The Spectrum Programmer

00911999
00011009
IERRERER
Q)(Dllll(b(b
POL11100
00100199
00190109
09199100

where | has been used to mean ink and §) to mean paper. This can be
transferred to the graphics [M] key row by row by:

10 POKE USR “M” ,BIN 0¢¢ 11909
20 POKE USR “M”+1,BIN 09011090
30 POKE USR “M”+2,BIN 11111111
49 POKE USR “M”+3,BIN 99111100
50 POKE USR “M”+4,BIN ¢¢11110¢
60 POKE USR “M”+5,BIN 00100109
70 POKE USR “M”+6,BIN 00100100
80 POKE USR “M”+7,BIN 00100109
99 PRINT ‘{M]”

AT AT AR

LE.0.0. 0.0 00 LR R Rk

Fig. 7.8. Man figure

Notice that after you have run this program the [M] in line 9¢
displays as the little man shape. The reason for this is that once you
have defined a graphics character the definition holds until you
either redefine it or switch the machine off.

User-defined graphics characters are most useful for producing
the special shapes that are so essential to any sort of games program.
For example, a large dot character could be used as a ball. However,

Graphics 99

there are some serious uses of user-defined graphics characters such
as showing mathematical or chemical formulae on the screen.

Changing the way characters look - INVERSE and OVER

The two commands INVERSE and OVER do not create or give us
access to any more new characters but they can be used to alter the
way existing characters appear on the screen. The command
INVERSE is perhaps the easier to understand. The effect of:

INVERSE 1

is to swap the ink and paper dots of every character subsequently
printed, i.e. ink dots become paper dots and vice versa. This means
that instead of the usual black characters on a white background you
get white characters on a black background. To change back to the
usual assignment of ink and paper the command:

INVERSE ¢

has to be used. You can think about the §) and 1 following the word
INVERSE as meaning ‘off’ and ‘on’. For example:

19 INVERSE 1

2 PRINT “this is inverted”

39 INVERSE ¢

49 PRINT “this is back to normal”

Although INVERSE is not a difficult command to understand,
there are two important points to notice - INVERSE does not create
any new characters it merely changes its definition by changing ink
dots to paper dots and vice versa. The effect of INVERSE 1
continues until the Spectrum obeys an INVERSE @ or until it is
switched off. The result of this persistence of the INVERSE
command is that if you stop a program before turning the
INVERSE off then all your listings, etc., will appear on the screen in
inverse mode. The solution to this problem is to enter INVERSE
in immediate mode, i.e. without a line number.

The command OVER is very similar to INVERSE, i that it alters
the way that ink and paper dots are displayed, but it is slightly more
difficult to explain. After the command:

OVER 1

whether an ink or a paper dot is displayed depends on what is

100 T7he Spectrum Programmer

already on the screen. If the new dot and the old dot are both the
same then a paper dot is displayed. If the new dot and the old dot are
different then ink is displayed. This may seem complicated but it can
easily be summarised:

new dot old dot displayed

paper paper paper

paper ink ink
ink paper ink
ink ink paper

and can be remembered by ‘two anythings make a paper and one of
each makes an ink’. (This behaviour is known as an exclusive OR of
the old dot with the new, see Chapter Ten.) To see what effect this
has try the following:

19 OVER |
20 PRINT AT 0,0;“hi there !”
39 PRINT AT ,0;* _________ ”

You should see the message produced by line 20 underlined. The
way that this works is that the bottom row of dots of every character
is a row of paper dots and the underline character is simply a bottom
row of ink dots. By the rules given above, paper and ink make ink so
the underlining appears as the bottom row of each character already
on the screen. The reason why OVER is so named is because this
effect is very similar to over-printing on a typewriter. However, it is
important to notice that in many ways OVER is nothing like over-
printing on a typewriter! For example try:

10 OVER 1
20 PRINT AT §,9;“0”
30 PRINT AT §,9;%/”

On a typewriter this would have produced a letter O with a slash /
through it but because two inks make a paper the dots where the
slash and the ‘O’ are black appear as white paper dots. Although this
might appear to be a nuisance it can be used to good effect. Try, for
example,

10 OVER 1
20 PRINT AT §,0;*”
30 GOTO 2¢

The first time the asterisk is printed it appears on the screen because

Graphics 101

all the original dots are paper. The second time it disappears because
all the ink dots are in the same place and so they cancel out. This is
repeated each time the asterisk is printed and so we get the flashing
effect observed.

It is important to notice that OVER is the same as INVERSE in
that it doesn’t create any new characters only alters the way they are
displayed and its effects continue until it is cancelled by:

OVER §

or the machine is switched off.

Character attributes - FLASH and BRIGHT

So far we have concentrated on the position and shape of the
characters printed on the screen. However there are other things that
we can control about the way the Spectrum displays characters. The
commands FLASH and BRIGHT can be used to alter the way that
any given characters are displayed on the screen. The command:

FLASH 1

causes all subsequent characters to be printed flashing and:

BRIGHT 1

causes all subsequent characters to be printed brighter than normal.
As for INVERSE and OVER you can cancel the effects of FLASH
and BRIGHT by using @) instead of 1 in the commands. These two
commands are easier to illustrate than they are to explain. Try
the following program:

10 FLASH 1

20 PRINT “Flashing characters”
30 FLASH ¢

49 BRIGHT 1

50 PRINT “Bright characters”
60 BRIGHT ¢

The message printed at line 2¢) will flash (black changing to white
and white changing to black) and the message produced by line 50
will be brighter than the surrounding screen. As you might expect
the effect of FLASH and BRIGHT persists until you either cancel it
or switch the machine off.

102 The Spectrum Programmer

Colour - BORDER, INK and PAPER

You may be surprised to find that it has taken so long to reach the
exciting subject of colour! The reason for this delay is that the way
the Spectrum’s colour commands work is much easier to understand
once the idea of characters being made up of ink and paper dots has
been introduced. The Spectrum can display eight different colours
and these are referred to by the numbers from @ to 7:

¢ - black

1 — blue

2 - red

3 - magenta (purple)
4 — green

5 — cyan (pale blue)
6 — yellow

7 — white

You do not, however, need to commit these numbers to memory as the
colour names are printed (in appropriate hues) over the number
keys. Notice how lower numbers correspond to darker colours. If
you're not using a colour TV set with your Spectrum then the
colours will appear as different shades of grey, the darker shades
corresponding, as might be expected, to the lower numbers.

Perhaps the easiest way to see the Spectrum’s range of colours is
to use the BORDER command. The area of the TV screen that the
Spectrum cannot PRINT on is known as the border and although
you cannot PRINT on it you can determine its colour. (The border
consists of the top and edges of the screen and from the bottom up to
the top line of the input area.) The command:

BORDER ¢

will change the border to the colour corresponding to the number ‘c’.
(Note that, in general, ‘c’ can be an arithmetic expression.) Try the
following program:

16 FOR i=¢ TO 7
20 INPUT a$

30 BORDER i

49 NEXT i

which will change the colour of the border each time you press
ENTER. To make the point that the input area is included in the
border, replace line 20 by:

Graphics 103

20 INPUT AT 2¢,0;a$

In the same way that the colour of the border can be changed so
can the colour of the rest of the screen. However unlike the border
this involves specifying two colours, one for ink dots and one for
paper dots. When the Spectrum is first switched on ink dots are set
to black and paper dots are set to white but you can alter these
settings using:

INK ¢
and
PAPER ¢

The command INK sets the colour of any ink dots subsequently
printed and PAPER sets the colour of any paper dots subsequently
printed. For example, try the following program:

10 INPUT “ink colour=";i

20 INPUT “paper colour=";p
30 INK i

40 PAPER p

50 PRINT “*~,

60 GOTO 10

Using this program you can print asterisks with any given ink and
paper colours. (Enter the colour codes in response to the questions
printed by lines 1 and 20.) Notice that the Spectrum will even let
you specify the ink and paper colour to be the same, in which case of
course you don’t see the asterisk! It is, however, important to realise
that even though you cannot see it, the asterisk is still there - its
pattern of ink and paper dots are present on the screen but it is
invisible because both ink and paper are being displayed as the same
colour.

This is almost all that there is to the colour commands on the
Spectrum yet it is possible to create some excellent colour effects
using them. However, it is important to be aware of the limitations
built into this simple method of colour control. Each eight by eight
character block can only display two different colours - the paper
colour and the ink colour. This means that, although you can have
eight colours showing on the screen at the same time, only two
colours can meet in a single character position. This becomes more
of a problem when we look at high resolution graphics in Chapter
Nine.

104 The Spectrum Programmer

Apart from the colours @) to 7 there are also two pseudo colours
corresponding to the numbers 8 and 9. If you use the number 8 in
any of the commands INK, PAPER, BRIGHT or FLASH the effect
is that the state existing at any character position is unchanged by
any more printing. For example, if PAPER 8 is carried out, all
future printing uses the paper colour already at the printing
location. FLASH 8 will leave the character positions that were
flashing, still flashing and those that were steady, remain steady.
Because in some senses the commands when used with colour 8
allow the old colour or condition to show through it is sometimes
referred to as transparent.

The colour 9 can only be used with INK and PAPER and simply
instructs the Spectrum to use a colour that contrasts with the colour
that is present at the printing position. In practice, black is used to
contrast with all the light colours (4 to7) and white is used to contrast
with all the dark colours () to 3). To see this try:

10 INK 9

20 FOR ¢=¢ TO 7
30 PAPER c

40 PRINT ¢

50 NEXT c

Display commands in colour

All the other display commands, OVER, INVERSE, FLASH and
BRIGHT work in a way that is unaffected by whatever colours are
set for ink and paper. For example, INVERSE will exchange ink
and paper dots no matter what colours they correspond to. One
difference is that in black and white, BRIGHT seems only to affect
paper dots. This is because normally paper dots are white and so can
be displayed as extra bright, but ink dots are black and the idea of a
brighter black is a little odd! However for the other colours,
BRIGHT does have an effect. You can also use any of the commands
in combination and the result is usually easy to predict. For example
try:

1§ BRIGHT 1
20 FLASH 1
30 PRINT “bright flashing”

If you think in terms of ink and paper dots to form the shapes of

Graphics 105

things on the screen, and the INK and PAPER commands setting
the colours that the ink and paper dots show, then you shouldn’t
have any trouble understanding the Spectrum’s colour display. As
an example of how logical everything is, consider the statement CLS
introduced earlier. CLS erases the contents of the screen by filling it
with paper dots so if you want to change the whole screen to one
colour try:

10 INPUT “colour=";¢c
20 PAPER ¢

39 CLS

40 GOTO 10

When you RUN this you should see the screen change colour
instantly.

Temporary colours

It would obviously be an advantage to be able to change the
colours just for the duration of a PRINT statement. You can do this
by including INK or PAPER as part of the PRINT list. For
example:

10 PAPER 3

20 INK 6

30 CLS

49 PRINT “COLOUR 6”

50 PRINT INK 4;“COLOUR 4”
60 PRINT “COLOUR 6"

Any of the display control commands that we have already met can
be used in this way, i.e. any of INVERSE, OVER, FLASH,
BRIGHT, INK or PAPER can be used as part of a ‘print list’ and
their effect is restricted to characters printed by the PRINT
statement that they are in. The same holds true for the ‘print list’
used in an INPUT statement. Using such commands in a PRINT
statement is normally the best way to control screen displays for all
but the simplest programs. Set up the overall paper and ink colours
and then every time you want to print something in another colour
imbed the colour command in a PRINT statement. In this way you
always know what colours will be produced on the screen.

106 The Spectrum Programmer
Using graphics in games

We are now in a position to use graphics in programming
applications. However, the program using what we’ve learned in this
chapter is held over until after we've considered sound, an
indispensible adjunct to writing exciting games.

Chapter Eight
Sound and Games

The command to produce sound from the Spectrum is very simple.
However, it can take quite a lot of ingenuity to produce any sounds
worth listening to. In the first part of this chapter we will examine
some of the ideas involved in using sound to good effect. In the
second part an example of a game involving both sound and
graphics will be presented and explained. Although most of this
game could have been written at the end of Chapter Seven it is
remarkable how much excitement can be added to a game by the
careful use of sound.

Simple sounds - BEEP

The Spectrum’s only sound command is:
BEEP ‘arithmetic expression I’,‘arithmetic expression 2’

where the value of ‘arithmetic expression 1’ specifies the time in
seconds and ‘arithmetic expression 2’ specifies the pitch in semitones
above or below middle C. For example:

BEEP 1,0

will sound middle C for one second exactly. Notice that all
computing stops for the duration that the note is sounding.
To hear the range of notes that you have at your command try:

10 FOR i=69 TO —60 STEP —I
20 BEEP .1,i
30 NEXT i

The quality of the very high notes is poor - more of a warbling than a
steady note. The lower notes at first sound like a rasping noise and
then like a series of clicks. This is not surprising as a click is the only
noise that the Spectrum can really make! Steady tones are produced

108 The Spectrum Programmer

as very fast streams of clicks. (Later in the chapter a method is given
for making clicks from BASIC.)

If you know a little bit about music theory then you can use BEEP
to write your own tunes. However, if you would first of all like to
hear what the Spectrum can do on its own try:

10 BEEP .1,50 —INT(RND*1$0)
20 GOTO 1§

The noise that this program produces is interesting at first but soon
becomes boring. The trouble is that music which is too random just
doesn’t sound interesting. Although it is very difficult to introduce
enough order into the computer-generated music to make it sound
anything like traditional music, you can see the overall effect of
increasing the order if you try the following program:

10 LET n=9

20 LET n=n+SGN(1—2*RND)
3p BEEP .f1,n

49 GOTO 20

This plays a long sequence of notes that go either up or down by one
semitone at most and sounds just a little more like music than the
first program. In fact it’s not a bad imitation of the Flight of the
Bumble Bee! Before leaving the subject of random music it is
interesting to hear the effect of changing the note length in each of
the above programs. Try substituting values of 1, 9.5, 9.1, 0.01
seconds in line 30.

Instead of random music you might feel that being able to play the
Spectrum is a better idea and indeed it is not difficult to turn the
Spectrum’s keyboard into a musical keyboard! Try the following
simple program:

10 DATA 0,2,4,5,7,9,11,12

20 DIM n(8)

30 FOR i=1 TO 8

49 READ n(i)

50 NEXT i

60 LET a$=INKEY$

70 IF a$="" THEN GOTO 60
80 BEEP .3,n(VAL(a$))

99 GOTO 60

This will allow you to play notes with the top row of number
keys from 1 to 8. It works by continually scanning the keyboard

Sound and Games 109

using INKEYS$ (see Chapter Six). Each number is entered as a
string variable and is then converted from a string to a number
by the VAL function and used in the BEEP statement (line 80) to
control the pitch. The array ‘n’ holds the pitch values for each
note from middle C to C an octave above. You should be able to
write a program to make every key on the board produce a
different note. What is more difficult is to find an arrangement
of keys and notes that makes the Spectrum easy to play!

If you want to be able to hear the output of the Spectrum a
little louder, then you might be interested to know that the
sound signal is also available from the cassette sockets. If you
simply set the tape recorder that you use to SAVE and LOAD
programs to record while the Spectrum is playing something,
you can rewind and play it back at a higher volume later. If you
are really keen on Spectrum sounds there is nothing to stop you
from connecting an amplifier to the MIC socket.

Programming tunes

Programming either well-known tunes or even tunes that you have
composed is all a matter of working out the sequence of notes and
their durations. This is easy if you have the tune written down. If you
can find middle C on the music stave then a note drawn on this line

Treble Clef Name of Beep

note pitch

F 17

/ E 16

Z D 14
Vi ¢ i
B 11

[. s
G 7/

N ==
E 4

Dl e 2

U ledger lin@ =——— C 0

Fig. 8.1.

110 The Spectrum Programmer

corresponds to a pitch of . Moving up or down by one place on the
stave increases or decreases the pitch by 2 or 1, (see Fig. 8.1). The
reason for this is that notes sometimes differ by a whole tone and
sometimes by only a semitone. The pattern of tone/semitone
differences is easy to remember because it is exactly the same as the
arrangement of black and white notes on the piano.

For example, starting from C gives the following pattern of
tone/semitone differences:

C=D-E=FE-—G—A-B-C
AT S T TS

An additional trouble is that most music involves sharps and flats.
These are easy to deal with once you realise that a sharp raises the
value of the note by one and a flat lowers it by one. For example, Cis
0, C sharp is 1 and C flat is —1. The only thing that you have to
remember is that if a note is shown as sharp or flat at the start of the
music (i.e. in the key signature) then it and all its octaves must be
sharpened or flattened.

The well-known beginning of Hearts of Oak, apart from being a
good tune, could form the basis for a jingle suitable for a game
involving ships. The first eleven notes can be seen in Fig. 8.2 and
converting them to pitch values is easy enough. The three sharp signs
(#) at the beginning apply to all Gs, Fs and Cs in the tune and this
rule is best applied by writing the name of each note underneath and
then writing a sharp sign by each G, F and C. The pitch values are
then assigned, using Fig. 8.1 and remembering to add one for a
sharp. When converting tunes that have flats in their key signatures
you have to subtract one every time a flattened note is played. The
resulting pitch values can be seen under the name of each note in Fig.
8.2. Only one thing now keeps us from hearing Hearts of Oak and
this is the problem of how long each note should be sounded for.
Fortunately, musical notation is rigorously logical (after all it is one
of the first programming languages)! Time is divided into intervals
and a plain ordinary note, like the first in Hearts of Oak should last
one interval. The time that a note lasts is shortened by the number of
streamers drawn on its tail. Each streamer halves the length of the
note, so for example, the fourth note has two ‘streamers’ the first
shortens it to half an interval and the second reduces it to a quarter.
The only complication is that a dot following a note is an instruction
to lengthen it by half the time that it would normally last (it makes
you wonder how musicians cope). So the third note would normally

Sound and Games 111

be one half a time interval but because it is followed by a dot it has to
be sounded for one half plus one quarter, i.e. three quarters.
Translating this musical notation into fractions of the time interval,
gives the results written under the pitch values in Fig. 8.2. There are

#
A = aLp -
L]]r/ C
= L]
U
E A A A A C#¥B A GH¥F# ¢
4 9 9 9 91311 9 8 6 14

1 % % 1 % Y% 1 % 1%

-k

‘Hearts of Oak’
Fig. 8.2.

two notes that do not occur in Hearts of Oak that have to be sounded
for twice as long and four times as long. These are included in
Fig. 8.3, along with all the other note values.

The time has come to start programming! Each note of the tune
now has two numbers associated with it - its pitch and the time that
is should sound. This information is best stored in a DATA
statement and then read into two variables. Try the following:

Note Time

4

N

Fig. 8.3. Lengths of notes

112 The Spectrum Programmer

10 DATA 4,1,9,1,9,.75,9,.25,9,1,13,.75,11,.25,9,1,8,.75,6,.25,
4,1.5,99,99

20 LET temp=.25

30 READ p.t

4¢ 1F p=99 THEN STOP

50 BEEP t*temp,p

60 GOTO 3¢

The DATA statement is terminated by two values of 99 and this is
used to detect the end of the tune. The variable ‘temp’ sets the length
of the fundamental time interval, in this example one quarter of a
second, but you might like to experiment with other values.

Resting - PAUSE

The only thing that the BEEP command doesn’t allow ustodoisto
pause for a period of silence. The Spectrum does have another
command that will cause it to stop doing anything for a specified
period of time but its format is slightly different. The command:

PAUSE ‘arithmetic expression’

will stop the Spectrum from doing anything for a time given by the
value of the arithmetic expression. The only trouble is that the time
is measured in fiftieths of a second so:

PAUSE 50

will cause the Spectrum to do nothing for one second. This isn’t too
much of a problem however, because:

PAUSE t*50

will pause for ‘t’ seconds.

There is one other special feature of the PAUSE command and that
is that pressing any key on the keyboard will immediately cut the
pause short and make the Spectrum continue with the program. If
you use:

PAUSE ¢

then the pause isn’t timed and the only way to make the Spectrum
continue is to press a key.

Although the PAUSE command has been introduced as a way of
leaving silences in music, it can be used to alter the time that any part

Sound and Games 113

of a program takes to complete. The command PAUSE § is
particularly useful for making the Spectrum pause until you want it
to move on.

Some sound effects

The trouble with using the Spectrum to produce sound effects is that,
while any noise is coming from the loudspeaker, it stops doing any
calculations. So even if you write a program that makes an excellent
sound of a rocket taking off it would be difficult to add any
simultaneous graphics of a rocket taking off. The best you could do
is to make a bit of noise, move the rocket a little, then make a bit
more noise, then move the rocket a little more and so on. A
continuous woosh accompanying a moving rocket is not something
that can be achieved from BASIC alone.

However, there are a few extra noises, other than BEEPs, that
can be produced from BASIC. You can produce a single click by
using the following subroutine:

1009 LET a=PEEK 23624/8
1019 OUT 254,a—16

1020 OUT 254,a

1039 RETURN

The way that this works is not too important and involves an
understanding of the Spectrum’s hardware so don’t worry, just use
it! The subroutine will produce a click every time the pair of
instructions OUT 254,a—16 and OUT 254,a are executed. For
example, try:

1099 LET a=PEEK 23624/8
1019 FOR i=1 TO 2§

1029 OUT 254,216

1030 REM

1049 OUT 254,

1050 NEXT i

which will produce a low pitched rasping noise. The REM statement
in line 1930 is there just to use up a little time between clicks. By
increasing the number of REM statements it is possible to make a
sort of machine-gun noise.

Other sound effects can be produced by combining short duration
notes of different frequencies with individual clicks. The pro-

114 The Spectrum Programmer

gramming methods involved aren’t difficult, they just need a lot
of patience and time spent trying out different combinations of
all possible ideas.

Attack the saucer - the SCREENS$ function

The game listed below uses most of the BASIC commands that have
been introduced in this chapter and Chapter Seven.

10 LET t=15

20 LET f=¢

30 LET fx=1¢

40 LET fy=10

50 GOSUB 1009

60 FOR x=¢ TO 3¢

70 GOSUB 2099

80 GOSUB 3009

90 PRINT AT 20,x;“[A]”
109 NEXT x

110 FOR x=3p TO ¢ STEP —1
120 GOSUB 2009

13p GOSUB 300§

140 PRINT AT 20 ,x;“[A]”
150 NEXT x

169 GOTO 6¢

1099 POKE USR “[A]" . BIN pgp0ggp9
1019 POKE USR “{A]"+1, BIN 00111190
10290 POKE USR ‘{A]"+2, BIN 0¢11110¢
1030 POKE USR ‘{A]"+3, BIN ¢111111¢
1049 INK 2

1050 PAPER 5

1060 CLS

1070 RETURN

2000 LET f$=INKEY$

2019 IF f$=*" THEN RETURN
2029 BEEP .01,10

2039 PRINT AT fy,fx;“ ”

2049 LET fx=x

2050 LET fy=21

2060 LET f=1

2070 RETURN

Sound and Games 115

3009 LET t=t+RND*2—1

3019 IF t<5 THEN LET t=t+1

3020 IF t>25 THEN LET t=t—1

3030 PRINT AT 5,t; *** ”

3049 IF f=p THEN PAUSE 5:RETURN

3050 PRINT AT fy,fx;* ”

3060 LET fy=fy—1

3079 PRINT AT fy,fx;"t”

3089 BEEP .00 1,50 —fy*2

3099 IF fy<4 THEN LET f=0:PRINT AT fy,fx;*”:RETURN
3109 IF SCREENS$(fy—1,fx)<>*“*" THEN RETURN
3110 GOSUB 499

3120 RETURN

4000 PRINT AT 5,t+1;FLASH 1;% *** »
4010 BEEP .91,4¢

4029 LET a=PEEK 23624/8

4039 FOR i=1 TO 2¢

4049 OUT 254,a—16

4059 OUT 254,a

4069 NEXT i

4070 RETURN

The game itself is relatively straightforward to play. An alien ‘flying
saucer’, in the form of three asterisks, moves rather jerkily across the
screen. A ship, whose purpose is to attack the alien, moves rapidly
backwards and forwards at the bottom of the screen. A missile can
be launched at any time from the attacking ship by pressing any key.
Once a missile has been fired it moves up the screen accompanied by
a whistling noise, increasing in pitch, until it either misses the saucer
or hits it with a resulting explosion. If at any time during the flight of
a missile another key is pressed, then the first missile is erased from
the screen and a new missile fired at the saucer.

The program has been written as a small collection of subroutines
and is not particularly difficult to understand. It is easier to follow
the main part of the program after a description of each subroutine.
Subroutine 10P@- 1070 sets up the user-defined graphics character
for the attacking ship (lines 10@@-1030) and sets up the overall ink
and paper colours (lines 1§40 1070). Subroutine 200~ 2070 checks
to see if any key has been pressed and fires the missile. If no key has been
pressed then controlis returned to the main part of the program (line

116 The Spectrum Programmer

20 19). Ifany key has been pressed thenany existing missile is removed
from the screen by printing a blank (line 2¢30) at the current missile
position stored in ‘fy’ and ‘fx’. Then the current missile position is set
to the current position of the attacking ship (lines 2040-2050) and
variable ‘f* is set to 1 (line 206@) to indicate that a missile has been
fired and is in flight. Subroutine 300031290 moves the saucer a
random amount to the right or left, prints the missile if one is in
flight and checks to see if it has hit the saucer. Lines 3009 3030 are
responsible for moving the saucer. Notice the checks to stop it from
moving off the edge of the screen in lines 3919 and 302¢. The
printing of the saucer in line 393@ also serves to remove the old
saucer from the screen because of the blanks included at either end
of the string of asterisks. Lines 30403080 look after moving the
missile. Line 3940 checks to see if there is a missile in flight (i.e. f=1).
If there isn’t, control is passed back to the main part of the program.
The PAUSE is included to make the attack ship move at the same
rate even if there isn’t a missile in flight. Lines 3050 -39 8p move the
missile up the screen by one line. Line 3950 blanks out the old
missile and line 397 prints it at its new position. Line 38 makes a
sound that increases in pitch as the missile moves higher up the
screen. Lines 39903110 test to see if the missile has hit or missed the
saucer. Line 3090 tests to see if the missile’s position is such that it
has passed the saucer and is about to go off the screen. If this is the
case a blank is printed to remove the missile and the variable ‘f” is set
to zero to indicate that there are no missiles in flight. Line 3100 uses
the SCREENS function to discover what character is at the next
screen location that the missile will move into. The SCREEN$
function hasn’t been discussed so far but it is very easy to understand
how it works. The function SCREENS$(y,x) returns the character
displayed on the screen to column x, line y. It is used in line 3190 to
discover if the character just above the missile is an asterisk. If it is,
then the missile is about to hit the saucer and the explosion
subroutine is called.

Subroutine 40@@-4079 is the explosion subroutine. Line 4000
prints the saucer flashing to indicate an explosion on the screen. Lines
(4020-4060) make the rasping noise described in the last section to
stand in for the sound of a real explosion.

Now that all the subroutines have been described, the working of
the main part of the program is easy to understand. Lines 104§ set
up values of some of the important variables — ‘t’ is the horizontal
position of the saucer, ‘f” is used to indicate when a missile has been
fired and ‘fx’ and ‘fy’ are the co-ordinates of the missile. Then

Sound and Games 117

subroutine 1000 is called to set up the user-defined graphics and the
colours used. The main work of the program is done by the two FOR
loops 60100 and 110—-150. The first FOR loop moves the attack
ship to the right one place at a time. Each time the attack ship moves
subroutine 200 is called to check for a ‘fire missile’ command and
subroutine 3f0 is called to move the saucer and the missile. The
second FOR loop moves the attack ship to the left but otherwise it is
identical to the first FOR loop.

This concludes the description of this short games program. If you
study it to the point where you are sure that you understand it, the way
to find out if you’re right is to try to modify it! The game would be
made much more exciting by the addition of only a few very simple
features. You could, for example, add a routine to keep a score of the
number of saucers hit, or give the attacking ship only a limited
number of moves before the saucer fires a missile back at it! Try
experimenting with these suggestions and your own ideas. After all,
the only way to learn to program is to program!

Chapter Nine
High-resolution
Graphics

The presence of high-resolution graphics (hi-res graphics) is
something that might have lured you into buying your Spectrum.
However, as Chapters Seven and Eight might have convinced you,
hi-res graphics is not really needed for most applications. Drawing
things in hi-res graphics generally takes longer and in most cases you
are limited to two colours. Having placed hi-res graphics in context,
it has been said that the Spectrum’s commands which deal with this
facility are not difficult to understand and use, once you have
mastered the ideas behind low-resolution graphics, and that some of
the effects that can be achieved are very good indeed.

The high-resolution screen

The Spectrum uses the same method for delaying high- and low-
resolution graphics. This is not the case with other microcomputers
and, as it means that you can mix text with hi-res graphics, it is to the
Spectrum’s advantage!

The way that hi-res works is easy to understand in terms of the
eight-by-eight square of dots that makes up each character location on
the screen. Low-resolution commands can only alter entire eight-by-
eight blocks at a time but hi-res commands can change as little as a
single dot in any character location. Notice that this implies that all
the rules for displaying a dot in a character location remain the
same. For example, the colour that a dot is displayed in still depends
on whether it is an ink or paper dot and what INK or PAPER
command has been given. The hi-res commands only increase the
ways that we can change the dots in a character location, not the
colour or any other attributes of a character location.

Obviously, if the hi-res graphics commands can be used to change
single dots there must be some way of specifying which point. Now,

High-resolution Graphics 119

theoretically you could do this by using the existing numbering of
the character positions and refer to individual dots as, say, the third
dot in a particular character, but it turns out that it is much easier to
have a completely new numbering system for the dots. As there are
32 characters to a line and each character is eight dots wide there are
a total of 32*8, or 256, dots to a line. As there are 22 lines and each
line is eight dots high there are 22*8 or 176 dots vertically. Thus the
hi-res screen is composed of 256 dots horizontally and 176 dots
vertically and any single dot can be picked out by stating which
column and row it is in. The columns are numbered from zero
starting at the far left, and so the column number, or x co-ordinate as
it is called, ranges from @) to 255. The rows are numbered from zero
starting at the bottom of the screen and so the row number, or y co-
ordinate as it is called, ranges from § to 175. (Notice that the row
numbers go from the bottom to the top unlike the line numbering
which starts at the top.) Any dot on the screen can be specified by
giving two numbers, its x co-ordinate and its y co-ordinate. It is
usual to write these two numbers in brackets with the x co-ordinate
first. So (9,0) is the bottom left hand corner and (255,175) is the top
right hand corner. After a little practise, using X,y co-ordinates will
become second nature.

The graphics commands - PLOT, DRAW and CIRCLE

The hi-res graphics commands are easier to understand when they
are working with only two colours and so this is where we’ll begin!
Through all of the following discussion it is assumed that either you
haven’t altered the initial setting of black ink and white paper on
your Spectrum, or that you have set up two reasonably contrasting
colours using INK and PAPER.

The simplest hi-res command is:

PLOT ‘arithmetic expression I’,‘arithmetic expression 2’

This changes the dot at the x co-ordinate given by ‘arithmetic
expression 1’ and the y co-ordinate given by ‘arithmetic expression 2’
to an ink dot. Try the following program, both to discover how
PLOT works and to investigate the way x,y co-ordinates work:

l¢ INPUT “X:";X;“ y:,,;y
20 PLOT x,y
39 GOTO 19

120 The Spectrum Programmer

If you enter a value for x and y that takes the point outside the screen
you will get an “Integer out of range” error. For an automatic
demonstration try:

10 LET x=INT(RND*256)
20 LET y=INT(RND*176)
30 PLOT x,y
49 GOTO 1§

The most useful of the hi-res commands is:
DRAW ‘arithmetic expression 1’,‘arithmetic expression 2’

which produces a straight line. The starting position of the line is
where the last PLOT or DRAW finished and its end is ‘arithmetic
expression 1’ to the right and ‘arithmetic expression 2’ up. For
example, if the last PLOT was PLOT §,§ the command:

DRAW 109,19

will produce a line from (9,0) to (100,100). But if the last PLOT was
PLOT 50,50 the line would have started at (50,50) and ended at
(150,150). It is important to notice that DR AW uses co-ordinates in
a way that is completely different from PLOT. When using hi-res
graphics commands, you can imagine that there is a graphics cursor
that moves around the screen with the current graphics position in
much the same way that the test cursor moves around the screen
with the current printing position. The command PLOT x,y moves
the graphics cursor to the point (x,y) and then plots a point. The
command DRAW x,y moves the graphics cursor X units
horizontally and y units vertically and then draws a line between the
old position of the cursor and the new. Commands such as RUN,
CLEAR, CLS and NEW reset the graphics cursor to the point (§,0).
After this the graphics cursor is moved around the screen by each
graphics command. The clearest indication that DRAW x,y is
different from PLOT x,y is in commands such as:

DRAW —10,1¢

which leaves the graphics cursor 10 units to the left and 10 units up.
Negative co-ordinates are not allowed in PLOT!

The form of the DRAW command is often very convenient but it
can be difficult to draw a line between two given points. However,
the following combination will draw a line between the point (x1,y1)
and (x2,y2):

High-resolution Graphics 121

PLOT x1,yl:DRAW x2—x1,y2 —yI

To see the sort of thing that DRAW can do, try the following
program:

19'FOR i=1 TO 175 STEP 4
20 PLOT 0.

30 DRAW 255—i,—i

40 PLOT i.0

50 DRAW 255—i,i

60 PLOT 0,i—175

70 DRAW 255—i,i

80 PLOT 1,175

99 DRAW 255—i,—i

409 NEXT i

Fig. 9.1. String pattern program

The output from this program is reproduced in Fig. 9.1. You will
find that you get different effects by altering the values of the STEP
in line 19. Although we haven’t quite exhausted the full extent of the
DRAW command, its additional feature is easier to understand
after a discussion of the final hi-res graphics command.

The command:

‘arithmetic ‘arithmetic ‘arithmetic

CIRCLE : . - .)
expression 1’, expression 2°, expression 3

will result in a circle centered on the point (x,y), where X and y are the

122 The Spectrum Programmer

values ‘of the first two arithmetic expressions, and with a radius
determined by ‘arithmetic expression 3’ being drawn on the screen.
For example:

CIRCLE 1090,50,40
draws a circle centered at (109,50) and radius 40. As an example of
the circle command the following program draws random circles, as
illustrated in Fig. 9.2:

19 LET r=RND*50

20 LET x=r+RND*(255—2*r)
30 LET y=r+RND*(175—2*r)
49 CIRCLE x,y,r

50 GOTO 19

Fig. 9.2. Random circle program

Notice that when drawing random circles you have to be careful not
to go off the edge of the screen. This is allowed for in this program by
the inclusion of —2*r in lines 20 and 30.

Now that the CIRCLE command has been explained, the
additional feature of the DRAW command mentioned earlier can be
dealt with. In addition to being able to produce straight lines
between two points, DRAW can be used to produce parts of circles
between two points. The general form of the DRAW command is:

‘arithmetic ‘arithmetic ‘arithmetic

DRAW E . : . -)
expression I’, expression 2’, expression 3

High-resolution Graphics 123

The meaning of the first two arithmetic expressions has already been
explained and is unaltered by the existence of the third. However,
the third parameter specifies an angle that is used to determine how
much of a circle is drawn.To understand how an angle can specify
how much of a circle is drawn, all you have to do is to imagine that
you are standing at the centre of a circle. If you hold out your arms
with the given angle, then the part of the circle that is between your
arms is the part of the circle produced by DRAW. Forexample, 180
degrees specifies half a circle and 90 degrees a quarter. The only
complication is that the Spectrum measures angles in radians rather
than degrees. To convert from degrees to radians all you have to do
is multiply by 180 and divide by PI(7). This results in an angle of PI
specifying a semicircle, an angle of PI/2 specifying a quarter circle
and so on. As an example of the DRAW command try:

10 PLOT 100,100:DRAW 50.50.P1/2

The PLOT first moves the graphics cursor to (100, 100) and then
DRAW command produces a quarter of a circle starting at
(1090,100) and endirg at (150,150). Notice that the part of a circle
that is produced by a DRAW command is determined solely by the
value of the third parameter. The size and orientation of the part of
the circle is governed by both the current position of the graphics
cursor and the values of the first two parameters.

You may have noticed that, unlike a straight line, there are two
circular arcs between any two points. For example, if you imagine
two points on a horizontal line, then you can draw a semicircle from
the one on the left to the one on the right going either clockwise or
anti-clockwise. The clockwise semicircle would be above the
horizontal line and the anti-clockwise semicircle would be below it.
This description in terms of clockwise and anti-clockwise circles is
exactly how the Spectrum solves the problem of which circle to

’.‘: -

-

Fig. 9.3. Tangled string program

124 The Spectrum Programmer

draw. Positive angles result in circular arcs being drawn between
two points in an anti-clockwise direction and negative angles result
in clockwise arcs.

As an example of the complete DRAW command try the
following program that produces an output that can only be
described as tangled string (see Fig. 9.3):

19 PLOT 109,109

20 LET x=25—-RND*50
30 LET y=25—RND*5¢
49 LET p=PI*RND

50 DRAW x,y,p

60 GOTO 20

Line 10 sets the graphics cursor roughly to the middle of the screen
and lines 20 to 30 set random values for the three parameters of
DRAW. The random angle is set in line 40 as a fraction of PI so the
DRAW command in line 5¢ draws fractions of semicircles. If you
leave this program to run long enough it will stop with an error
message when one of the arcs finally goes outside the screen area. In
general, it is quite difficult to detect whether a circular arc produced
by DRAW will go off the screen - until it actually happens, that is!

High-resolution colours

You can use all of the colour and attribute commands such as INK,
PAPER and OVER, that were introduced in Chapter Seven, to
control the way the high-resolution dots are displayed. For example,
if you want to produce blue dots on a yellow background all you
have to dois to put INK 1:PAPER 6 beforeany PLOT, CIRCLE, or
DRAW commands. You can even embed colour commands within
hi-res graphics commands in the same way as for the PRINT
command. In this case the effect of any colour commands is
temporary and only determines the way dots are produced by the
command that they are embedded in. The only thing that you have
to remember is that colours and attributes (apart from OVER and
INVERSE) apply to entire character printing positions. For
example, if you plot a single point using PLOT INK 4;100,100, then
all of the ink points in the same character position as (100, 100) will
change to colour 4 (green). The most startling illustration of the way
INK and PAPER commands affect the entire character block can be
seen by DRAWing a line using a different PAPER colour to the rest

High-resolution Graphics 125

of the screen. For example:

10 PAPER 6
20 CLS
3 DRAW PAPER L;INK 4;100,109

produces a very odd display because each point plotted changes all
the paper dots in the character position that it falls'in to colour 1
(blue). If there were any ink dots of another colour in the character
position these would be changed to green.

The fact that colours (including BRIGHT and FLASH) apply to
complete character positions places a severe restriction on the way
hi-res graphics can use colour. If you DRAW two lines with
different ink colours, then there is no problem unless they meet in a
single character position. When this happens, the first line produced
changes its colour in the character position where it meets the second
line, to the colour of the second line. The rule is that you can only
display two colours in any character position - the ink colour and
the paper colour. As long as hi-res lines and circles, etc., keep to their
own areas of the screen they can be any of the eight colours but if any
of them share the same character position they must have the same
ink and paper colour. For some applications this restriction is not
important because lines of different colours naturally occupy
different areas of the screen. If this isn’t the case, however, there is
nothing that can be done to overcome this limitation of the
Spectrum’s hi-res graphics. To avoid any such problems the only
thing that you can do is to treat the hi-res graphics screen as a two-
colour display.

Un-plotting - OVER and INVERSE

Although the colour commands, INK, PAPER, FLASH and
BRIGHT affect all of the dots in a character square, the commands
OVER and INVERSE merely affect the way each dot is produced on
the screen. This means that OVER and INVERSE are true hi-res
commands that can be used within PLOT, DRAW or CIRCLE
without affecting anything else already on the screen. For example,
INVERSE 1 results in a paper dot being produced instead of ink
dots. So the program:

16 CIRCLE INVERSE §;109,109,50
20 CIRCLE INVERSE 1;109,190,5¢
30 GOTO 1

126 The Spectrum Programmer

first produces a circle of ink dots and then erases it by plotting paper
dots in the same place.

The command OVER is more difficult to understand than
INVERSE because its effect depends on what is already present at
the plotting position. Recalling the rules given for how OVER works
in Chapter Seven, you should be able to see that a line of dots plotted
in hi-res graphics following OVER 1 will appear as ink dots, if they
are replacing paper dots, but as paper dots, if they are replacing ink
dots. In practice, this is very useful because it gives us a way of
plotting and un-plotting hi-res dots without losing any dots that are
already on the screen. To see this in operation, try:

1) CIRCLE 109, 199,50
20 PLOT §, 199

30 DRAW OVER 1;255,0
40 PAUSE 20

50 GOTO 2§

The first DRAW command produces a line of ink dots passing
through the circle plotted by line 10, except where the line cuts
through the circle itself where, by the rules given above, paper dots
result. After the pause generated by line 40 so that you can look at
the result, the PLOT and DRAW commands are carried out again.
This time the ink dots in the line are changed to paper and the line
vanishes, except for the paper dots where the line cut the circle which
are restored to their original ink value! This appearing and
disappearing of the line continues until you break into the program.
So if you want to produce some temporary lines or circles, produce
them using over 1 and then remove them by a second use of OVER 1.

It is worth summarising the use of OVER and INVERSE in hi-res
commands using PLOT as an example:

PLOT produces an ink dot.
PLOT INVERSE 1 produces a paper dot.
PLOT OVER 1 changes the colour of the dot already

present to the opposite colour,i.e.

ink to paper and paper to ink.
PLOT INVERSE I;OVER 1 has no effect at all apart from

moving the graphics cursor.

Finding out what’s on the screen - POINT

In the same way that SCREENS could be used to discover what

High-resolution Graphics 127

character is displayed on the screen at any character location, the
function POINT can be used to find out what sort of dot is on the
screen at any given hi-res position. The general form of the POINT
function is:

POINT (‘arithmetic expression 1’,‘arithmetic expression 2’)

where ‘arithmetic expression 1’ is the x co-ordinate and ‘arithmetic
expression 2’ is the y co-ordinate. Notice that, unlike most functions
on the Spectrum, a pair of brackets is necessary. The value returned
by POINT is 1 if there is an ink dot at the specified co-ordinates and
a { if there is a paper dot. The sort of thing that POINT is used for is
similar to the use of SCREENS in the saucer program given in
Chapter Eight.

Using hi-res graphics

Although there are only a few hi-res graphics commands, it can be
difficult to see how they can be used to produce effective displays. As
always, the best way to learn is to have a look at some examples and
then try to write your own programs.

]

e

Fig. 9.4. Etch-a-sketch program

The first example uses the INKEY$ function to control the
position of a dot on the screen. By pressing the appropriate arrow
keys you can draw shapes on the screen:

128 The Spectrum Programmer

10 LET x=127

20 LET y=8¢

39 LET a$=INKEY$

40 IF a$=“5" THEN LET x=x—1
50 IF a$=“8” THEN LET x=x+1
60 IF a$=*6" THEN LET y=y—1I
70 IF a$=“7" THEN LET y=y+1
80 PLOT x,y

99 GOTO 3¢

you can see a sample of the output of this program in Fig. 9.4. You
could try to add some improvements of your own such as diagonal
movements and being able to move from one place to another
without drawing a line.

The second example is based on a set of patterns discovered by the
nineteenth century French physicist, Lissajous and aptly called
‘Lissajous figures’:

19 LET t=¢

20 LET t=t+0.1

3p LET x=>5¢*(1+SIN(1.1*t))
49 LET y=>50*(1+COS t)

50 PLOT x+50,y+50

60 GOTO 20

The output of this program can be seen in Fig. 9.5. You can produce a
range of different patterns by changing the value 1.1 in line 3§.

PO g g P
"]

o

%

,l

L3
o

_)4}(}&}{\(

2™
\’N

Fig. 9.56. Lissajous figure

F

%

o

—

The final example in this chapter is a program that plots the graph
of SIN(x)/x. This produces a particularly interesting shape, as you
can see in Fig.9.6. One difficulty to be aware of is that SIN(x)/x is

High-resolution Graphics 129

SIN x
Fig. 9.6

program

impossible to work out when x is zero so this point has to be
carefully left out of the graph.

10 FOR i=1 TO 255

20 IF i=127 THEN GOTO 60
3¢ LET x=(i—127)/5

49 LET y=15¢*SIN(x)/x

5¢ PLOT i,y

60 NEXT i

When using graphics in your own programs, the best strategy is
actually to limit your use of high-resolution graphics to those
occasions when they perform an essential function. In other words,
it is advisable to start off using low resolution graphics but to keep
an eye open for situations where high-resolution graphics actually
do the job better.

Chapter Ten
Logic and Other Topics

Using the BASIC and other information dealt with in earlier
chapters, you should by now find it possible to write any program
that you want to. However, there are facilities on the Spectrum that,
although not entirely necessary, do make things easier or go beyond
what can be done from simple BASIC. This chapter collects together
these extras and explains a little of how they work.

The first topic to be covered has the rather daunting title of /ogic
and introduces the commands AND, OR, and NOT. The second
area deals with the commands PEEK, POKE, IN, OUT, USR and
CLEAR which affect the inner working of the Spectrum. Thirdly,
we consider the command ATTR which can be used to discover the
colour of any point on the screen and finally we look at one of the
simplest of BASIC statements, REM. It would be misleading to
think of this as a collection of unimportant topics just because they
have not figured so far in this book. Rather it is a case of them being
introduced last but not least.

Logic and the conditional expressions

In everyday speech we often say things like, ‘did you buy apples and
oranges?’, ‘do you prefer tea or coffee?’. The use of words like and
and or are so common that we rarely stop to think about them. It
would obviously be a great advantage if the use of and and or could
be extended to BASIC conditional expressions. Luckily, most
versions of BASIC do allow the use of these everyday concepts and
in Spectrum BASIC you can write expressions such as:

a<§ AND b=3
a<f OR b=3

The meaning of each of these expressions is in line with the usual

Logic and Other Topics 131

English meaning of and and or. The first of the above expressions is
true if both of the conditions ‘a<{()’ ‘b=3" are true and the second
expression is true if either of the two conditions is true. As well as
AND and OR the Spectrum also allows the use of NOT, which
simply changes the value of a conditional expression from true to
false and vice versa. For example, ‘3=2’ is false but ‘NOT 3=2"is
true.

You can combine AND, OR and NOT with any of the conditions
we met in Chapter Four to make more complicated expressions that
evaluate to one of the values true or false. (As you already know,
from Chapter Four, rrue is represented by 1 and false by) in Spectrum
BASIC which allows you to use them very easily in arithmetic
expressions.) Conditional expressions that include AND, OR or
NOT are usually called logical expressions and we can now re-write
the definition of the IF statement as:

IF ‘logical expression’ THEN ‘BASIC statement’

For example, if you want to check that you’re not about to use an x
co-ordinate that goes outside the screen area, you could use:

IF x<@ OR x>255 THEN ...

in place of the two IF statements that would be required without the
use of OR.

Forming logical expressions to test for overall conditions is
usually straightforward. However, there are a few traps that even
experts fall into. If you want to translate the English statement ‘a
equals b and ¢’ then you must repeat the condition ‘=". In other
words, you must write:

a=b AND a=c
and not use:
a=b AND ¢

which will give a result that depends on whether ¢ is § or 1. You
should also be careful when using NOT. For example:

NOT(a=b AND a=c)
isn’t the same as:
NOT(a=b) AND NOT(a=c)

To see that this is the case try working the two expressions out for a
few values of ‘a’, ‘b’ and ‘c’. The moral is that you should always

132 The Spectrum Programmer

beware of using logical expressions without thinking about exactly
what they mean.

To close the subject of logical expressions it is worth introducing
the idea of a truth table. If you consider the logical expression:

a AND b

where ‘a’ and ‘b’ are variables that are either @, for false, or 1, for
true. You can draw up a table that lists the result of the expression
for all possible values of ‘a’ and ‘b’ as follows:

—_—e—e TS W
—_—— S O

Such a table is called a truth table because it lists the conditions
under which the logical expression is true or false. You can draw up
truth tables for any logical expression and this is one way to check
that you understand what is happening. For example, OR and NOT
have the following truth tables:

b aORb NOTa
0 0 1
1 1 1
0 !)
1 1 0

—_——_—_l,e ®

The OR that we have used so far is not entirely equivalent to the
English word ‘or’. Most uses of the English ‘or’ mean ‘one or the
other but not both’. For example, ‘You can have jam or marmalade’
means that you can pick one but not (normally) both! However, the
logical OR means that you can have either one or both (look at the
truth table if you are unsure of this). The logical OR is more properly
called the inclusive OR because it includes the possibility of both.
The usual English ‘or’ is known as the exclusive or because it
excludes the possibility of both. You can make up a logical
expression that is equivalent to the exclusive or:

exclusive or = (NOT(a) AND b) OR (a AND NOT(b))

as can be seen from the truth table:

Logic and Other Topics 133

b (NOT(a) AND b) OR (a AND NOT(b))
0)
| 1
0 1
1)

This pattern of @ (false) and 1 (true) may perhaps remind you of the
pattern of ink and paper dots in Chapter Seven where the OVER
command was discussed. In fact, following OVER 1 the dot
produced on the screen is the exclusive or of the old dot and the dot
that you are trying to plot. Once you start looking out for it, you'll
notice that logic crops up in some strange places!

—_——lTS R

Inside the Spectrum - BIN, PEEK, POKE, IN, OUT, USR
and CLEAR

It may come as something of a surprise to learn that BASIC includes
a number of commands that allow access to the inner workings of
the Spectrum. The reason why this might seem strange is that all the
BASIC that we have looked at so far has done its best to avoid
getting involved with details of how the machine carries out
commands. However, there are some applications where the normal
instructions of BASIC are in some way deficient. For example, they
might be too slow or fail to take account of some important feature
of the machine. To allow the programme to find a way around such
difficulties, most versions of BASIC include instructions that allow
you to gain access to the inside of the machine.

We have already met the function BIN in Chapter Seven, where it
was used without explanation in the construction of user-defined
characters. Although, from the point of view of the BASIC
programmer, the Spectrum seems to do its arithmetic in terms of
decimal numbers, in fact it works things out in a more fundamental
system called binary. Humans count in decimal simply because they
have ten fingers. If we had only two fingers then we would count in
the same way that computers do, in binary. Although it is not
important for anyone to know very much about binary, because
BASIC takes care of converting decimal to binary and back again, it
is important if you ever want to use your Spectrum directly without
the help of BASIC. Even then, all you really need to know is that the
function BIN will take a binary number and convert it to decimal. A
binary number is simply a number that contains only zeros and ones.

134 The Spectrum Programmer

you don’t really have to know any more than that because BASIC
and BIN will look after you. For example, try:

PRINT BIN ‘number’

which will print the decimal equivalent of any binary number that
you care to enter. You will find that 11is 3, 111 is 7and 11111111
(eight ones) is 225. (Notice that BIN, unlike all the other Spectrum
functions won’t allow you to use an expression.)

We learned very early on that a variable is a named area of
computer memory. However, it is sometimes necessary to side-step
this method of using computer memory and use in preference direct
access, via PEEK and POKE. PEEK is a function that will return the
contents of a memory location and POKE is a command that will
alter the contents of a memory location. It is as simple as that, except
that you need to know how to specify which memory location and
what sort of number can be stored in a memory location. The first
problem is easily solved because the Spectrum, like all computers,
numbers all its memory locations sequentially starting from zero. So
PEEK(543) will return the contents of the five hundred and forty-
third memory location. The second problem is also easily solved
once you know that a memory location can store a binary number
with up to eight zeros or ones in it and as BIN 11111111 evaluates to
255 this is the largest number that can be held in a single memory
location. So POKE 1000,200 will store 20¢ in memory location
1000. However, POKE 1000,60¢ will give an error message because
609 is greater than 255. In general, to use PEEK and POKE you
have to have a knowledge of what is stored where inside your
Spectrum and this is often not easy to find out. For this reason,
PEEKing and POKEing are best avoided unless you are absolutely
sure that you know what you are doing.

However, there are one or two standard applications of PEEK
and POKE that are worth knowing about and also demonstrate the
typical way that PEEK and POKE are used. The Spectrum has a
clock that ticks in fiftieths of a second buried deep inside it. From the
programming point of view, it looks like three memory locations
that continuously change the values stored in them. The three
memory locations work together to extend the range of time beyond
what can be held in one memory location. The memory location at
23672 counts fiftieths of a second, and as the largest number that can
be stored in a memory location is 255 it counts 255 fiftieths of a
second and then goes back to zero. You can think of this as a hand on
a clock going round every 256 ticks. The second memory location, at

Logic and Other Topics 135

23673, counts how many times the first memory location has, as it
were, gone round and so counts in units of 256 fiftieths of a second.
In the same way, the third memory location, at 23674, counts how
many times the second memory location has gone round and so it
counts in units of 256*256 fiftieths of a second. You can make use of
this information by using the PEEK function to discover what is in
each memory location and converting it to a number that represents
a time in seconds. For example:

(65536* PEEK 23674 + 256*PEEK 23673 + PEEK 23672)/50

gives you the time in seconds since the clock was started, normally
when you switched on. In the same way, you can use POKE toset the
three locations to any time that you desire. For example, to zero the
clock use:

POKE 23674,0:POKE 23673,0:POKE 23672,0

Most applications of PEEK and POKE are similar in that they
require you to know something about where the Spectrum stores
some piece of information that is normally hidden from you. For
example, once you know that location 23692 is used to store the
number of lines that will be scrolled up the screen before the familiar
“Scroll? y/n” message appears on the screen, then you can use
POKE 23692,255 to ensure that the message doesn’t appear for 255
scrolls.

In the same way that PEEK and POKE examine and alter the
contents of memory, IN and OUT can be used to communicate with
any external devices connected to the Spectrum, such as with the ZX
printer. However, unless you have a very special application there is
no real call to become involved in IN and OUT. You can see an
example of IN and OUT in the short subroutine that was used to
produce a click in Chapter Eight. From the Spectrum’s point of
view, its loudspeaker is an external device and this is why it requires
these commands to be used to produce sounds.

We have already met the USR function in connection with user-
defined characters. However, this use is very special and in general,
the USR function transfers control out of BASIC and into a
machine code program stored somewhere inside the Spectrum.
Machine code is a completely new, and vast, topic and until you want
to get involved in it the USR function will be of little interest to you.

The final instruction to be mentioned in this section is similarly in
the province of machine code programming. The command CLEAR
can be used to reserve some memory for storing machine code programs

136 The Spectrum Programmer

so that the Spectrum doesn’t allocate the area to variable storage.
Because of this specialised use, you are unlikely to come across it
very often.

Finding out the colour - ATTR

In the same way that the function SCREENS and POINT can be
used to find what is on the screen, the ATTR function can be used to
find out what colours are being used for ink and paper and whether a
particular character location is flashing or bright. The only trouble
is that ATTR returns all of this information in the form of a single
number that has to be decoded to find out what it means. However,
it is possible to list expressions that will extract each piece of
information:

INT(ATTR(line,col)/ 128))
is @ if the location is steady and 1 if the location is flashing and:
INT((ATTR(line,col)-INT(ATTR(line,col)/ 128)*128)/64)
is @ if the location is bright and 1 if the location is not bright.
Similarly:
INT((ATTR(line,col)-INT(ATTR(line,col)/ 64)*64)/8)
gives the code for the paper colour and:
ATTR(line,col)-INT(ATTR(line,col)/8)*8

gives the code for the ink colour at the locations specified.

REMark and good programming

The BASIC command REM is the simplest of all in that it does
absolutely nothing! Its only purpose is to allow you to include
comments that are not part of a program. For example, you could
include in every program that you write a first line that tells you what
the program is called:

1§ REM Title of program

and the REM would alert the Spectrum to the fact that what
followed wasn’t to be taken as a line of BASIC forit to pay attention
to, but as a note to any humans that might read the program.

Logic and Other Topics 137

You might think it strange that such a simple command has been
left to the last chapter of a book on BASIC. The reason for this is
that although REM is a simple command it can be used to very good
effect in writing clear programs. After you have got over the initial
difficulty of writing programs in BASIC you should look for ways of
writing better programs. At first a program that works is a reward in
itself but later on a well-written program is what you should aim for.
What constitutes a well-written program is something that you will
discover for yourself as you learn programming by trial and error
and by reading other people’s efforts.

The REM statement is part of better programming in that, while it
certainly isn’t necessary, it does help to make your programs easier to
understand. It is a good idea to include REMs that explain what is
happening in each section of your program as you write it. Good
explanations will help you to understand your own programs more
quickly when you return to them at a later date and will assist other
people, to whom you may give them, to grasp what you intend each
stage to do.

Where next?

As I have already said many times in this book, the real route to
learning programming is to write programs. Certainly, books can
help you but only if you are prepared to experiment on your own
behalf. Don’t be worried if your first programs don’t attempt
anything very ambitious. It is better to try out your ideas in short
and simple routines at first. If you try anything too complicated
there is much more chance that you’ll make mistakes that you can’t
locate. Try writing program snippets that do just a few things at a
time - if you look back through this book you’ll find lots of such
examples. When all your mini-programs work then it is time to start
putting them together to build more extensive ones. The main thing
is to go ahead and to have some fun with your Spectrum.

Further Reading

Once you've read this book you should be reasonably proficient at
writing programs but in some ways that’s just the beginning.
Hopefully this book will leave you wanting to learn more - about
BASIC, about the Spectrum and about computers generally. Lots of
books are being published all the time on these subjects so all I can
hope to do here is to mention some that I know about that I think
you might like to look out for.

As far as BASIC is concerned, I'll include a title that starts where
this book ends, The Complete Programmer by Mike James will be
published by Granada in 1983. Once you’ve mastered the rudiments
of BASIC you can also learn a lot from books of other people’s
programs. They can be used as a source of ideas and inspiration.
They are particularly useful if they include programming details and
helpful hints. Mike James, Kay Ewbank and I have collaborated to
write just that sort of book. It’s The Spectrum Book of Games and it
contains some games that we found a challenge to program and fun
to play. It too is published by Granada.

Turning to the Spectrum, if you’ve not already read it, look out
for The ZX Spectrum and how to get the most from it by lan Sinclair
(published by Granada in 1982).

You may also be interested in finding out more about the history
of computers and their impact on our day-to-day lives. If so, I can
recommend /ntroducing Computers by Ron Condon, a Macdonalds
Guidelines book and The Making of the Micro by Christopher
Evans, published by Gollanz in 1981.

If you want to keep up-to-date with what is happening in the
world of microcomputers, probably the best way is through the
magazines. The monthly magazine Computing Today is one that I
read - and write for - and I also recommend ZX Computing which is
published every two months. Both these should be easy to obtain
from your newsagent or can be bought on subscription.

IindeXx

ABS, 73

Alphabetical order, 62
AND, 130-33

Apostrophe, 87-8
Arccosine, 76

Arcsine, 76

Arctangent, 76

Arithmetic expression, 26, 43
Arithmetic functions, 73-5
Arithmetic operators, 26-28
Array, 64-7

Arrow keys, 13

AT, 88-90

ATTR, 130, 136

Backspace, 13

BEEP, 15, 107-109
BIN, 97-8, 133

Binary, 133

BORDER, 102
Brackets, 28

BREAK, 14

BRIGHT, 101-104, 125
Byte, 3

CAPS LOCK, 16

CAPS SHIFT, 10-12,93
Cassette recorder, 4, 17, 69-70
Central Processing Unit, 2
CHRS, 76,94

CIRCLE, 121-5

CLEAR, 120, 130, 135-6
Clock, 134

CLS, 90, 120

CODE, 76

Colon, 53-4

Comma, 86-8

Condition, 41, 43

Conditional expressions, 43-4, 130-31
Conditional loops, 47, 56

Constant, 29

Control keys, 10-12
COS, 75

Cursor, 11

Cursor control keys, 16

DATA, 68-70

Default flow of control, 38-9, 56
Deferred mode, 14

DEF FN, 80-83

Degrees, 123

DELETE, 13, 16, 21

Dollar sign ($), 57

DIM, 64-7

DRAW, 119-25

Dummy parameters, 81, 82

Edit, 21

Editing, 17

ENTER, 12

Error messages, 61
Exclusive or, 132-3
EXP, 73-4

Exponential number, 73
Extended mode, 14

False, 43-4, 131-3
FLASH, 101, 125
Flow of control, 38-56
FOR, 49-52

FN, 80-83

Functions, 71-83

GOSUB, 83-5

GOTO, 13, 38-50, 83
GRAPHICS, 15,93
Graphics characters, 93-5
Graphics mode, 15-17, 20,93

High-resolution graphics, 87, 118-29

140 /ndex

1F,41-9 Parameters, 72
Immediate mode, 14 PAUSE, 112-13

IN, 130-35 PEEK, 130, 133-5
Index, variable, 49 PI, 74-5, 123

Infinite loop, 39-41 PLOT, 119-26

INK, 102-105, 124-5 POINT, 126-7
INKEYS, 79-80 POKE, 97-8, 130, 133-5
INPUT, 29-36, 58, 91-3, 105 Power supply, 8

Input area, 21 PRINT, 13, 25-6, 29-38, 58, 87-91,
Input device, 2 102-104

INT, 74 Printer, 2, 5

Integer, 74 Program, 2, 4, 23
INVERSE, 99-101, 104, 125-6 Pseudo colours, 104
INV VIDEO, 16 Pseudo randomness, 77

Inverse graphics, 15, 16

Iteration, 40 Radians, 75, 123

RANDOMISE, 78-9

Keyboard, 2,7-10 Random number generator, 77

Keywords, 11 READ, 68-9
Relation, 42-3
LEN, 63, 76 REM, 130, 136-7
LET, 12, 25,29-36 Repeat key, 17
Line numbers, 12, 25 RESTORE, 69
Lissajous figures, 128 RETURN, 83-5
L!ST, 14,21 RND, 15,77-9
Literal string, 32 RUN, 11, 21, 120
LN, 74
LOAD, 19, 69-70
Logarithm, 74 SAVE, 18, 69-70
Logic, 130, 133 SCREENS, 116, 126 7
Logical expressions, 131, 133 Scroll, 14, 90-91
Loop, 40-56 Select, 45-6, 56
Low-resolution graphics, 87-106, 118 ~ Semicolon, 86, 87
SGN, 74
Machine code, 135 Sign, 74
Memory, 3 Simple variable, 24
Microdrive, 4, 6 SIN’ 75,128-9
Musical notation, 109-111 Skip, 44-5, 56
Sound effects, 107, 108, 113, 114
NEW, 19, 120 SQR, 72,75
STEP, 51
NEXT, 49, 52 STOP, 19, 41, 54
NOT, 130-33 R

String, 32, 56-63

String concatenation, 58
String constant, 57

. . String slicing, 59-62
One-dimensional arrays, 64 String variable, 57

OR, 130-33 STRS, 76-7

Order of evaluation, 27 Subroutines, 71, 83-5

OUT, 113, 130, 135 Substring, 59

Output device, 2 Substring extraction, 58
OVER, 99-101, 104, 124-6 Substring replacement, 59-61

Substring searching, 59
PAPER, 103-105, 124-5 SYMBOL SHIFT, 11-17

Null string, 61
Numeric variable, 24

TAB, 88-90
TAN, 75
THEN, 42-56
Timer, 134

Trigonometrical functions, 73, 75-6

True,43-4,131-3

TRUE VIDEO, 16

Truth table, 132-3

TV set, 8-9
Two-dimensional arrays, 66

Unary minus, 27

Until loop, 48

User-defined functions, 71, 80-83
User-defined graphics, 95-9

Index

USR,97-9, 130, 135
VAL, 77

Variable, 23
VERIFY, 18-19,70
While loop, 48

X co-ordinate, 119
Y co-ordinate, 119
ZX-BASIC, 5-6

7X80, 5
ZX81,5

141

The appearance of the Sinclair ZX Spectrum in 1982 was a
major event in personal computing. This book takes the
Spectrum user in easy stages from his first steps in
programming to a good level of competence.

Early chapters give a brief history of the ZX range, and
give advice on how to set up the machine and use the
keyboard. Subsequent chapters describe one's first steps
in BASIC, looping and choice, handling text and numbers,
and functions and subroutines. There are three chapters
on graphics and sound, while the final chapter is devoted
to logic and other advanced topics.

The book includes many programming examples, and
most chapters contain at least one complete program
listing, mainly for games applications. It is clearly and
logically written, and will be invaluable to all Spectrum
users, in the home, education and small business.

The Author

S. M. Gee is the co-author of a previous book on
programming, and is a regular contributor to
Computing Today.

‘Ideal for beginners . . . a much better, more friendly and
yet more informative introduction to Spectrum BASIC and
programming techniques than the manual. | enjoyed
reading this book, often respondingto S M Gee’s humour
.. . This approach will make learning much more
enjoyable - and that’s how it should be.’

MICRO UPDATE
More books on the Spectrum from Granada

THE ZX SPECTRUM
and how to get the most from it
lan Sinclair

The essential book for all users
0246120185

THE SPECTRUM BOOK OF GAMES
M. James, S. M. Gee and K. Ewbank
Twenty-one high quality,

challenging games for your Spectrum
0246120479

X Sp

&:}. Sinc .: Rv’ ““mfu 1 60583

GRANADA PUB
Printed in Great Britain U Llsﬁglgg £5 . 95

	Cover

	Contents

	Preface

	1 Before Your Switch On

	What is a computer?

	Programs and programming

	The history of the ZX Spectrum

	2 Getting to Know Your Spectrum
	A new acquaintance

	Setting up the Spectrum

	Using the keyboard

	Entering a program

	More about the keyboard

	Using a tape recorder

	Editing and our second program

	As you go along

	3 First Steps - Variables, PRINT, LET and INPUT

	Variables

	Storing things in variables - LET

	Finding out what's in a variable - PRINT

	Arithmetic

	Understanding expressions - the order of evaluation

	Variables and constants - the full expression

	A short program

	Another way of altering variables - INPUT

	Variables and constants as expressions

	Describing BASIC

	INPUT prompting

	Mixed PRINT

	Some sample program

	4 Looping and Choice - the Flow of Control

	The flow of control

	Looping - the GOTO
	Choices and conditions - the IF statement

	Using IF

	The FOR statement

	Using the FOR loop

	IF . . . THEN and the colon

	A final example

	The flow of control summarised

	5 Handling Text and Numbers

	Strings

	String expressions

	Arrays

	A word game

	Initialising variables - DATA and RESTORE

	Saving data on tape

	6 Functions and Sutbroutines

	The idea of a function

	The Spectrum's functions
	User-defined functions DEF FN and FN
	Subroutines GOSUB and RETURN
	Using subroutines

	7 Graphics

	Controlling PRINT

	PRINT functions - TAB and AT
	A full screen - CLS and scrolling
	Controlling INPUT

	The graphics characters

	User-defined graphics characters

	Changing the way characters look - INVERSE and OVER

	Character attributes - FLASH and BRIGHT

	Colour - BORDER, INK and PAPER
	Display commands in colour

	Temporary colours

	Using graphics in games

	8 Sound and Games

	Simple sounds - BEEP

	Programming tunes

	Resting - PAUSE

	Some sound effects

	Attack the saucer - the SCREEN$ function

	9 High-resolution Graphics

	The high-resolution screen
	The graphics commands - PLOT, DRAW and CIRCLE

	High-resolution colours

	Un-plotting - OVER and INVERSE
	Finding out what's on the screen - POINT

	Using hi-res graphics

	10 Logic and Other Topics

	Logic and the conditional expressions

	Inside the Spectrum - BIN, PEEK, POKE, IN, OUT, USR and CLEAR

	Finding out the colour - ATTR

	REMark and good programming

	Where next?

	Further Reading

	Index

	Back cover

