SPECTRUM MACHINE.
ANGUAGE FOR

ZX Spectrum

FOIY % LOCK TRUF WINEG GHAFHICS mu

SPECTRUM
MACHINE LANGUAGE
FOR THE ABSOLUTE
BEGINNER

Edited by
William Tang

|

Melbourne House Publishers

Y/

Published in the United Kingdom by:
Melbourne House (Publishers) Ltd.,
Church Yard,

Tring, Hertfordshire HP23 5LU
ISBNO86161 110 1

Published in Australia by:

Melbourne House (Australia) Pty. Ltd.,
Suite 4, 75 Palmerston Crescent,
South Melbourne, Victoria 3205.

Published in the United States of America by:
Melbourne House Software Inc.,

347 Reedwood Drive,

Nashville TN 37217.

Copyright © 1982 Beam Software

The terms Sinclair, ZX, ZX80, ZX81, ZX Spectrum, ZX Microdrive, ZX Interface, ZX Net,
Microdrive, Microdrive Cartridge, ZX Printer and ZX Power Supply are all Trademarks of
Sinclair Research Limited.

All rights reserved. This book is copyright. No part of this book may be
copied or stored by any means whatsoever whether mechanical or
electronic, except for private or study use as defined in the Copyright Act.
All enquiries should be addressed to the publishers.

Printed in Hong Kong by Colorcraft Ltd.

DCBA987654321

Contents

Finding Your way around Machine Language:

— e e e e e e e e e e — — — — —— — —— — ————————

The Beginning 5
Basic Machine Language Concepts 11
The Way Computers Count 18
How Information is Represented 24
A Look into the CPU 30
This is All Very Well ... 39
How the CPU Uses its Limbs 43
Counting Off Numbers on One Hand 51
Flags and their Uses 58
Counting Up and Down 64
One Handed Arithmetic 69
Logical Operators 75
Coping with Two Handed Numbers 79
Manipulating Numbers with Two Hands 83
Manipulating the Stack 91
Two fisted arithmetic 95
Loops and Jumps 99
Use of Subroutines 106
Block Operations 109

Instructions That are Less Frequently Used

Register Exchanges 115
Bit, Set and Reset 117
Rotates and Shifts 119
In and Out 122
BCD Representation 26
Interrupts 127

Restarts 128

Programming Your Spectrum
Planning Your Program
Features of the Spectrum

Monitor Programs
EZ-Code Machine Language Editor
HexLoad Machine Code Monitor

The FREEWAY FROG Program
Program Design

1 - Data base

2 - Initialisation

3 - Regular Traffic
Stage 4 - Police Car

5 - The Frog

6 - Control

Spectrum key Input Table

Screen display Map

Character set Table

Decimal /Hexadecimal conversions
Falg Operations Summary

Z80 Instructions by op-code

Z80 Instructions by mnemonics

130
135

145
i g

161
164
172
176
181
185
190

227
228
229
230
234
236
240

The Beginning

This book is designed as an introduction to the field of machine
and assembly language programming for the "Sinclair ZX Spectrum."

It may be that you are coming to this book with no clear idea of
what machine language programming is all about.

You may not even know what machine language is. You may not even be
aware that there is a difference between machine language and

assembly language, nor indeed how they differ from programming in
BASIC.

Don't worry, and don't be frightened by the jargon - we will
explain everything step by step.

First, let us look at the way a computer operates:

Programmer » Keyboard
TV Screen< Operating System
Central
Processing
Unit

What this diagram aims to show is that there is a barrier between
the programmer and the brain of the Spectrum, the Central
Processing Unit. It is not possible under normal processing for
the programmmer to tell the Central Processing Unit - usually
referred to as the CPU - what to do.

In the Sinclair machines, the CPU chosen is the ZB0A chip, which is
a faster version of the popular Z80 chip. There are 4 chips - Z80,
6502, 6809, and 8088 - which have become widely accepted as CPUs
for microcomputers. The Z80 is by far the most popular chip.

I am sure it comes as no surprise to learn that the Z80A does not
understand a word of 'BASIC'! Indeed no CPU has been designed so
that we can communicate directly with the brain of the computer.

If you think about it for long enough, you will realise that it
would be very difficult, if not impossible, in any case to give a
chip in a computer an instruction that would make any sense to a
human. Take the top off your Sinclair (if you dare!) and have a
look at the chip nearest to the speaker - this is the Z80A CPU.
Obviously this chip in your computer can only respond to electrical
signals that are passed on to it by the rest of the circuitry!

What is Machine Language?

The Z80 chip has been designed in such a way that it can accept
signals simultaneously from eight of the pins connected to it.

The designers of the Z80 chip constructed it in such a way that
different combinations of signals to the Z80 chip along these eight
pins would 'instruct' the Z80 to perform different functions.

Keeping in mind that what is really happening are electrical
signals, let's adopt a convention to represent these signals - for
example showing a 'l' if there is a signal to one of the pins, or a
'O'if there is no signal.

A typical instruction might therefore look something like:
o1l 11040

Quite a long way from something like
'Let A = A + 1",
for example, isn't it!

Nonetheless, this is what machine language is all about. The name
says it all! It is a language for machines. Each manufacturer of
the different chips has designed a different 'language' for its
products!

At this stage you may be asking yourself - if this is what machine
language is all about, why bother? Why not accept the benefits of
someone else's work which allows me to program the computer in a
language I can easily understand, such as BASIC or COBOL?

The reason is because of the main benefits of machine language
which are:

s

FASTER EXECUTION OF THE PROGRAM
MORE EFFICIENT USE OF MEMORY
SHORTER PROGRAMS (in memory)

% FREEDOM FROM THE OPERATING SYSTEM

%

’

All of the above benefits are a direct result of programming in a
language that the CPU can understand without having to have it
translated first. When you program in BASIC, the operating system
is the machine language program that is really being run by the
machine. The program is something like:

Next Look at next instruction
Translate it into a series of
machine language instructions
Perform each instruction
Store the result if required
Go to Next again

1f you are wondering where the computer finds this program, the
operating system, it is in the ROM. In other words, it is built
into the Spectrum. (ROM is the abbreviation for Read Only Memory,

memory locations whose content you cannot change, but can only be
read/PEEKed.)

Programming in BASIC can be up to 60 times slower than a program
written directly in machine language!

This is because translation takes time, and also the resulting
machine language instructions generated usually are less efficient.
Similarly, it is usually faster to drive yourself than to take
public transport; you can take shortcuts you know, instead of
following the public transport route which needs to cater for the
GENERAL public CASE.

Nonetheless, we would have to be among the first to admit that
programming in machine language does have drawbacks.

The main disadvantage of machine language are:

PROGRAMS ARE DIFFICULT TO READ AND DEBUG
IMPOSSIBLE TO ADAPT TO OTHER COMPUTERS
LONGER PROGRAMS (in instructions)

* ARITHMETIC CALCULATIONS DIFFICULT

= % %

This means that you must make a very conscious decision of which
programming method you should use for each particular application.

A very long program for financial applications should be written in
a language designed to deal with numbers and one in which programs
can be easily modified if required.

On the other hand there is nothing quite so bad as an arcade game
written in BASIC - when you get down to it, it is just too slow.

Your own needs, the amount of memory in your computer, the response
time required, the time available for development, and so on will
determine your choice of programming language.

Thus, in summary, machine language is a series of commands which
the CPU can understand and which can be represented by numbers.

What is Assembly Language?

Quite obviously if machine language could only be represented by

numbers, very few people would be able to write programs in machine
language.

After all, who could make sense of a program which looked like
00100001 :
000O0CO0O0O0O
01000000
etc .

Fortunately, we can invent a series of names for each of these
numbers. Assembly Language is just such a representation of Machine
Language so that it can be read by humans in a form that is easier
to understand than

0111 O0111.

There is only one difference between Assembly Language and Machine
Language: Assembly Language is one level higher than Machine
Language. It is more easily read by humans than Machine Language,
but on the other hand, computers can't read Assembly Language.

It is not an adaptation of Machine Language such as BASIC. For
each Assembly Language instruction there is an identical (in
function) Machine Language instruction, and vise versa. ie. there
is a ONE-TO-ONE relationship between them. We can therefore say
that Assembly Language is EQUIVALENT to Machine Language.

Assembly Language makes use of mnemomics (or abbreviations) to

enhance readability. For example at this stage, the instruction
INC HL

may not mean much to you, but at least you can read it. If you

were told that 'INC' is a standard abbreviation (or mnemonic) for

INCrease and that HL is a 'variable', then by simply looking at

that instruction you can get a feel for what is happening.

The same instruction in Machine Language is

0010 0011
Now obviously you can also '"read" that instruction in the sense
that you can read the number, but it isn't going to mean much to
you unless you have a table to look up or when your brain is
functioning almost like a computer.

Assembly Language can be converted directly to machine code by a
program or by you. Such a program is called an ASSEMBLER. You can
see this as a program which performs the rather boring task of
translating your assembly language program into a sequence of
machine language instructions that the Spectrum will understand.
And we understand that an ASSEMBLER for the ZX Spectrum is already
available.

Nonetheless, such assemblers typically require 6K of memory, and
are therefore of limited use on a 16K machine. The Spectrum display
takes up 7K of memory, and after locading the Assembler you may have
only 4K of memory left for your assembly language program. (This
will means about 1/2 K of machine language program).

The alternative to an Assembler program is for you to do the
translation of the assembly language mnemonics into machine
language by hand, using the tables provided in this book.

It's hard, it's frustrating at first, it's inconvenient, but it's
wonderful practice and gives you a great insight into the way the
Spectrum CPU works.

We would in fact recommend that you try writing short machine
language programs in this way - ie writing them in assembly
language and translating it into machine language by hand - before
buying an Assembler program.

CPU
The central processing unit of the computer. This is the chip
that does the controlling and calculating work in the computer.

Machine Language

The language understood by the CPU. For the Spectrum's CPU,
this is the Z80 machine language which is made up of about 200
'instructions'.

BASIC language

A computer language designed to be intelligible to humans. When
a computer executes a command in BASIC, it needs to translate this
command into a series of machine language commands. BASIC programs
are therefore considerably slower than machine language programs
but easier to write.

Assembly Language

The human shorthand representation of the machine language
instructions so that each of the latter instructions can be
understood more easily. For example, HALT is the assembly language
equivalent of the machine language instruction 0 1 11 01 1 0.

Assembler Program

A program that translates assembly language instructions
(easily read and understood by human) into machine language
instructions (which can be understood by the computer eg the
Spectrum).

Read Only Memory (ROM)

A long machine language program usually known as FIRMWARE; a
program that has been FIRMLY built into the hardware of the
computer; it will remain there even when the power is off. For the
Spectrum, the ROM is in Z80 machine code, and was written
specifically for it. The ROM of Spectrum occupies from memory
locations O to 16383. You can only refer to the contents of these
locations, unlike the rest of memory which you can refer to and
change as desired.

10

BASIC Machine Language Concepts

WHAT IS THE CPU?

If we want to communicate with the computer we have to know what
sort of commands it will accept and what language the brains of the
machine (the CPU) talks.

Unless we know what sort of information the CPU understands we
can't really instruct the computer to perform remarkable tasks from
being a chess partner to an accountant looking after our accounts.

The CPU is no big mystery. 1 like to think of the CPU as a lonely
little fellow, sitting in the middle of your Spectrum, being ask to
do things all the time.

Especially calculations.

But the poor fellow doesn't even have a piece of paper and pencil
to keep track of what is happening. How does he do it?

The design of the CPU:

At this stage, I should probably tell you about the way that the
designers of the Z80 see things, and how the CPU is supposed to
handle them. The CPU has been designed to do extremely simple tasks
only, but he is able to do those tasks very quickly.

We mentioned above that the CPU doesn't even have pencil and paper,
and that is part of the design of the CPU. Any number he can't
remember or keep track of has to go in a box for safe keeping.

Let us look at one example - say you want the CPU to work out the
time in NEW YORK, knowing the time in LONDON.

Now given that the CPU doesn't know anything, first of all you have
to tell it what the time in London is: say 10 o'clock. The CPU has
nowhere to keep this information and doesn't know what you will ask
it to do next, so it puts that information away in a box, say box

#1.

Then you have to tell it the time difference between New York and
London, say five hours earlier, and it puts that away in box #2.

Comes the time for calculations, it races across to box #1, gets

the number, goes to box #2, performs the calculation, and puts the
result away, say in box #3.

1"

The answer of course is 5 o'clock.

All of this racing between boxes, adding, substracting and so on
would be extremely tedious if the CPU had to do it all in its-head,
so it does exactly what you or I would do - it counts on its
fingers and toes.

The CPU's hands and feet are called Registers.

The Z80 chip in your Spectrum is remarkable in that it has a lot of
hands and toes - but we will get to that later.

To illustrate how exactly the CPU calculates the time difference in
the above exercise, let's call one of the CPU's hands "HAND A". How
does the CPU manipulate the contents of the box #1 and box #27?

The following sequence is pretty close to what the CPU would
actually do given the above instructions

* Count out the value of box #1 on the
fingers of Hand Aj;
* Subtract the contents of box #2 from what
he has already on his fingers;

* Look at the value on the fingers of Hand A
and store it in box #3.

Now if this is what truly happens, there are some pretty phenomenal
conclusions to be drawn from this:

1. The CPU would not be able to deal with
a number like 11,53 - it could only
deal in whole numbers.

2. The CPU would be limited in its
calculations to whatever number it
could count on its fingers.

This is indeed true.

The main consolation however is that the CPU has a lot of hands and
feet and can count on each of them separately, and that it can
count to 255 using only the 8 fingers of Hand A.

We will deal in the next chapter with the details of how the CPU
can count up to more than 8 on each hand while we can only manage
10 using two hands! Suffice it to say that each hand can count to

255 and each foot can be used to count to over 64,000!

The time difference exercise above has still not been represented

12

in anything like the language the CPU understands - all we have
done is describe the processes.

To let you have an early look into the exciting part of machine

language programming, let's now use mnemonics (Abbreviations) to
instruct the CPU at each step:

SETTING UP:
LD (BOX #1), 10 ;Load box 1 with 10
LD (BOX #2), 5 ;load box 2 with 5
CALCULATIONS:
LD A, (BOX #1) ;load A with box 1 contents
SUB A, (BOX #2) ;subtract contents of box 2

STORING THE RESULT:
LD (BOX #3), A ;:1load box 3 with A value

These instructions may seem a little terse at first, but after all,
mnemonics are mnemonics.
"LD" is an abbreviation for LOAD so that

LD A,l
for example, would mean load A with 1: that is count off 'one' on
the fingers of hand A.

We also use a rather clever image in these mnemonics by the use of
brackets: THE BRACKETS ARE USED TO INDICATE WZ WISH TO DEAL WITH THE
CONTENTS CF WHATEVER IS INSIDE THE BRACKETS.

It should be fairly easy to remember this on a visual basis because
brackets do look like they are meant to indicate a container.

So running through the mnemonics above, we load the contents of Box
#1 and #2 with 10 and 5, ...etc... to get the final result of 5 in
box #3.

All of this is fairly simple to follow and I am sure you can
understand that while you are doing this calculation, the numbers
on Hand "A" are used to represent the time in New York. A minute
later they may be used to represent the number of employees in a
company, and at some other time how much money you have.

If you are used to the concept of variables from your BASIC
programming, you must leave that behind in machine language

programming.

The fingers of Hand "A" are not a variable in the same sense as in
a BASIC program. They are merely what the CPU uses to count with.

ONE OF THE BIG DIFFERENCES IN PROGRAMMING IN MACHINE LANGUAGE AND
PROGRAMMING IN BASIC IS THIS LACK OF VARIABLES.

13

You may realise that you can think of the BOXES we use to store
information as being similar to BASIC variables if we gave each one
a name.

Yes, you are absolutely correct, but these are not variables
either. They can be immensely useful and perform similar storage
purposes to variables, but bear in mind that these boxes are no
more than memory locations set aside for a specific purpose.

The way the CPU copes with negative numbers is different, and we
will look into that later.

What if the CPU runs out of hands?:

1 should mention here that you would probably find the CPU a very
strange looking fellow were you to meet him in the street.

His hands have eight fingers each, and he has eight hands! He only
has two feet, but each foot has 16 toes, and he is extremely agile
with his toes!

He is therefore well suited for the large number of calculations he
is required to do, keeping track of all the numbers on his fingers
and toes.

Nonetheless, it is possible that in some cases the CPU will not
have enough hands to do the calculation it wishes to perform, or
that for one reason or other the programmer will wish the CPU to
stop in the middle of calculation to do something else.

The CPU can't just put the information away in boxes, because then
it would have to keep some hands free just to keep track of which
boxes it put the information in!

The Z80 CPU gets away with using a stack, which is one of those
tall spiky things that some people keep on their desks to store
bills, spare notes, etc. 1 am sure you have seen those stacks,
where you spike one piece of paper on, and then the next one, and
so on. It's a great filing system if you want the top piece of
paper only, but very inconvenient if you want one in the middle,
because you have to riffle through all the pieces of paper on the
stack.

As it happens, it's a very convenient system for the CPU because it
ever only needs to look at the top piece of information.

Whenever an interruption causes the CPU to stop doing its
calculations, it PUSHes all the information it has on its hands
onto the STACK, and as soon as the interruption is over, it POPs
the top bits off, and continues with its work.

14

In computer terminology, we call this spike a "STACK". When we put
a piece of information on the stack, we "PUSH" it on, and when we
get it off, we "POP" it off.

All kinds of information can be "PUSH"ed and "POP"ed on and off the
stack — for example in the middle of a complex calculation the CPU
may wish to save all the information on its many hands and feet,
and this would then involve many separate "PUSH"es. To retrieve the
information, there then needs to be many separate "POP"s.

For reasons best know to the designers of the Z80, our CPU likes to
keep the stack stuck to the ceiling. This means that the more
information is "PUSH"ed onto the stack, the further the stack grows
downwards.

The main advantage of using the stack to store temporary bits of
information is that the CPU does not need to remember which box the
information is in - it knows it is the last piece of information
"PUSH"ed on the stack. Naturally it needs to be a little bit
organised if there are many bits of information to be PUSHed and
POPed.

What can the CPU do?:

I think it's worth considering at this stage the type of
instructions that the designers thought it would be useful to have
built into the Z80 chip.

Because the CPU has to be able to keep track of all its
calculations on its fingers and toes, there are only two kinds of
numbers the CPU can deal with:

* one handed numbers - ie numbers you can
count on one hand
* two handed numbers - ie numbers you can

count off on two hands.
You may find this difficult to believe, but the CPU cannot deal
with numbers larger than those it can count on two hands!

The types of instructions the CPU can perform are also very
limited:
* counting off numbers on one hand
counting off numbers on two hands
adding, subtracting, increasing, decreasing,
or comparing one handed numbers
adding, subtracting, increasing or
decreasing two handed® numbers
various manipulations on one handed
numbers - eg making the number negative
making the CPU skip to another part of
the program
trying to communicate one handed numbers
to and from the outside world.

ate
~

*

o
riy

E

15

I am sure you will agree that this is a very limited set of
instructions, and yet using only such limited instructions you can
get the CPU to play chess, or to work out your wages!

Note that even such simple instructions as multiplication do not
exist! If you need to multiply two numbers in machine language you
have to write a program to do so.

This is why writing programs in machine language is so much slower
than writing programs in BASIC - you can only do things in tiny
little steps.

16

SUMMARY:

Registers

The CPU has a number of registers it can use for calculations.
Eight of these can be thought of as the CPU's hands, and two of
these can be thought of as the CPU's feet. Each 'hand' has eight
'fingers', while each 'foot' has 16 'fingers'.

Memory Locations

The CPU can transfer information from its hands into or from
any other other hand, and into or from memory.

Specific memory locations can be set aside by the programmer to
represent specific information.

The Stack

The CPU can use the stack to transfer information the
programmer may wish to store temporarily. Information is
transferred to the stack by PUSHing the information on, and is
retrieved by POPping the information off.

Possible Instructions

The kinds of instructions the CPU is able to perform are only
the simplest type of information transfer and simple arithmetic
calculations. All programs must be made up of series of these
simple instructions.

17

The Way Computers Count

We mentioned previously that the CPU was able to count to 255 using
only eight fingers. How can this be when with 10 fingers we can
only manage to count to 107

It is certainly not because computers are smarter (they aren't) but
because the CPU is more organised in its information than we are:
why should raising your index finger have the same value (= 'l')
as having your little finger raised?

It seems obvious that if you so wished you could represent two
different numbers in this way.

It is very much the same sort of thing as realising that the number
00l is different from the number 100. The plain truth is that
humans are not very efficient in the use of fingers for counting.

The CPU understands that not having a finger is of some information
and that which finger is raised is a valuable piece of information.

With only two fingers it is possible to devise a way to count from
0 to 3, as follows:

(““”“\ 00 =0 We can indicate not having a
finger raised as 'O',
(:’V“f\ 0l =1 and having a finger raised
as 'l'.
C/N[k\ 10 = 2 This does not mean 11 = 3
Cvﬂflf) Il = 3 It means we chose to let the

representation 11 (or two
fingers) have the value 3.

We could just as easily have chosen a different representation.

There is a direct relationship between this and binary
Representation. The CPU"s fingers are locations in memory and they
can be made to indicate on an off (or '0O' and 'l' as convention
dictates).

1f we added a third finger to our example above we could represent
all the numbers from O to 7. Three fingers for all the numbers
from 0 - 7!

Four fingers would be able to represent all the numbers from O to
15! If you don't believe it, it would be a good exercise to write

out all the possibilities for four fingers being raised.

In order to simplify the notation of such numbers, and to avoid

18

confusion in trying to write down the number eleven as opposed to
indicating that two bits were set, a universal convention has been
adopted:

The numbers 10 - 15 are indicated by the letters A - F.

Decimal 10 = A
Jaae= B
12 = #
135= D
14 = E
15 = F

This means we write the numbers from O to 15 decimal as
0o 1 2 3 4 5 6 7 8 9 A B C D E F
Simple, isn't it?

This way of treating numbers is called the HEXADECIMAL FORMAT.

To prevent confusion, some people write "H" after a hexadecimal
number (eg. lOH). The "H'" has no value, but serves to remind the
user of the hexadecimal convention.

In machine language programming, it is CONVENIENT to deal with
numbers in hexadecimal format.

This is only a convention and if you so wished you could write all
your instruction in normal decimal format. It is convenient for us
to use the hexadecimal format because:

1. It is easy to convert from this form te binary,
which tells us which bit (or finger) is doing what.

2. It gives us an easy means of seeing whether numbers
are one handed or two handed - ie 8-bit or l6-bit.

3. It standardises all numbers to sets of 2-digit
numbers. (We will elaborate on this)

4, It is the common convention and familiarity with
hexadecimal will allow you to read other books and
manuals more easily.

5. As the CPU is designed to process information
represented by binary numbers which are cubersome
for humans to read, we need a representation which is
more easily readable.

But it is only a convention and not a sacred rule.

The hexadecimal system, as we mentioned earlier, lets us represent
the numbers O to 15 using only 4 bits. Any 8-bit memory location

19

or 8-bit register can therefore be described by two sets of 4 bits.

(This is the same as saying that any combination of 10 fingers can
be represented by two hands of 5 fingers each.)

THE REASON WE ARE CONCERNED WITH 8-BIT MEMORY LOCATIONS AND 8-BIT
REGISTERS IS THAT THIS 1S THE STRUCTURE OF THE ZX SPECTRUM.

All memory locations and all single registers have 8 bits. This is
not hard to understand - it's like saying all humans have 5 fingers
on each hand.

Taking things one step at a time, let us become familiar with &4
fingers first:

1 1 1 1 = 2%%3 4 2%%2 4 2%%1 4 2%%Q
=8 +4 + 2 +1

Decimal 15

F (in hexadecimal notation)

]

For those of you with a mathematical bent, you may notice that the
number each finger represents is multiplied by 2 as you go to the
left. If we number the fingers:

3210

then the value of each finger is '2 to the power N' where N is the
finger number. Let's call a 4-finger hand a "handlet" (just as a
small cigar is a cigarette?)

Exercise:

What decimal and hexadecimal value do the following arrangement of
bits (or fingers) represent?
Decimal Hexadecimal

0010
0110
1001
1010
1100

It is important for you to become familiar with the hexadecimal
convention, and if you had difficulty with the concept, do read the

20

last few pages again before going on.

Let us examine what happens if we want a number greater than 157
Say 16?7 We would use the next finger on the left, as:

= 16 decimal = 10H (Hexadecimal)

The reason we write the number as 10H is that we divide the hand
into two "4-bit handlets''. We can therefore easily denote each
handlet by one of the hexadecimal numbers representing 0 to 15 (0-9
& A-F).

In this way any 8-bit hand can be written as exactly two
hexadecimal handlets:

3 2 1" o) (3 221 0o
One One
Hexadecimal Hexadecimal
Digit Digit
Two ‘//
Hexadecimal
Digits

The "handlet" on the left indicates 16 times as much as the
"handlet'" on the right. This is much the same way as in decimal
notation, the digit in the '"tens'" column is worth ten times as much
as the digit in the "ones'" column.

We convert numbers in decimal format such as 15 automatically to:
15 = (1*10) + 5
This is so automatic that we don't even think about it.

It is exactly the same thing in hexadecimal notation. To convert
back from hexadecimal notation to decimal notation, we multiply the
hexadecimal number on the left "handlet'" by 16. Using the example
above:
10H (1*16) + O
16 Decimal

i

21

This is how we are able to count to 255 using only 8 fingers. The
maximum is obtained when all fingers are held up:

C—pr

FFH

(F*16) + F
(15%16) + 15 (in decimal)
255 (Decimal)

1l

The smallest number is when no fingers are held up:
OOH = 0 Decimal

Note that all numbers, from the smallest to the largest require 2
and only 2 digits to define the number.

Try out for yourself any combination of 8 digits and see if you can
convert it to hexadecimal notation, and then into decimal notation.

It may seem a little strange and awkward at first, but you will
soon get the hang of it.

Also that when you count in hexadecimal, you do the same as in
decimal:

Decimal: 26 27 28 29 30 " i, ot

Hexadecimal: 26 27 28 29 2A 2B 2C 2D
2E 2F 30 etCuovuwes

The values of the numbers in the decimal and hexadecimal series
above have different values of course. Note that after 29H you get
2AH, not 30H!

22

The following BASIC program will enable you to input to your
Spectrum a decimal number and convert it to a
hexadecimal value.

100 REM decimal to hexadecimal conversion
110 PRINT '"Please input decimal value."
120 INPUT n : PRINT n

130 LET S$ = ' 135 LET n? = INT (n/16)
140 LET nl = INT (n - n2%16)
150 LET S$ = CHR$ ((nl1 (= 9) * (nl1 + 48) +

(nl)9)*(55 + n1)) + S$

160 IF n2 O THEN PRINT : PRINT "HEXADECIMAL = 0"; S$
3 M H'%s POR I = 1 TO: 200: NEXT 1: ROUN

170 LET n n2: GO TO 135

Try converting the following numbers to theirs hexadecimal value
and use the BASIC program to test your answer.
i. 16384 memory address of the start of Spectrum
display file
ii. 22528 memory address of the start of Spectrum
attribute file
iii. 15360 memory address of the start of Spectrum
character set
iv. 15616 address of the start of ASCII
characters in Spectrum

SUMMARY :

Decimal

The decimal notation is a convention of counting numbers in
groups of ten units at a time. These are represented by 0, 1, 2, 3
4, 5, 6, 7, 8, and 9.

Hexadecimal

The hexadecimal notation is a convention of counting numbers in
groups of 16 units at a time. These are represented by 0, 1, 2, 3,
4. 5, 6, T, 8, 9, Ay, B, G, Dy E; and F,

Sometimes an H is added at the end of a hexadecimal number to
remind us it is written in this format. For example, 1800H.

8-Bit Memory Locations

The ZX Spectrum is designed so that each memory location has 8
bits ('fingers'). Each memory location can store a number from O to
255 decimal. This is conveniently represented in the hexadecimal
format as a two digit number.

23

How Information is Represented

There is a big difference in information representation between
human and computer. Human information is mainly composed of numbers
and characters (alphanumeric information), whereas all information
in a computer is stored as groups of bits.

A bit stands for Binary digIT ("O'" or "1'); in the Z80A
microprocessor, these bits are structured in groups of eight. A
group of eight bits is called a BYTE.

This way of representing information using binary digits is called
the BINARY FORMAT. This is the structure of the language which the
Z80 and most microcomputer CPUs talk.

Basically, there are two types of information represented inside
the Spectrum. The first one is the PROGRAM. The second one is the
DATA on which the program will operate, which may include numbers
or alphanumeric text. We will thus discuss below these three
representations: PROGRAM, NUMBERS, and ALPHANUMERICS.

Program Representation

A PROGRAM is a sequence of instructions to the CPU to perform a
particular task which can be broken down into a number of
"sub-tasks'".

In the Z80, all instructions are represented internally as single
or multiple bytes. Instructions represented by one byte are called
the '"SHORT instructions'". Longer instructions are represented by
two or more bytes.

Because the Z80 is an eight-bit microprocessor, it can only deal
with one byte at a time, and if it requires more than one, it
fetches bytes successively from memory. Therefore, a single-byte
instruction will generally be executed more quickly than a two- or
three-byte instruction. Thus, as a general rule, it is always more
efficient to write your machine language program using single-byte
instructions where possible.

You can turn to the instruction set table in the Appendix and have
a look at the SHORT and LONG instructions. Don't worry if you can't
understand them, we will discuss each instruction in depth later
on.

24

Numeric Data Representation

We discussed earlier that because of the way the Z80 is designed we
cannot have a number such as 11.53. The CPU can only deal in whole
numbers. Also, by using only 8 fingers (ie an 8-bit number), we
could represent all the numbers in the range O to 255.

e.g. decimal 255 is represented by OFFH
the binary representation of which is 1111 1111

But what about negative numbers?

Signed Integer Representation

Remember one byte is a HAND with eight fingers and a number is
represented by holding different fingers up.

Obviously, to represent signed integer in Binary Format, we have to
have some way of representing a positive or negative numbers. Let's
say that in order to represent a negative number, we adopt the
following convention (signed representation):

A NUMBER ON THE CPU'S HAND WILL BE CONSIDERED TO BE A NEGATIVE
NUMBER IF THE CPU HOLDS HIS THUMB UP. (in computer terminology, the
highest bit - bit 7 is on.)

So we have only seven fingers (bits) left to represent the value of
the number. That means the highest number we can have is no longer
255. In fact, half of the numbers which can be held on a single
HAND (a single byte) will be negative and half of them will be
positive (depending on whether the thumb is up or not).

The total number range possible on one hand if we allow negative
numbers will therefore be from -128 to +127. (Note that the total
number range that can be represented will still be 256 numbers).

Now comes the crunch: When is a number with the thumb up a large
positive number and when is it a negative number?

The answer is whenever you feel like it; You have to make a choice:
numbers can either be in the range of 0 to 255 or in the range
-128 to +127. They can't be both at the same time! It is up to
you, the programmer, to decide which convention you are using at a
particular time.

All the instructions will work equally well, whether you choose to
let the number contained in the registers or memory be all positive

25

or positive and negative.

* Choosing a Representation for negative numbers:

We have already decided that holding the thumb up will mean the
number is negative, and not holding the thumb up means it is
positive. Is this enough?

No. We need to decide which of the 127 possibilities of the
remaining 7 fingers will denote -1, which one -2, and so on.

We need a representation of negative numbers, such that when a
number is added to its negative we get zero. As an execise, let's
think about the number which when added to 1 gives us zero: (This
will obviously be -1, and we already know that the thumb - bit 7 -
will be up)

could it be=)?

0000 0O0O0O0O 1000 0010

Let's try 1 0 00 00O 1 - in other words, the same as +1, but
with the thumb up. To test if that is -1, let's try adding this
value to +1. From above the sum 10000010 is obviously not the right
answer! If it was right, the answer would have been 0 0 0 O 0 0 O
0. Obviously, we need a number that will take that carry from Bit
0, and convert it to zeros all along.

You can try to do it yourself, and you will see that the only
number which will give us the right answer is

E 1 ¥t 131 i (FFH in hexadecimal)
To confirm this:

0000 00O01
1111 1111

" i
(carry) 0000 0O00O0O
Is there a way that we can work out a general rule for the negative
of any number from this example? It looks as if though we might

have to get the opposite of the number and add one at the end.

Let's try this rule on another number, such as 3, say:

3= 0000 0011
opposite 1111 1100
add 1 =) 11 L1 1129l (FDH)

26

Let's add to this number to 3 and see what happens:
00D 0 0011
F 111 1101

#ET ~= =
(carry) 0000 D000 It works!

We have found a way to represent negative numbers!
-01 =) FF
-02 =) FE
-03 =) FD and so on.

The larga2st positive number is
01 1Y Ll 11 f= 7 -=) 127 Decimal
and the negative of this is

1000 00O0O1 81 =) -127 Decimal

The real test of this rule is to see if by applying the rule to a
negative number we get back the positive again!

Let's try it out on -3 which we worked out above is FDH.

Number S A (ol (Al 0 0 ol |
Opposite 0006 06 00 1'0
Add 1=) 0 B0 GT @ 1] =33

This is therefore a representation that works! We can apply it to
get the negative of any number,

16 — bit Negatives

Exactly the same reasoning applies to two handed numbers (l6-bit
numbers), except that the thumb of only one hand needs to be shown
as 'ON' to indicate if the number is negative or not. (ie. bit 7 of
the high byte).

Convention:

The computer terminology for this convention is called TWO's
COMPLEMENT. You can find 2's complement tables for negative decimal
numbers at the Appendix of this book.

Remember that this is only a convention! You still have to decide
at all times whether the numbers you are using are meant to

designate numbers in the range O to 255 or numbers in the range
-128 to +127.

Exercise:

i. If 127 (0111 111 1) is the highest positive

27

number which can be represented in this convention,
how would you represent -128?
ii. Find the highest positive 16-bits (TWO HANDS/BYTES)
and the highest 16-bits negative number? p 05 6 <
Find the 2's complement of the smallest
16-bit negative number 8000H. Why is it 8000H?

Alphanumeric Data Representation

Sometimes, in machine language we do not want the numbers to be
instructions for the computer, nor do we want them to be numbers
for calculations. we may just want them to represent characters of
letters and numbers - eg. the title of your latest program, perhaps
called "THE WORLD'S NUMBER 1 PROGRAM".

Our convention to represent alphanumeric data, ie. characters is
pretty straightforward: all characters and numbers can be
represented on a single hand (ie in an eight-bit code).

In the computer world, there are two standards for alphanumeric
characters representation: The ASCII Code, and the EBCDIC Code.

ASCII stands for "American Standard Code for Information
Interchange' and is universally used in the microcomputer industry.
EBCDIC is a variation of ASCII used by IBM.

In the ZX Spectrum, alphanumeric characters conform to the ASCII
standard except for the pound (61H) and copyright (7FH) characters.
You can find an ASCII conversion Table in the Appendix. Compare it

with the character set table in appendix A of your Spectrum manual
pp 183-186,

Try this : PRINT CHR$ 33
and you will get a "!'; because "!" is
represented internally by 21H.

HELP!: We have just shown that the CPU's hand can be said to show a
————— variety of things:
It could be - a program instruction to the CPU
- a number in the range O to 255
- a number in the range - 128 to + 127
— part of a two handed number
an alphanumeric character

This is all true, and it is up to you, the programmer, to remember
just what it is the CPU's hand is supposed to be holding.

28

Memory Contents

The Spectrum's memory can store programs, numbers, or text, as
we desire. There is no way of telling which is which just by
examining the contents of a single memory location.

Programs
Program instructions are stored in memory as sequences of

bytes. Some instructions require only one byte, while others
require up to four bytes.

Numbers
Each memory location can be used to store either positive
integer numbers or signed integer numbers (numbers which can be

positive or negative), as we choose. The range of numbers is either
from O to 255 or -128 to +127.

Negative Numbers

A convention has been adopted that when we choose to have
memory store a signed (+ or -) number, the following rule shall
apply:

If bit 7 is on, the number is negative

If bit 7 is not on, the number is positive

To obtain the negative of any number, get the '"2's complement' and
add 1.

2's Complement

The 2's complement of any number is its opposite in binary
form. Any bit that is on becomes off, and vice versa.

29

A Lookinto the CPU

Introduction

We have said that the brain of the Spectrum is the CPU, the Z80A
processor. This is a faster version of the Z80 processor produced
under a licence from Zilog Inc.

The only difference between the Z80 and Z80A processors is that the
former processor is running at a clock soeed of 2 Mhz/s (Megahertz
per second) while the later processor is running at a clock speed
of 3.5 Mhz/s. 'Clock speed' is merely a measure of how fast the CPU
is performing its calculations. In the Spectrum, 3.5 million clock
nulse signals are generated per second, ie one clock pulse every
C.000000286 of a second.

The fastest instruction the CPU can perform takes up 4 clock
pulses, while the slowest requires 21 clock pulses. That means,
that even if all instructions performed are the slowest ones, about
160,000 instructions can be performed each second!

A Physical View of The Brain

The processor in the Spectrum is a silicon chip with forty pins
numbered from 1 to 40. These pins are the communication lines
between the processor and the rest of the computer. For example,
the processor draws its power from the power supply through pin 11,
gets its clock signals from pin 6, sends addresses in or out
through pins 1 to 5 and pins 30 to 40, and sends data in or out
through pins 7 to 15 except pin 11. The rest of pins are for
control signals communication.

You may find yourself totally lost at this stage. But no need to
puzzle, it's really to our advantage that we don't know the
internal structure of the machine, and we don't need to know it to
use its capabilities. It's just the same as with a calculator. The
physical structure of the machine is 'transparent' to the users (in
other words we don't see it!). We are only interested in the
logical structure of the calculator, or in this case the Z80 chip,
and how we can use it to our purposes.

30

Logical View of The Brain

Logically, the Z80 can be divided into five functional parts.

They are i. the CONTROL UNIT
ii. the INSTRUCTION REGISTER
iii. the FPROGRAM COUNTER
iv. the ARITHMETIC-LOGIC UNIT
v. the 24 USER-REGISTERS (the usable HANDS
and FEET of the CPU)

* CONTROL UNIT

We can see the CONTROL UNIT as a supervisor for the CPU's
processing. Its task is to time and coordinate the Input,
Processing, and Output of the particular job that the CPU is being
asked to perform, whether the instructions come from the ROM
program, or from your program.

* INSTRUCTION REGISTER

This is a HAND that the CPU uses to hold the current instruction
that it is going to perform. The whole task which comprises a
program must reside somewhere in memory - either in the ROM or in
the RAM (Random Access Memory). You may recall that a program is a
sequence of instructions. Thus, to perform the task, the CONTROL
UNIT has to fetch each instruction in turn from the memory (either
ROM or RAM) and place it in the INSTRUCTION REGISTER HAND.

* PROGRAM COUNTER

This is really one of the Z80's FEET which tell the CPU where the
next part of the program is (the address of the next memory location
from which the CONTROL UNIT is going to fetch an instruction). It

is like an instructions warehouse manager keeping track of the
location of the next instruction to fetch out.

* ARITHMETIC and LOGIC UNIT

This is the calculator inside the CPU. It can nerform both
arithmetic and logical operations. Out of all the basic arithmetic
functions as you and I know them, this unit can only perform simple
addition and subtraction, incrementation (adding 1) and
decrementation (subtracting 1), but not multiplication or division.
The unit can also compare one handed numbers, or perform 'bit'
operations such as rotating fingers around, holding specific
fingers up or down, etc.

As a byproduct of the calculations the ALU is asked to perform, the

calculations usually affect the status of the various FLAGS in the
FLAG register. This is discussed in more detail further on.

31

* USER-REGISTERS

These are the CPU's Hands and Feet, which you, the programmer, can
control.

There are twenty four User-registers within the Z80 microprocessor
-~ some are HANDs, and some are FEET.

The images we have been building up of hands, feet and boxes make
the processes easy to visualise and are a good representation of
what is going on, but computer buffs tend to look askance if you
say things like "...and then the computer shifted its information
from its right hand to its left hand."

We will now give you the proper names for the CPU's hands and feet,
so that when faced with that situation, you will be able to say:
IILD B’Al'l

To start off with, computer buffs refer to the hands and feet of
the CPU as ''registers'.

We mentioned earlier that the CPU has eight hands: these are
called A, B, C, D, E, F,In our world, the definition of a hand
is something with eight fingers.

The CPU has two feet: these are named IX and IY. The definition
of a foot is anything with 16 toes!

The naming of hands and feet is fairly easy to follow because if a
register has only one letter in its name then it must be a hand
(that is, contains 8 bits), while if it has two letters in its name
then it must be a foot (that is, have 16 bits).

Did you notice the smooth transition from fingers and toes to bits?
We will have you used to computer terminology in no time.

Actually the remaining two hands for the CPU after D, E, F,
....... are not named "G" and "H" as one would expect but "H" and

The conventional way to represent all these registers is as
follows:

32

A F
B c
D E
H L
IX
1Y

Notice that "F" is paired with "A", but after that the rest follow
fairly naturally. The reason that registers are paired in this way
is that it is sometimes possible to make a foot out of two hands!

After all, if the definition of a foot is something with 16 bits,
then maybe we can fake it from time to time and use two 8-bit hands
to do the work of a foot. We therefore talk about '"register pairs"
such as BC, DE, and HL.

The reason the register pair "HL" was called "HL'" instead of
something like "GH" was to help people remember which of the two
registers had the high number and which had the low number.

It's as if though you wished to represent the numbers O to 100 on
your hands and toes. You can easily set up your fingers to
represent the numbers O through 10, and similarly with your toes
(assuming that you are agile enough). One way you could denote the
number 37 in this way would be to count off 3 on your fingers and 7
on your toes. But there has to be some agreement on which is the
high number and which is the low number otherwise someone else
might think you meant to represent the number 73.

The "H" in "HL" stands for HIGH and the "L'" stands for LOW, so
there is no chance of confusion - right?

This diagram of register pairs also serves to indicate which
register in the other register pairs contains the high number:

B in BC
D in DE

because all the highs and lows are treated in the same order.

The feet (IX and 1Y) also have a special name: they are called
"index registers'. This has a lot to do with the fact that they
can be used to organise information in much the same way as a book
index is organised. Alternatively, you can view them as table
pointers.

3

OK, now that you understand the terminology, here are some special
points:

THE ACCUMULATOR (A register)

This 8-bits (single byte) register is the most important register

of the Z80. Its name dates back to the early generation of computers
when there was only a single register that could be used to
'accumulate' a result.

So, as we have advanced from the early generations of computers,

the accumulator continued to be used extensively for logical and
arithmetic operations. In fact, most computers are still designed in
such a way that many operations can only be performed using the A
register.

This is true of the Z80 chip, and the A register is a favoured
register. You can think of the A register as being like the CPU's
right hand, in the same way that most people can perform some tasks
more easily with their right hand than with the left hand.

The Flags:

Please note that "AF" is not usually treated as a register pair.

The "F'" in this case is used to denote '"Flag Register'". This is a
hand with 8 fingers such that each finger indicates whether a certain
condition is met or not met and we will be dealing with this in a
separate chapter.

The HL Register Pair:

s e s e s g St s s At i S

Of the three register pairs (BC, DE, HL), the HL pair is probably
the most important one. Besides giving the user the option of using
it as two single registers or as a register pair, the Z80 is
designed in such a way that there are certain 16-bit arithmetic
operations that can only be performed using the HL register pair.

Because of this particular hardware privilege, general register
pair operations usually will be faster using the HL register. This

makes HL preferable to use in machine language programming.

Maybe the HL register is the CPU's right foot?

An Alternate Register Set:

I thought that this might be a nice place to meantion that the CPU
also has a spare set of hands!

Not really so much a spare set of hands (all right, alternate
register set, if you want the proper terminology), as a spare set
of work gloves.

It's like you had a set of stiff plastic gloves, so stiff in fact
that they retained the shape of your hand when you took them off.
I1f you had counted off the number 3 on your hand for example and
took off your gloves, then the glove would still retain the shape
of a hand with the number 3 counted off!

You can no doubt think of uses for such gloves immediately - you
could make a note of a number while wearing one set of gloves, swap

gloves and the old number would still be there when you needed it
on the other set of gloves!

The other glove is there if you want to use it and it won't forget
the impression of your hand when you took it off. Unfortunately
you can't just glance down and see what was the number you had
retained there. Nor, naturally, can the glove perform any
calculations without a hand inside the glove!

You actually have to swap gloves again to be able to use whatever
information the gloves retain.

The CPU has a spare set of gloves for each pair of hands (but not
for feet - who ever heard of gloves for feet?) but they are not
interchangeable between hands, just as you can't put a left glove
on a right hand.

The representation of all the registers is now therefore:

A - F o= A' - F!
B-C f=c= B' - C'
D-E (===) D'-E'
H-L o= H' - L
IX
1Y

Note that the set of gloves you are wearing has the same name as
the hand it is for, while the spare set is always indicated with
the dash symbol.

The instructions still relate to what the hands are doing, ngt to
which pair of gloves you have on. So although we show the spare
set with a dash, there are no instructions such as LD A',l1. The CPU
only works on your HANDS, not your gloves.

35

The only instructions involving the alternate register set are of

the '"swap gloves now" type. For example:

1. LD A, (Box #1) ;Load A with contents of
;Box #1

2. EX AF, AF' ;Short for exchange -

; ie. swap gloves on AF
;with those of AF'

. LD A,(Box #2) ;

EX AF,AT! ; Another exchange

LD A, (Box #3) ;

[, B S)

You will note that in the above 5 instructions there are no
instructions which have specifically affected the alternate
register set but we have without doubt altered their contents.

This example is designed to illustrate the concept of the alternate
register set. Try to work out what is happening.
Do you know what will be in register "A" after each instruction?

For simplicity's sake, let's assume that the contents of the three
boxes are as follows:

(Box #1) = 1
(Box #2) = 2
(Box #3) = 3

Then the following is what happens after each instruction:

Register A Register A'
L 1 Not known
2 Not known 1
By 2 1
4. 1 2
35 3 2

Really quite simple, isn't it?

You will find that these EXCHANGE registers are particularly useful
when you run out of HANDs, run out of registers and you don't want
to spare your hands/feet by storing what is on them onto the STACK
or into MEMory. We will follow through this point later.

Even More Registers?

Yes, there are even more registers, but you will probably not be
using these to any great extent.

The STACK POINTER

The STACK POINTER is another foot the CPU has (2-byte addressing
register).

It always points to where the pile on the stack has got to. As the
stack grows, it grows downward from high memory locations to lower
memory locations.

You do not usually have to do anything about the Stack Pointer in
Machine Language programming. The CPU looks after it, and updates
it every time you do a PUSH or POP.

Note that it is a common mistake to forget to POP back a value that
you PUSHed on to the stack. You can be sure that this will cause
your program to '"'CRASH".

The I Register

This is the Interrupt Vector register. In Z80 based systems other
than the SPECTRUM this register would normally be used to hold the
base adcress of a table of addresses for handling different
responses to an interrupt, for example, Input/Output requests.

However in the SPECTRUM this facility is not used and the I
register is involved in generating T.V frame signals. It is
unlikely you will ever have to use this register.

The R Register

The R register is the memory-refresh register. It is provided in
the Z80 to refresh dynamic memories automatically. As the Z80
processor is doing its job, the information stored in those parts
of dynamic memory which haven't been accessed recently will 'leak'
away because of a drop of voltage through time. Unless these memory
locations are refreshed (recharged), information stored originally
will disappear!

The R register serves as a simple counter that is incremented every
time a 'memory information retrieval cycle' occurs. The value in
the R register thus cycles over and over from O to 255.

This can be used by the hardware to ensure that all parts of the
memory are 'refreshed'. But don't worry - you never need to kKnow
about it. That is something that Mr. Sinclair had to worry about
when he designed the Spectrum. We can just make use of his computer
without ever worrying about refreshes, etc.

From a programming point of view, you can think of the R register
as relating only to hardware and system usage. But sometimes you
can use it as a mean of obtaining a random number between O and
255. We will demonstrate this usage later.

37

SUMMARY :

User's Registers

There are eight main 8-bit registers in the CPU (A, F, B, C, D,
E, H, L), and two 16-bit registers (IX and 1Y). Eight-bit registers
have only one letter in their name, while 16-bit registers rave two
letters.

Register Pairs

Six of the eight 8-bit registers can in some circumstances be
used in pairs to onerate on 16-bit numbers.

These are the BC, DE and EL register pairs. The name HL can
serve to remind us which is the High order byte anc which the Low
order byte.

Preferred Registers

The 280 CPU is designed in such a way that some 5-bit
instructions can only be performed by the A register, while some
16-bit instructions can only be performed by the HL register pair.

Alternate Register Set

The eight main 8-bit registers can be swappecd with another
'alternate' set of registers.

The values stored in the main registers are retained by the CPU
while the alternate set is being used, but cannot be accessed.

Exchanging the register sets again allows us to operate on the
original values again.

This is all very well...

You have probably heard enough about the CPU and hexadecimal
notation, and it all seems so irrelevant. It doesn't explain how
you actually RUN a machine language program.

The ZX Spectrum is actually running machine language programs all
the time! (When it's on). It's just that you are not aware of it.
Even when you're not doing anything, just watching the screen,
trying to think of what to enter as the first line of your
revolutionary BASIC program, the Spectrum computer is busy running
under the control of a machine language program.

This program is the one that is stored in the ROM chip and is
referred to as 'the operating system'. For example, the part of
the program that is running when you're sitting there looking at
the screen does the following things:

Scan the keyboard for entry

Note that no key has been pressed

Display the present screen (empty)

Even when you are running a BASIC program, the CPU is still under
the instruction of the machine language program. This program is
of the 'interpreter' type as we have alread exlained: it looks at
your next BASIC instruction, converts it to machine language,
executes that part of the program, and then returns to interpret
the next instruction.

All this stops being true when you run your own machine language
program!

Total freedom from the operating system! The use of the 'USR'
function hands over total control of the CPU to whatever commands
you have placed at the USR address. It will interpret whatever it
finds there as valid machine language instructions.

This can be pretty terrifying as you could lose everything stored
in memory should you lose control. One error, one wrong character,
and you will have to turn the Spectrum off and start again from the
beginning.

There are no error messages to catch what you have done wrong, no
syntax checking for incorrect statements - so if you make the

slightest error, the hours of work you put in to enter your program
could be lost!

At the end of this book we have included a BASIC program which will

allow you to enter and edit machine language programs. Once you
have entered this program on your Spectrum, save it on tape as it

39

is more than likely that you will lose control of your machine
language program at least once.

On the other hand do not be afraid to experiment - you cannot
damage the computer with any machine language program you enter.
The worse that can happen is that you may have to turm your
Spectrum off and on again.

We will now just wet your appetite with the very simplest possible
machine language program. Load the BASIC "EZ Code Machine Language
Editor" found at the back of this book and RUN it.

The program will ask you for a loading address. This is asking you
where you will want the machine code to live. With this EZ-Code
program, you cannot use an address below 31500, so let's choose
32000. Enter the number 32000 then press (ENTER).

The screen will now show:

Command or Line (###):
This means the program is waiting for you to enter a command or a
new line of machine code.

Let's enter '"1", then a space, then '"c¢" and then "9'". This is like
entering a line of BASIC numbered line number 1, but it is a line
of machine code. If everything is OK, then press (Enter). The
screen should now show you all the lines you have entered:

1 c9

and at the bottom of the screen the prompt
"Command or Line (###):"

At this stage you do not want to add any more lines, so let us
enter a command instead.

Enter the word "dump'", and then press (ENTER). What this command
does is to dump the machine code in the listing into the address
you have specified, namely 32000.

Congratulations: you have just entered a one instruction of
machine language program! You can check this was entered correctly
by now entering the command '"mem'", followed by (ENTER). This
command allows you to examine memory, and it will ask you for a
starting address. Enter 32000 then (ENTER).

You will see the contents of memory locations from 32000 through to
32087. All should show 00, except 32000 which will show C9. Press

key '"m" to return to the main command input stage.

What the instruction "C9'" means is: RETURN!

40

It's a little like riding a bicycle for the first time: you really
want to be let loose on your own, but as soon as you go a little
way you want to "return'" to the safety of earth (or operating
system as the case may be).

Now we run the machine language program. To run any machine
language program you have dumped to memory, enter the command '"run"
followed by (ENTER).

What happened? Why did the screen come up with 32000 at the bottom
of the screen? This was the address used as the loading address you
used at the start,

Don't forget that the function of "USR" is to execute a machine
language subroutine. As part of this function, the value of USR on
return from the machine language program you placed in memory will
be the value of the BC register pair.

The answer lies in the way the Spectrum operating system (yes the
same one) deals with the "USR" function.

When the operating system encounters the "USR" function it loads
the address the user specified into the register pair BC - in this
case 32000.

The value of '"USR'", as in
Let A = USR 32000
naturally gave the answer 32000!

This feature of the "USR" function will prove to be a very useful
one as it will enable us to monitor what is happening during the
runring of a machine language program.

Let us enter the following machine language program:

OB
c9

The way to enter this short two-instruction program is as follows:

Enter line 1 Ob by entering '"1", then space, then '"0", then "b",
and then press (ENTER). Similarly enter line 2 c¢9. The listing
should show you that you have entered the lines correctly. Enter
the command "dump'" and then the command "run'".

This time the result will be 31999!' This is because the

instruction "OB'" is "DEC BC'" (abbreviation for decrease value of BC
by 1).

41

Exercise:

Experiment with instruction that involve BC by looking up such
instructions at the table at the back. Can you work out what the
abbreviations mean?

Be careful to have the last line of all your programs as '"c¢9'". This
is the RETURN instruction, and if you forget it, the program will
never return.

1f that should happen to you, don't worry — your computer has not
been damaged. Just turn off the power and reload everything.

Exercise:

You can use the "mem' command to examine any part of memory. Try
various addreses where you think you might find something
interesting.

42

How the CPU uses its Limbs

Introduction

We have seen that your ZX Spectrum CPU has twenty four Hands and
Feet. Just which operations are allowed and how easy they are for
the CPU to perform is the key to machine language programming for
your Spectrum.

Imagine for a moment that you are the CPU:

Possibly like most people, you are right handed and there are
things you can do with your right hancd that you are not quite so
adapt at with your other hand. There are also certain actions which
may be easy to perform one way, but more difficult another way -
such as picking something off a high shelf with your left foot and
passing it to your right hand is harder to do than if you used your
left and right hands.

It's the same in machine language - you can perform some tasks
easily one way, with more difficulty another way and it may be
impossible a third way. Knowing which combination of actions are
allowed is the key to success.

The equivalent hand on the CPU to your right hand is the "A"
register. Remember? The ACCUMULATOR, the hand that came into
existence as a result of genetic inheritence of early computers.

On the other hand (so to speak if you'll forgive the pun) you can
temporarily store what you have in your right hand onto any other
hand, foot and vice versa.

Computer boffins refer to this as "Register Addressing".

But this is just a big name for saying transfer information from
one register to another.

Other examples would be LD A, B
LD H, E
and so on.

Please note that LD is the mnemonic (abbreviation) for "LOAD" and
that when you read assembly language a comma "," is read as "with".
Thus we would read

"LD A, BY
as "LOAD A WITH B"
An assembly language instruction is read in the same order as a
normal English sentence would be.

43

There are also other combinations or ways other than register
addressing that information can be transferred from one register to
another or from register to memory.

The ways you can use the CPU's limbs:

One of the advantages of the Z80 processor is the large number of
limbs, and the possible combinations (addressing modes) that are
available.

Let's look at the combinations offered by the Z80:
* Immediate addressing

% Register addressing

% Register indirect addressing

¥ Extended addressing

= Indexed addressing

What a list of names? Don't worry, just remain confident and we
will step through them one at a time.

The list above does not cover all the possible combinations
possible - only those that apply to one-handed numbers!
Let's deal with each one of these possible contortions in turn:

ot

* Immediate Addressing

The general form for this is
LD r, n
(or other instruction - we use LD as an example only)
We use the abbreviation 'r' to mean any 8-bit register and 'n' any
8-bit number.

Immediate addressing is a technique that involves only a single
hand. The actual data is a part of the instruction; this means the
CPU can execute the instruction IMMEDIATELY it receives the
instruction. It doesn't need to look in memory to find more
information in order to perform this instruction.

For example, count off 215 on hand "A". I am sure you know enough
about the mnemonics by now to be able to write this as:

LD A, 215 or LD A, OD7H
Once again you can do this with any of the registers, with any
numbers whatsoever.

The format for the immediate addressing type of instruction is
shown below:

byte 1 instruction (telling the computer what
code is this instruction)

44

byte 2 n (the value of the actual
data for the instruction.)

Since there is one byte allocated for the actual data, the
limitation to the size of number you can specify is within the
range 0 - 255. If you don't understand this, refer back to chapter
on "The Way Computers Count".

We usually use immediate addressing to initialise counters and to
define constants needed in calculations.

Tmmediate addressing is easy to use in machine language
programming. However, it is the least flexible of all transactions
(addressing modes), since both the register and the data are fixed
at the time of writing a program. The equivalent BASIC instruction
would be

LET A = 5
Obviously we need this kind of instruction, but we couldn't write
entire programs this way!

Immediate addressing is convenient but does not solve any major
problems.

But at least we're starting to get someplace: we as programmers can
now specify which number gets loaded onto which registers.

1.

* Register addressing

We dealt with this mode briefly earlier. The general format is
LD r, «r
(or other instructions)

This techique only involves two Hands; in short, this is passing
information from one hand to another.

The CPU will allow information passing between any two hands except
the "F"' hand (which we should not think of as a hand at all. It is
the 'FLAG' register and does not store numbers in the normal
sense).

Register address instructions only need one byte.

Instructions of this type are not only short (One byte), they are
faster as well. The time needed to execute them is the time taken
for 4 clock pulses, or less than 1 microsecond on the Spectrum.

There is a 'rule' in writing machine language programs that hand to
hand transactions (register to register transfers) should always be
used when possible to improve program efficiency in time and
storage.

45

* Register indirect addressing

LD (rr), A or LD A, (rr)
LD (HL), n

This powerful type of instruction causes the transfer of data
between the CPU and a memory location pointed to by the contents of
one of the 16-bit register pairs (Feet).

Register indirect addressing is faster than ordinary indirect
addressing, since the CPU need not fetch the address from memory.

dowever, we must load the register originally, and so register
indirect addressing is only advantageous when the program uses the
same or neighboring address many times.

For example, LD HL,SHAPE ;load EL with start of
shape database
LOOP LD A, (EL) ;PRetrieve a data
INC H ;jmove pointer along

continue LOOP
until shape finished

[
ris

Extended Addressing

LD A, (nn) or LD (nn),A

Now we are looking at how to store ancd restore information from and
to vour Hand and Feet from memory.

In Extended addressing, the instruction from the program supply the
CPU with an address specified by two bytes.

If the transaction is to and from the accumulator, information
transfer will only affect the content of memory referred to by the
two-byte integer.

1f transaction is to and from a register pair, both the contents of
memory location referred to by the two-byte integer and the next
memory location will be affected.

The format of this type of instruction is:

byte 1 op-code

byte 2 (possible additional op-code)

byte 3 low order value of the 16-bits integer
value

byte 4 high order value of that integer value

Now this is the way the program can read the memory into the user

46

registers. Again, it requires an absolute address; in other words,
the resulting program using this type of acdressing may not be
relocatable except when the absolute address the instruction is
referring to is relocatable.

eg. SHAPE DB O U o U ;shape data base
LD A, (SHAPE) ;load first byte of shape

in accumulator

¢ Indexed addressing

ED r, GLX/STY 1+ d) or LD CLX/EY + dj, r
(or other instructions)

This type of transaction involves a Foot of the CPU, the IX or IY
index register.

The CPU adds the contents of the index register to the address
supplied with the instruction in order to find the effective
address.

This is one of the instruction type in Z80 that has 16-bit opcode.
Another common 16-bit instruction type is the Block Load
instructions eg. LDIR (Load increment and repeat).

One typical usage of this type of addressing technigue is to
perform Table operations.

The Index Registers can be used as pointer to the start of a table
of data. A displacement value is supplied in the instruction to
determine the address of the desired entry of the table the program
want to refer to.

eg. LD 11X, TABLESTART :initialise pointer to
:start of table
LR A, (IX + 3} ;refer to the third byte
:from the start of the
stable

The format of instructions of this type is:

byte 1 (op-code)
byte 2 (op-code)
byte 3 d ;displacement integer d

The number 'd' is an 8-bit number which has to be specified
together with the instruction and can not be a variable.
ie. the range of addressing is limited from -128 to 127 from the

47

address pointed to by the index register.

Indexed addressing is slower because the CPU must perform an
addition in order to obtain the effective address. Yet indexed
addressing is much more flexible since the same instruction can
handle all the elements in an array or table.

48

SUMMARY :

There are many ways that the CPU can fetch 8-bit information or
transfer it from 8-bit registers to memory:

Immediate addressing
Defining in the program the number to be
transferred to any register.

Register addressing
From any register to any other register

Register indirect addressing
Either using BC or DE to specify the address, and
A to hold the number to be transferred.
Or using HL to specify the address and defining
the number in the program

Extended addressing
Specifying the address in the program and using A
to hold the 8-bit number

Indexed addressing
Using IX or IY to specify the start of a table in
memory, and any register to hold the &-bit number.
The displacement from the start of the table must
be specified in the program.
The number to be transferred to memory can also be
specified in the program if desired.

These addressing modes are the only modes of transferring
information to and from memory. No other combinations are allowed.

49

Instructions For One-Handed Loading Operations

Mnemonic Bytes Time

Talken C
LD Register, Register 1 4 -
LD Register, Number 2 7 -
LD A, (Address) 3 13 -
LD (Address), A 3 13 —
LD Register, (HL) 1 7 -
LD A, (BC) 1 7 -
LD A, (DE) 1 7 -
LD (HL), Register 1 i -
LD (BC), A 1 7 .
LD (DE), A B 7 -
LD Register, (IX + d)} 3 19 -
LD Register, (IY + d) 3 19 -
LD (IX + d), Register 3 19 =
LD (IY + d), Register 3 19 -
LD (HL), Number 2 10 -
LD (IX + d),number 4 19 -
LD (IY + d),number 4 19 -

Flags notation:

#
0
1

indicates
indicates
indicates
indicates

flag
flag
flag
flag

is
is
1.8
is

altered by operation
set to O

set to 1

unaffected

50

Z PV

S

Effect on flags

N

Counting off Numbers on One Hand

Since everything in the Spectrum CPU is designed around 8-bit hands
or &-bit memory locations, it is obviously of major importance to
learn how to count off numbers on one's hands.

We discussed in the previous chapter some of the ways we can

tansfer information from hand to hand. We will now deal with each one
of these methods in more detail. You may recall one as being called
register addressing.

As we said, that is just a big name for saying transfer information
from one register to another.
Examples are:
LD A,B
LD #,E
and so on.

Remember the terminology involved: "LD'" means ''load", "," means
"with'", and the mnemonic (abbreviation) instruction is read in the
same order as an english sentence.

We would thus read out loud something like:
LD A,B
as '"load A with B". The next example would be read as '"load H with

=n
L.

We can swap from one hand to any other hand as we mentioned
earlier. Apart from one exception (the Flags register, which is not
like the other registers), you can manipulate any hand to any other
hand. Even the seemingly stupid instruction "LD A, A" is
permitted!

A short shorthand of this is "LD r,r' where "r" represents any
8-bit register except "F'".

OK: We now know we can shuffle information between hands, but
that's not going teo do us much good without some original

information on those hands.

The second way that we can count off numbers on our hands is for us
to specify how many we want the CPU to count off on which hand!

For example, count off 215 on hand "D'". I am sure you know enough
about the mnemonics by now to be able to write this as:

LD D, D7
(D7 is the hexadecimal representation of 215).

You may recall this was called immediate addressing. (Pretty

51

obvious, isn't it?).

Once again you can do this with any of the registers, with any
numbers whatsoever. The limitation being of course the size of the
number you can specify with 8 bits: 0 - 255.

A short shorthand of this is "LD r,n'" where '"r'" indicates any
register and ''n" any number. The previous convention of one letter
implies 8-bits still applies.

Now we're starting to get someplace: we can now specify which
numbers get loaded onto which registers and we can spin them around
from hand to hand. But we still haven't learnt how to put any of
these numbers away into memory locations, and there are only so
many registers!

We showed you very briefly an example of "external addressing' when
we were doing the time difference exercise:
LD A, (Box #3)

The general mnemonic for this is:
LD A, (nn)

Don't forget that in our shorthand the brackets imply "'the contents
of".

Note two things about this:

1. You can only do it with Register A

2. You have to supply the number of the box as a two handed
(16-bit) number.

The reverse instruction is also valid. This is one thing you will
notice about the Z80 - there is symmetry about the instruction set:
LD (nn),A

Do notice that these instructions only apply to Register "A" ——
there are of course other instructions for the other registers but
none quite as clear as this one. It's the dominant hand concept
again.

Let us pause here for a nanosecond and consider what these two
instructions actually mean and do for us.

In the first place, the number range that can be defined by a two
handed number (nn) is from O - 65,535. This is 64K, and means that
the maximum memory that can be accessed by this instruction is only
64K! This means that all the memory - ROM, program, display, and
free memory - have to fit within 64K. On a "16K Spectrum'" there is
actually 16K used by the ROM and 16K of RAM making a total of 32K.
The "16K" refers to the RAM part only. On the '"48K Spectrum', the
same 16K of POM is present plus 48K of RAM making a total of 64K.
It is not possible therefore for the Z80 to access more memory than

52

is available on a 48K Spectrum.

The instruction "LD A,(nn)" - which is read as '"Load A with the
contents of location nn' - is a very powerful instruction. It
enables us to "'read" the contents of any memory location, whether
in ROM, or RAM.

You can use this instruction to explore to your heart's desire,
even to a location where there is no memory - eg to try to see what
is beyond the 32K memory even if you do not have additional memory.
You will be surprised - it is not all zeros!

The reverse instruction "LD (nn),A" - which is read as '"Load the
contents of memorv location nn with A" - will attempt to write to
any memory location as well, but will be restricted by the physical
limitations:

You can't write to a location that can't store that information,
such as in non-existent memory beyond the size of your system.

One of the limitations of this instruction is that we have to know
at the time of writing the program which memory location we wish to
examine or write into. The abbreviation '"nn'" means a definite
number - eg. 17100 - and not a variable.

You can't use this instruction in the machine language equivalent
of a "For - Next" loon. The main use for this instruction is
therefore for setting aside particular memory locations as variable
storage.

eg. define 32000 = speed
32001 = height
32002 = fuel left

in a lunar lander type program.

You could therefore nlan a program where you got the fuel left,
decreased it, and stored the new amount of fuel back into that
location. You will know at the time of writing your program the
address of that memory location which serves to act as a stroehouse
for that information.

Let us be clear about this. Location 32002 is not a variable. It
is only a memory location which you use to store information.

When writing your assembly language program you would therefore
write something like

LD A, (Fuel)
and when you or the assembler program got to specifying the actual
machine code for this instruction you would replace "fuel'" by the
hexadecimal address of the memory location you specified.

But what if we don't know the exact adcdress of the memory location
where the information we seek is? Suppose we can only calculate

where that information is going to be? Because we need l6-bits to
specify the address of any memory location, we would need to store
it in a 16-bit register: this means one of the register pairs BC,
DE, or HL, or one of the index registers IX or IY.

One way we can do this is to have one of the register pair contain
the address of the memory location. Because the register contains
the information and because we don't have the address directly we
call this form of addressing register indirect addressing.

The mnemonic abbreviations for these are
LD r,(HL)
LD A, (BC)
LD A, (DE)

The English reading of these instructions is
'"Load the register with the contents of the memory
location pointed to by HL"
"Load A with the contents of the memory location
pointed to by BC"
"Load A with the contents of the memory location
pointed to by DE".

Note that by using "™HL" as the pointer to our memory location we
can load to any register - even H or L, as strange as that may
sound - but that using BC or DE we can only load into the A
register.

This is because the HL register pair is the favoured register pair
in the same way that the A register is the favoured single
register.

Once again there is a symmetry to these instructions and we can
store information into memory locations in a similar way:

LD (HL),r

LD (BC),A

LD (DE),A

This is still called "Register indirect addressing'' whichever
direction the information flows in.

Alternatively we could use the index registers IX and IY to point
to the memory location.
The short shorthand of these instructions is:

LD r,(IX + d)
LD &, (1Y + d)

"r' is again any register, and "d" is the 'displacement"
from the address pointed to by IX or 1Y. (Don't get the use of 'd"
confused — we don't mean register '"D" but d = displacement)

The number '"d'" is a one handed number (8-bit number) which has to
be specified at the time of programming and cannot be a variable.
This is the weakness of this particular instruction and means that
its use is usually limited to reading and writing tables containing
data.

The symmetrical instruction is also available:
LD (IX + d),r
LD (IY + d),r

I1f this particular mode of addressing sounds a little complicated,
don't worry: you are unlikely to need it in your first few
programs.

The Z80 chip used in the Sinclair computers is nothing if not

versatile, and you can combine some of the ways of loading numbers
we described above.

for example, you can combine immediate addressing (ie. specifying
the number you want loaded) with external addressing (ie.
specifying the address to be loaded by using a register pair).

This is called - surprise, surprise — "Immediate External
Addressing".

Unfortunately you can only use the HL register pair and the short
shorthand is therefore:

LD (HL),n

This is useful as you can directly fill a memory location without
first having to load that value in a register.

A similar combination is possible with the index registers, called
"Immediate Indexed Addressing".

This is of more limited use, and the abbreviated form for these
instructions are:

LD (IX + d),n
LD (1Y + d).n

55

Using These Instructions in a Machine Language Program

Let's try to put some of these '"LD" instructions into practice.

We know from the previous chapters that after returning from a
'USR' machine language program the value of the 'USR' is the
contents of BC. Let's run the following program:

(Load and RUN the EZ Code Machine Language Editor first, and set
the Loading address to 32000)

1 Oe 00

2 c9

Now use the DUMP command to place this code into memory.

From now on, we will no longer be giving you such explicit
instructions on loading and running machine language programs, as
it is a cumbersome method and does not give you any additional
understanding into the point of the program.

We will assume that by now you have enough familiarity with the
BASIC "EZ Code Machine Language Editor" and with the tables at the
back of this book to be able to enter a program. We will therefore
be showing all of our programs as follows:

OE 00 LD C,0C
C9 RET

This notation gives you the machine code on the left side and the
Z80 assembly mnemonics in the right hand column. It also incdicates
very clearly which instructions require only a single byte (such as
RETurn) and which instructions require 2 bytes, etc. (you will
remember that some instructions on the ZBO can take up to 4 bytes!)

The other point is that we shall try to make all our programs
independent of origin (where the program starts in memory) so that
it does not matter what you specify as your loading address.

Nonetheless remember that these programs can be entered with the
"EZ Code Machine Language Editor" program at the back of the book
or any other loading program you may design yourself.

Before running this machine language program (you must 'dump' the
code into memory and then use the '"run' command in the EZ Code
program) what would you expect the result to be?

The program sets the '"c'" register in the register pair BC to zero,

and you know that BC starts off with the address of the program,
which is 32,000.

56

Will be answer be A. 0000
B. 22000
C. 31896

Now run the program. Was the answer what you expected it to be?

If you are unclear about why the answer was what it was, go back
and reread the chapter on "The Way Computers Count'.

Now try running the following program:

06 00 LD B,0
OE 00 LD C,0
c9 RET

This will give you the expected result of 0 as BC = 0 (both
registers B and C have been set to 0).

Exercise:

You might like to try a few fancy tricks, such as loading A with a
number, transferring to L, setting H to 0, and so on.

Exercise:

The attribute file starts at address 5800H. We can set HL to point
to the attribute file by the following program:

26 58 LD H,58H

2E 00 LD L,O

This means that you can now change the colours in the display by
using the LD (HL),n command.

The structure of the attribute file is described in the Spectrum
manual. Let us set the first character to ink red, paper white,
flash on. This is
10111010 = BAH
so the next line of the program will read
36 BA LD (HL),BAH

Now you must never forget to return from the machine language
program, so the last line must be
c9 RET

RUN this machine language program. Did it work?

57

Flags and Their Uses

Flags are those nice buntings you can wave on state
OCCAS1ONS s caveane - wrong!

In machine language, the word '"flag' implies "indicator'". A flag
is something you put up if you wish to indicate to someone else
that a certain condition exists.

The obvious parallel is in boating where you run up a flag to
indicate distress, country, piracy or whatever.

The reason the designers of the Z80 (and most CPU designers) use
flags in their machine language is to give the programmer
information about the status of the number in the CPU's dominant
hand (the 'A'" register) or information about the last calculation
just performed.

You will remember that one of the CPU's registers is dedicated to
be a flags register — the 'F' register. You may also have noticed
at the start of the last chapter a table summarising the various
instructions to be discussed in that chapter, and that part of that
table was devoted to the effect each instruction would have on the
flags. (Fortunately none of the instructions discussed in the last
chapter affected any of the flags.)

The flag whose functioning is easiest to understand is the Zero
Flag.

This flag will be run up the flag-pole if the contents of the 'A'
register is zero.

There are many important decisions which will depend on whether 'A’
is zero. Note that the zero flag is either on or off. You can't
have an in-between result (shades of 'a little pregnant') so that
you would only need one bit to define the zero flag.

The same is true for all the other flags as well. They are either
on or off and require only one bit.

The Different Kinds Of Flags

_ R S —— — P —

The "F'" register is a regular 8-bit register and could therefore
accommodate 8 different flags. 1In practice however the designers
could only think of 6 flags!

58

S Z - H - P/V N C

i

Sign flag

Zero Flag

.
Half-carry flag

Parity flag
Overflow flag

.
Subtract flag

Carry
flag

Actually the cdesigners thought of seven flags, but decided that one
register could serve as both flags: the parity/overflow flag.

Let us now look at each of these flags in detail:

Zero Flag:

This is the flag we have already discussed above. TIts apnlication
is obvious, anc the flag is usually set after an arithmetic
operation as it serves to indicate the contents of the 'A'
register.

Note carefully however that it is possible to have the 'A' register
contain O and for the zero flag not be set. This could easily
happen by using the

LD 4,0
instruction. We mentioned above that none of the one-hancded (8-bit)
load instructions have any effect on any of the flags. The zero
flag would NOT be set yet A would contain zero.

The zero flag is also set if the result of the '"rotate and shift"
groun of instructions results in a zero.

As well, the zero flag is the only visible result of some testing
instructions, such as the "bit testing' group of instructions. In
those cases the zero flag is put on if the bit tested is zero.

Sign Flag:

The sign flag is very similar to the zero flag and operates on very
much the same set of instructions (with the major point of
departure being the '"bit testing" group where the concept of a

59

negative bit is somewhat meaningless in any case).

Carry Flag:

This is one of the more important flags available in assembly
language, for without it the results of assembly language
arithmetic would be totally meaningless.

The point to remember is that assembly language instructions always
refer to either one-handed (8-bit) or two-handed (16-bit) numbers.

This means that the numbers we are dealing with can be either:

wn

0 - 25
0 5

[0 A

35

wn

0 - 256
0 - 65536

This is a direct consequence of only having a limited number range

available, and the same thing can obviously happen with 16-bit
numbers.

We've already discussed that you can only count to 255 on one hand.
What happens if a register is already showing 255 and you add 17
You might like to think of the register as operating the same way
as the distance meter of your car. Once you have reached the
maximum, it 'clocks' over and begins counting from zero again.

In the same way, if the register or car meter shows all zeros, and
you turn it backwards, you will get the highest value showing, or
255 on an 8-bit register.

This is why the result of 200 - 201 gives 255. If we were car
dealers we would obviously like an indication that the meter has
clocked over, whether in a forward direction — in which case the
car nas travelled further than it seems - or a backwards direction
— in which case the meter has been tampered with.

This kind of indicator exists in machine language programming and

is called the carry flag. Fortunately we do not need to worry about
registers being tampered with.

60

We nhave seen that the carry flag can be set by subtractions if
there is an 'underflow'. The carry flag can also be set by addition
operations if there should be an 'overflow'.

It is therefore convenient to think of the carry bit as the 9th bit
of the 'A' register:

Number Carry bit Number in bit form
132 - 1000 0100O0

. 1335 - Leoo 01 Il
267 1 0000 1011

But as we do not have 9 bits, the 'A' register would contain the
number CBHE {Decimal 11) and the carry would be on (ie. = 1).

You can see that on subtraction borrowing from a 9th bit would
leave a 'l' there as well.

Using Flags in the

Machine Language Equivalent of "If ...Then..."

In BASIC we have the ability to construct 'IF ..
such as

. THEN' situations

1f A=0 then.....
where what follows can be 'Let....'
or 'GotO..as'
or 'Gosub..'

Exactly the same kind of decision can be programmed in machine
language (except for the 'Let...'). Instead of saying "If A=0'", we
merely loo% at the zero flag: 1if it is on, then we know A=0.

The three flags we have been considering to date are in the main
the only ones which allow us to make a choice in the next
instruction to be executed.

The format of such instruction is as fcllows:
For example:
JP ccy End

where 'JP' is the mnemonic for 'jump' and 'end' is a convenient
label.

The instruction is read in English as '"jump on condition cc to
End".

61

The condition ''cc' could be any of:
Z (= Zero)
NZ (= Not zero)
P (= Positive)
M (= Minus)
g i Carry set)
NO € = No carry)

The other three flags tend not to be of so much use in every day
programming. They are:

Paritv/Overflow Flag:

This flag acts as the parity flag for some instructions, and as the
overflow flag on others, but there is rarely any confusion as the
two types of operations do not commonly occur together.

The parity side of it comes into effect during logical operations
and is set if there is an even number of set bits in the result.
We deal with this in greater detail in the chapter on logical
operations.

he overflow is a warning device that tells you that the arithmetic
operation you have just performed may not fit into the 8-bits.
Rather than actually telling you that the result needed a S9th bit,
this tells you that the 8th bit changed as a result of the
operation!

In the example above, adding 132 and 135, the 8th bit was 'l' prior
to the addition and 'Q' afterwards, so that the overflow would have
been set. But the overflow would also be set by adding:

64 0160 0O0O0C0C
+ 65 0100 0001
129 1000 C 001

Subtraction Flag:

This flag is set if the last operation was a subtraction!

Half-Carry Flag:

This flag is set in a manner similar to the carry flag but only in
the case of an overflow or borrow from the 5th bit instead of from
the 9th bit!

Both the subtract flag and the half-carry flag are of use only in
"Binary coded decimal" arithmetic, anc we deal with these flags in
the chapter on "BCD Arithmetic'.

62

SUMMARY:

Flags are used by the CPU to indicate certain conditions after
instructions.

here are six such flags, each of which can be said to be CN or
OFF. The six bits representing these flags are six of the eight
bits in the F register. The other two bits are unused.

The conditions indicated by the various flags are
Carry
Zero
Parity or Overflow
Sign
Negate
Half Carry

Not all instructions affect each flag. Some affect all flags, some
only specific flags, while others have no effect on the flags.

63

Counting Up and Down

In the last chapter we examined the concept of flags, and in the
chapter before we found out how the CPU is able to load any desired
numbers onto its fingers and toes.

Let us now examine the simplest possible way to manipulate numbers
on one's fingers: we can increase the number represented on our
fingers or we can decrease the number represented.

This is pretty rudimentary arithmetic, but it gets beyond loading
specific numbers onto your fingers. The action of counting up is
essentially: whatever number you have on your fingers, increase it
by one.

This can be used in such ordinary situations as census taking or
monitoring the traffic at a particular intersection.

Counting Up

It is possible on the Z80 to increase the count on the fingers of
every single hand the CPU has. This is what we mean by the general
mnemonic:

INC r

"INC" is read in English as "increase" and is therefore fairly
self-explanatory.

It is also possible to increase the count held on the toes of any
of the feet (including the register pairs, which are not really
feet, as we saw).

This increasing of the count on our toes is written as:

INC rr
INC IX
INC IY
where "rr" denotes a register pair, such as 'BC', 'DE', or 'HL'.

Note again the simple way we have of denoting which operations are
using 8-bit numbers and which are 16-bit numbers:

The 8-bit numbers are denoted by a single letter, while

But the "counting up" instruction is in fact even more powerful
than this might indicate. It is possible to increase the count of
any memory location if we are able to specify its address using the

64

index registers or the 'favoured register pair', HL:
INC (IX + d)
INC (1Y + d)
INC (HL)

(where 'd' is the displacement - not the register D!)

Important note:

Remember carefully our convention of reading brackets:
brackets — mean-— 'contents of'

This is very important as there is a lot of similarity between the
instructions

INC HL

INC (HL)
but a world of difference in their execution.

The first would be read as "increase HL'" while the second would be
read as '"increase the contents of the location whose address is
HL'. {(This second reading is often abbreviated to "increase the
contents of HL").

As long as you remember the rules of the mnemonic abbreviations you
will be saved from this kind of confusion. Let us examine how each
operates, and let's assume that HL = 5800H.

INC HL: Look at HL. 1Increase the count on its fingers
by one. Result:
HL = 5801H
INC (HL): Look at HL. Find the memory location referred to by

this number. Increase the count in that location by one. Result:

HL = 5800H
(5800H) = (5800H) + 1

These are significantly different operations. (You might like to
RUN both versions — 5800H is the start of the attribute file). Note
also that while 'INC HL' is an instruction acting on a lé-bit
number, 'INC {(YL)' is an instruction which acts on an 8-bit number
only - the number stored in location 5800H!

Decreasing the Count:

The symmetrical nature of the Z80 instruction set would almost
certainly ensure that everything you can increase you can also
decrease, anc¢ this is indeed the case:

65

DEC r

DEC rr

DEC IX

DEC 1Y

DEC (HL)

DEC (IX + &)
DEC (IY + d)

The mnemonic '"DEC" is read in english as ''decrease', and the same
careful attention to the use of brackets must be applied here.

Effect on Flags:

Because the increase or decrease instructions which operate on
8-bit numbers affect every flag except the carry flag, this is a
very good place to review the operation of the flags.

IMPORTANT NOTE: the increase and decrease instructions which
operate on 16-byte numbers do NOT affect any of the flags. Only
increase or decrease operations on 8-bit numbers affect the flags.

Sign: This flag will be set (=1) if bit 7 of the 8-bit
————— result is 1.
This means it will be on if the thumb is up using
our previous analogy. Note that this will happen
whichever convention you are using for the number.

Zero: This flag will be set (=1) if the 8-bit result is
————— zero.

Overflow: This flag will be set (=1) if the contents of
————————— bit 7 of the 8-bit number is changed by the
operation.

Half-Carry: This flag will be set (=1) if there is a carry
—————————— into or a borrow from bit 4 of the &-bit
number.

Negate: This flag is set if the last instruction was a
------- subtraction. Thus it is not set (=0) for "INC"
and set (=1) for "'DEC".

Suggested Exercises:

Use the "LD', "INC" and "DEC" group of instructions to return the
numbers you want as a result of the 'USR' operation.

This will give you familiarity with these instructions.

66

SUMMARY :

We can increase or decrease the contents in any of the 8-bit
registers or in any of the 16-bit register pairs or in either of
the 16-bit indexing registers.

We can also increase or decrease the contents of memory locations
whose address is specified by the HL register pair or by the
indexing registers.

Increasing or decreasing 16-bit numbers will not affect any of the
flags. Increasing or decreasing &-bit numbers, either in registers
or in memory, affect all the flags except the carry flag.

67

Instructions for One-Handed Arithmetical Onerations

Mnemonic Bytes Time Effect on Flags
Taken Z PV S N

()

ADD
ADD
ADD
ADD
ADD

register
number
(HL)

(IX + d)
(1Y + d)

- e

[)

o
W =N =
Vo IRV RE RN 8
OO OO0

[—

ADC
ADC
ADC
ADC
ADC

register
number
(HL)

(IX + d)
, (1Y + d)

=S~ - S A
LW W i~ P P~
P

OO N~
OO0 OO0

SUB register
SUB number
SUB (HL)

SUB (IX + D)
SUB (1Y + D)

W LW = N~
OO~ N
—t pd Pt

—

SBC
SBC
SBC
SBC
SBC

register
number
(HL)

(1% + d)
i (IX + d)

-

>?i>?3>
O
OO~ ~
S e I3k IR Fe hH: T I e e 3 W 3 T Sk I
—

[—

CP register
CP number
CP (BL)

CP (IX + d)
EP {1IY + &)

E g S S T S I e I IR T S 3k Tk 3R H o 3 R e e I S 3%
S e he 3 Sh S e e e S e 3k 3k Ik I3 FH e Fe S R Sk Sk

B e e e F I e R H W T F 3 I e e T S S H

W W N e
— =

0O~
B i I RS
= b e g

Flags Kotation:

indicates flag is altered by operation
0 indicates flag is set to O

1 indicates flag is set to 1

- indicates flag is unaffected

68

B RSS T Tk % R =

T he TR e e He Fe TR IR

S H 9

One Handed Arithmetic

One handed arithmetic is just our reminder that all of these
operations in this chapter involve only 8-bits and all of them must
be carried out through our dominant hand, register A.

It seems that only our dominant hand knows how to add or subtract!

This fact is so ingrained in the Z80 machine language mnemonics
that the abbreviation 'A' is even omitted in some mnemonics. For
example to subtract 'B' from 'A', we would normally expect to see
SUB A,B
but in fact the mnemonic is
SUB B.

Despite this limitation on arithmetical instructions (being
restricted to the A register), the Z80 language is very versatile
in what we can actually add to whatever number we have on our
dominant hand:

ADD A, r Add any single register to A
ADD A, n Add any 8-bit number to A
ADD A, (HL) Add the 8-bit number in the box whose

address is given by HL

ADD A, (IX + 4) Add the 8-bit number in the box whose
address is given by IX + d

ADD A, (IY + d) Add the 8-bit number in the box whose
address is given by 1Y + d

You can appreciate the extremely versatile range of possible
numbers we can add to whatever number is stored in A - any number,

any register and virtually any way we care to define a memory
location.

The one that is missing is
ADD A, (nn)
where we define the address in the course of the program.

As a result the only way to get such an instruction would be to
write:

LD HL,nn

ADD A, (HL)

Note also the favoured role of the HL register again. Ve cannot
specify the memory location using the BC or DC register pairs.

The other limitation implicit in all this is also the inherent
limitation of 8-bit numbers which can only hold values up to 255,

as we have already seen.

For example, LD A,80H

69

ADD A, 81H

will give a result of only 1 in 'A' but the carry flag will be set
to indicate the result did not fit in.

1f the hexadecimal arithmetic confuses you, it's a good exercise to
convert the numbers to decimal and check the addition.

Hexadecimal addition and subtraction is the same as ordinary
arithmetic:

1 +1
1 + 2
etc. but when you
1 +9

+
o

1+9 you get

0o
m

1 + A
and when you
1 +F

etc.

£
o]

1+F you get

]
T WwWN

o

I og i
]

This is because the 'carry'
get a number bigger than 'F'
arithmetic.

into the next column happens when you
instead of '9' as in decimal

The results of our machine language program above would therefore
be as follows:

as 8 + 8 =16 — 10H

What can you do about this carry error?:

The designers of the Z80 have provided us with another instruction
similar to ADD, but which takes into account possible overflows
into the Carry.

This is a very useful instruction: "ADC", which we read as '"ADD
WITH CARRY".

This is exactly the same as the "ADD" instruction, with the same
range of numbers, registers, etc., which can be added to Register
'A', except that the carry is added on (if it is set).

This makes it possible to add numbers greater than 255 together, by
a chaining operation:

eg. to add 1000 (ie. O3E8H) to 2000 (ie. O7DOH) and store the
result in BC:

LD A,E8H ;Lower part of lst no.
ADD A,DOH ;Lower part of 2nd no.
LD C,A ;Store result in C

70

LD A,O03H ;jdigher part of 1lst no.
ADC A,O07H iHigher part of 2nd no.
LD B,A ;Store result in B

After the first addition (E& + DO) we will have the carry set
(because result was greater than FF) and Register A containing B8
(check this for yourselves!)

The second addition (3 + 7) will yield not OAH (= 10 decimal) as
might seem on the surface but OBH (=11 decimal) because of the
carry-.

The final result is therefore OBB8H = 3000! This chaining could go
on to take care of any size number, and the result stored in memory
rather than in a register pair.

8-BIT SUBTRACTION:

This is exactly the same as 8-bit addition. Two sets of commands
exist, one for ordinary subtraction, and one for subtraction with
carrys:

SUB s -~ Subtract s
SBC s -~ Subtract s with carry

The notation 's' is meant to denote the same range of possible
operands as for the add instruction.

il

COMPARING TWO 8-BIT NUMBERS:

Let us step back from machine language for a moment and consider
exactly what it is we mean when we compare iwo numbers:

We know what happens when the two numbers being compared are the
same - they are 'equal'. One way to denote this in an arithmetical
format would be to say that the difference between the two numbers
was zero.

What if the number being compared is greater than the first number
(comparison does imply relating two numbers: we compare a number
with what we already have on our fingers)? Then the result after
subtracting the new number would be negative.

Similarly if the new number is smaller, then the difference would
be positive.

We can use these concepts to devise a system of comparisons in
machine language. All we need are the flags and the subtract
operation. Suppose we wish to compare a range of numbers with 5,
say:

LD A,5 :Number we have
SUB N ;Number being compared

Then we will have the following results -

1f N = 5 Zero flag set, carry flag not set
If N <5 Zero flag not set, carry no: set
If N > 5 Zero flag not set, carry flag set

It is therefore clear that the test for equality will be the zero
flag, and the test for "greater than' will be the carry flag. (The
test for '"less than'" is the atsence of GSoth flaas).

The only inconvenience of this method is that the contents of 'A'
have been altered by the operation.

Fortunately we have the ‘'CP s'" operation. This is read in English
as '"'compare'. Note that it can only compare what we already have
in the 'A' register; the range of possible numbers to be compared
are the same as for addition.

"Compare'" is exactly the same as '"'subtract' except that the

contents of 'A' are unchanged. The only effect is therefore on the
flags.

72

SUMMARY :

Eight-bit arithmetic on the Z80 is limited to
- addition
- subtraction
— comparison
and can only be performed through the A register.

Given this limitation, however, a wide range of addressing modes
exist.

Because of the inherent nature of 8-bit numbers, we must always be
careful about overflow. The carry flag (as well as all other flags)
is affected by arithmetical operations. We can use this as a
warning of overflow.

Additional instructions (add with carry and subtract with carry)
allow us to chain arithmetical operations to deal with overflow.

73

Instructions for Logical Operators

Mnemonic

AND Register
AND Number
AND (HL)

AND (IX + d)
AND (1Y + d)

OR Register
OR Number
OR (HL)

OR (IX + d)
OR (1Y + d)

XOR Register
XOR Number
XOR (HL)

XOR (IX + d)
XOR (1Y + d)

Flages Notation:

Indicates
0 Indicates
1 Indicates
- Indicates

flag
flag
flag
flag

Bytes Time
Taken c

1 4 0
2 7 0
1 7 0
3 19 0
3 19 0
1 4 0
2 7 0
1 7 0
3 19 0
3 19 0
1 4 0
2 7 0
1 7 0
3 19 0
3 19 0

is altered by operation

is set to O

is set to 1

is unaffected

74

Z

e e e T I I W R

BV

S e H: e I e 3 3k Fe T I W

S

FHe e kR FHHRH TR FTHH

N

OO D 00000

QOO0 o0

Effect on Flags

H

o M A [e T e b b b b b

= ol o]

Logical Operators

There are three operations which are as valuable in the field of
machine (or assembly) language programming as the more commonly
used addition, subtraction, multiplication or division are in
ordinary arithmetic.

These are generally referred to as Boolean operators after the man
who formulated the rules of these operations. These operations are:

AND
OR
XOR

We are already familiar with the concept of operations which apply
to an entire 8-bit number, but the reason that these operations are
so valuable is they operate on the individual bits of the number
(or fingers of the CPU's hand).

Let us look at one of these operations, 'AND':

Bit A Bit B Result of Bit A 'AND' Bit B

=0 e)
— -0 0
— O OO

It is obvious that the result of an 'AND' operation is to give us a
'1' only if A and B both contained a 'l"'.

In machine language, if you AND two numbers, the result is what you
would get if you 'AND'ed each of the individual bits of the two

numbers.

You may be asking yourself - "What is the point of such an
operation?"

The 'AND' operation is extremely useful in that it allows us to
mask a byte so that it is altered to contain only certain bits:

1f, for example, we wish to limit a particular variable to the
range of O — 7 only, we quite clearly wish to indicate that we want
only the bits O - 2 to contain information. (If bit 3 contained
information, the number would be at least 8).

eg. 0000 0101 =]

These bits must be '0'.

1f we therefore take a number whose value we do not know and apply

75

the 'AND' operation with '7', the result will be a number which
lies in the range 0 - 7.

eg. 0110 1001 = 105
0000 0111 = 7 =)Mask
result of AND 0000 000 1 =1 =) in
range 0 - 7

Note that the Z80 chip only allows for the 'AND' operation to take
place with the 'A' register. 'A' can be 'AND'ed with an 8-bit
number, any of the other 8-bit registers, with (HL), with (IX+d),
or with (IY+d).

eg. AND 7 Note that as only the 'A' register
AND E can be acted on, it need not be
AND (HL) mentioned in the instruction.

The same range of possibilities and the restriction to Register A
is true for the other Boolean operations, 'OR' and 'XOR'.

The 'OR' operation is very similar in concept to the 'AND'
operation:

Bit A Bit B Bit A 'OR' Bit B
0 0 0

0] 1 1

1 0 1

1 1 1

It is obvious that the result of an 'OR' operation is to give us a
'1' if either A or B contained a 'l'.

Again you may be asking what is the point of such an operation.
The 'OR' operation is also extremely useful in that it allows us to
set any bits in a number: if, for example, we wished to ensure
that a number was odd, then quite clearly we have to set Bit O.

(The same result could be obtained by using the 'set' instruction).

LD A ,Number
OR 1 ;make number odd

The above two lines would be a typical assembly listing.

The concept of 'XOR' - pronounced 'exclusive or' - is also easy to
understand but its actual use in programming is more limited.

The result of 'XOR' is a 'l’' only if one of A or B contains a 'l"'.

In other words, the result is the same as for the 'OR' operation in

76

all cases except when both A and B contain a 'l"'.
XOR =) OR - AND

Bit A Bit B Bit A 'XOR' Bit B
0 0 0
1 0 1
0 1 1
1 1 0

The last thing we must consider is the effect that these operations
have on the flags.

Zero Flag This flag will be on (=1) if the
result is zero

Sign Flag This flag will be on (=1) if bit 7 of
result if set

Carry Flag Flag will be off (=0) after 'AND'
'OR' 'XOR' ie. carry will be
reset.

Parity Flag This flag will be on (=1) if there

(Note that this is even no. of bits in the result:

flag also doubles 0110 1110=) OFF

as overflow flag) 0110 1 010 =) ON.

Half-Carry Flag) Both flags turn off (=0) after
) 'AND' 'OR' 'XOR'.

Subtract Flag) These flags are useful if 'BCD'

)

arithmetic is being used.

Use of Boolean Operations on Flags:

There is a special case of the Boolean operators which is very
handy - the case of the register A operating on itself.

AND A A is unchanged, carry flag cleared
OR A A is unchanged, carry flag cleared
XOR A A is set to 0, carry flag cleared.

These instructions are often popular because they require only one
byte to do what might otherwise require two, such as LD A,O.

The carry flag often needs to be cleared - eg. as a matter of
routine before using any of the arithmetic operations such as
ADC Add with carry
SBC Subtract with carry.

and this can easily be done by the instruction AND A without
affecting the contents of any of the registers.

77

SUMMARY:

There are three logical operators which are useful in machine
language:

AND

OR

XOR

These only operate on 8-bit numbers and one of these numbers must
be stored in the A register. The result of the operation is
returned in the A register.

Note that the meaning of the AND operation in machine language is
different to its meaning as a BASIC instruction.

The logical operators examine the individual bits of the two

numbers, and are therefore useful in masking numbers or setting
individual bits.

78

Coping with Two Handed Numbers

So far, we have been dealing only with one-handed (8-bit) numbers,
but we have talked about the fact that the CPU can also handle
two—handed (16-bit) numbers in some cases.

One case we have already mentioned is the index registers. These
"feet" have 16 '"toes" (16 bits), and can only handle 16-bit
numbers.

As well, we know that using two hands together, we can sometimes
hold a 16-bit number. We called these hands that go together
"register pairs'". They are BC, DE, and HL.

The CPU deals with 16-bit numbers in much the same way that you or
I would deal with heavy objects: we need two hands, we are not very
adept at manipulating such objects, and the way we handle them is
slow and limited.

Let us now examine the various addressing modes (possible
contortions?) available for dealing with 16-bit numbers.

Immediate Extended addressing:

LD rr, nn
{or other instruction)

This is the equivalent of 8-bit immediate addressing. It is merely
immediate addressing extended so as to accomodate 16-bit data
transfer.

As a general rule instructions that operate on 16-bit numbers are
longer and slower than those for 8-bits. For example, while 8-bit
immediate addressing instructions are 2 bytes long (one for the
instruction and one for the number), the extended version - ie
16-bit — requires three bytes.

The format for Immediate Extended Addressing is as follows:

Byte 1 Instruction

Byte 2 nl Low order byte of
the number

Byte 3 n2 High order byte of

the number.

We use this type of addressing instruction to define the contents
of a register pair, for example a pointer to a memory location.

79

Register addressing:

You may recall that register addressing is the name we give to an
instruction if the value we want to manipulate is stored in one of
the registers.

The same holds true for 16-bit instructions, except that there are
only a few instructions of this type in the CPU's repertoire. These
are mainly relating to arithmetical operations, and extremely
limited in the register combinations allowed.

e.g. ADD HL, BC

We will mention here again the preference the CPU has for its HL
register pair. This is where the muscle goes, and some instructions
can only be carried out by this register pair. This is true of the
arithmetical instructions, and we deal with this in detail in a
later chapter.

Register indirect addressing:

Register indirect addressing is the name we give to instructions
where the value we want is in memory, and the address of the memory
location is held by a register pair.

In the 280, this type of addressing is again mainly applied using
the register pair HL

e.g. JP (HL)

Extended addressing:

Extended addressing is similar in concept to register indirect
extended addressing, except that the value you want is not held in
a register pair, but in a pair of memory locations.

e.g. LD HL, (nn)
where nn must be specified at the program stage.

80

Exercises:

Using the EZ Code Machine Language Editor, enter the following
programs:

1. Immediate extended addressing:

010F00 LD BC,15 ;load BC with value 15
Cc9 RET jreturn

When this program is run, you will see that the value of USR on
return from the machine language program is 15, just as we defined
i B

Note how limited this type of addressing is: you must specify the
value of the number in the program.

2. Register addressing:

We will now add a line to the program above:

210040 LD HL, 4000H ;load HL with 16384
010F00 LD BC, 15 ;load BC with 15

09 ADD HL, BC ;add the two numbers
Cc9 RET jreturn

If you run this program, you will still get the same answer as
above, namely 15! Why? Didn't we add 163847

The answer is that we did, but it all happened in the HL register
pair, so we didn't see any of it! To see what happened, we have to

add a few lines, as follows:

3. Extended addressing:

210040 LD HL, 4000H

010F00 LD BC,15

09 ADD HL, BC

22647D LD (7D64H),HL ;put HL in 32100 and 32101

ED4B647D LD BC,(7D64H) j;get value of BC from

;332100 and 32101
Cc9 RET

This method of transferring information from HL to BC would not

actually be used in programming, as the PUSH and POP instructions
are more efficient, but it does illustrate what needs to be done
at times to overcome the limited addressing modes of the Z80 CPU.

81

You can examine memory locations 32100 and 32101 using the "mem"

command to check on this program as well.

82

Manipulating Numbers with Two Hands

In the earlier chapters we have seen just how agile the CPU can be
in manipulating numbers on one hand, and we have just discussed the
way it can handle two-handed numbers.

The CPU's mathematical ability is such that he can perform very
complex calculations involving large numbers with only one hand.
Why then bother with two-handed numbers?

There will be times when you will find it is impossible to specify
everything you want with just 8-bit numbers. If we were limited to
just the range of O - 255 of the 8-bit numbers our computer would
indeed be a very limited machine.

The most glaring example of needing 16-bit numbers is specifying
the address of a memory location. We implied that such a
manipulation would be possible when we discussed instructions such
as LD A;(HL).

The slow way of doing things would be to load each individual
register in the register pair, as we did in previous exercises.

Fortunately for us there are some (but only a few) instructions on
the Z80 chip which allow us to manipulate 16-bit numbers. 1In this
chapter we shall be dealing with loading 16-bit numbers, while the
next chapter will deal with 16-bit arithmetic.

Specifying Addresses with 16-Bit Numbers:

Please note that all addresses must be specified by a 16-bit
number.

You just can't specify an address with only 8-bits, even if it is
only addresses from O to 255. The way the CPU works, it's not an
address unless it is 2 bytes of 8 bits each.

We implied this when we used the short shorthand of
LD A, (nn)

So also remember that l16-bits numbers are stored in register pairs
high number first (check again with our chapter on "A Look into the
CPU" ., . . = "HL" stands for H = "high"; L = "low").

Storing 16-Bit Numbers In Memory

There is one facet of Z80 design which is very difficult to explain
or justify:

Instructions For Two-Handed Loading Operations

Mnemonic Bytes Time Effect on
Taken C Z PV S
LD Reg pair, Number 3/4 10 - = = =
LD IX, Number 4 14 —g =
LD 1Y, Number 4 14 o L -
LD (Address), BC or DE 4 20 SRR
LD (Address), HL 3 16 e _
LD (Address), IX 4 20 = B L ~
LD (Address), 1Y 4 20 e =
LD BC or DE, (Address) 4 20 = e =
LD HL, (Address) 3 16 == o =
LD 1X, (Address) 4 20 S s -
LD 1Y, (Address) 4 20 S =
Flags Notation:
Indicates flag is altered by operation
0 Indicates flag is set to O
1 Indicates flag is set to 1
- Indicates flag is unaffected

When loading 16-bit numbers into memory, the reverse convention
from that of register pairs is used.

The low bit is always stored first in memory!

Let us consider a situation where we place the contents of HL into
memory :

Before: Location Contents
32000 00

H L 32001 00

01 02 32002 00

Let us assume that HL contains the number 258 decimal = 0102H. The
memory locations are all empty.

After: Location Contents
32000 02

H L 32001 01

01 02 32002 00

The convention with 16-bit numbers stored in memory (and in program
listings) -is that the low bit is always stored first.

There is no justification for that decision except to say that this
was what the designers of the Z80 came up with and we now have to
live with it.

Please be sure to read this carefully and make sure that you are
familiar with this reversal of convention. It is likely to be the
single most important source of errors in programs:

In registers: High bit stored first
In memory and programs: Low bit stored first

It is not something that can be glossed over and ignored as every
time you deal with a 16-bit instruction in machine code you will
need to think carefully about the order of the low and high bits.

Do not however feel put off by this - life on the Z80 would be
virtually impossible without 16-bit instructions and it's a price
we have to pay.

You can check this for yourselves by '"running' this instruction
using the "EZ Code Machine Language Editor'" and then examining the

contents of memory using the '"mem' command.

Loading 16-Bit Numbers

85

The 16-bit load group at its simplest comprises of loading a 16-bit
number in the register pair. The general mnemonic abbreviation is

LD rr, nn

Once again we are using the notation of 2 letters to indicate a
16-bit number. 'rr'" means any register pair, "nn" any 16-bit
number.

For those of you without the benefit of an assembler - that is if
you have to convert the mnemonics into code by hand using the
tables at the back of the book - then the discussion we had on the
order of the 16-bit numbers in memory becomes crucial.

Even if you do have an assembler, you should be aware of these
reversals of order to enable you to '"read" the code when peeking
into memory.

Let us look at a specific example:
Load HL with 258

The mnemonic for this is
LD HL,0102H

The instruction for 'LD HL,nn' is, as you will find at the end of
the book,

21 XX XX

This means that.the number 0l102H needs to be inserted in place of

the 'XX XX'. But because of the reversal rule, we do not enter
this as 1002H.

The proper instruction is therefore:
21 02 o1
In our examples we will show you this as

21 02 01 LD HL, Ol02H (= 258)

You may not have problems entering our programs, but you must be
very familiar with this so that it is not a problem when you write
your own programs.

Other 16-Bit Load Instructions

As well as being able to load 16-bit numbers directly into the
register pairs we can also load l6-bit numbers directly into the
index registers (which are both l6-toe feet, as you will remember).

BB IX, nn
LD IY, nn

86

We can also manipulate information between a register pair and two

successive locations in memory. (This is the 16-bit equivalent of

loading the information from a single register into a single memory
location).

The general instructions are
LD (nn), rr
LD (nn), IX
LD (nn), 1Y

Remember that brackets are the shorthand for '"contents of'", so that
the last instruction would be read as 'load the contents of memory
location nn with the value in register IY'.

Because we are dealing with 16-bit numbers, we are actually loading
the memory location specified and the following memory location
into the register pair. It is not necessary to specify both
addresses (because the CPU can figure out the address of the second
location) but be careful not to confuse 8-bit operations with
l6-bit operations.

The reciprocal nature of many of the instructions is also apparent
here, and we can also load a register pair or index register with
whatever is in a specific pair of memory locations:

LD rr, (nn)
LD IX, (nn)
LD 1Y, (nn)

Exercise:

We know from the Spectrum manual that the start of spare space can
be obtained by looking at the contents of memory locations 23653
and 23654.

In BASIC we can determine this by using the line
PRINT PEEK 23653 + 256 * PEEK 23654

We will now perform the same task using machine language:
(23653 = 5C65H)

ED 4B 65 5C LD BC, (23653)
Cc9 RET

NOTE VERY CAREFULLY THAT THE NUMBERS ARE ENTERED LOW BYTE FIRST AND
YOU WOULD GET A TOTALLY ERRONEOUS ANSWER IF YOU WERE TO ENTER THEM
THE OTHER WAY AROUND.

On the Spectrum, we know that once the program is finalised the
position of the spare memory is fixed and we only need to determine

87

this once in each program.

We use the BC register to get the information because, as you will
recall, the value of USR is the contents of the BC register pair
when the machine language program has finished.

Note that "LD BC, (NN)'" is a four-byte instruction!
You can use similar programs to determine the value of any of the

two byte variables listed in the Spectrum manual on pages 173 -
176.

88

SUMMARY:

We can load 16-bit numbers into any of the register pairs or into
the index registers either by specifying the 16-bit number or the
memory location where the 16-bit number is to be found.

Similarly we can transfer into memory a 16-bit number from any of
the register pairs of from the index registers.

The only point to note very carefully is the peculiar order that
16-bit numbers are stored by the Z80 CPU in memory (and therefore
in program instructions involving 16-bit numbers):

The low byte is always stored first !!!

89

Instructions for Stack Operations

Mnemonic Bytes Time Effect on flags
Taken c 2 Pv S N H

PUSH Reg pair I} 11 - = e
PUSH IX or 1Y 2 15 - - R e
POP Reg pair 1 10 - - =
POP IX or 1Y 2 14 - = =l E
LD SP, Address 3 10 = ogude L gl
LD SP, (Address) 3 20 = = Tl I
LD SP, HL 1 6 - = e« i S
LD SP, IX or 1Y 2 10 R T

Flags Notation:

Indicates flag is altered by operation
0 Indicates flag is set to O

1 Indicates flag is set to 1

Indicates flag is unaffected

90

Manipulating the Stack

You may recall the image we developed in the beginning of the book
of the stack as being where the CPU was able to keep information
without having to remember the address of that particular
information.

One of the advantages, possibly inadvertent, of the stack
operations is that we can only PUSH and POP information in two
handed (16-bit) lots. This is because the stack is primarily
designed to remember addresses and we need to specify addresses as
l6-bit numbers.

The general instructions for pushing information to the stack are
PUSH rr
PUSH IX
PUSH 1Y

and the general instruction for popping information back from the
stack are

POP rr

POP IX

POP 1Y

These are exceptionally simple instructions, and you will note the
lack of need to specify an address.

For the ordinary register pairs - ie. not the index registers -
these instructions are only a single byte long and therefore very
economical in terms of programming space.

PUSH instructions are also not destructive: that is, the 16-bit
register still contains the same information after the PUSHes.

Note that because we can PUSH any register pair and POP any
register pair, the register you POP needs not be the same as the
one you PUSHed!

For example

PUSH BC
POP HL

The effect of these two instructions is to leave the contents of
the BC register umchanged but set the HL register to whatever the
contents of the BC register was at the time of the PUSH
instruction.

This effectively adds an instruction of the type

LD rr, rr?
to the 16-bit load group which was conspicuously missing.

91

As each of PUSH and POP instruction for register pairs is only one
byte long, the cost in terms of memory is not expensive.

The other extra benefit is that we are able to PUSH or POP the
register pair AF! This is one of the few instructions where AF is
treated as a register pair, but it is obviously sensible because
there are many times when we would like to preserve the contents of
the flags.

What this means is that you can PUSH AF (in effect making a note of
what A and F are), perform calculations which may affect the flags
as an undesirable side effect, and then POP back AF, leaving the
flags unchanged.

Moving the Stack Around:

As you know, the real strength of the PUSH and POP instructions is
that we do not have to think about the addresses where the numbers
are PUSHed to or POPed from.

You will surely agree that it does not necessarily make sense that
the same area of memory should serve as a stack area whether you
have 16K of memory or whether you have 48K.

The way the CPU actually keeps track of the address of the stack is
by means of a "stack pointer", which can be thought of as a 16-bit
register. We mentioned this briefly in our discussion of

registers, but not in any of the LOAD, etc. instructions because it

is not a register that can be manipulated in the same manner as the
other registers.

The main thing one would want to do with the stack pointer is to
define its position in memory, and that is exactly the type of
instruction that is available:

LD SP, nn
LD SP, (nn)
LD SP, IX
LD SP, IY

You can examine the stack of the Spectrum by using the '"mem"
command of the "EZ Code Machine Language Editor" program, and
looking in the last 30 - 40 bytes before RAMTOP.

Jedededede sk e s s dr ook St de e e dek e e dede e ek A e e ded e e etk
Do not change the contents of the locations in the stack

Almost any change will cause your Spectrum to crash - the screen

will go blank and you will have to turn the power on again. This
is because the operating system places a lot of information it

92

requires on the stack and changes will cause it to bomb out.

For the same reason do not try to manipulate the position of the
stack pointer unless you are sure of what you are doing.

Note:

In a well organized program the number of POPs and PUSHes should
end up the same no matter which path the program follows. Any
miscalculation may lead to strange results.

Exercise:

We can use these instructions to examine the address at which the
USR subroutine is called from by 'POP'ing the value out of the
stack and into the return register BC. The following program shows
how:

C1 POP BC ;Get address in BC
345) PUSH BC ;Put it back on the stack
c9 RET

93

Instructions for Two Handed Arithmetic

Mnemonic Bytes Time Effect on

Taken G & PBY 8
ADD HL, Reg pair 1 11 # - - -
ADD HL, SP 2 11 # - - -
ADC HL, Reg pair 2 15 # # # #
ADC IX, SP 2 15 # # # #
ADD IX, BC or DE 2 1:5 # - = -
ADD IX, IX 2 15 ¥ = = =
ADD IX, SP 2 15 # - - -
ADD 1Y, BC or DE 2 15 # - - =
ADD 1Y, IY 2 15 # = = -
ADD 1Y, SP 2 15 " R
SBC HL, Reg pair 2 15 # # # #
SBC HL, SP 2 15 # # # #

Flags Notation:

#
0
1

Indicates
Indicates
Indicates
Indicates
Indicates

flag is altered by operation
flag is set to O

flag is set to 1

flag is unaffected

effect is not known

Flags
N H
0 ?
o ?
0o 7
o ?
o ?
o ?
o ?
o ?
o ?
o ?
1 ?
T

Two Fisted Arithmetic

One of the benefits of being able to have 16-bit capabilities on
what is effectively an 8-bit processor is that we can use the
l6-bits to specify addresses, or to perform calculations involving
integer numbers up to 65,355 (or in the range -32,768 to +32,767 if
negative numbers are to be permitted).

In this light it is easy to see why in some early microcomputers,
like the original Sinclair ZX80, all arithmetic in BASIC was
limited to integer numbers in the range -32,000 to +32,000.

But even though we can perform some arithmetic with two hands, our
title for this chapter gives a hint of what is to come - twc handed
arithmetic is a little clumsy compared to one-handed arithmetic.
The range of options is just not there!

Favoured Register Pair:

In the same way that the 'A' register is the favoured register in
8-bit arithmetic, so there is a favoured register pair in 16-bit
arithmetic, and it is the HL register pair.

This favoritism is not quite so pronounced as in the 8-bit case, so
we do not omit the name of the register pair.

Addition:

The additions are quite straightforward:
ADD HL,BC
ADD HL,DE
ADD HL,HL
ADD HL,SP

But that is it!

Note that it is not possible to add an absolute number to HL - eg.
'Add HL,nn' is not permitted. To perform that kind of calculation
we need to:

LD DE,nn
ADD HL,DE

When you consider that this now ties up four of the 8-bit registers

out of a total of 7, you realise it's not something you want to do
too often.

Note also that there is no addition betwen HL and the index

registers. You will also remember that there is no LOAD
instruction which permits you to transfer the contents of IX or 1Y

95

to BC or DE, so the only way to do such an addition would be like:

PUSH IX
POP DE
ADD HL,DE

The one point of note is the 'SP' register - the stack pointer.
This is one of the very few operations where 'SP' is treated like a
proper register, but obviously you can't use it as a variable!
Think of what would happen to all the POPs and PUSHes if you varied
the contents of 'SP' at will!

Effect on Flags

16-bit arithmetic is where the carry flag really comes into a field
of its own, because as you can see from the table at the beginning
of this chapter, the only other flag that is affected by the 'add'
instruction is the 'subtraction' flag (and all we are saying is
that the 'add' instruction is not a subtraction!)

The carry flag will be set if there is an overflow from the high
bit of 'H' - any overflow from 'L' is automatically placed into 'H'
by the calculation.

Add With Carry:

Because of the limited nature of 16-bits, we are able to chain
additions just as in the 8-bit case. The instruction "add with

carry" - mnemonic 'ADC' - operates in a similar manner to 'add'
and with the same range of register pairs:

ADC HL,BC

ADC HL,DE

ADC HL,HL

ADC HL,SP

16-Bit Subtraction

16-bit subtraction is also a very straightforward operation, but
there is no subtraction without carry: if you are not sure of the
status of the carry flag, be sure that your program includes a line
to clear the carry flag before any subtraction operation.

SBC HL, BC
SBC HL,DE
SBC HL,HL
SBC HL,SP

(That last instruction has obvious application: set HL to the end
of the memory used by your program, screen display and variables,

subtract SP, and the result (negative) will be the amount of free
space. Can you write a simple program to do that? See the end of
the chapter to confirm your solution).

Effect Of Carry Arithmetic On Flags:

You may have noticed that three other flags are affected by the
'add with carry' and 'subtract with carry' that were not affected
by the simple 16-bit addition instructions.

These are the zero flag, the sign flag and overflow flag. Each of
these is set according to the result of the operation.

Index Register Arithmetic:

Index registers are totally limited to addition without carry!

Furthermore the range of registers that can be added to the index
registers is extremely limited:

Adding the 'BC' or 'DE' register pair
Adding the index register to itself
Adding the stack pointer.

Solution to Memory Left Exercise:

The end of the memory space the program uses is defined by the
contents of the STKEND memory location. This is defined as 23653
and 23654 in the Spectrum manual.

Obviously if we load HL with the contents of that location we are
halfway there:

LD HL, (STKEND)
then subtract the 'stack pointer' (SBC HL,SP ?)

Because of the 'carry' we need to clear the carry flag. This is
most easily achieved by the 'AND A' instruction, which is covered
earlier in the book (p77).
) AND A
SBC HL,SP

Three-quarter marks if you knew you had to allow for the carry but
didn't know how to do it. One—quarter marks if you forgot all
about the carry.

Because the stack pointer is in higher memory than the top of your
program (or else you are in diabolical trouble) the result will be
negative.

97

Let us now proceed to get the number of bytes left as a positive
number, using the 'BC' register ('DE' would be just as good for
this). We first want to shift HL to BC, but there is no 'load'
instruction to do this and we will need to use a push followed by a
pop:

PUSH HL

POP BC

HL still has the same information as before, so HL = BC.

To get HL = -BC, subtract BC from HL twice (but don't forget that
the carry has just been set by the subtraction so must be cleared
again):

AND A

SBC HL,BC

SBC HL,BC
HL now contains the negative value of what it centained before -
ie., the positive number of bytes left.

We now need to get the number back into the BC register pair again
to get a result from the 'USR' function. To get HL back into BC:
PUSH HL
POP BC.

and finally a return from the USR function:
RET

Did you get this right?
Notice how handy the stack is!

98

Loops and Jumps

Loops and jumps are what gives a computer program real power. Once
you have the ability to make decisions and to execute different
bits of programs as a result of previous calculations you are
really getting places.

This freedom can also cause problems, create programs which are
difficult to follow, and almost impossible to debug.

1 would strongly suggest that you design your computer programs
carefully before writing any machine code, and that is why we have
included the chapter "Planning Your Machine Language Program'. 1
emphasise this now because loops and jumps are what will entice you
away from good program design.

Machine Language Equivalent of 'GOTO':

In BASIC, you are familiar with the instruction 'GOTO', which

transfers control of your program to the instructions in the line
you 'GOTO'.

Nothing could be simpler to implement in machine language: just
specify the memory location where you would like the CPU to find'

the next instruction and you are half-way there.

The most simple instruction is "Jump To":

JP XX XX
JP (HL)
JP (IX)
JP (1Y)

One of these instructions can also be made to be dependent on the
status of one of the flags, such as the carry flag. This
conditional jump instruction is:

JP ¢ec; nm
where cc is the condition to be met. If we had

JP Z,0000
for example, this would be read "jump if zero flag is set to
address '0000'. (This is the address the Spectrum jumps to when
you turn the power on, and as such a 'JP' to zero might be used in
a machine language program if you wanted to clear all the memory
and start again with 'K').

Now note that the CPU does not allow for any mistakes. If you say
'"JUMP', it will jump. Because almost any code can be construed as
an instruction, the CPU does not care if you land it in the middle
of data, or in the second byte of a two-byte instruction: it will
read the byte at the address it finds and presumes that is the

99

start of the next instruction.

The way the CPU works out the jump instructions is really quite
simple: it has a little counter called the 'program counter' which
tells it where to find the next instruction to be executed. In the
normal course of programming (that is, without jumps) the CPU looks
at the instruction to be executed and adds however many bytes there
are to the instruction to the program counter.

Thus if it meets a 2-byte instruction, it adds 2, while a 4-byte
instruction will make it add 4 to the program counter.

When it comes across a '"jump" instruction, it merely replaces the
contents of the program counter with whatever value you have
specified. That is why you cannot allow any errors to creep in.

100

Long Jumps and Short Jumps

We can describe the above instructions to be the machine language
equivalent of a 'long jump' because the 16-bit address allows us to
jump to anywhere the Z80 chip can possibly go.

The disadvantage of the long jump is that:
A. Often we don't want to jump that far but still
have to use a 3-byte instruction.
B. We cannot easily relocate the program to another
part of memory because we are specifying
the absolute address.

It was mainly to overcome these two disadvantages that the 'short
jump' was introduced. This is referred to as a '"relative jump'" and
allows us to jump up to +127 bytes from our present position or up
to -128 bytes from the present position. ie. the distance jumped
can be specified in one byte!

Relative Jump Instruction:

JR d
where d is the relative displacement.

We can also make the relative jump dependent on some condition,
such as whether the carry is set, or the zero flag is set, for
example. These conditional jumps are written as

JR cey d
where cc is the condition to be met.

The value of the displacement 'd' is added to the '"'program
counter',

This means it takes the present value of the program counter and
adds the relative value you have specified. The value you specify
can be either positive - jumping forward - or negative - jumping
backwards. If you check back to our chapter on negative numbers
you will realise this means that relative jumps are limited to the
range -128 to +127.

Note that, when the CPU is executing a relative jump instruction,
the program counter is already pointing to the next instruction
which would be executed if the condition was not met.

This is because when the CPU comes across '"JR" it knows that it has
a 2-byte instruction to deal with and adds 2 to the program counter
- the program counter is therefore pointing to the instruction

after the relative jump!

Eg. In a program such as

101

Location Code

32000 ADD A,B
32001 JR Z,02H
32003 LD B,0
32005 Next LD HL,4000H

The following is the way the CPU deals with the program if it
ignores the jump instruction at 32001 (ie. zero flag not set):

Load byte at 32000
Because the byte is only a l-byte instruction so set
program counter to 32001.

Execute instruction.

Load byte specified by Program Counter (32001)
Byte is part of 2-byte instruction so add 2 to
Program Counter to make it 32003

Get next byte to complete instruction

Execute instruction

Load byte specified by Program Counter (32003)
Byte is part of 2-byte instruction so add 2 to
Program Counter (now eaqual to 32005)

Get next byte to complete instruction

Execute Instruction

At location 32001 the program encounters the Relative Jump
instruction. If the zero flag is not set, as in our example above,
the CPU does nothing.

In general, the CPU executes jump instructions as follows:

If the zero flag is set, add 2 more to the Program
Counter (this would make it = 32005)

1f the zero flag is not set, do nothing
(Program Counter remains = 32003)

In other words, the relative jump allows us to jump over the
instruction "LD B,0" in certain cases.

This also explains why there are two times shown for the time taken
for this instruction. It takes less time to do nothing than to

calculate the new program counter.

The CPU will therefore execute either the instruction at 32003 or
the instruction at 32005 depending on the zero flag.

It is also possible to make the relative jump negative as we have
already mentioned.

Exercise:

102

Because the relative jump is a 2-byte instruction, and the program
counter is pointing to the next instruction after the relative
jump, what would be the effect of an instruction which read:

JR -2

Machine Language '"For Next" Loops:

You are, I am sure, familiar with the BASIC form of the
"For . . . Next" loops:

FOR I =1 to 6
LET C = C+1
NEXT 1

The machine language equivalent is similar but takes a different
form. Let us consider how we could implement the machine language
loop using the arithmetic functions and the relative jump:

LD B,1 ;Set counter to 1

LD A,7 ;Max. of counter + 1
LOOP INC C ;7C =C + 1

INC B ;Increment counter

CP B ; Is B = A?

JR NZ,LOOP ; If not loop again
This will work, but note the following:
We are tying up 2 register pairs, one to increase, and one to hold
the maximum; and the instruction which increments the counter does
not set any flags on completion.
A much better way would be if we counted down!
We know that we have to do the loop 6 times, so why not set 'B' to

6 and count down?
This will give us:

LD B,6 ;set counter
LOOP INC C ; C=0C + 1
DEC B ;Decrease counter
JR NZ,LOOP ;Loop is not finished

You can see that this is a much more efficient way of doing things.

The Z80 chip has a special instruction which combines the last two
lines above.

This instruction is written as:

103

DINZ d
and is read as '"decrease (B) and jump if not zero". (The d is the
relative displacement). This instruction is a 2-byte instruction
and therefore saves one byte on the above coding.

Because of the existence of this special instruction, the 'B'
register is usually used as a counting register.

The limitation of the 'DJNZ' instruction is that one can only count
up to 256. DJNZ instructions can however be nested, if required:

LD B,10H ; B=16
BIGLOOP PUSH BC ;Save value of 'B!
LD B,O ;Set B=256

LITLOOE & o e
;Whatever calculation

L)

DJNZ LITLOOP :Done 256 times?
POP BC ;Get back value of B
DJINZ ;Do bigloop 16 times

Exercise:

Try and write down on a piece of paper what would appear in each
register after each instruction in the above program.

Waiting Loops:

There are times in machine language programs when things happen so
fast it is necessary to just wait a little while.

Examples that spring to mind are sending information to a cassette
(the pips have to be spaced sufficiently far apart to be able to
read them later) or sending information to a typewriter (imagine
printing thousands of characters a second).

It is therefore useful to set up waiting loops using the DJNZ
instruction:

LD B, Count
WAIT DIJNZ WAIT

The instruction 'DJIJNZ WAIT' will cause the CPU to jump back to the
DIJNZ instruction as many times as required to set 'B' back to zero

before proceeding again.

This should give you the answer to our exercise of what happens
when you write
WAIT JR WAIT

You might be waiting quite awhile for the CPU to exit this loop!

104

Instructions for Call and Return Group

Mnemonic Bytes Time Effect on Flags
Taken C Z PV S N H

Call address 3 17 e il el
Call cc,address 3 10/17 o |, e . ety g
RET 1 10 = = o = = =
RET cc 1 5/11 e = = =
Note: cc is condition to be met for instruction to be executed.

The following are the conditions which can be used:

Flag Abbreviation Meaning
Carry C Carry Set (=1)
NC Carry Clear (=0)
Zero Z Zero Set (=1)
NZ Zero Clear (=0)
Parity PE Parity Even (=1)
PO Parity 0dd (=0)
Sign M Sign Minus (=1)
P Sign Pos. (=0)

Flags Effected:

Note that none of the flags are effected by the call or return
instructions.

Timing:

Where two times are shown, the shorter time indicated is for the
case of the condition not being met.

105

Use of Subroutines

The use of subroutines is as easy in machine language programming
as it is in ordinary BASIC programs, if not easier.

In fact, remember that using the 'USR' function in your BASIC
program is really calling a subroutine: you will recall we need to
have a 'RETurn' instruction to finish!

Therefore it is very easy for you to test certain subroutines
independently of your main machine language program.

The major difference that you will face in implementing subroutines
in your machine language program is that it is necessary for you to
know the address where the subroutine starts.

This can cause a problem if you store the machine language routines
in a variable array, because the address of this variable is not
necessarily fixed. It also means that machine language programs
that use subroutines cannot easily be relocated to new positions in
memory.

Subroutines can also be called conditionally. This is the machine
language equivalent of the basic statement:

IF (condition) then GOSUB (line)

Care should be taken when in a subroutine so as to not affect any
flags or registers which are needed for the next comparisons. This
is so you don't branch off again on a following CALL statement,
"after returning to where you left off."

The difference is that the only conditions allowed are the status
of four of the flags:

Carry flag

Zero flag

Parity flag (also overflow flag)
Sign flag

Remember that all these flags are set according to the last
instruction which affected that particular flag.

It is therefore good practice to have 'CALL' or 'RETURN'
instruction immediately after the instruction which sets the flag.

eg. LD A, (Number)
CP 1
CALL Z,0ne
CP 2

CALL Z,Two

106

cP 3
CALL Z,Three

The above routine allows you jump to various routines depending on
the value stored in the location 'number', but note that it assumes
that the subroutines do not change the value in Register A !!!
(Why?).

A shorter routine is possible if you know that there are only the
above three possibilities for the value stored in 'number':

LD A, (Number)

CP 2

CALL Z,Two t A = 2

CALL C,One T AL 2= oA =1
CALL Three s A) 72 =) A= 3

This is because the instruction 'CP 2' sets both the zero and carry
flags and the call instructions do not affect any flags.

Similarly the use of the conditional return from a subroutine is
very useful. (But not considered to be good programming practice).

107

Instructions for Block Compare and Move Group

Mnemonic Bytes Time Effect on Flags
Taken C. Z BPv¥ S N H

LDI 2 16 - - gL D D
LDD 2 16 - - # = 0 O
LDIR 2 21/16 = == 0O - 0 O
LDDR 2 21/16 - 8 = © 0
CPI 2 16 - # # # 1 ¥
CPD 2 16 - # # # 1 #
CPIR 2 21/16 - # # # 1 #
CPDR 2 21/16 - # # # 1 #

Flags Notation:

1Indicates flag is altered by operation
0 Indicates flag is set to O

1 1Indicates flag is set to 1

— Indicates flag is unaffected

Timing:
For repeat instructions, the times shown are for each cycle. The

shorter time indicated is for the case of the instruction
terminating - eg. for CPIR, either BC = 0 or A = (HL).

108

Block Operations

You should by now be very familiar with the language your computer
understands - it's very much like learning a foreign language:
when you can think in that language you know you have mastered it.

This chapter covers the last set of very useful instructions - the
next few chapters deal with instructions that are nice to have
around and in some circumstances come into their own," but in
general terms you should be able to write machine language programs
with what you already know.

Be sure however to read the chapter on planning your machine
language program!

The instructions covered in this chapter are by their very nature
able to leap tall buildings in a single bound, faster than a
speeding bullet - in other words, instructions which can operate on
a block of memory rather than just single 8-bit bytes.

Let's start with the simplest of these:
CPI

With your knowledge of the Z80 language, you should be able to
immediately recognise this as a member of the '"compare'" family, and
it is in fact an extended compare.

It is read in English as '"compare and increase". (You will
remember that one can only compare anything with the contents of
Register 'A', and this does not need to be mentioned in the
instruction.)

"CPI" compares 'A' with (HL) and increases HL automatically. This
means that after the CPI operation, HL is already pointing to the
next location ready for a repeat.

With such an instruction we might be able to write a routine to
search all of memory for a particular match, as follows:

Search CPI
JR NZ, Search

In this way, unless a match is found (zero flag will be set as in
all compare instructions) the program will keep on looking.

Unfortunately this is not such a good idea because unless a match
is found the program will never end! Fortunately the designers of
the Z80 language thought of this and the CPI instruction also
automatically decreases BC!

We can therefore select at will the length of the block we wish to

109

search through and thus specify an end to the search.

Let's assume that the length of the block we are searching through
is less than 255 bytes long, so that the BC count would only be
stored in the C register, we could write:

Search CPI1
JR Z, Found
INC C
DEC C
JR NZ, Search
Not found o wrald e

Found S ie dle &

Obviously a different routine would be implemented if the length of
the block was more than 255 bytes. Note the use of the INC and DEC
instructions to test whether C = 0. These two instructions only
require one byte each, and as they both affect the zero flag the
net effect is to set the flag only if C was originally zero. The
other benefit is that this coding does not alter any of the other
registers.

Now we could also wish to search a block of memory starting from
the top rather than from the bottom, and we therefore have the
instruction:

CPD
which is read in English as ''compare and decrease'. The decrease
refers to HL of course, and the effect on BC is still the same!

Even more powerful than these two instructions are the real
supermen:

CPIR

CPDR

These are read as '"compare, increase and repeat'.
and "compare, decrease and repeat'.

These 2-byte instructions are unbelievably powerful: they allow
the CPU to automatically continue searching through the block of
memory until either a match is found or the end of block is
reached. (Naturally we have to specify A, HL and BC before
starting, but even so this is unbelievably economical coding).

Because the instruction will stop for one of two possibilities (ie.
match found in middle of block or no match at all) we have to

ensure we use some code at the end to differentiate between the two
possibilities.

You should be aware however that no matter the speed of machine
language, CPIR and other similar instructions can be very time
consuming instructions.

110

CPIR, for example, requires 21 cycles for each byte to be searched.
Admittedly there are 3,500,000 cycles in each second, but even so
this means that searching through 3,500 bytes requires 1/50th of a
second.

This may not seem like a very long time to you but when you realise
that the screen is displayed every 1/50th of a second or so you
realise that it can be significant.

The remaining block operations are along the lines of
'"Move it, Mate':

These are:

LDI LDIR
LDD LDDR

Obviously part of the '"load" family these are read as:
Load and increase
Load, increase and repeat
Load and decrease
Load, decrease, and repeat

Taking the simplest one first, 'LDI' is really a combination of the
following set of actions:

Load (DE) with (HL)

Increment DE, HL

Decrement BC

Note that this is the only instruction that will load from one
memory location to another without having to be loaded into a
register first.

The use of the 'DE' register as the destination address is very
clever - this way you never forget which register holds the
de-stination address!

The symmetrical instruction 'LDD' is exactly the same except that
HL and DE are decreased as loading proceeds. The difference
between 'LDI' and 'LDD' is more important when the two blocks (the
one where the information is and the one where the information is
going) overlap.

Suppose we are using this instruction in a word processing
application, and we want to delete a word from a sentence:

The big brown dog jumped over the fox.
1357913579133 7%135%49

If we want to delete the word 'brown' all we need to do is to move

111

the rest of the sentence to the left by 6 characters.

DE = destination = character 9
HL = source = character 15
BC = count = 24 characters.

Let us start with LDI: after one instruction we have

original = The big brown dog jumped over the fox.
move one char: d (---d
new = The big drown dog jumped over the fox.

and HL: = 10, DE = 16, BC = 23.

After 2 more instructions:
The big dogwn dog jumped over the fox.

And after all the instructions have been completed:
The big dog jumped over the fox.e fox.

(If we had wanted the portion after the full stop to be blanked out
this could have been achieved by adding blanks at the end of the
original sentence and increasing BC to say 30.)

If we now want to reverse the process and return the word 'brown'
to the sentence, we can't simply use 'LDI' again because we will
overwrite the information we want to shift:

eg. HL = Source = Character 9
DE = Destination = Character 15
BC = Count = 24 Characters

After one instruction we would have:

original = The big dog jumped over the fox.e fox.
move char d--—-) d

new = The big dog judped over the fox.e fox.

After 6 instructions we would have:
The big dog judog juver the fox.e fox.

So far so good. But another three gives:
The big dog judog jud og the fox.e fox.

The problem is that we have overwritten the information we want to
transfer. You can verify this by trying to move one character at a
time yourslef by hand.

It is therefore better to use the 'LDI' instruction, with the DE
register pointing to the end of the sentence.x This will ensure the
information woll not be overwritten in the move.

The instructions 'LDIR' and 'LDDR' are even more powerful, able to

shift thousands of bytes around very quickly.

112

Exercise:

Write a short routine to transfer 32 bytes from the ROM part of
memory to the screen.

Note how the 32 first bytes in the screen are arranged.

Now try 256 bytes, then 2048 bytes.

113

Instructions that are
less frequently used

114

Register Exchanges

We briefly discussed in the first few chapters the idea of the CPU
having gloves it could put on or take off, and thus store some
information in a place that is more accessible than memory
locations.

You must remember that you cannot manipulate these alternate
registers and the analogy with gloves is a very valuable one.

While they will retain their shape, there is no way they can do any
arithmetic or counting by themselves.

The first instruction is:

EX AF,AF'

This does exactly what its name suggests: ''Exchange the register
pairs AF and AF'". 1In the gloves analogy we would say '"Swap gloves
on the pair of hands AF'". In other words, put on the spare set of

AF gloves - you will remember the spare set is always denoted as
AF'.

The next general swap gloves instruction is:
EXX

This instruction swaps the gloves on all other 8-bit registers as
follows:

B C B' C'
D E { =) p*. Bt
H L H* L

This is therefore a very powerful instruction but its very power
makes it limited in use. This is because it acts on all the
registers at once and it is not possible to hold any value back.

(Except in register 'A' which is not affected by "EXX").

The only way around this problem is to write a short routine along
the lines of:

PUSH HL
EXX
POP HL

This means that you have saved the values of BC, DE and HL in the
alternate set of registers but still have HL's value to work with.

The last instruction in this group does not really fall within the

swap gloves type:
EX DE,HL

115

In this instruction DE gets the contents of HL and HL the contents
of DE.

This instruction is indeed very useful, because as we saw HL is a
favoured register pair in many applications and there are times
when the value we want to manipulate is in DE.

Y

116

Bit, Set and Reset

So far all the instructions we have been dealing with have involved
the manipulation of 8-bit or 16-bit numbers.

The "Bit, Set and Reset' group allows us to manipulate the single
fingers on the CPU's hand (single bits of the registers) and/or
contents of memory locations. Because of the very tedious nature
of fiddling with single bits this is not a very commonly used group
of instructions.

Furthermore, it tends to take even longer to set a single bit in a
register or memory location than it does to change or examine the
entire 8 bits of that memory location or register.

Nonetheless there are times when you need to know whether a bit in
the middle is set or not, or even to set a bit. Note however that
many of the bit setting or resetting can be carried out using the
logical operators.

The "Bit, Set and Reset' group of instructions allows us to turn
any bit "on'" or "off'" at will, or even just look at a specified bit
to see what its status is.

Let us look at the first set of instructions:

SET n, r

SET n, (HL)

SET n, (IX + d)
SET n, (1Y + d)

The "SET" instruction turns "on' (ie. = 1) the bit numbered 'n'
(using the notation O - 7) in register 'r' or in the specified
memory location.

No changes are made to any of the flags.

The "RESET" group of instructions operate on exactly the same range
of registers or memory locations, but instead of turning the bits
"on'", it turns the bits "off" (ie. = 0).

The "BIT" instructions should really be read as "BIT?" in English
as the function of this instruction is to test the contents of the
indicated bit.

No changes are made to the registers or memory locations but the
zero flag is altered according to the status of the bit tested.

If Bit
If Bit

0 then zero flag is set on (= 1)
1 then zero flag is set off (= 0)

1l

117

This may seem confusing at first glance but think of it this way:
if the bit is zero, then the zero flag is raised; if the bit is on,
then naturally the zero flag would not be raised.

118

Rotates and Shifts

You can move them to the left, you can move them to the right, you
can shift those registers any way you like.

The trick is to differentiate between the various shifts and
rotations in order to know which one to use when, and to remember
that the 'carry' bit can often be considered to be a 9th bit of the
registers. (ie. the carry is bit number 8 if the bits are numbered
0= 7).

Some rotate instructions go right through the carry (as the 9th
bit) so that the entire rotation goes through a cycle of 9 bits.

For example, let us look at 'RLA' (the meaning of each instruction
will be made clear later in this chapter):

v

b c <7 0 b—e— !

Other rotations involve only an 8-bit cycle, although the carry
flag is changed according to the bit which has to go the 'long way
round'. An example of this is the 'RLCA' instruction:

\1/

[e}-e—i7 o<

This means that in a left rotation as above the contents of bit 0O
are transferred to bit 1, bit 1 to 2, etc., but the contents of bit
7 are transferred to both the carry bit and to bit 0. Compare this
with the 'RLA' instruction above where bit 7 gets transferred to
the carry bit and the carry bit gets transferred to bit 0.

Left Rotations:

There are basically two types of left rotations:

* ROTATE LEFT REGISTERS - this is a 9-bit cycle rotation as
illustrated above for 'RLA'

RLA - "Rotate Left Accumulator"

RL r - "Rotate Left Register r"

119

* ROTATE LEFT CIRCULAR - the 'circular' means that the cycle is
only 8-bits as with the RLCA instruction illustrated above.

RLCA — Rotate left circular 'A"

RLC r — Rotate left circular 'r'

RLC (HL) — Rotate left circular (HL)

RLC (IX + d) — Rotate left circular (IX + d)
RLC (IY + d) - Rotate left circular (IY + d)

e

e T

As well as these two left rotate instructions there is a shift left
instruction available, but this can only operate on register 'A':

SLA - Shift Left Accumulator

b @

This is different in that the contents of the carry bit are lost
and bit zero is filled with 0. This is effectively multiplying 'A"
by 2 as long as nothing is transferred to the accumulator. (Think
about 'SLA' if A = 80H).

RIGHT ROTATIONS:

Once again we have the two basic modes of rotations but this time
to the right. Exactly the same range of possible memory locations
and rotations can be spinned to the right as to the left.

RRA - Rotate Right Accumulator
RRr - Rotate Right Register

3

120

RRCA - Rotate Right Circular 'A'

RRC r - Rotate Right Circular 'r'
RRC (HL) - Rotate Right Circular (HL)
RRC (IX+d)- Rotate Right Circular (IX+d)
RRC (IY+d)- Rotate Right Circular (IY+d)

™

> -

A similar shift right is available as for shift left:

SRL r - Shift Right Logical Register 'r'

i >3]

In this case this is pure division by 2 as long as we are using
unsigned numbers (ie., the number range we wish to represent is 0 -

255).

Because in some applications we use the convention to indicate

negative numbers by setting bit 7 to 1 (ie. giving us a range of

-128 to +127) there is an addition shift right instruction called
SRA r - Shift Right Arithmetic 'r'

As you can see this is also a
division by 2 but it preserves
the sign bit.

121

In and Out

In and out are just about a simple a concept as you could get in
machine language programming.

There are times when the CPU needs to get information from the
outside world ("No CPU is an island?"), such as from the keyboa:d
or from the cassette player.

As far as the CPU is concerned that's totally foreign territory and
as all good CPUs it will never leave home. The most it is prepared
to do is to open a door to allow deliveries. The CPU doesn't know
and doesn't care to know how a cassette player works.

All the relevant information is which door the cassette man is
going to be delivering his goodies to - there is a choice of up to
256 doors for the Z80 chip but the actual number available to a
particular CPU is a result of decisions made by the hardware
manufacturers. As far as the Sinclair is concerned there is only
the keyboard, the printer and the cassette player.

The other thing tihe CPU doesn't want to know about is how the data
is being transmitted. As far as it's concerned, if it's coming in
or going out, it's an 8-bit byte.

The keyboard and the cassette player are both on the other side of
door FEH (254 in decimal), so that to get data in from the keyboard
you use the instruction

IN A, (FE)

Now you may be asking yourselves how the 40 keys of the keyboard
are arranged so as to be represented by 8-bit bytes.

The answer is not what you would expect - the keyboard only returns
information from 5 keys at a time. It is the value of 'A' as the
door is opened which determines which set of 5 keys are going to be
examined!

The keyboard is divided into 4 rows, each comprising two blocks of
5 keys:

3 =) 1 2 3 4 5 6 7 8 9 0 (=4
2 =) Q W E R T Q U I 0 P (=5
1 =) A S D F G H J K L N/L (=6
0O=) SFT Z X C V B N M . SPC (=7

You can see that there are 8 blocks of letters and we should
therefore be able to correlate this with the 8 bits of 'A'.

122

This is in fact the case:

All of the bits of 'A' are set to 'ON' except for one bit which
specifies the block to be read.

You can think of it as something like a secret handshake - as the
CPU goes to the door to get the information the handshake
determines which piece of information it gets.

Thus to read the keys in the block "1 2 3 4 5", it is bit 3 of 'A'
which should be off:
A = 1L L 0111 = F7

The contents of the keyboard are returned in 'A' with the
information coming into the lower bits of 'A":

ie. Key 'l' -) Bit 0 of 'A"
Key '2' =) Bit 1 of 'A’

I1f block 4 was chosen instead (ie. A = EFH) then the information
would come in as:

Key '0' -) Bit O of 'A°
Key '9' =) Bit 1 of 'A'

You can think of the information coming into 'A' from the outside
edges first, so that both '0O' and 'l' would both go to bit 'O' of
register 'A'.

For some games applications you may wish to allow all of the top
row to be read, and it is possible to read it all in one
instruction (rather than the two instructions which would be
required if we read one block at a time).

This is done by fooling the doorman into giving you two lots of
information at once:

eg. A = 1 1 1 O 0 1 1 1 =E7
Note that both bits '3' and '4' are 'OFF'

This handshake tells the doorman that the CPU wants the information
from block 3 and block 4, and that is what it will get. Of course
the two lots of information get jumbled and it is not possible for
you to tell whether key 'O' or key 'l' was pressed, for example -
both would set bit O of 'A'.

ie. '1' or 'O' =) Bit O of A
12' or '9' o) Bit 1 of A
etc,

This is useful in movement games because it enables keys '5' and

'8' to be used as the left and right direction arrows even though
they belong to different blocks in the keyboard.

"123

Note that if you use the instruction

IN r, (C)
where register C specifies which door you want, then it is the
contents of register B which define which keyboard block is being
selected.

The other doors which may be of interest to you are obviously the
cassette input/output doors.

This is still door FE, as mentioned above. The major problem
involved is the timing of the data going out and going in; this
kind of problem requires a lot of experience with machine language
programming and calculations of the time required for each
instruction path.

The OUT instruction is also used to generate sound on the Spectrum
and to set the border colour.

Page 160 of the Spectrum manual discusses the BASIC OUT
instruction, and machine code programming of the OUT command is
exactly the same. In other words, bits O, 1 and 2 define the border
colour, bit 3 sends a pulse out to the MIC and EAR sockets, while
bit 4 sends a pulse to the internal loudspeaker.

To change the border colour, load A with the appropriate colour
value and then execute the OUT (FE),A instruction. Note that this
is only a TEMPORARY change in border colour. To change the border
colour permanently, you must perform the above OUT instruction and
also change the value of the memory location 23624, which is the
operating system's variable BORDCR (see page 174 of Spectrum
manual).

The reason for this is that the hardware in the Spectrum (the ULA
chip in the Spectrum) controls the border colour, and that it
obtains its information by looking at the contents of that memory
location. You can stop the hardware from messing about with the
border colour only if you disable all interrupts (DI instruction).
Note that some of the subroutines in the ROM re-enable interrupts
(EI instruction).

Creating your own sound:

You can create your own sound on the Spectrum, but there are some

limitations due to the hardware construction for users with only
16K of RAM.

Because the screen is constantly being updated, the hardware
regularly interrupts the Z80 from performing its tasks in order to
show what is on the display file. This is done by bringing the WAIT
line low.

124

The effect of this is that any program that requires exact or
regular timing is impossible as it is not possible to predict the
timing effects of these WAIT interruptions. The design of the
Spectrum is such that the Z80 is only interrupted if the Z80 is
trying to process information contained in the first 16K of RAM. No
such interruptions occur if the program and data the Z80 is
accessing is in the ROM or in the upper 32K of memory.

To summarise this in layman's terms: you can produce sounds and
noises using the OUT command if you have a 16K machine, but not
pure notes. (It is possible to get around this by calling the ROM's
BEEP routine - see the chapter on the Spectrum's features).

To create sound, you need to send a pulse to turn on the
loudspeaker (and/or MIC socket if it is to be amplified). Then a
little while later, you need to send another pulse to turn it off.
Then a little while later, on again, ...

In this way sound is created. The total length of time between
turning the loudspeaker on and the next time you turn it on again
determines the frequency of the sound. The length of time you leave
the pulse ON, as opposed to the total time between pulses can give
you a minimal degree of control over volume.

Note that you must use a value of A for on and off such that the
border colour remains unchanged. Otherwise, you will get a banding
pattern similar to the LOADing pattern.

Exercise:

Write a routine which simulates an ambulance siren (frequency
increasing, then frequency decreasing). Note that you must sound
each frequency for a short period before moving on to the next
frequency.

125

BCD Representation

BCD stands for binary-coded decimal. This is a way of representing
information in decimal format.

In order to encode each of the digits from O to 9, only four bits
are necessary and six of the possible codes will not be used in
this representation.

Since four bits are needed to encode a decimal digit, two digits
may be encoded in every byte. This is called BCD representation.

eg. 00000000 is BCD representation for decimal 00.

10011001 is BCD representation for decimal 99. What is the
BCD representation for '"58"? "10"?
Is '"10100000" a wvalid BCD representation?

BCD ARITHMETIC

This strange convention in representing numbers can lead to
potential problems in addition and subtraction.

Try adding the following

BCD 08 0000 1000
B BCD 03 0000 0011
BCD 11 0000 1011

You will notice that the result of the second operation is wrong
and is an invalid BCD number. To compensate, a special instruction,
"DAA'", called "decimal adjust arithmetic'" must be used to adjust
the result of the addition. (ie. Add 6 if the result is greater
than 9).

The next problem is illustrated by the same example. The carry will
be generated from the lower BCD digit (the right-most one) into the
left-most one. This internal carry must be taken into account and
added to the second BCD digit.

The "half carry flag ", H is used to detect this carry.

LD A, 12H ;load literal BCD "12"
ADD A, 24H ;add literal BCD "24"
DAA ;decimal adjust result

LD (addr), A ;store result

You will be unlikely to use BCD representation in your programming.
But it is good to know that the Z80 chip still supports this
representation and the DAA instruction will make the life of a
small group of BCD users simpler.

126

Interrupts

An interrupt is a signal sent to the microprocessor, which may
occur at any time and will generally suspend the execution of the
current program (without the program knowing it).

Three interruption machanisms are provided on the Z80: the bus
request (BUSRQ), the non-maskable interrupt(NMI) and the usual
interrupt (INT).

From programming point of view, we will only look into the usual
maskable interrupt (INT).

The DI (disable interrupt) instruction is used to reset (mask),
while the EI (enable interrupt) instruction is used to set
(unmask) .

Generally, an ordinary interrupt will result in the current program
counter pushed onto the stack follows by a branch of execution to
the zero page of the ROM by the RST instruction. A RETI (return
from interrupt) instruction is required to return from the
interrupt.

In normal operation, the Spectrum has interrupts enabled (EI), and
in fact the programme is interrupted 50 times per second. This
interrupt allows the keyboard to be scanned by the ROM's routine.

You may wish to disable interrupts in your programs as this will
speed execution. You can still read the keyboard as long as you use

your own routine to do so.

Be sure to enable interrupts when you finish from your program, as
otherwise the system will not be able to read the keyboard!

127

Restarts

This is rather a "leftover'" from the 8080 implemented for
compatibility. That is why you will be unlikely to use RST
instructions in your program.

The RST performs the same actions as a call, but allows a jump to
only one of eight addresses in the first 256 memory locations: OOH,
O8H, 10H, 18H, 20H, 28H, 30H or 38H.

The advantage of the RST instruction is that frequently called
subroutines can be called using only one byte. The RST instruction
also takes less time than a CALL instruction.

The disadvantage of RST instruction is that it can only be used to
call one of the above eight possible locations.

As all those locations are within the ROM, you cannot gain this
advantage in your own programs. It is possible however to make use
of the ROM's subroutines if you know what they do, and thus use the
RST instructions.

You will be able to know more about the RST instructions from our
book "UNDERSTANDING YOUR SPECTRUM'" by Dr Ian Logan.

128

Programming
Your Spectrum

129

Planning Your Program

Machine language programming is extremely flexible in that it
allows you to do anything at all.

Since all the higher level languages ultimately have to come down
to machine language, it follows that anything you can program in
Fortran or Cobol or any other language can be done in machine
language.

With the additional benefit that the machine language program will
be the faster one.

This total flexibility can however also be a trap to the unwary
programmer. With so much freedom, it is possible to do anything.
Unlike the SPECTRUM's BASIC operating system, for example, there
are no checks on whether the statement is a legal one.

Since all numbers you can enter will be an instruction of one kind
or another, the Z80 chip will process everything.

But even beyond the problems of checking whether the syntax is
legal, machine language programming has no constraints on your
logic - you can perform functions, jumps, etc. which would be
totally illegal in any higher level language.

It is therefore of the utmost importance to discipline yourself in
the design of machine language programming. 1 cannot recommend too
highly the concept of the 'top-down' approach in programming in
general, but especially in machine language programming.

The 'top-down' approach forces you to break down the problem into
smaller units, and enables you to check the logic of your design
without doing any coding for a long time.

Suppose you wanted to write a lunar lander program:
The very first approach might be something along the lines

INSTR Display instructions

Jump back to INSTR till ENTER pressed
DRAW Draw landscape, start Lander at top
LAND Move Lander

If fuel finished go to CRASH
Jump back to LAND if not ground

GROUND Print Congratulations
Jump back to INSTR for next GO
CRASH Print commiserations on bad landing

Jump back to INSTR for next GO

130

Notice how this 'program' is written totally in English. At this
stage, no decision has been made whether the program is to be
written in BASIC or machine language. Nor is it necessary to make
that decision - the concept of the Lunar Lander program is not
dependent on the coding.

Now comes the part of logic testing.
You play the part of the computer and see if all the possibilities
you wish to see included in the program are covered.

Are there any jumps to things you meant to write in but forgot? Is
everything there? Are some routines redundant? Should some of the
things be put into subroutines?

Let us look at the 'program' again - oh, oh: we forgot to allow any
way to finish the program!

The above logic might be fine for some applications, such as an
arcade machine, but in your program you may decide you would like

to be able to turn the program off.

We now change the last part of the program as follows:

GROUND Print Congratulations

Jump to Finish
CRASH Print commiserations on bad landing
FINISH Ask player if finished

If not, jump to INSTR
If yes, STOP

Note that we have used labels to describe certain lines in the
program. These are very valuable, the more so if you choose short
labels which are descriptive in their meaning.

Once this level is finished, you move one level down to do the same
thing to one of the lines or modules above.
This is why this approach is called the top down approach.

For example we can expand the 'finish' module above:

FINISH Clear screen
Print "Would you like to stop now?"
Scan keyboard for input
If input = yes then stop
Jump to INSTR

The other benefit of the top down approach is that you can test and
run a particular module on its own, so that it is ready for the
final program.

Let us go down one level further again, and look at the
Clear screen

131

line in more detail.

By this stage we do have to decide on what language we will write
the program in, and let us choose machine language on the Sinclair.

If you were writing in BASIC, all you would have to say is:

900 CLS
but in machine language that simple sentence, 'Clear screen' can be
deceptive.)

We might therefore do something like:
CLEAR Find screen beginning
Fill next 6144 positions with blanks

We still haven't done any coding, but obviously the approach is
based on machine language. Let's look more closely at exactly what

this clear screen routine is meant to do and what it will actually
do.

You may recall from the Spectrum manual that the screen is made up
of 6144 locations, and that there are a further 768 locations which
describe the attributes of the screen - paper colour, ink colour,
and so on.

The short program description above will indeed clear the screen
portion, but does not have any effect on the attribute file. If not
all the screen has the same paper colour, or if some character
positions have flashing or bright set 'on', then the clear screen
routine above will clearly be inadequate.

We need to work on the attribute file as well. (Note how much more
complex certain tasks can be in machine language than in BASIC.)

We therefore need to expand the program to read
Find screen beginning
Load next 6144 bytes with blanks
Find attribute file beginning
Load next 768 bytes with paper/ink desired

The next level down is the one where you must finally do the
coding, so let us look at filling the screen with blanks:

CLEAR LD HL,SCREEN ;Screen start
LD BC,6144 ;Bytes to clear
LD D,0 ;D=blank

LOOP LD (HL),D :Fill blank
INC HL ;Next position
DEC BC ;Reduce count
LD A,B
OR C ;Test if BC = O
JR NZ,LOOP ;Again if not end

132

Now you can deal with programs of such length quite easily and in
this way build up very complex programs indeed.

By the way, vou no doubt understand now why machine language
programs tend to be so long and why people invented the higher
language programs!

Exercises:

There are more ways than one to write any particular routines, so
let us look at the simple clear screen routine written above.

This could be handled by several different approaches.

Exercise 1:

Can you think of a way that would enable the loop to blank 6144
positions without using the BC register, but using the B register
only so that we may make use of the 'DINZ' instruction?

Exercise 2:

Can you think of a way that would enable the 6144 positions to be
blanked using the more powerful 'LDIR' instruction?

Think carefully of what 'LDIR' does: it is not always necessary to
have 6144 blank positions elsewhere!

Answers:

More than one possible answer can be '"right'" - the only test is
does it work? In other words does it do what YOU want?

Using DJINZ:

CLEAR LD HL,SCREEN
LD A,O0
LD B,24 ;Set B=24
BIGLOOP PUSH BC ;save value
LD B,A ;Set B=256
LITLOOP LD (HL),A $
INC HL ;Fill in 256 blanks
DJIJNZ LITLOOP
POP BC ;Get back value of B
DJNZ BIGLOOP ;Do it until end

We have been able to use 24 times 256 (=6144) to clear the screen.

133

Points of note are:
We can set B = 0 to go through the DJNZ loop
256 times. (Why?)
This procedure would not normally be used in a
program unless we were also using register C
for other purposes.

Using LDIR:

CLEAR LD HL,SCREEN ;Source
PUSH HL
POP DE
INC DE ;DEST = HL + 1
LD BC,6144 ;How Many
LD (HL),O ;lst POS = 0O
LDIR ;Move it

Note that we have found DE = HL +1 by getting DE = HL and
increasing DE. This can be achieved more easily by loading the
value of SCREEN +1 into DE directly but this requires 1 more byte!

The reason this LDIR works is because we are using the fact that
the data is overwriting the block to be written as we proceed. This
is using in a positive manner the problem we discussed in the Block
Move Chapter.

If you add up the memory required, the first method requires 14
bytes, the second 16 bytes, and the last 13 bytes.

134

Features of the Spectrum

It is time then to have a look into features of your ZX Spectrum
that are useful when you develope machine language programs for
it.

Input - keyboard

As far as input to the Spectrum is concerned, we will ignore
cassette input and concentrate on the keyboard.

The keyboard is the only input which provides real-time
communication. It can dynamically affect the processing of any
program, either the operating system in ROM or the user's program
in RAM.

Logically we can see the keyboard as a two dimensional matrix with
eight rows and five columns as in appendix A.

Each of the forty intersections represents a key of the keyboard.
In their normal state (when they are not pressed), they are always
in a high mood ie. the intersection is set as 1.

When a particular key is pressed and '"pressurized'" the intersection
corresponding to that key will be reset to a low mood ie. O.

Knowing the relationship between the keyboard and this inner matrix
representation, we can derive a logical way of testing key pressing
which can be used in machine language programming.

In BASIC, when we scan the keyboard we need to provide an address
for that particular half row of keyboard where the desired key
resides before using the IN function as described in chapter 23
(p 160) of the Spectrum manual.

Similarly, in a machine language program, we need to load into the
accumulator a value corresponding to the address of the half row of
keys we want to test. The required value for each half row is
listed in the leftmost column of the table in appendix A.

eg. For the "H - ENTER" half-row we load A with value BFH

LD A, BFH
The value in A will then be used to fetch the byte which contains
the state of that particular half-row of keys and return to A when
the INPUT instruction is issued.

eg. The port used is the FEH port

IN A, (FER)

135

Since there are five keys per half row, we are only interested in
the five low order bits of the returned byte in A.

If no key is pressed in that half-row, the value of the low order
five bits will be (2*%%4 4 2%%3 4 2%%2 4 2%%] 4+ 2%%0 je. 16 + 8 + &
+2 +1=31).

register A = xxx11111 when no key is pressed.

If we want to test whether the rightmost bit is pressed, we check
to see whether that bit is low.

There are two ways to test that:
i. Use Bit test instructions, eg BIT O, A
1f the bit is low (not set) then the Zero flag will
be set.
ii. Use Logical AND instructions AND 1
If the bit is low (not set) then the result will be
zero and the Zero flag will be set.

The first method is easier because the particular bit we want to
test is specified directly in the Bit-test instruction. But it has
a shortfall in that if we want to test two keys of that half-row we
will need to use two Bit-test instructions and possibly two
relative jumps.

eg. To test bit O and bit 1 using the first method

BIT O, A ;test bit 0 of A set or not
JR Z, NPRESS ;jump if not pressed
BIT 1, A ;test bit 1 of A set or not

JR Z, NPRESS ;jump if not pressed

do whatever if both are pressed

NPRESS

The second method of testing using logical AND requires a little
more logic. To test bit O we use "AND 1"; to test bit 1 we use "AND
2"; to test bit 2 we use "AND 4'" and so on.

To test two keys, we use "AND x'" where x is the sum of the value we
will use when testing each one key individually.

eg. To test both bit O and bit 1 of A are set:

AND 3 ;test both bit 0 and bit 1
;is set
CP 3 ;test if both set

136

JR NZ,NBOTH ; jump if not both pressed

To test if either bit O or bit 1 of A are set

AND 3 itest either bit 0 and bit
31 is set
JR Z ,NOTONE ; jump if not one is pressed

-

Exercise:

To summarise what we have learnt relating to the keyboard, can you

code a machine language subroutine trapping the (ENTER) key pressed
for your Spectrum.

You will need to

a. check the row address that needs to be loaded into A.
b. send it to the input port FEH.
c. test the bit that is set by the (ENTER) key.

137

Output - Video Screen display

The Video screen display is the main source of output for the
computer to communicate to the user.

The following machine language program will demonstrate the way the
screen memory of the Spectrum is organised:

210040 LD HL,4000H ;load HL with start of
;jdisplay file

36FF LD (HL), FFH ;£ill that screen location

110140 LD DE,4001H ;load DE with next byte
;in display

010100 LD BC,1 ;BC contains number of
;bytes to be transferred

EDBO LDIR ;move a block length BC
;from (HL) to (DE)

Cc9 RET ;end of program

Load the above program into your Spectrum and run the machine code
program. The way it is written above, one byte only will be
transferred from (HL) to (DE).

Now change the fourth line to read LD BC, 31 (011F00). You may be
surprised at which are the first 32 bytes of the screen display.
Note how a very thin line has been drawn across the top of the
screen. The first 32 bytes of the screen memory relate to the first
byte of each of the first 32 characters.

Now change that line to read LD BC,255 (O1FF00). Again you may be
surprised. The next byte after the 32nd one is not.,on the second
row of dots on the screen! It is the first byte of the 32nd
character! And so on up to the 256th character.

Are you prepared to predict where the next byte would go? Change
that line to LD BC, 2047 (@1FFP7) and run the program. You will
find that the top third of the screen only has been filled.

You can experiment with this, using different values for BC up to
LD BC, 6143 (@1FF17). 1In this way you can watch the way Spectrum
organises the screen.

The screen memory is actually divided into three lots.
i. Memory 4000H - 47FFH (=== first eight lines.
ii. Memory 4800H - 4FFFH ==c second eight lines.
iii. Memory 5000H - 57FFH (===) third eight lines.

Not only that, but you will recall that each character of the
Spectrum is composed of eight 8-bit bytes which makes up 64 dots.

138

eg. For the character " ! ", its character represntation is

0 00000000 OH
16 00010000 10H
16 00010000 10H
16 00010000 10H
16 00010000 1CH

0 00000000 OH
16 00010000 10H

0 00000000 OH

The organisation of the Spectrum screen display memory is such that
the first 256 bytes from 4000H to 40FFH correspond to the first
byte of each of the 256 8-byte character of the first eight lines.

Then the next 256 bytes from memory location 4100H to 41FFH
correspond to the second byte of each of the 256 8-byte character
of the first eight lines and so on.

Thus, the memory location of the eight bytes corresponding to the
first character of the screen is:

lst byte 4000H

2nd byte 4100H

3rd byte 4200H

4th byte 4300H

5th byte 4400H

6th byte 4500H

7th byte 4600H

8th byte 4700H

Strange, isn't it? But we have to accept the Spectrum the way it is
built.

Can you write down the eight bytes that correspond to the 3lst
character of the third line of the screen? You can refer to

Appendix B, the screen memory map.
(405EH, 415EH, 425EH,...,475EH).

To follow on the concept we have developed about the screen
display, the memory locations that correspond to the first
character of the second eight lines lot is:

4800H, 4900H, 4AOOH, 4BOOH, 4COOH, 4DOOH, 4EOOH, 4FOOH.

Similarly, the first character of the third eight lines lot has its
eight-bytes in memory locations:
5000H, 5100H, 5200H, 5300H, 5400H, 5500H, 5600H, 5700H.

There are some advantages, however, in using machine language. The
apparent complexities are worth overcoming. As a trivial example,
in BASIC, if you try to PRINT into the input section of the screen
(the bottom two lines), the BASIC system will object most
violently. But in machine language you have full access to the

139

whole screen.

If you observe the screen display organisation more closely, you
will see that the High Order Byte of First Byte (HOBFB) of each

character determines which lot of the three memory portions the

character is in.

For example,if 40H =(HOBFB (41H char is in first
eight lines lot
if 48H =(HOBFB (49H char is in second
eight lines lot
if 50H =(HOBFB (51H char is in third
eight lines lot

Not only that, the low order three bits of the HOB (High Order
Byte) determines which byte of the eight bytes of the character it
belongs.

Things starting to blurr now? Turn to appendix B and try to observe
the relationship between memory locations and the display screen
(if any?!!).

Try the following example,:
Suppose we are given an address as 4A36H. The High Order Byte of
the address is 4AH so:

i. we know that it is within the screen display memory
since its value is in between 40H and 58H.

ii. its binary representation is 01001010

iii.from the lower three bits we know that it belongs to
the third byte of a character position on the screen.

iv. if we made the lower three bits zero, then the value
of the HOB would be 48H. Thus we know this belongs to
the second eight lines lot, ie the middle portion of
the screen display.

The conclusion we can reach is that the byte given refers to the
third byte of a character in the middle portion of the display
memory.

Which character of the middle portion does the byte belongs to? To
answer this question, we'll need to know the value of the Low Order
Byte of the address.

We know the LOB of the address is 36H. So the address refers to
character 36H (48+6), the 54th position away from the first

character of the middle portion.

Since each line has 32 characters, the position referred to is in

140

the second line of the middle screen display portion and is the
(54-32+1)th character of that line.

The conclusion we can make is that the byte given is the third byte
of the 23rd character of the 10th line from the start of the
screen.

Exercise:

Which byte of which character does the address 564FH refer to?

Exercise:

Can you write a short routine to write an exclamation mark to the
screen? The bytes that make up this character are given above.

141

Output - Video display attribute

The display attribute memory is easier to understand than the
display memory because it has a one-to-one relationship with the
screen display characters.

The attribute file is located in memory from 5800H to 5AFFH. It is
768 bytes, which correspond to 24 lines of 32 character each. In
other words, there is one attribute byte for each character
position.

Thus, 5800H corresponds to the attribute of the first character of
the first line, 5801H the second character, 5802H the
third,...581FH the thirty second character of the first line.

Similarly, 5820H holds the attribute of the first character of the
second line, 5840H of the third line, ... and 5AEOH the attribute
of the first character of the last line of the screen.

We know that for each character position on the screen, there is a

corresponding attribute byte in the attribute memory, made up as
follows:

attribute byte b b bbb bbb
bit 0 - 2 represents the ink colour of the
character O to 7.
bit 3 - 5 represents the paper colour of the
character O to 7.
bit 6 Bright if 1, normal if O.
bit 7 Flash if 1, not flash if O.

Exercise:

What is the address of the attribute byte that corresponds to the
first byte of the middle screen section? What is the address for
the first byte of the third section? Answers are given on the next
page, but try to work it out for yourself.

Exercise:

Can you write a subroutine that converts a given address on the
screen to its corresponding attribute address.
eg. 4529H

You must in effect determine which character of this screen this
belongs to, and then add this to 5800H.

The following program shows a short method of achieving this:

142

LD HL, 4529H
LD A, H
AND 18H

SRA A
SRA A
SRA A

ADD A, 58H
LD H,A

You may need to think about

;jload the given address to HL
;load the high order byte to A
;trap bits 3 and 4 to
;determine which portion of the
;jscreen the address belongs
;jshift right accumulator
;three times - ie divide by 8
;jresult can either be 0,1 or 2
;depending whether H was

3 48H, 50H or 50H

stransform to attribute memory
;HL contain attribute address
;ie H = 58H, 59H or 60H

;L remains the same!!!

this for a while!

The way the program works is related to the answer of the first

exercise:

1st char. of 1lst screen section
1st char. of 2nd screen section
1st char. of 3rd screen section

2nd char. of 1lst screen section

eltCe was

H

4000H Attribute address
4800H Attribute address
5000H Attribute address

4801H Attribute address

etc. ...

This should make things a little clearer!

143

5800H
5900H
5A00H

59@1H

Qutput - Sound

Another real time communication that your Spectrum microcomputer
offers is sound. It would be a waste if we didn't make full use of
this facility.

In machine language on the Spectrum, there are two major ways of
generating sound.
i. Sending signals to the cassette output port 254 for
certain duration of time using the OUT instruction 254.
eg. OUT (254), A
ii. Set HL, DE to certain values and call the ROM sound
routine used to generate sound.
The input parameters are:
DE - duration in sec * frequency
HL - (437,500 / frequency) - 30.125
Then
CALL O3B5H.

The first way of sound generation has the advantage of being free
from any ROM calls. It is shorter in terms of time to execute. But
... there is always a BUT!

Since the ULA is constantly accessing the first 16K memory of the
RAM to perform the video display, your program, if it resides
within the first 16K, will frequently be temporarily interrupted.

1f the program is generating sound, the sound will be in bursts of
unpredictable duration. One solution is to move the part of the

program that generates sound to the higher memory region if you
have a 48K machine.

If you haven't got a 48K machine, then you can still generate sound
using this method, but it will not be 'clean sound'. You have to
use the second method of sound generation (of calling the ROM
routine) to get that result.

Note that as we send values to output port 254, it will also affect
the border colour, and turn the MIC on, as well as the loudspeaker
depending on what value is sent. Refer to chapter 23 (p 160) of
your Spectrum user manual.

On the other hand, the ROM routine for generating sound in effect
allows you to use the BEEP command from your machine language
program. You can think of the DE register pair as holding a value
for the duration of the sound, and HL a value for the frequency.
Experiment with different values for HL and DE until you get the
sound you want.

The limitation of this method of course is that you are restricted
to whatever sounds you can create with the BEEP command.

144

Monitor
Programs

EZ-Code Machine Language Editor

This is a machine code monitor program that allows you to:

i. INPUT your machine language program module in
either a fully assembled format
or a semi-assembled format with all relative
jump and absolute jumps expressed in the
form of line number.

ii. LIST the source input program module.

iii. DUMP the input program module into the specified
memory address.

iv. EXAMINE a range of memory locations.

v. SAVE EITHER the '"source module"
OR the dumped program in fully machine
code format.

vi. LOAD a saved '"source program'" from the cassette.

vii. RUN the dumped machine program module.

PREREQUISITE for the EZ-code

Before using this monitor program to input any machine language
programs, you must assemble your assembly language program. You do
not need to calculate relative or absolute jumps!

Your program module must not be greater than 800 bytes or more than
200 instructions.

You cannot load the final program below memory 31499 (in order not
to wipe off the EZ-code program.)

CONCEPT behind the EZ-code

The concept behind this program is to enable you to enter machine
code instruction in a numbered line format, much like the listing
of a BASIC program.

Each line of the '"source program" (the name of the lines of machine

145

code) has a line number and up to &4 bytes of machine code.

A major benefit is therefore the ability to "edit" any line. The
"source program' can also be SAVED separately to tape, allowing
work in progress to be saved.

A major innovation in this program is the ability to insert
relative jumps or absolute jumps without having to calculate the
numbers involved in any jump can be made by referring to the line

number you wish to jump to!

This means that changes can be made without problems even within
the scope of a relative jump.

The machine code of the '"source program'" is transferred to memory

by the "dump'' command. The resulting machine code can also be SAVED
O memory.

EZ-code Instruction Summary

Note that the first question the program will ask you is
"Loading address'.

This is the address where you wish the machine code program to go.
This cannot be below 31500.

kX Entering LINEs wwhk
i. To ENTER lines of ''source program'':

(line-no)(blank)(maximum of 4 bytes in Hexadecimal)
(ENTER)

eg. 1 210040 will insert the machine code instruction
LD HL,4000H into line number 1.

ii. To EDIT a line:
(line-no)(blank)(retype new bytes)(ENTER)

eg. 1 210140 will change line number 1 to the instruction
LD HL,4001H.

iii.To DELETE an instruction line:
(line-no) (ENTER)

eg. 1 (ENTER) will delete line number 1.

146

iv. To specify RELATIVE or ABSOLUTE jump

(line-no)(blank)(jump instruction)('"lower case "L"'")
(line-no) (ENTER)

eg. 1 c312 represents the instruction JP to line 2.
2 1811 represents the instruction JR to line 1.

devedek COMMANDSs Yededek

i. dump(ENTER)
* dump the source listing into the memory starting

from the specified LOADING address.
* this must be done before running the machine code

program.
abbreviation: du

ii. exit (ENTER)
* exit from the EZ-code and re-—-enter BASIC system.

abbreviation: ex

iii.list (ENTER)

* list the first twenty-two instruction lines of the
source listing.
press any key except ''m'" and '"'BREAK" to continue
listing

N
ris

abbreviation: 1i

list#(ENTER)
* list twenty-two lines of the source listing
starting from line number #, a number between 1 and
200 inclusively.

abbreviation: NO ABBREV

iv. load(ENTER)
* load a source listing module from the cassette
replacing the existing module.

abbreviation: lo

v. mem(ENTER)
prompt: Starting address:

* enter memory address you want to start displaying
f rom.
can be from O to 32767 for 16K Spectrum or O to
65535 for 48K Spectrum.
* press '"m" to exit memory examine mode.

147

abbreviation: me

vi. new(ENTER)

* clear the current module and re-run the EZ-code.
* this is useful when you want to start coding in
another program module.

abbreviation: ne

vii.run(ENTER)

s,
"

run the dumped program module from LOADING address
you specified when you start running the EZ-code
program or when you LOAD a new source listing.

abbreviation: ru

viii.save(ENTER)

e
w

save either the source listing or dumped machine
code onto cassette.

prompt: Enter name:

enter the name you want to use.
Source or Machine code: (s or m)
enter s for source listing saving
enter m for machine code saving
Start tape, then press any key.
make sure that the cassette lead is properly
winded.
press any key when the cassette is ready.

abbreviation: sa

1

If you don't want the result of BC register returned
after running, change line 3090 to :
3090 IF k$="ru" THEN LET L=USR R

To restart the EZ-code
Either wuse RUN and resulting with all vaiables
reinitialised
Or use GOTO 2020 which returns the prompt
"Command or Line(###): ".

All numeric entry except machine instruction
code has to be in decimal format.

To enable you to insert additional lines in the current

listing, it is good to space out the listing.

ie.instead of entering instruction lines as 1, 2, 3
enter as 1, 5, 10 etc.

This will makes the input of the module more flexible.

148

EXERCISE on EZ-code

Enter the following codes.

210040 LD HL,4000H ;fill screen
110140 LD DE,4001H

O1FF17 LD BC,6143

3EFF LD A, OFFH

77 LD (HL), A

EDBO LDIR

3E7F LOOP:LD A, 7FH ;trap BREAK key
DBFE IN A, (OFEH)

E601 AND 1

20F8 JR NZ, LOOP

Cc9 RET

To enter the above code using EZ-code:

(RUN)
Loading address: 31500(ENTER)
Command or Line(###): 1 210040(ENTER)
Command or Line(###): 5 110140(ENTER)
Command or Line(###): 10 O1ff17(ENTER)
Command or Line(###): 15 3eff (ENTER)
Command or LIne(###): 20 77(ENTER)
Command or Line(###): 25 edbO(ENTER)
Command or Line(###): 30 3e7f(ENTER)
Command or Line(###): 35 dbfe(ENTER)
Command or Line(###): 40 e601(ENTER)
Command or Line(###): 45 20130(ENTER)
(This is 20 then lower case "L", then 30. In other words
JR NZ, line 30)
Command or Line(###): 50 c9(ENTER)
Command or Line(###): list(ENTER)
Command or Line(###): dump(ENTER)
Command or Line(###): mem(ENTER)
Starting address: 31500(ENTER)
m (this is the key to exit the memory
display mode)
Command or Line(###): run(ENTER)
(BREAK)

Note how there must be a space after the line numbers.

149

EZETDE
Copyright (c) 1982 by William Tang and A.M.Sullis

100 REM machine
110 REM machins code _monitor
120 G0 TO Q000

170 DEF FN d(s$) = {s$ > “"9")%(CODE s$-55)
+(S% <= "9")X(CODE s-48)—(s$ > “ ") 432

145 DEF FN o(0%) = ((03% = "ca")+(0% = “"da")
+{0% = "ea"™)+(0F = "3)+ (0% = "c2%)
+(0E = “d2")+(0% = "eZ")+(0F = "f2"3
+(0% = "cI"3)-((0% = "IB"I+ (0% = "I0O")
+(D% = "2+ (0F = “ZOMI+(Ds = "18")

+.

o

s
|

B YRy)

1060 REM
1G10 REM INTING .routine IRU
1020 CL& = ze, 25; INVERSE oni FLASH onj;
1630 LET F ze * PRINT AT z=, zej;
104G FOR J = pll TO pl2
10530 IF Csdd, an) = "_." THEN G0 7O 1110
1060 FRINT TAB tr— LEN STR% J: J; TAE Frj; "_“;
107G IF E$‘:J; tNE or i ol o= ny n
THEN FRINT CH{(I. on}+" _ "+C% tw) +0% (1,
: B3O TO 1930
1080 PRINT C$(J, on)j ",."; CH{J. twy; "_ "
ER I tr)Y: "L."3 CS(J, Fr)

g
Tl A
~ sl
|
il

J Ty
b o

T RETURN
00 REM
REM IV main _ routine 12U
INFUT “YCommand . .or i ine ($3##) =
IF A% ({ TO +ri Y e aa FHEN &

1090 LE on

1100 IF F = 22 THEN &0 T0O 112D
1110 NEXT J

1120 PRINT AT =z, 257 " ooz
113¢ i '

H?

Df

P .

IF 4% {gn) > "@" THEN GO TO Z000

LET kE = "" 2 FOR K = on TO fr

IF As(k TO K) = " _ " THEN GO T3 Z0%0

LET k€ = k%+A4%(K TO K

NEXT K

IF K = 5 BGR VAL k% = ze OR VAL k% > 1n
THEN GO TO mr

2100 LET J = VYAl kS = LET n = J
* REM line number .must .be 3 _bvies

i

2110 LET A% = AL (K+on TO)
2120 LET ks = »"
2130 FOR K = on TO LEN A%
2140 IF AS(K TO K} <> " _ "

THEN LET k3 = k£+As(k TO K)
2150 NEXT K
2160 LET A% = k3
2162 IF As{on) = "1" THEN GO TO mr

150

Y

J
~d
L
3

on T 7 STEF tw
(I /twHon]
= A%(I TO I+on)

] wd [f]
[I 13
g, -‘H‘
-~ ” M
et |
DR |
=

EONE T

Il

Y
g B

W

J

S

J
Pt Bt [T1 0 b= = OTF
'n‘ﬂr:l'ﬂ"n"rirr]mm:‘“'

2220 n < TF THEN LET TF = n
223X0 n » BF THEM LET BF = n
2240 TO 2320
2250 n <> BF THEN GO TO 2280
22560 BF = on OR C%{BF, on) <> "_, . "
THEN 60 TO 2320
2270 LET BF = BP-on = G0 TO 22640
Z280 IF n <> TF THEWN GO TO 2320
2290 IF CE(TP. on) <> ".." THEN GO TO 2320

PEGO IF TR <> BP AND TR <> 1In THEN LET TF = TFP+an
: B0 70 2220
2710 LET TF = on
Z2RZ20 LET pp = n
2Z3Z0 IF n £ TF THEN LET pp
2240 LET numip = ze
= TF OR nuplip = 11 THEN GO 70O 2380

itds L1
7 T P

I

TF + G0 T 2380

2370 LET pp = po-on ¢ B0 TO 2350
2380 LET pll = pp ¢ LET pl2 = BP
2390 GO SUER 1000

2400 50 TO mr

2000 REM

010 REM 1HY CommandskiXEXXEXEXdkixxy TRHRU
FTOZ0 LET kE = As(TO twd

ZOEC IF kE = "du' THEN BD TO 5000

Z040 IF k% "eux" THEN STOF

090 IF k3 = Y141 THEM GO TO 40006

I0AG TIF k% = "1o" THEWN GO TO 7000

070 IF k%

i

b = "me" THEMN GO TO 4000
3080 IF k¥ = "ne" THEN RUN
I0F0 IF k% = "ru" THEN PRINT USSR R

n -
il]

T100 IF kg =

3110 B0 TG mr

A000 REM

4010 REM LMY List.routinefXksxkkxiaxx IR

40720 LET pii = TP ¢ LET pl2 = EP

4030 LET ni = CODE A$(& TO A)

4040 IF LEN A% > fr AND ni1 > 47 6ND ni < S8
THEN LET pli = VAL A%(5 TO 8)

4050 G0 SUE 1000

40460 B0 TO mr

SO0 REM

5010 REM NY DUMP . routinef®Xkkxkxkxx LRU

S020 CLE : PRINT AT ze, 25: INK oni INVERSE on
: FLASH on; "DUMPING" # LET 6 = R

OTHEN GO TO BOOG

151

SO3G
S0O40
SGS0
SGA0

~
2

8]
Y

]

tnLn
5:@

5]

S100G
=110
5120
=4z

.....

]

Lh st
-
9—' A

-
W,

)
A

[T T N N PR N |

) O 4 R O
3~ B

=
St

fost:

-
™
i

n
1

S2G0
52106

C"‘_I—’Itj

520

SZ40
b e
D260
270

22840
D290

5500

FRINT AT on, zej
FOR TF TO EF

IF C3{J, on) = "_." THEN GO TO S470
IF C#(3, tw, on TO on) <> "1" THEN B0 TO S380
FOKE G, ze * POEE G+on. e ¥ POKE G+tw. re
= PORE G+trFr, ze
LET i1 = VAL (C%(J. tw. tw TO twi+CH(I. tr})
PRINT TAE tr— LENM STR% J: INVERSE onji J
: TAR fr: INVERSE ze: ©* "
P LT, ond+" ["+CB (T, twi+CH (I, tr)
 fo= 0 F M3
IF 31 ze OR 31 > In THEN GO TO S440
LET CF = FN G(C%(J, on})
FRINT TAR 17- LEN STR% 313 INVERSE onji ;1
i TAR 18: INVERSE zej3 ", "; C%H(j1, on)
3 "L"3 CH 031, twds .5 CH(4l, tr)g =, n
: CH(31, Fris
IF ABS5 CJI <> on THEN GO TO S440
LET dd = (31 > J)—=(31 < J)
LET ia = G ¢+ LET dp = ze
F i1 = J THEN GO TO S270
LET ¢l = J4dd
LET nl = ze * IF C%(cl, on) = " __"
THEN GO TO S522¢
IF EF(cl, tw, on TO on) <3 "}
THEN LET nl = on+(CH(cl, tw) <> »__ "}
HER{cl, tr) <> " 0"
+(CE{cl, fr) <> " _.")
= GO TO 5220
LET TJ = FN o(CH{(cl, onl}
LET n1 = (TJd = an)2tr+(TJ = —oni kitw
IF ¢l = i1 AND dd > ze THEN GO TO S270
ET dp = dp+ni
F cl = 31 THEN G0 TO S270
ET ¢l = cl+dd
0 To Sigc
F oI = on THEN LET ja = ja+ddidp+i{dd > ze)ktr

R T = T S = O | I"'
[y
[}

T A
|
it

o,

tw TO tw)d

wp R
-2
i Gy M

THEM GO TO
ze THEN GO TO
on 10 pom)

Fodd » ze THEN LET dp = dp+2
F dp > 126 OND dd < ze
F dpo > 129 AND dd >
ET V = 16% FN d(CE(J, on,
${

D440
S440

b . LET 5 = G+on

IF CJ = on THEN FOKE G, ja— INT {ja’qk)iql
¢t LET 6 = G+on ¢ FPOKE 5. INT {(iasak)

¢ LET 6 = G+on ¢ GO TO 5350 0

IF dd < ze THEN LET dp = -dp

LET dp = dp~tw ¢ FPOKE G, dp * LET & = G+on
FRINT "“gi" '

B0 TGO S470

FOR I = on TO 7 STEP tw

152

n3Fa

5400

D410
5420
5430
o440
5450
S4460
5470
5480

&000
6010
6020
&HOZO
&40
HO50

6060
6070
&£080
&£090
6100
65110
6120
&613F0
614G
65150
6160

HZ200
7000
7010
7020
7030

7040
7050
FOAO
7070
7080
7090
7100
7110
7120
7130
7140
7150
000
go10

LET K = INT (I/tw+on)
LET V = 16% FN d(C$(J, K, on TO on))
+ FN d(C$(J, K, tw TO tw))

IF V < ze THEN GO TO 5440
FOKE G, V

LET G = G+on

NEXT I

GO TO 5470

PRINT "xx*©

NEXT J

FRINT AT ol — 285 “"saaxaamal

: GO 10 mr

REM

REM INY Memory.displayXkxxxxxxx TRU
INFUT "Starting.address * ."5 dm

CLS * PRINT AT ze. ze;

LET G = dm + LET F = ze

LET F = F+on

+ PRINT TAE S5- LEN STR$ G; G 5 TAE &3

FOR I = on TO +r

LET V = PEEK G

LET H = INT (V/16)

LET L = V-16%H

LET 6 = G+on

NEXT I

PRINT “."

IF F <> 22 THEN GO TO &050

LET k$ = INKEY$ = IF k% = "' THEN GO TO 6150

IF k$ <> "m" AND k% <> "M" THEN LET F = ze

¢ FPOKE 23692, gk—on = GO TO 6050

FOKE 234692, on $# PAUSE 20 = GO TO mr

REM

REM INY LOADXEXXXXXXXXXEEXX XK TRU

CLS

INFUT
"Load.,array :*Press_ any_ key.when ., .ready. "
; k%

PRINT AT ze., 2535 INVERSE on3; FLASH ons "LOADING"

LOAD "source'" DATA C%()

FOR I = on TO 1In

LET TP = 1

IF C$(I, on) <> " _ ." THEN GO TO 7100

NEXT I

FOR I = 1n 70 on STEF -1

LET BF = 1

IF C$(I, on) <> " _ ." THEN GO TO 7140

NEXT 1

PRINT AT ze, 255 " =

GO TO0 2150

REM

REM JIHY SAVERXXXXXXXXXXXkxXxxxxx TRLI

153

802G INFUT "Enter .name 2 ."3; n%$
80OZI0 IF n$ = "" THEN GO TO 8020
8040 INFUT

"Source . .or .Machine.code * _{s.or.m)”

i k%
8050 IF k% <> "s" AND k% <> "m" THEN GO TO BO40
8060 IF k% = "s" THEN SAVE n$ DATA Cs() = GO TO

8070 INPUT "Starting.address =, ss
8080 INPUT “Finishing.address = ."; sf
8090 LET sb = sf-ss+on

8100 SAVE n% CODE ss, sb

8110 GO 70 mr

Q000 REM

Q010 REM initialisation

o
3

9020 LET ze = PI — FI = LET on = PI /7 FI1
2 LET tw = on+on = LET tr = on+tw
: LET fr = tw+tw = LET gk = 256
: LET mr = 2020 2 LET 1In = 200

9025 BORDER 7 PAPER 7 = INK on * INVERSE ze
: OVER ze = FLASH ze * BRIGHT ze
: BEEPFP .25, 24 = BEEF .25, 12
FOIO0 DIM A%(15) * DIM 0% (tw)
Q040 LET TP = 1n ¢ LET BF = on
+ REM line.number .buffer
050 DIM C$(ln, fr, tw) * REM holds.code
060 FPRINT AT ze, 203 INVERSE onj3; FLASH on
5 "INITIALISING"
Q070 FOR I = on TO 1n
080 FOR J = on TO fr
OF0O LET CH(I, J) = "_ "
Q100 NEXT J
2110 BEEF .01, 20
2120 NEXT I
9130 PRINT AT ze, 207 " dasasasassasssaa
2140 LET D% = "012Z456789ABCDEF"
Q150 CLS = PRINT "Lowest .address 2= ."353 31500
2160 INPUT "Loading.address *."j7 R : PAUSE 20
2170, IF R < F1500 THEN GO TO 91&0
2180 CLS : GO TO0 mr

154

Hexload Machine Code Monitor

This BASIC program can be a monitor program on its own as it can be
used to WRITE hexcode onto the memory, LIST memory, MOVE memory

content around, SAVE the memory onto cassette and LOAD from the
cassette to memory.

On the other hand we can use Hexload as a semi-linking loader for
code created by the EZ-CODE program. This is because EZ-code can
only be used to input small modules of less than 800 bytes and
less than 200 instructions.

So for large programs, we use EZ-code to develop the modules and
save each module as machine code on cassette.

Then we use HexLoad, which is a much smaller BASIC program, to load
these modules and link them together by moving the modules into
their appropriate memory locations.

We will actually apply this technique as we develop the FREEWAY
FROG program.

Concept behind Hexload

The concept behind Hexload is extremely simple.

The monitor program actually set the RAMTOP of BASIC system to
26999.

That means you can input your machine code program anywhere betweem
memory locations 27000 to 32578 for 16K Spectrum and 27000 to 65346
for 48K Spectrum.

Hexload is a straight forward machine code monitor program.
It offers basic monitoring functions like:
WRITE onto memory in Hex format

SAVE from memory to cassette

LOAD from cassette to memory

LIST memory contents from a starting address

MOVE memory contents from one locations to another.

Hexload Instructions Summary

1. WRITE
Write code in HEX format onto the memory.

Procedure:

a. Input start of memory where you want to write to in
decimal format in response to the prompt.

155

The address is limited to 27000 - 32578 for 16K
27000 - 65346 for 48K
eg. Write to address: 27000(ENTER)
Enter codes in hex format.
c. Press "m" to return to main menu.

2. SAVE
Save memory to cassette.

Procedure:

a. Input memory from which saving starts, can be any

address 0 - 32767 for 16K
0 - 65535 for 48K

b. Input number of bytes to be saved.

c. Input name of the module to be saved.

d. Press any key when the cassette is ready.

e. Option of verifying the module saved on to the
cassette.
It is good to verify so as to ensure that
there is no corruption of the module during the
saving procedure.

3. LOAD
Load machine code module from cassette.
Procedure:

a. Input memory address to which the module is start
loading. The address is limited to same range as in
write command.

b. Enter the name used when the module is saved.

I1f you are not sure of the name, just press
(ENTER).

4. LIST
Display memory contents starting from an address.
Procedure:
a. Input address start listing from.
Can be any address as in SAVE command above.
b. Type any key to continue the display.
c. Type "m" to return to main menu.

5. MOVE
Move memory contents from start address to finish
address into new memory address.

Procedure:

a. Input move from memory, any address as in the range
of SAVE command.

b. Input move until memory, any address as in the
range of SAVE command.

c. Input move to memory, address range as in WRITE
command.

d. You can even copy the ROM into RAM by using this
command.

156

eg. Move from memory: O(ENTER)
Move until memory: 1000(ENTER)
Move to memory: 32000(ENTER)

this will move ROM O to 1000 to RAM address 32000.

NOTES: Any of the input in above commands which breaches
the address range will result in the input being
reprompted.

EXERCISE:

Try using this monitor to input the module we have developed
with EZ-code.

157

HEXLOAD

Copyright () 1982 by William Tang and David
160 REM
1106 REM monitor ,orogram
120 CLEAR 24999 = LET ze = FPI — FI
+ LET on = FI /7 PI 2 LET tw = on+on
: LET gk = 254 % LET 1Im = 2793005
: LEY mr = 140 * LET wl SE0
130 80 SUR 2660
140 CLS
: PRINT "Start _of _machine code _area = "
2 1lm
150 PRINT "menu' 2 PRINT
: FRINT
HaassaWrite machine.cod.ccvsssnesl
160 FRINT
+ PRINT
Y eeasabave, machine code. .-z :22:2::2"
170 PRINT
* FRINT
®asxaload omachine ,COGR: v o v 20 8 a m 5
IBO PRINT
¢ PRINT
P oasaxlbist Mmachine . todB.: e s s e sl
120 FPRINT
: FPRINT
! ensasove machine_ code.5"
200 PRINT
: PRINT
"Please .press anpropriate kev, ™
210 LET g% = INKEY%
220 IF g% = "m" OR g% = "#M" THEN STGF
230 IF g = """ DR g% < "1" OR g% > "5
THEN G0 TO 210
240G 1 5
: PRINT "Start .of _.machine _ code _ area = ¥
: 1m
250 B0 TO Z00x VAl g%
200 REM IHNY WriteXKXEiXXriRxiiii¥ix TRU
J10 INPUT "Write_ to_ addrsess "1 d
320 IF d > mm OR d < 1Im THEN GT TO 216
330 PRINT = PRINT "Write Address = .": d
* FPRINT "To.return.to.menu_ enter [""m"""
F4C LET as = **
F20 IF as = "" THEN INPUT "Enter _hewx. .code
;3 as
ILH0 IF ags{on) = "m" OR agion) = "M
THEN GO TO mr
70 IF LEN as/tw INT { LEMN af/ tw)
THEN FRINT "Incorrect _entrv 73
: B0 TO wl

158

80 LET c = ze
FF0 FOR £ = 14 TO on STEFP —15
400 LET a = CODE asi{{+f = 1&)+twX{f = on))
410 IF a < 48 OR a > 102 OR (a > 57 AND a < &5)
OR (a > 70 AND a < 27)
THEN PRINT "Incorrect_ entry.":
: GO TO wl

|

420 LET c = c++%x(ia < SB)Yk{a—-48)
+{a » &4 AND a < 711 x{(a-55)+(a > 256)%x(a—-87))
JZ0 NEXT £ = PDOKE d, c = L d = d+on

440 PRINT a%(TO tw): *© "
S50 LET a% = as%(3 TO)
4460 IF d = UDG
THENM FRINT
"Warning *you_.are_ now_ in_.the user
graphics _ area!"
: GO TO wl
470 IF d = UDG-20
THEN FRINT
"Warning syou.are.now_ . in_ routines
memory area!”
= GO TO wl
480 60O TO wl+on
600 REM IHY Savelrxkkkkkkxkkxkkxkkxkxxx IRU
610 INFUT "Save . M.C. .from_,address "5 a
420 INPUT "Number .of _bvtecs _ to_ be.saved "3 n
A0 INPUT "Name_ of .the_routine #"; as$
&40 SAVE =% CODE a. n
650 PRINT "Doo.you.wish to.verify?"
LH60 INFPUT v
&70 IF vd <> "y" THEN GO TO mr
680 PRINT "Rewind_. tape_.and.press_ ""FLAY""."
A0 VERIFY a% CODE a, n
700 PRINT "D.K." = PAUSE S0
710 GO TO mr
00 REM IHY loadikitkkkikxkkkekxxdxx IRHU
210 INPUT
"Load \M.C. ,toaddress, starting ... F."

=
=

5 a

220 IF a > mm DR a < 1m THEN GO TO 910

750 INPUT "Frogram.name "3 a#$

F40 PRINT "Press ""FPLAY"" .on . tape.”

950 LOAD a% CODE a = GO TO mr
1200 REM INY List¥¥xkrxkxkikkixikxikixix ITHU
1210 LET a% = "012Z4567824BCDEF"
1220 INFUT "List Address 2"3 d
1230 FRINT "Press ""M""Y to.returnto Menu.”
1240 LET a = INT (PEEK dsi&)

* LET b = PEEK d—1&% INT (PEEK d/1&)

1250 PRINT d3 TAB 735 as(at+tonli as{b+on)
1260 LET d = d+on
1270 IF INKEY$ = "m" OR INKEY$ = "M" THEN GO TO mr
1280 G0 TO 1240
1500 REM IHNY Moverkikkkikkkkdkikkxkkxx TRHU

159

160

The
Freeway Frog
Program
Program Design

This program is about frogs hopping their way home by crossing from
one side of a highway to the other.

There are trucks and cars and motor bicycles on the highway with
police cars frequently patrolling the highway.

Scores are given by the number of moves hopped from one side to the
other side.

You must understand the game very clearly because you are the
programmer.

This is merely the problem definition stage.

Unless we can clearly define and understand the problem it will be
very hard for us to know where we are heading in the later stage of
the design and development of the whole project.

FREEWAY FROG program structure

Now we can apply what we have learnt about TOP DOWN MODULAR program
design. We proceed from very high level and divide the whole
program up into well-defined logical modules.

They are as follows:

1. INITIALISATION
perform all initial tasks.

2. TRAFFIC FLOW
control of traffic on the highway.
This can again be logically subdivided into
i. regular traffic flow eg. trucks, cars and
motorcycles.
ii. 1irregular flow traffic eg. police car.

3. FROG
control the movement of the FROG, crash testing as
well as home testing.

4, GENERAL PROGRAM CONTROL
this part of the program takes care of the score
calculation and display, testing for termination of
the game.

161

5. TERMINATION
perform the house keeping job before returning from
the program.

Developing the FREEWAY FROG program

In developing the FREEWAY FROG program we have divided it into six
stages. The division into these six stages follows very closely to
the logical breaks shown above.

With each stage of development, we will have testing to ensure each
stage is working before proceeding to the next stage.

The six stages will be:

1. Data Base design

involving the design of objects shape, the creation of
database for each object and variables that the program will work
on.

2. Initialisation
involves the setting up of the screen, and the
initialisation of various variables.

3. Traffic flow

here we develop only the regular traffic flow and test it
separately from the irregular police car appearance which involves
different logic.

4, Police car
we develop and test the police car movement.

5. Frog

this will involve testing of frog movement, moving the frog
by blanking the old frog and drawing the new frog, test for
crashing, calculating scores ...etc.

6. Program control
handles updating of highscore, restart of game, abortion of
game, return from the program.

Before we proceed to develop the stages of FREEWAY FROG, we will
introduce here a BASIC program which will adds up thecontents of a
block of memory and generate the sum as a '"'checksum".

You may find this checksum useful to check for data entry errors.

9000 REM
9010 REM checksum

162

9020 INPUT "From address: '";f
9030 INPUT "To address : ";t
9040 LET s=0

9050 FOR I=f TO t

9060 LET s=s+PEEK 1

9070 NEXT I

9080 PRINT "Checksum: '";s
9090 GO TO 9020

Enter the start of the memory block, then the end of the memory

block which you want to do the checksum in decimal value.
The BASIC program will generate the checksum value.

163

Stage1-DataBase

*%%% Design of object shape *¥¥%

As this is a two way traffic game, we need to design two truck
shapes: a left truck shape and a right truck shape etc...

For the FROG, there will be four possible directions and so there
will be four shapes, one for each direction.

Let us adopt the following convention for position of an object and
for drawing each object:

If the shape is composed of four characters

C D
A B

the position pointer will be pointing to character A.

Character A is drawn first, then character B ...until the whole row
is finished.

Then we'll draw the next row up. That is, repositioning to one line
above to character C.

Thus, we will organise the shape database as
Shape ABCD
Don't forget that each character shape is defined as eight bytes.

1f we adopt the principle of drawing each character from top byte
to the bottom byte, then we will need to organise the shape
database also from top to bottom. Thus, the shape database will
look like this:

Shape al, a2, a3, a4, a5, ab, a7, a8
b1, b2, b3, b4, b5, b6, b7, b8
cl, ¢2; 3, ch4; ¢5; €6, ci, ¢8
dly d2, d3, d4; d5, d6, d7, d8

Let's adopt another principle that when we draw a shape, we will
draw the whole shape into its screen memory location first, then we

change the attribute file.

We will therefore store the attribute data that relates to that
shape after its screen memory data.

Unlike the shape, for each character there is only one
corresponding attribute data byte.

164

So, to cater for the attributes data we have four attribute data
bytes after the above thirty two shape data bytes. (for a four
character shape).

xEk%

Input of object shape ¥¥*%*

label line# from(H) to(H) from(D) to(D) chechsum

FRGSHP 120 69AFH 6A36H 27055 27190 18085
LBIKE 340 6A37H 6A76H 27191 27254 3647
LBATT 430 6A77H 6A7EH 27255 27262 28
RBIKE 460 6A7FH 6ABEH 27263 27326 3355
RBATT 560 6ABFH 6AC6H 27327 27334 28
LCAR 600 6AC7H 6B26H 27335 27430 5073
LCATT 730 6B27H 6B32H 27431 27442 36
RCAR 770 6B33H 6B92H 27443 27538 4902
RCATT 900 6B93H 6B9EH 27539 27550 12
LTRUCK 940 6BI9FH 6C76H 27551 27766 22023
LTATT 1230 6C77H 6C91H 27767 27793 87
RTRUCK 1280 6C92H 6D69H 27794 28009 21834
RTATT 1570 6D6AH 6D84H 28010 28036 87
BLANK 1620 6D85H 6D88H 28037 28040 0

Module from 27055 to 28040, 986 bytes, checksum is 79197.
Suggested name 'shapdb'",(shape database).

All the above objects except the Frog can be grouped into SHAPE
data bytes followed by attribute data bytes.

The reason why the Frog shape database is not of that format is
because we have decided that the frog has only one colour at any
one time, either GREEN when it is alive, or RED when it is dying,
or YELLOW when it reaches home.

In this game, we use BLACK (0) as the paper colour except for the
highway boundary and the top information line where we use WHITE
(7) as paper colour.

For objects that move only on the highway, paper attribute will be
0 and the ink colour will be that given in its database.

Before we input the shape data base into memory and store it onto
cassette, it is assumed that you understand character
representation in memory.

We will now explain the assembler listing using the example of
shape FROG1, starting at line 160.

In line 160, you will see

69B7 6F 160 FROGI DB 111,15,31,159,220,216,120,48
OF 1F 9F DC D8 78 30

165

69B7 is the memory address in hexadecimal format

6F is the start of the eight bytes of the current DB
instruction in Hexadecimal value.
The hexadecimal value of the next seven bytes are
in the next line between line 160 and line 170.
ie OFH, 1FH, 9FH, DCH, D8H, 78H,30H.

160 is the line number of the assembler listing.
FROG1 is the label. This is for our benefit only.

DB is a mnemonic. It means that what follows is a
sequence of bytes. (Similar to DATA in BASIC).

111,15,31,159,220,216,120,48
are the bytes to be loaded into the memory.

Now let's build the FROG1 shape.

00 00000000 00000000 00
01 00000001 10000000 80
23 00100011 11000100 C4
25 00100101 10100100 A4
6F 01101111 11110110 F6
4F 01001111 11110010 F2
DF 11011111 134110911 FB
FF 11111111 11111111 FF
oF 01101111 11110110 F6 .
OF 00001111 11110000 FO
1F 00011111 11111000 F8
9F 10011111 11111001 F9
DC 11011100 00111011 3B
D8 11011000 00011011 1B
78 01111000 00011110 1E
30 00110000 00001100 0C
Remember:

i. we draw the bottom row first from left to right.

ii. Then we draw the next row up.

iii.For each character, we draw the eight bytes from top to
bottom.

iv. Then at the very last, we fill in the attributes.

FRGSHP in line 120 defines one of four pointers pointing to the
four shapes of the frog. In the program, we will therefore be able

166

to find the correct shape given the direction of the frog.

DEFW is a mnemonic that means we want to define a 2-byte
"nn''. The least significant byte is first while the most
significant byte is next.

ale ala wla ale
WHHW

Input of shape database *¥%¥*%

Use the Hexload program to input lines 120 to 1590 in the assembler
listing. Enter only the hex bytes as shown in column 2.

Remember to save and verify the code before you proceed to the next
part of this stage!

%%% Design of the objects database *¥¥¥*

We have decided that there will be a regular flow of six vehicles
in the two lane of the highway.
These are randomly distributed between the two lanes.

Object database will store information about the current status of
the traffic:

For example, for each object we need to know:

Existence, Movement cycle count, Direction of movement, whether
it's partly on the screen or not, Position pointer,

Shape database pointer, Attribute database pointer,

Number of Rows the shape occupies,

Number of column the shape occupies.

The database carries this information about each object in each
game cylce.

The first six group of databases from program line 1710 to 2040
represent the six vehicles that are going to be on the highway.
When any vehicle moves off the highway, another vehicle will be
generated randomly.

One simple way is to prepare the initial information for each
possible vehicle and store this in memory.

When a new vehicle is generated, we just go to the corresponding
memory locations and restore the database.

We will apply the same principle to the Police car and the Frog.
Therefore, when we build up the object database, we need not build

up the temporary database, as this will be initialised by the
program.

167

* temporary database memory map

Format: for the six existing vehicles, the frog and the police car:

Existence DEFB 1 byte
Cycle count DEFB 1 byte
Direction DEFB 1 byte
Real/abstract DEFB 1 byte
Position DEFW 2 bytes
Shape pointer DEFW 2 bytes
Attribute DEFW 2 bytes
Row DEFB 1 byte
Column DEFB 1 byte

TOTAL 12 bytes

label line# from(H) to(H) from(D) to(D)

OB1EXT 1710 6E25H 6E30H 28197 28208
OB2EXT 1800 6E31H 6E3CH 28109 28220
OB3EXT 1850 6E3DH 6E48H 28221 28232
OB4EXT 1900 6E4GH 6E54H 28233 28244
OB5EXT 1950 6E55H 6E60H 28245 28256
OB6GEXT 2000 6E61H 6E6CH 28257 28268
PCAREXT 2070 6E6DH 6E78H 28269 28280
FRGEXT 2180 6E79H 6E80H 28281 28288

As mentioned above, these are only temporary working storage. The
information that they contain changes as the game proceeds.

There are two other major temporary working storage area.
They are used to store what is underneath the frog and the police
car respectively.

label line# from(H) to(H) from(D) to(D)

FRGSTR 1650 6D89H 6DACH 28041 28076
PCSTR 1660 6DADH 6F24H 28077 28196

We do not need to define any of these locations - only allow for
them. We only need to build up the following database.

The object database is organised in the following way:

FRGDB frog database
DBINDEX other object database index
RBDB right bycycle database
LBDB left bycycle database
RCDB right car database
LCDB left car database
RTDB right truck database
LTDB left truck database

168

LPCDB left police car database

LPCATT left police attribute database

RPCDB right police car database

RPCATT right police car database
label line# from(H) to(H) from(D) to(D) checksum
FRGDB 2260 6E81H 6E88H 28289 28296 561
DBINDEX 2320 6E89H 6E94H 28297 28308 1734
RBDB 2400 6E95H 6EAOH 28309 28320 640
LBDB 2470 6EA1H 6EACH 28321 28332 692
RCDB 2540 6EADH 6EB8H 28333 28344 523
LCDB 2610 6EB9H 6EC4H 28345 28356 760
RTDB 2680 6EC5H 6EDOH 28357 28368 584
LTDB 2750 6ED1H 6EDCH 28369 28380 809
LPCDB 2820 6EDDH 6EE8H 28381 28392 955
LPCATT 2890 6EEOH 6EF4H 28393 28404 30
RPCDB 2930 6EF5H 6FO0H 28405 28416 379
RPCATT 3000 6FO1H 6FOCH 28417 28428 30
Module from 28289 to 28428, 140 bytes, checksum 7697.

Sugg

ested name is "objdb'". (object database).

We know that all objects except the FROG have a twelve bytes

data

base.

The meaning and contents of each byte is:

* Existence (1 byte)

o
i

ot
r:

set to zero when the object is nonexistant.

set to value n where (n - 1) is the number of cycles
that the object will wait before it is allowed to move.
n value for left and right cycle is 2
left and right car is 3
left and right truck is 6
police car is 1
frog is 8

in other words, the police car moves every cycle,
the motorcycle move every alternate cycle etc.

Cycle count (1 byte)

initially set as 1 so that it is ready to move straight
away and decrement by one every cycle.

when it reaches zero, the object will be allowed to
move and the count will be reinitialised

to the value held in the existence byte.

* Direction (1 byte)

all left to right traffic (ie. top lane traffic) will
have direction value zero.

169

- all right to left traffic (ie. bottom lane traffic)
will have direction value one.

N

Abstract/Real flag (1 byte)

- this defines whether objects is partly off the screen

- all left to right traffic will start off with value
zero (abstract).

- left to right traffic will change this to one when
their position points to the real screen 4820H.

- all right to left traffic will have flag start off with
value one (real); the object has a position pointing to
the screen. ie 48DFH.

- as the right to left traffic moves off the screen,
ie.when the position pointer moves from 48COH to 48BFH,
this will be changed from real to abstract.

5

Position pointer (2 bytes)
~ 2 bytes pointer storing the current position of the
object.

Shape pointer (2 bytes)
- 2 bytes pointer pointing to the shape database of the
object.

*

Attribute pointer (2 bytes)
- 2 bytes pointer pointing to the attribute database of
the object.

* Row (1 byte)
—~ store how many rows the object shape occupies.

* Column (1 byte)
- store how many columns the object shape takes.
- this value includes two columns of blanks, one at each
end of the object.
The purpose of these two extra columns of blanks is to
avoid the traffic getting too close to each other.

Now you can key in the object initialise database from listing 2270
to 3010.

You can use EZ-code or Hexload to enter this module.

I1f you use EZ-code, remember to save the source listing as well as
the dumped listing.

e e albe b
g e

General database ¥¥Fw

We have covered so far the database from 69AFH to 6FOCH
(27055 to 28428).

Now we are going to build up the rest of the database and we

170

classify this as ''general database'.

This is organised as below:

line 500 to 630 SOUND
660 to 690 SCORE MESSAGE
720 to 1210 GENERAL

label line# from(H) to(H) from(D) to(D) checksum

PCTON1 500 6FODH 6F10H 28429 28432 282
PCTON2 510 6F11H 6F14H 28433 28436 166
HOMTON 540 6F15H 6F3CH 28437 28476 2565
SCRMS1 660 6F3DH 6F42H 28477 28482 540
SCORE 670 6F43H 6F48H 28483 28488 288
SCRMS2 680 6F49H 6F53H 28489 28499 732
HISCR 690 6F 54H 6F58H 28500 28504 240

Module from 28429 to 28504, 76 bytes, checksum 4813,
Suggested name '"gendb'". (general database).
You only need to input from line 500 to line 690.

From line 720 to line 1210, memory 6F59H to 6F82H
(28505 to 28546), these are all variables used by the program.

Line 1100 to 1150 are instructions with mnemonic EQU. This assigns
a value to the corresponding label and is used by the assembler
program. You do not have to enter anything.

Conclusion

Now we have covered the whole database area from memory
69AFH TO 6F82H (27055 to 28546).

Examine all modules that you have built, their names, their memory
range before you proceed the next stage of the building up of the

FREEWAY FROG program.

You should have now developed three modules:

name from mem to mem length checksum
shpdb 27055 28040 986 79197
objdb 28289 28428 140 7697
gendb 28429 28504 76 4818

Note that the database occupies nearly 1400 bytes!!

171

Stage 2-Initialisation

B
W

Screen Setup FEFF¥

In this module, we set up the highway, the score display, the frog
as well as initialise all control variables.

We will do it in three parts.

First, clear the screen and put in the highway.
Secondly, put in all the frogs.

Thirdly, display the score.

This module includes the following routines:

routine line# from(H) to(H) from(D) to(D) checksum

INIT 1240 6F83H 700AH 28547 28682 11996
CLRSCR 7060 72D7H 7316H 29399 29462 5236
DRWHWY 1820 700BH 7040H 28683 28736 4802
HIGHWY 1980 7038H 7040H 28728 28736 696
FILHWY 2070 7041H 7054H 28737 28756 2609
LINEUP 2290 7055H 7079H 28757 28793 4325
DISASC 7630 7328H 7349H 29480 29513 3580
SCRIMG 14500 776FH 7786H 30575 30598 1855
FINAL 15390 7#1FEH 781DH 30718 30749 2466

Module spread from 28547 to 30749, 2201 bytes.
Suggested name "init'". (intialisation).

Enter first CLRSCR, DRWHWY, FILHWY, FINAL into their corresponding
memory locations.

Then enter INIT routine. Enter three bytes of zero for the
following lines instead of the CALLs because the routine which are
called haven't been developed yet.

line# address(H) address(D)

1430 6FAFH 28591
1470 6FBAH 28602
1490 6FCOH 28608
1530 6FCBH 28619
1570 6FD6H 28630
1590 6FDCH 28636
1630 6FE7H 28647

Then enter the following codes into memory starting from 32000.
Save the module from 28547 to 30598, 2052 bytes before running the
code in memory 32000.

172

F3 DI ;Disable interrupt

D9 EXX ;Preserve HL'

E5 PUSH HL

D9 EXX

CD836F CALL INIT

3E7F KEY LD A,7FH ; TRAP SPACE KEY
DBFE IN A, (FEH)

E601 AND 1

20F8 JR NZ,KEY ;loop if not press
CDFE77 CALL FINAL ;finalisation

D9 EXX ;restore HL'

El POP HL

D9 EXX

FB ET ;enable interrupt
c9 RET

You should see the screen blacken and four white linesappear on the
screen.

The following is a brief description of what each routine does.

INIT

set border colour to black

initialise frog-crash flag, frog existence, gameflag
number of frog

set rahdom ROM pointer

set frog station (also initial position of frog) to
50ACH

call clear-screen

call draw highway

call line-up frogs (five of them)

load score message

print score

load high score message

print high score

initialise all objects as nonexistent

initialise chase flag, siren sound flag and score

DRWHWY
fill top highway line (32 characters of 40AOH)
fill middle highway line (32 characters of 4860H)
fill bottom highway line (32 characters of 5020H)
*remember that highway is white paper black ink
unfill top two-character bytes of top highway
(therefore, they are white)
unfill bottom two-character bytes of bottom highway
(they are also white now)
redraw middle two-bytes of the middle highway

173

FILHWY
initialise fill character ()FFH)
set loop count to 32 (one line 32 characters)
draw one character (8 bytes)
move pointer to next character each time

FINAL
set white border
blank screen
set screen attribute file to white paper and black ink

If everything is fine, save the module first from memory
location 28500 to 30800, 2300 bytes.

Now enter LINEUP, DRWFRG routines. Check the checksum and save the
whole module again under the same name, same addresses.

Then change memory from 6FAFH (28591) to 6FB1H (28593) to that it
corresponds to line 1430 of the assembly listing.

ie. CD 55 70.

Run 32000 and you will see five frogs line up at the left bottom of
the screen.

The following are descriptions of what these two routines do:

LINEUP
set frog direction to 1 (facing right)
set frog shape to FROG2
set attribute number to 2 (green)
if no frog left
then return
else
for number of frog
push BC, DE, HL onto stack
draw the frog by calling DRWFRG routine
pop HL, DE, BC from stack
update draw position

DRWFRG

draw shape using convention discussed earlier
calculate attribute pointer
fill attribute of frog

174

Now input DISASC, SCRIMG routines. Check the checksum and save the
module again as above.

Now change the memories referred to by the following lines in the
assembly listing to the correct codes shown on the listing.

line# 1470, 1490, 1530, 1570, 1590, 1630.

Run 32000 and you should see the whole screen set up with highway
drawn, frog and score displayed.

N Em A AR OB SR R R R A A S S W N A R

2RERD

175

Stage 3-Regular Traffic

In this stage, we develop the regular flow of traffic.
ie. all traffic except police car:

Traffic control (including regeneration of traffic)
regenerate traffic
Moving traffic
moving control
drawing traffic
determine drawn shape

Below is a table of all routines in this module.

name line# from(H) to(H) from(D) to(D) checksum

TFCTRL 3090 70BDH 70D8H 28861 28888 2587
REGEN 3320 70D9H 710EH 28889 28942 5673
MOVTRF 3700 710FH 71AEH 28943 29102 14831
MVCTRL 4720 71AFH 7208H 29103 29192 9222
DRAW 5560 7209H 7295H 29193 29333 13923
RSHAPE 6630 7296H 72D6H 29334 29398 6803
RANDNO 15050 77CCH 77DDH 30668 30685 2194

Module from 28861 to 30685, 1824 bytes.

Suggested name '"regtrf'". (regular traffic).

Again, it is useless to generate a total checksum of the whole
module because the memory range covers some undeveloped memory
area. But it is important that you check the checksum of each
routine after entering it.

We develop this module in two parts.

Firstly, the draw routine for traffic.
Secondly, the traffic control and draw control.

Input DRAW, RSHAPE routines into their memory region, checksum and
save them.

176

Then entering the following testing program starting from memory
32000.

F3 DI

D9 EXX

ES PUSH HL

D9 EXX

CD836F CALL INIT

3E03 LD A, 3 ;row count
32606F LD (ROW), A ;store in ROW
3E09 LD A, 9 ;column count
325F6F LD (COLUMN), A ;store in COLUMN
11926C LD DE, RTRUCK ;right truck shape
216A6D LD HL, RTATT ;right truck attri
226A6F LD (ATTPTR), HL;store in ATTPTR
3E01 LD A, 1 ;jset to real pos
212248 LD HL, 4822H ;jtop lane

CD0972 CALL DRAW ;jdraw shape

3E7F KEY LD A, TFH ;key trap

DBFE IN A, (OFEH)

E601 AND 1

20F8 JR NZ, KEY

CDFE77 CALL FINAL

D9 EXX

El POP HL

D9 EXX

FB EI

Cc9 RET

Load the database modules in the order they are created.
Load the init module.

Load the routines you developed in this stage.

Save memory 27000, 4000 bytes into "frog'" module. This will
includes all routines you have developed so far.

Enter and save the above test routine in memory 32000.

Run 32000 and you should see the screen set up and a right truck on
the top lane as well.

You can change the parameters in the program above between CALL
INIT and CALL DRAW to test all other object shapes.

Below is a brief description of the two routines.

DRAW
Similar logic to DRWFRG

RSHAPE
trap lower 5 bits of low order byte of position
parameter
subtract from 1FH and add 1

177

trap lower 5 bits again
determine SKIP and FILL depending on real or abstract
calculate attribute position and store in ATTPOS

Enter TFCTRL, REGEN and MVCTRL routines in their memory region and
save the whole module.

Edit the testing routine as follows:

DI

EXX

PUSH HL

EXX

CALL INIT
CDBD70 MOVE CALL TFCTRL

CDOF71 CALL MOVTRF
3E7F LD A, 7FH
DBFE IN A, (OFEH)
E601 AND 1
20F2 JR NZ, MOVE
CALL FINAL
EXX
POP HL
EXX
EI
RET

By now you should realise that we save the whole stage module while
we are developing that stage.

Once a module is fully developed and tested, it will be merged
together with previous modules and saved into the "frog' module.

We test the modules by a small testing program starting from memory
32000.

After you have done all the housekeeping work for your modules,
test run the new '"frog'" module.

If everything is correct, you should see the whole screen as before
plus all traffic moving at a very fast speed in the two lanes. This
is because there is no delay between each program cycle.

A short description of the routines.

TFCTRL
load generation flag
if not regeneration
decrement flag count
return
else
regenerate the first nonexistence object by calling

178

the REGEN routine
return

REGEN

save existence database pointer

generate random number O to 5

test the first two character of the screen position
where the object is created

if the sum of the attributes of those two position is
not equal to zero

then return (traffic jam)

else
determine the initialise database
load into temporary working database
set regeneration cycle count to 2
return

MOVTRF
for all existing objects
decrement cycle count
if count reaches zero

reload count from existence

move one character left or right

store new position in NEWPOS

test attribute correspondence of the front of
objects

if any nonzero ink
if not green

set jam flag
else
set crash flag

if jam flag set

load cycle count with 2(move one cycle
later)

return

else
store new position
call MVCTRL (move control)

MVCTRL
if edge reached
change real/abstract flag
if left moving
if on edge (position low order byte = 1FH)
if abstract flag
set non exist, return
else
goto L1
else

179

Ll:

else

goto L1

get end of object
if reach end of screen (low order byte is OCOH)

set non exist, return

refill cycle count

retrieve shape pointer

store attribute pointer in ATTPTR
retrieve ROW and COLUMN of shape
DRAW from new position.

RANDNO
push HL,BC onto stack

retrieve what random pointer pointing to in ROM
update pointer (move down ROM)

Score & HIGH S5CGRE o

e

A, MR W R WL TR AW W T ML S WM S E Ra .

ERREH®

Score @ HIGH 3SCORE o

180

Stage4-Police Car

In this stage, we will introduce the POLICE car into the program.
The POLICE car will be generated randomly and enter with SIREN
sounding. It moves every cycle and there is no traffic jam in its

course. It will overtake any regular traffic before it.

That is why the program needs to save what is underneath the police
car and put it back when the police car moves on.

Below are all routines in this module.

name line# from(H) to(H) from(D) to(D) checksum

RESPC 9560 7450H 74C1H 29776 29889 11011
POLICE 7930 734AH 73DEH 29514 29662 15769
STRPC 8830 73DFH 744FH 29663 29715 10615

There are routines which are called in this module which has been
developed in previous modules.

Module from 29514 to 29889, 376 bytes.
Suggested name '"police'".

Enter POLICE and STRPC routines. Checksum and save them in the
""'police" module.

Then edit the testing program to the following:

DI

EXX

PUSH HL

EXX

CALL INIT

MOVE CALL TFCTRL

CALL MOVTRF

CD4A73 MOVE1 CALL POLICE

LD A, 7FH

IN A, (OFEH)
AND 1

20F5 JR NZ,MOVE1
CALL FINAL
EXX
POP HL
EXX
EI
RET

Load the "frog'" module, then the 'police' module.

181

Run the testing program. You should see the POLICE car moving very
fast on the highway.

If you want to put in other traffic as well, change the relative
jump to JR NZ, MOVE.
Remember to recalculate the displacement offset. (EFH).

As it moves, you would see the POLICE car wipe off the traffic
shape as it overtakes them. It may be so fast that you wouldn't
notice.

But you can tell when some traffic starts to run into the wvehicle
in front of them.

Let's look at these routines:

POLICE
if police car non-exist
get a random number
if not a mutiple of 31
return
else
set chase flag
determine top or bottom lane randomly
load corresponding initial database.
get direction
store position pointer
retrieve position
move and store NEWPOS
set ROW, COLUMN, REAL/ABSTRACT flag, POS before
call RSHAPE
get resulted ATTPOS and test head of shape for green
if green attribute
set crash flag
blank front of police car
call STRPC (for storing of what's underneath policecar)
update position database
call MVCTRL (for moving on and off the screen)
turn off chase flag if non-exist

STRPC

set HL points to NEWPOS

set DE points to PCSTR (police car store)

store position and 5 byte of information starting from
ROW variable

store according to SKIP/FILL format
all screen memory first
then attribute file

182

Enter the RESPC routine and merge with the previous two routines.
Save the whole module as '"police".

You need to edit the testing program again to test the storing and
restoring.

Although we included the STRPC routine we are not sure that it
saved the correct data underneath the police car. Only the RESPC
can help us to know that, because it puts what was stored back onto
the screen.

change the tesing program to the following:

MOVE CALL TFCTRL

CD5074 CALL RESPC (mmmmmmmem
CALL MOVTRF
CALL POLICE

LD A,7FH
IN A, (OFEH)
AND 1

20EC JR NZ ,MOVE

Adjust the relative jump before you test run the module with
"frog".

You should see the POLICE car overtaking vehicles without wiping
them off.

The RESPC's logic is as below:

RESPC
return if police car nonexist
restore the position and 5 bytes into variables
starting from ROW

restore screen memory then attribute according to
SKIP/FILL format
return

Finally, enter SIREN routine, checksum and merge it with the rest
of the "police'" module.

Load "frog'" module then reload the new '"police' module.

Edit the testing program in memory 32000's as following:

183

CALL INIT
MOVE CALL TFCTRL
CALL RESPC
CALL MOVTRF
CALL POLICE

CD8777 CALL SIREN | [
LD A,7FH
IN A, (OFEH)
AND 1
JR NZ ,MOVE

Run the testing program and you will find the whole traffic flow
will slow down. This is because of a constant delay either because
of the sound output or a downcount delay loop.

SIREN
trap (ENTER) key pressed
if pressed
change siren to no siren or vice versa
if no sound
go to DELAY
else
if no police car
go to delay
else
determine the correct tone database
load onto DE, HL
call O3B5H
return
DELAY: down count 6144

Merge this module with "frog" in the memory and reload in "frog'".

Scare & HIgH SCORE a

Stage 5-The Frog

In this stage we develop the frog routines.
We need to regenerate the frog when a frog dies.

We also need to handle the frog movement, save what is underneath
it and restore what was stored back when the frog moves.

We also need to handle the frog crashing or home run and calculate
score.

We build up this module in three parts as below.
Regenerate and move frog
store and restore what is underneath
handle crashing, homerun and score

All routines within this module is as follows:

name line# from(H) to(H) from(D) to(D) checksum

FROG 10280 74C2H 74E2H 29890 29922 3818
REGFRG 10520 74E3H 750FH 29923 29967 4079
MOVFRG 10770 7510H 75D5H 29968 30165 19943
RESFRG 11870 75D6H 7627H 30166 30247 8492
STRFRG 12440 7628H 7690H 30248 30352 10136
CRASH 13160 7691H 76A6H 30353 30374 2767
FRGDIE 13280 76A7H 7707H 30375 30471 09965
FRGTON 13890 7708H 771CH 30472 30492 2435
CALSCR 14040 771DH 776EH 30493 30574 8106

Module from 29890 to 30574, 685 bytes.
Suggested name "frgrtn'" (frog routine).

Enter FROG, REGFRG, MOVFRG, RESFRG, STRFRG and CRASH routines.

Edit the testing program as following:

CALL INIT
MOVE CALL TFCTRL
CALL RESPC
CALL MOVTRF
CALL POLICE
CALL FROG om0, e
CALL SIREN

185

LD A,7FH

IN A, (OFEH)
AND 1
JR NZ,MOVE

Since we haven't entered the FRGDIE routine yet, replace the coding
in line 13190 of the assembly listing by
00, 00, 00

Run the testing program and you should be able to move the frog.
The controls are "1"=up, "a""=down, "i''=left, "p"=right.

When the frog crashed, it will simply disappear because the FRGDIE
routine which handles the dying procedure of the frog hasn't been
put in yet.

The description of these few routines are as following:

FROG
the control routine for the whole FROG module.

if frog crashed
goto CRH
else
set score-flag to no score (0)
call REGFRG
decrement cycle count
if count non zero
return
else
reset cycle count
call MOVFRG
if not crash

return
CRH:call CRASH routine
return
REGFRG

if frog does not exist
load frog initial database to working database
update frog station to three position left
initialfse OLDFRG and NEWFRG to FRGPOS
initialise frog storage area to O

return

MOVFRG
initialise registers
C - absolute movement
B - frog direction

186

DE- frog shape
test frog movement
l1 - up, a - down, i - left, p - right
store shape, direction
if absolute move is zero
return
else
restore old frog position
calculate new frog position and store
test up screen position, right screen, bottom screen,
frog station
if valid
store position into NEWFRG
set score flag.
restore OLDFRG
if OLDFRG equal NEWFRG
return
else
call RESFRG
set OLDFRG equal NEWFRG
move stored direction, shape pointer to frog
database
call STRFRG
return

RESFRG
restore underneath frog based on OLDFRG position
memory first then attributes

STRFRG
store underneath frog based on NEWFRG position
draw frog while drawing as well

CRASH
reset crash flag
set frog nonexist
call FRGDIE routine (dying procedures)
call RESFRG routine (place back what was underneath)
decrement number of frog

After you have saved up all the modules, enter the CALSCR, FRGDIE
and FRGTON routine.

To test the crash handling routine, replace 13190 of the listing by
the following instruction:

7698 CDA776 CALL FRGDIE (30360)

187

Edit the testing program to the following:

CALL FROG
CALL . CALSER (——w—ccsn
CALL SIREN

Merge the routine in the '"frgrtn' module and run memory 32000
together with the "frog'" module.

When the frog crashes, it will flash red and vanish.

FRGDIE

test frog reaches home or die
set die tone, red colour attribute
if reaches home
add one to third digit of score
(bonus 100 points)
call DISSCR (display score)
set home tone, yellow colour attribute
draw frog based on OLDFRG, FROGSH, and attribute just
set by call DRWFRG
flash frog with the attribute five times

FRGTON
call TONE1 (tone code from SIREN routine)
move up or down the tone database depends upon attibute
used to flash the frog (if yellow then down db)
(if red then up db)

CALSCR
if frog non-exist
return
else
if score flag not set
return
else
if go up
add one to tenth digit of score
(10 points)
else
if not within the highway
return
else

add one to tenth digit

188

readjust all score digits
build up score printing image
display score printing image

[CGre & HIGH SCORE o

3core ia@ HIGH 3C0ORE "

&

%

189

Stage 6-Control

In this stage we develop the control routine for the whole program.

The main control is that when the game is finished, high score is
updated and the game is restarted automically.

In any cycle, the user can abort the game by pressing the space
key.

You will find that line 180 to 440 of the listing looks very
similar to the testing program we have been developing.

Routines left for program are as follows:

name line# from(H) to(H) from(D) to(D) checksum

START 180 6978H 69AEH 27000 27054 8427
OVER 15200 77DEH 77FDH 30686 30717 2491

Now enter these routines into the memory. Save them together with
the "frog' module and save the whole module as '"frog'".

Run 27000 instead of 32000 and you will have the whole program
working.

OVER
compare all digits of HISCR and SCORE+l
for the first nonequal digit
if HISCR digit is lower
update HISCR to SCORE+1
else
return
return

Congratulations and I hope you enjoyed the development of the
FREEWAY FROG program.
SCoTE 1140 HIGH SCOWRE 1id40

EEREN 190

&978
ALHDT79
2748
H9T7R
&P7C
4F9TF
£982
&£285
4988
&92E
&9BE
6991
£G4
6997
L9798
6994
A99D
HFFF
69A1
A2A3
4£945
a9a7
6FAA
LH7AR
&FAC
494D
LF9AE

LFAF

&24F
ATR1
&9BZ
AFED
LFRT7
&9BF
£3C7
&FCF
&9D7
AFDF

&LPE7

F3
D9

ES

D%
CD83&F
CDRD70
CpsS074
CDOF71
CD4A7E
CDC274
CDID77
coa777
IATTEF
a7
2005
CDDE77
18DD
SE7F
DEFE
Eani
20D8
CDFE77
09

E1

D9

FB

co

BR749
D749
F76%9
176A
bF

OoF 1F
Fé&

FO FR
00

ot 23
00

80 C4 ¢

1F
1F 1F
FE

Fa FR

8

oF

Fo

Goloo
Q0110
00120
Q0130
00140
00150
Q0160
QD170
a0180
0190
Q0200
OO210

00220 Al

OO23EC

00240
00250
DG260
00270
00280
Q0290
00310
GO3E20
QOEZ0

O0ZTAD
QOZ70
QOZRO0
00390
Q0400
00410
Q0420
D040
OG440
Q0450
00440
OO470
o109
Q0110
D0120
Q01320
00140
Q0150
001460
DC D8
00170
38 1R
0180
&F 4F
Q0190

SRR RkRARKKRKAK

CONTIN

[T

P RRKKR KKK

H
FRGSHP

FROG1
78 30

1E oC
DF FF
FE FF
FROG2
71 38

FO CO

DEFW
DEFW
DEFW
DEFW
DE
DR
DR
DE

DRB

2
m

FREEWAY FROG MXKXkXXX%X

27000

HL

INIT
TFCTRL
RESFC
MOVTRE
POLICE
FROG
CALSCR
SIREN
a, (GAMF
A

NZ, CONT
OVER
AGAIN
a,7FH
a, (OFEH
1

NZ . MOVE
FINAL

Hi

FROGDR/ASM

FROG1
FROG2
FROGS
FROGA
111; 15

246,240
a, 1,35,

0,128,1

A
A

11, 3

o

1.5

1

254,244

S4, 113,

:DISABLE BASIC SYSTEM AFFECTING
; THE KEYBOARD SCANMNING
; PRESERVE THE HL® REGISTER PAIR
;POP BACK BEFORE RETURN
;s INITIALISATION
; TRAFFIC CONTROL ROUTINE
;s RESTORE UNDERNEATH
;MOVE TRAFFIC
sPOLICE CAR ROUTINE
s FROG MODULE
:CALCULATE AND DISFLAY SCORE
;SIREN OR DELAY
L) ;FINISH WHEN NO FROG

IN

s HIGHSCORE MANAGEMENT

s NEW GAME AGAIN

s TRAP SPACE KEY FPRESSED
} : SCAN KEYBOARD

s RESET SCREEN AND BORDER COLOUR

sRETRIEVE HL?

iENABLE INTERRUPTS
sRETURN TO BASIC SYSTEM

ERERAERAKK

sUF FROG
;RIGHT FROG
:DOWN FROG
:LEFT FROG

31, 159,220,216, 120, 48

3 248,249 ,59,27,30,12

%7,111,79,223,25

A
i}

96,164,246, 242,251,255

A

A

1,127,252,193,113,564

¢

.248,240, 192, 156,240,152

193,252, 127,31, 31,51

71 C1 FC 7F 1iF 1F 1F

AFEF CO Q0230 DR 192,240,156,192,240,248,244,254
FO 2C CO FO FB8 F4 FE
&FF7 FF 00240 FROGE DE 20223 79 11137355150
DF 4F &F 25 23 01 ©O
&9FF FF GO250 DE 255,.251,242,2446,164,1946,128,0
FB F2 F& A4 C4 B8O 00
6A0T7 F0 002460 DR 48, 120,2146,220,159,31,15,111
78 D8 DC 9F 1F OF &F
HAOF OC 00270 DB 12,30,27,59,.249,248,240, 246
1E 1B 3B F9 F8 FO F&
&AL1T7 TF Q0280 FROG4 DB 127487 ,81,18,3F,587; ¥5.35
2F 1F OF 03 39 OF 03
6ALF FO Q0290 DR 240,240,248,254,63,131,142, 2
FO FB FE 3IF 83 BE 1C
&AZT7 O3 QO3Z0O0 DB 3:18,57, 3,19, 31,4 F, 127
OF 39 03 OF 1F 2F 7F
&AZF 1C 00310 DR 28,142,131 ,63,254, 248, 240, 240
8E B3 3F FE FB FO FO
DO3Z20 ;
003X30 3
6AZT7 OO0 00340 LBIKE DR 0,0,0,0,6,0,0,0
00 00 00 00 00 00 00
bAZF 1F O0Z5C DRB 31,6%,115,81,169,112,112,32
3F 73 51 A9 70 70 20
6047 FE Q0360 DE 254,252,252, 234,213,206, 14,4
FC FC EA DS CE QE 04
6A4F OO GOIT70 DB 0,0,0,0,0,0,06,0
00 00 00 00 00 00 00
&6A57 OO 00380 DE 0,0,0,0,0,0,0,0
00 00 00 00 00 00 00
6ASF 01 Q03ZR0 DB 1,3,1,0,3,4.14,31
03 01 00 03 04 OE 1F
6AL7 B8O 00400 DB 128,192,192,224,224,112,119,255
CO CO EQ EO 70 77 FF
LALF 0O 00410 DE 0,0,0,0,0,0,0,0
o0 Q0 00 00 00 00 Q0
G0420 3
&A77 GO 00430 LBATT DE O,7:7,0
o7 07 00
&A7RB 0O QO440 DE Q,7,7,0
Q7 07 00
00450 3
6AT7F 0OG 004460 REIKE DE 0,0,0,0,0,0,0,0
00 00 00 00 00 00 00
&AB7 TF 00470 DR 127,63,63,87,171,115,112,32
IF 3F 57 AR 73 70 20
&ABF FB 00480 DE 248,252,206,138,149,14,14, 4
FC CE 8A 95 OE OE 04
LATT7 OO0 QG490 DB 0,0,0,0,0:0,0,0
00 00 GO 00 00 00 00
6&AFF 00 00500 DE 0,0,0,0,0,0,0,0
00 00 00 00 00 00 00
6AAT7 0L Q0510 DB 1,%3,3,7,7,14,238,255

QX 03X 07 O7 OE EE FF
&AAF B8O 00520 DE 128,192,128,0,192,32,112,248

&HART7

6ABF

&ACT

&ACF

&6ADT

&ADF

&AET7

SAEF

HAFT

6AFF

&BOF

&B17

&B1F

&BER

&B43

&B4R

&6B53

Co
00

(8]

00
G7
Q0
07

[al#]
L6 o]
o0

Do

-
P llel

o

w20 Q
28533

o0
O

00
00

o0
o0
OF
7F
o1

m T
o T

T
-

!

S Sy
2

fel oo leRole)

=

80

FF

FF

FF

(ala}

FF

9

EO

o0

QOS70

Qo380
Q0590
QO&00
O 00
OOL10D
OF 02
QOL20
&F F7
COLZO0
FF FE
00640
aF Féb
OASO
00 OG
00660
GO G0
QOLTO
(828 B 6 19]
00680
00 00
004AT0
00 3F
QO700
00 00
Q0710
o0 00
00720
Q07E0
Q&6 0O
OO7 40
Q6 OO
OO750
00760
00770
00 oo
OO730
F& &F
OO7940
FF 7F
00800
F& EF
OOR1G
FoO 40
Q0820
a0 00
00820
a0 00

00

Q0

(818

&1

80

00

H

H
LCAR
O

00

00

(973

[8.8)

OO0

o]

DE

DE

DB

DE

DB

DE

DE

DE

DB

DE

DR

DB

0,0,0,0,0,0,0,0

0,7,7,0

0,0,0, 0,0! 0,0,0
0.0,3,7,15,2,0,0

7,255,235

7, 55,159,111, 247, 240,96

128, 255,255, 255, 255, 254,0,0

240,254,255, 159, 111, 244, 240,94

05030,0,:) Q.G O

R Vy W

0,0,0,0,0,0,0,0

0,0,0,0,0,63,97,193
0,0,0,0,0,0,128,192

0,0,0,0,0,0,0,0

0, b,6,b,6,0

0,0,0,6,6,0

#
]
o
B
~
]
Ln
]
F -
9
I3
o+

I
e
o
i
(i)}
o

1,255,255, 255,255, 127, 0,0

0,:0:0,0,0,0,0,0

0,0,0,0,0,0,0,0

SHaE Ui DOB40 DE 0,0,0,0,0,0.1,3
3 00 00 o0 OO D1 O3

&B7Z QO O0850 DB 0,0,0,03,0,252,134,131
00 00 00 00 FC 86 B3
AB7E 00 00860 DR 0,0,0,G,0,0,0,0
00 00 0G0 D0 00 00 00
ABEE 00 0870 DR G,0,0,0,0,0,0,0
00 OO0 00 G0 OO OO 00
ABER OO 00830 DE 0,0,0,0,0,0,0,0
Q0 00 GO 00 00 00 OO
00890
&BYE 0O 00200 RCATT DB 022 25240
02 02 02 02 00
£B9F 00 00910 DB 0,2,2,0,0,0
02 02 00 00 00
QOP20 3
00930 3
&B9F OO0 00940 LTRUCKE DR 0,0,0,0,0,0,0,0
00 00 00 00 20 00 G
6BAT7 IF 00950 DR 31,31, 31,62,61,59,35,1
i 1F 3E 3D 3B ©3X 01
&BAF FB 0040 DE 248,252,254,127,184,216,192,128
FC FE 7F B8 D8 CO B0
&BR7 FF OQP7O DE 295,295,255, 255,46, 159,15,6
FF FF FF 04 OF OF 06
&BEBF FF QO980 DE 255.255,255,0,0,0,0,0
FF FF 00 00 00 00 00
&BC7 FF Q0990 DB 255, 285,255,0,0,0,0,0
FF FF 00O 0O 0O 00 00
&BCF FF 010060 DR 255,255,255,0,6,15,15,6
FF FF 00 O& OF OF 06
&BD7 FE 01010 DE 254,254,254,4,50,122,122,48
FE FE 04 32 74 74 30
&BDF OG 01020 DR 0,0,0,0,0,0,0,0
ad 00 00 00 00 00 00
&BE7 QO 01030 DR 0,0,0,0,0,0,0,0
Q0 0 00 00 00 0D 00
&BEF 0O 01040 DR Qo 0, 7,917, 17,331,731
00 07 09 11 11 IF 1F
&BF7 02 01050 DE 2,2,2590,250,254, 252,252,248
02 FA FA FE FC FC FB
ABFF FF O1GAOG DR 255, 295, 255, 255, 255, 255, 255, 255
FF FF FF FF FF FF FF
6LCO7 FF 01070 DR 200, 205 2994 290, 2959, 205,295,250
FF FF FF FF FF FF FF
&COF FF 01080 DE 255,255, 255, 255, 255, 255, 255, 255
FF FF FF FF FF FF FF
AC17 FF Gl1090 DR 255,255, 255,255,255, 255,255,255
FF FF FF FF FF FF FF
&C1F FE 01100 DE 254,254,254, 254, 254,254,254, 254
FE FE FE FE FE FE FE
AC27 00 01110 De 0,0,0,0,0,0,0,0
Q0 Q0 GO 00 00 GO 00
6CZF 0O 01120 DB 0,0,0,0,0,0,0,0

O0 00 OO0 QO QO OO0 00
HCET 00 01130 DR 0., 0,0,0,0,0,0,0

[n gl
0
i
B

&HC47

&C4F

&C57

&CSF

6C&7

LLCLF

&C77

6&C80

6C8B9

6C92

6£C9A

&CAZ

&CAA

&CB2

&CBA

&CC2

&CCA

&CDR2

&6CDA

&CE2

6CEA

&LCF2

6CFA

£D02

L&D0A

o'
b=
I

OO0 0

o

o0

o D
B80S0 S50 5 5

aQ

o R
o]

o]
A

(=]
77

(=]
Q

Q
o

FF

FF

FF

FF

¥

FF

FF

FF

FF

FF

FF

oo 00
01140
Q0o Q0
01150
o0 FF
011460
Q0 FF
01170
o0 FF
01180
o0 FF
01190
o0 FE
01200
o0 00
Q1210
01220
01230
05 05
01240
05 05
01250
05 05
012460
01270
01280
o0 00
01290

4C SE 5

01300
L0 FO
01Z10
00 0G
01320
00 00
01 3ZE0
&0 FO
01340
1D 1R
01350
EBC DC
01340
o0 00
01370
o0 Q0
01380
7F 7F
01390
FF FF
01400
FF FF
01410
FF FF
01420
FF FF
01430

20

o

FF

FF

FF

Fiz

FF

FF

FF

FF

00

Qo

FF

FF

FF

FF

7F

FF

FF

FF

FF

DE

DR

DE

DR

DE

DR

DR

DR

DR

DR

DB

DB

DR

DB

DB

DE

DE

DR

0,0,0,0,0,0,0,0

0,0,0,0,0,255,255, 255

0,0,0,0,0,254,254,254

0,0,0,0,0,0,0,0

l

0,1

>

-39515,5,5!5-0

0,3,3,5,5,5,5,5.,0

0.0.0,5,5,5,5,5.0

27,127,127,32,76,94,94,12
255, 255, 255, 0, 96, 240,240,954

255, 255, 255,0,0,0,0,0

21,63,127,254,29,27, 3,1
248,248,248, 124, 188,220,192, 128

0,

L=l

20,0,0,0,0,0

o

20,0,0,0,0,0,0
V2751275 1275 127,127, 127, 427,127
255, 255, 255, 255, 255, 255, 255, 255
255, 255, 255, 255, 255, 255, 255, 255
255, 255, 255, 255, 255, 255, 255, 255

255, 255, 255, 255, 255, 255, 255, 255

64,64,95,95,127,63, 63,51

40 5F SF 7F IF ZF 1F

&D12 00 01440 DE 0,0,224_144 134, 136,242, 248
00 EO 90 88 88 FB FR
6D1A OO0 01450 DR 0,0.0,0,0,0,0,0
00 90 G0 Ol OO0 OO0 00
6D22 00 01460 DH 0, 0,00y 5,0,046
o0 Q0 00 00 00 00 00
&D2A 00 01470 DR 0,0,0,0,0,127,127,127
00 00 00 00 F7F 7F 7F
&D3E2 00 01480 DH 0,0,0,0,0,255,255,255
00 00 00 00 FF FF FF
6D3ZA 00 01490 DB 0,0,0,0,0,255, 255, 255
00 08 00 00 FF FF FF
6DA4Z 00 01500 DE 0,0,0,0,0,255,255, 255
o0 00 00 o0 FF FF FF
&D4A 00 01510 DE 0,0,0,0,0,255,255,255
Q0 00 00 00 FF FF FF
&DS2 00 01520 DB 0,0,0,0,0,0,0,0
00 00 00 00 o0 OO0 0O
ADSA OO 01530 DE 0,0,0,0,0,0,0,0
00 00 00 00 060 00 OO
&D62 QO 01540 DE 0,0,0,0,0,0,0,0
00 00 00 00 00 00 00
01550 3
01560 ;3
&DEA 0O 01570 RTATT DE ¥ 1Sy e 0 O I S e
05 03 05 05 05 O3 03X 00
&D73E 00 01580 GE 038590050, 5: 5,0
05 05 05 05 05 O3 03 00
&D7C 00 01590 DE Qs Dy sy s 030y 0
05 05 05 05 a5 00 00 00
01600 ;
01610 ;
&£D85 00 01620 BLANK DB 0,0,0,0
OO 00 00
01630 ;
014640 ;
Q024 014650 FRGSTR DS) s 4x8+4
o078 01660 FPCSTR DS 120 5 12x8+12+47
01470 3
01680 ;
D16F0 ;XXEXXXERX DATA BASE KARERXE X
01700 3
6EZ2S 00 01710 ORIEXT DEFR 0 :OBJECT § EXISTENCE
6EZ26 00 01720 DEFEB 0 sCYCLE COUNT
6EZ27 0O 01730 DEFR O :DIRECTION, O=>RIGHT
&EZ28 00 01740 DEFEBE 0 sOBJECT 1 FOS REAL/ARBRS
&EZ29 0000 01750 DEFW) sFPOSITION COLINTER
6EZB Q000 01760 DEFW O : SHAPE FOINTER
&E2D 00QO0O0 Q1770 DEFW 0 sATTRIBUTE POINTER
6EZ2F 00 01780 DEFE O s ROW COUNTER
&EZOQ 00 Q1790 DEFER 5} :COLUMN FOINTER
&EZ1 OO 01800 OBZEXT DE 0,0,0,0
30 00 00
LE3S 0000 01810 DEFM 0 10B2 FOS REAL/ABS FLAG

&EZ7 Q000 01820 DEFW O

6EZ9
&E3R

&E3D

&E41
6E47R
6E4S
&EAT

&6E49

&E4D
GEA4F
6ES1
6ESE

6EST?
6ESE
6ESD
GESF

6EA1

GELS
&ELT
LELY
&E&LER

&6ELD
6ELE
b6ELF
&E70O
6E71
&E7Z
&6E7S
6E77
6E7E

&E7S
&E7A
&E7R
&E7C
&E7E
&EBO

&EB1

&EB4
&EBG

2

Q2
D00
o]

55322338533
D

QOO OQODODOI G OO OO
o D DD
Lol s i}
S 020
o

]

00

00 00
0000

Q000

0000

00

00

00

00 00
[aTaTels]

0000

[elalals]

Qo

(e13]

(18]
(a19]
Q0
00
Q000
0000
0000
02

06

Q0
00
(513
0OOO0
0000
[214]

o8

08 01
ACSO0
B76%9

2
Lo

Q0

QO

01830
01840

01850

O1B&0
01870
01880
01890

01200

01210
01920
01930
01240

Q1950

01960
01970
01980
01990

02050
020460
02070
02080
02090
Q2100
02110
02120
02130
02140
02150
Q2160
02170
02180
02190
Q2200
02210
02220
Q2230
02240
02250
02260

02270
Q2280

OB3EXT

OBR4EXT

OBRSEXT

OB6EXT

i
PCAREXT
FCARCYC
PCARDIR
FCARRAF
PCARFOS
PCARSHF
PCARATT
PCARROW
PCARCOL

Ed

FRGEXT
FRGCYC
FRGDIR
FRGFOS
FROGSH
FRGATR

5
FRGDR

FRGSTN

DEFW
DE

DE

DEFW
DEFW
DEFW
DR

DE

DEFW
DEFW
DEFW
DE

DE

DEFW
DEFW
DEFW
DE

DE

DEFW
DEFW
DEFW
DR

DEFR
DEFE
DEFR
DEFE
DEFW
DEFW
DEFW
DEFE
DEFB

DEFB
DEFE
DEFB
DEFW
DEFW
DEFB

DB

DEFW
DEFW

0,0,0,0

OO0 D

G
&
¢
2

CNOQDOODOD Q00

200000

8,8,1

SOACH
FROG1

s POLICE CAR DATABASE

;s FROG DATABASE

50:UP 1:RHT 2:DWN 3:LFT

s INITIAL POSITION DF FROG

&4E88 04 02290 DB 4 sATTR. TOTAL B8 CHARS

02300 3
02310 3
HEBT FOSE 02320 DBRINDEX DEFW REDE sRIGHT BYTE DE
4EBR AlLE 02330 DEFW LEDB sLEFT BIKE DB
LEBD AD&E 02340 DEFW RCDR sRIGHT CAR DR
&HEBF HBHFZHE 02350 DEFW LCDR sLEFT CAR DB
&HEP1 CBLE 0260 DEFW RTDB sRIGHT TRUCK DB
HEFE DI1&E G2Z70 DEFW LTDR sLEFT TRUCK DR
02380 3
02390 3
&E9S 02 02400 REDE D 2,1,0,0 sEXT CNT DIR RAF
a1 00 00
6E99 1D48 GZ410 DEFW 481DH s FOS
LHERR 7F6A Q2420 DEFW REBIKE sRIGHT BIKE
&EFD BFAA Q2430 DEFW RBATT sATTRIBUTE
LERF Q2 az440 DB 2y sROW COL
a4
02450 3
02460 3
&EA1 02 02470 LBDE DE Sl B s |
01 01 01
AEAS DF48 02480 DEFW 48DFH
HEA7 I7H6A Q2490 DEFW LBIKE
LEQT TT76A 2500 DEFW LBATT
&4EAR 02 02510 DB 2,4
o4
02520 3
02530 ;
&EAD 03X 02540 RCDE DE 3,1,0,0
a1 00 00
&EE1 1E48 02550 DEFW 481 RBH
6EBZ ZZ4R 02560 DEFW RCAR
&ERS 936R Q2570 DEFW RCATT
6EB7 02 02580 DE 2.6
(872
02590 3
G24600 ;3
&LEBY? OF 02610 LCDE DB Tyly1,1
a1 01 01
6EBD DF 4B 02620 DEFW 48DFH
&ERBF C74&A 02630 DEFW LCAR
&HEC1 274B 02640 DEFW LCATT
6ECE 02 02650 DR 2,6
(ot}
Q2660 3
Q2670 3
&ECS 04 02680 RTDB DB by,1,0,0
a1 00 00
&6ECT 1848 Q2690 DEFW 4818H
&ECE 9246C Q2700 DEFW RTRUCK
&ECD &A&D 02710 DEFW RTATT
&ECF OF Q2720 DE By 2
a9
Q2730

an an

02740

&ED1
&EDS
&ED7

&EDS
6EDE

&EDD
&EE1
&LEESR

LEES
&EE7

&EE?

&EEF

&EFS
&EFS
6EFEB

&6EFD
&EFF

&FO1

&FO7

&FOD

&F11

&F15

6F19

&F1D

&6F21

&F25

0&
01

01

DF48
PF&B
776C

o3
09

01
01

01

DF48
C76A
E?&E

02
06

oo Ro o)
lollelid) o)

01

2
o]

o0

1B48
I346B
O16F

02
06

o0
035
00
05

29
00
17
00

FQ

8C

c7

8C

Al

Fl

01

2
S

02750

Q2760
Q2770
02780
Q2720

02800
02810
02820

02830
02840
02850
02860

02870
02880
02820
05 00
02900
05 00
029210
02920
02930

02940
02930
029460
02970

02980
02990
03000
a5 Qo
03010
00 00
G3I020
03030
00480
00490
00500

Q0510
00520

00530
00540

00580

LTDR

LFCDE

LPCATT

RFCDR

5
RPCATT

-y an A A

PCTON1

PCTONZ

-

HOMTON

DB
DEFW
DEFW

DEFW
DB

DEFW
DEFW
DEFW
DR

DH

DB

DB
DEFW
DEFW

DEFW
DB

DB

DR

DE

DB

DE

DE

DR

DE

DR

6,1,1,1
48DFH
LTRUCK
LTATT

3,9

1:1,151
48DFH
LCAR

LFCATT
2.4

0y 5,9,5.5,0

0,0,0,5,5,0

1;1,0,0
481BH
RCAR

RPCATT
2,6

0,9,5,5.5,0

0,5,5,0.,0,0

41,0.0F0H, 1 stFIRST FOLICE CAR TONE

23,0,8CH, 3 5SECOND POLICE CAR TONE
46H, 0, OCTH, 4 :FROG REACH HOME TOME
SDH, O, 8CH, 3

7CH, ©, 0A1H, 2

0AAH. 0, OF1H, 1

QDEH, O, 6DH, 1

aF 30

LFAE

LF 49

Q005
LFSE

hl

]

-

13 s S S N D |
M O N G Ry e

6F71

&HF 72
&F 73X
LF74

&F 75

&aF77
&F78
&F78H

55
&3
0
0 IO
48
a9
45
0

Z0 ZO

o0

Q0
GO
(818}
(Ele)
0000
00
OO0
Qo00

Qo000
0000
TO00
o0

~
)

MDA Do

2l

o
belte W
[

b
m

GOSF0

OOL00

OOA10

e

[o Rle N

Wo ke
=
X}

[i W

i Wl s}

=
o0

>
DN R

L

OO6F0 HY

=zt

CO760
00770
CO780G
GORGO
00810
OORZ0
GO83N0
oog40
0850
QORAD
GO870
20880
00890
QOF0G0
00210
Q00920
QO30
0OF40
00950

Q0260 ¢

Qlal1o
D1020
0103Z0

COLUIMN
ROW
SKIP
FILL
ATTPOS
ATTR
DRWFOS
STRPOS

5

ATTPTR
NEWFOS
FOSPTR
GENFLG

JOMFLG

TONFLS
RND
H

GAMFLG
0LDFRE
NEWFRG

DM

DE

b&
DEFR

DE
DR
DEFE
DEFE
DEFW
DE
DEFW
DEFW

DEFW
DEFW
DEFW
DEFR

DEFER
DEFR
DEFR
DEFW

DEFE
DEFW
DEFW

BEH, 1, 0BFH, O
OFH,2.88H,0
OCOM, 2, SEH, O

84H.Z,43H,0 ;iFROG DYING TONE,REVERSE

‘Score

J0OH, Z0H, Z0H, 30H, 30H, T0H

5 iFRINTING IMAGE OF SCORE

0 ;SET WHEN FROG MOVES UP OR DOWN
0 tVARIAELE STORING SHAPE COLUMN

o ;VARIABLE STORING SHAPE ROW

0 :CHAR SKIPPING DURING DRAW

o ;CHAR DRAWN

o tHOLDING THE ATTRIBUTE FILE FTR
s ;ATTR OF CHARACTER BLOCK DRAWN

« :DRAW FOSITION

0 :STORE POSITION

o

o sNEW TRAFFIC OBJJECT POSITION

0 : TRAFFIC FOSITION DATABASE PTR

0 s TRAFFIC REGENERATION FiAG

o 1SET TO 1 AS TRAFFIC MOVE JAM

o :SET WHEN POLICE CAR APPEARS

o :SET WHEN USER WANT SIREN SOUND
0 :DETERMINE WHICH SIREN TONE

a :FOINTER TD ROM FOR RANDOM NO

i :END IF ZEROD

o] :0LD FROG POS

0 :NEW FROG POS

&F7C
&F7D
&F7E
LFBO

5020
S120
4540
41740
4RA40
AC 4D

ICO0

&F872

&F24

&%)
00
QOO0
000

&FB4 2

&F89 Z

&F3C E2

AFBF
LF 20
HFFX

&FFT

LFF8
LF P4
&FIC
&HF D
LF9F
LHFAO
LFAZ
bF AL
AFAY
LFAC
AFAF
&FRZ
LHFBS
LFRE
AFRA
A&FBD
&FCG
MG

aFCH
AFCE
LHFC?
AFCR
LECE
&FD1
&FD4
=FD&
o
&FDE

LF
22756F
21ACH0
22844LF
cppz7r72
CDOR7Q
CDS570
210040
113DAF
04604
CDZ28e7=
218445F
CD&F77

210640
11594F
O45G5

Z21GE4D
11494&F
Q&GER

CD2873
21546F
CD&F77

01040
01060
Q1070
O1080
01090
01100
01110
01120
01130
01140
O1150
011460
01170
01180
01190
01200
01210
01220
01236
01240
01250
Q12460
Q1270
01280
01290
01300
01310
01320
G130
1340
01360
Q1370

01390

01420
1470
21440
01450
O1 440
01470
01480
D149

0150
01510
Q1520
O1530
01540
01550
01540
01570
01580
1590

CRHFLEG
TEMDIR
TEMPOS
TEMSHP
3

BOTHY1
BOTHYZ
TORHY1
TOPHYZ
MIDHY 1
MIDHYZ
CHRSET
NLIMFREG

3

INIT

DEFE
DEFE
DEFW
DEFW

EQU
EQU
EQLI
EQU
EQL
EQU

EQu

DEFR

XOr
ouT
LD
LD
LD

INC

[
-

D‘s;gu DO bon
[

xR e e e el

=
-

o sSET TO 1t WHEN FROG WAS CRASH
G tFROG TEMFORARY NEW DIRECTION
o ;FROG TEMPORARY NEW POSITION
(s} :FROG TEMPORARY NEW SHAFPE
S020H 50,38. 0,39

5120H

A46A0H ;0,128. 0,129

47R0H

4B&OH :x,B83. »,84

ACHOH

FCO0H sFIRST 254 BYTES NOTHING

S 1 NUMBER OF FROG

& ;000 FOR D2 D1 DO
(OFEH) . A sSET BORDER COLOUR
{23624) ;A : TO BLACK

(CRHFLG) , A

{(FRGEXT) . A sSET FROG NOMN EXIST

A

(GAMFLG) . A sSET GAME FLAG

A.S s INITIALISE FROG NO
(NUIMFRG) , A

AR :BENERATE RANDOM PTR
EFH sFOR THIS CYCLE

H.Aa sPTR POINTS TO ROM
AR

LA

(RND) , HL

HL , SOACH sINIT FROG STATION
(FRESTN HL

Cl RSCR sCLEAR SCREEN ROUTINE
DRWHWY s DRAW HIGHWAY

LINELIFP sLINE LUFP ALl EXIST FROGS
HL . 40:00H :MESSAGE L OCATION

DE . SCRMS1 :LOAD SCORE MESSAGE
B. &

DISASC sDISPLAY ASCII CHARACTER
HL , SCORE+1 sFRINT SCORE

SCRIMG sCONVERT TO FRINTABLE TMAGE
HL . 400464

DE, TMAGE

B.S

DIsSASC

HL . 400EH

sHIGH SCORE MESSAGE

DE., SCRMG2

B, 11

DISASC
Hi HISCR

SCRIMG

sFDF
AFE2
&FES
&FET
AFEAQ
&FED
aFFO
&FF2
HFFZ
AFF4
AFFS
&FF7
&FF A
&FFE
&FFE
70101
7004
7005
7008
7004

700R
700E
711
7014
7O17
7otA
701D
7020
7023
7024
7027
702A
702D
FOZE0
FO33
7036
703I8
7034
FO3IR
703C
FOED
70ZE
7040

7041
704X
7044
7044
7047
7048
7044/
704E
7040

211340
1159aF
GLOS
ED2873
Z1255E
110CO0
OAa07
AF

77

13
10FC
I2726F
G 8
Z2736F
21436F
11444F
OEOS
IHF0
EDBO
ce

21A040
CD4170
2146048
CD4170
212050
CD4170
218044
114047
AaF
CD3IB70
212050
112051
CLEBR70
2146048
11&04C
3ECE
0L20
77

12

23

13
10FA
ce

3EFF
D9
0620
DY
ES
0608
77
24
10FC

Gl U0
01610
Gl1620
014630
014640
G1450
015660
01670
01480
01490
01700
01710
01720
Q1730
Q1740
01750
Q1760
Q1770
01780
Q1790
¢1800
01810
01820
01830
01840
41850
01860
Q1870
01880
01890
01200
G1910
Q1920
GiI930
01940
01950
019460
01970
01980
01990
02000
02010
QZ020
02030
02040
Q2050
Q2060
OZ2Q70
Q2080
Q2090
02100
02110
02120
02130
02140
Q2150

INTLF1

D TR

SRWHWY

HIGHWY
HWYLOP

5
FILHWY
FILHYL

FILCHR

iD
LD
LD
CALL
LD
LD
LD
XOR
LD
ADD
DIMZ
LD
INC
LD
LD
LD
LD
LD
LDIR
RET

LD
cail
LD
calt
LD
CALL
LD
LD
XOR
Caitl
LD
LD
CALL

LD
LD
LD
LD
LD
INC
INC
DJINZ
RET

Hi ,4019H
DE. IMAGE
B: 5
DISASC
HL, GRIEXT
DE,12

B,7

A

(HL) . A
HL . DE
INTLFPI1
(CHASE) . A
Aa

(SOUNDF) , A

HL, SCORE

DE, SCORE+1

G5

Loy

(HL) , SOH

HL, 40A0H
FILHWY

HL . 4860H
FILHWY

HL , SOZ0H
FILHWY

HL . TOFHY1
DE, TOFKHYZ2
A

HIGHWY

HL . BOTHY1
DE.BOTHYZ2
HIGHWY
HL, MIDHY1
DE.MIDHY?
A, 195
B,32
(HL) , &
(DE), A

HL

DE

HWYLOF

A, OFFH
B,32

HL

B.8
(HL) , A
H
FILCHR

:SET ALL OBRJ NONEXIST

:SET NO FOLICE CAR CHASE
ET SIREN OM

; S
s INITIALISE SCORE TO
sASCII ZERD ie 30H

:INIT SCORE TO 3I0H

sFILL TOP HWY
sFILL MIDDLE HWY
sFILL BOTTOM HWy

s REVERSE BUILT HIGHWAY

sBIN 11000011
;32%8 BITS

704E
7Z04F
7050
7051
7053
7054

7055
7057
705A
705D
7040
7042
7045
7048
7069
704A
70&RB
TO6C
704D
TOAE
7071
FO72
7073
7074
7075
7076
7077
7079

E1l
23
D9
10F3
D9
c2

JEO1
F27BAE
11D7469
2AB44E
JE04
IZ2656F
3ABZLF
A7

CB

47

CS

D5

ES
CD7/70
El

IEO2
o8
ES
ES
OEO2
ES

2 808

15
77

Oo0D0O0
bR R R

Q2220
Q2230
02240
Q2250
02260
02270
02280
Q2290
02300
02310
02320
O2T3Z0
OZ23F40
O2E50
O23460
Q2370
02380
02390
02400
02410
02420

Q2470
02440
02450
024460
Q2470
Q2480
02490
Q2500
02510
Q2520
G2530
02540
02550
Q2560
Q2370
a2580
Q2590
Q2600
02610
02620
02630
024640
024650
Q2660
02670
G2680
024690
Q2700
02710

T

NELIFP

DRAWLN

DRWFRG
FRGLFO

FRELP1

FRGLFZ

TARREEXKR

FOF HL
INC HL
EXX
DJINZ FILHYL
EXX
RET
kkxxxkkk LINEUF XXkEXXkkX

draw all frogs left

LD
LD
LD
LD
LD
LD
LD
AND
RET
LD
FLISH
FLSH
FUSH
CALL
FOP
FOP
DEC
DEC
DEC
FOP
DJINZ
RET

similar to DRAW routine

LD
EX
PUSH
PUSH
LD
PLISH
LD
LD
LD
INC
INC
DINZ
FOF
INC
DEC

ALl
(FRBDIR) ,A
DE,FROGZ
HL, (FRGSTN)
A4
(ATTR),A
A, (NUMFRG)
A

7

E, A

BC

DE

HE

DRWFRG

HL

DE

HL

HL

HL

BC

DRAWLN

DRWFRG XXXKXXAX

A,z
AF , AF*
HL

HL

c,2

HE

B.8

A, (DE)
(HL) . &
DE

i
FRGLPZ
HL

HL

[

on the screen

;RIGHT FROG
sRIGHT FROG SHAPE
;FROG STATION

: (PAPER ©) %8+ (INK 4)

s NLIMBER OF FROG
s TEST FOR NO FROG LEFT

s NUMBER OF FROG TIMES

: DRAW FROG ROUTINE

; TWO ROW FROG SHAPE
:STORE POS FTR
s COLUMN COUNT

: DRAW CHARACTER

sNEXT BYTE OF THE CHAR

; CURRENT POINTER
sMOVE TO NEXT CHAR POS
s DECR COLUMN COUNT

708D
708F
7090
7091

7092
7094
7094
7097
7098
70948
709C
709€
TOPF
70A1

7ORA2Z2
7004
70A5S
TOAL
70A8
70RAA
70AC
70AE
70BO
70B1

7OR4
7ORS
7OR6
70B7
70R9
7O0BA
7ORR
7OBRC

70BD
70C0
70C1
70C2
70C4
70CS
70C&
70C9
70CC
70CE
70CF
70D1
70D4
70DS
70D6
70D8

20F2
E1l
08
3D
OE20
280E
0B

ED4Z
CB44
28E0
7C
D&0G7
&7
180A
E1l

E&6LSB
CB2F
CB2F
CB2F
C658
67
3AL56F
77
23
77
ED42
77
2B

ce

21706F
AF

Bt
2802
35

c9
21256E
110C00
0606
BE
2004
CDDY70
c9

19
10F6
co

Q2720
Q2730
Q274G
Q2750
027460
02770
02780
02790
02800
02810
Q2820
02830
02840
02850
02860
02870
02880
02890
02900
02910
Q2920
02930
02940
Q2950
02940
02970
Q2980
02990
OZI000
03010
03020
03030
03040
03050
03060
03070
03080
03090
0F100
03110
03120
03130
03140
03150
03160
03170
03180
03190
03200
03X210
03220
Q3230
03240
03250
03260
03270

JR NZ,FRGLP1
POF HL
EX AF, AF?
DEC A
LD 632
JR Z,FRGATT
EX AF , AF
AND A
SBC HL, BC
BIT o,H
JR Z,FRGLFPO
LD aH
SUR 7
LD H, A
JR FRGLPO
FRGATT FOFP HL
LD Aa,H
AND 18H
SRA A
SRA £
SRA A
ADD A, 58H
LD H, A
LD A, (ATTR)
LD (HL) , A
INC HL
LD (HL) , A
SBRC HL, BC
LD (HL) ,A
DEC HL
LD (HL) , A
RET
sEXXRRERRE TFCTRL ®xxxxstg
3 Traffic control routine
TFCTRL LD HL , GENFLG
X0R A
CP (HL)
JR Z,GENER
DEC (HL)
RET
GENER LD HL, OR1EXT
LD DE,12
LD B, &
TCTRLP CF (HL)
JR NZ , NSFACE
CALL REGEN
RET
NSPACE ADD HL , DE
DJINZ TCTRLP
RET
H
¢]
sEERXEEXEX REGEN SX%kikk%x

sROW PTR
;DEC LINES OF CHAR
;LDAD FROG ATTRIBUTE

sMOVE 322 CHAR/1 LINE UP
s TEST CROSS SCR SECTION

s UF ONE SCREEN SECTION

1POS PTR
;CONVERT TO ATTRIBUTE PTR

sFILL FROG SHAFPE ATTR
sNEXT CHARACTER
sONE LINE UP

sNEXT CHAR LEFT

s CHECK. REGENERATION FLAG

; IF ZERO, TEST GENERATE
;DECR GENERATION FLAG

sSTART OF TRAFFIC DB
112 BYTE DATABASE

;6 DB PAIRS

s TEST EXISTENCE

: REGENERATION ROUTINE

7009
TODA
70DD
ZGDF
70E1
7QES
FOES
70E%

7UEER 2
7OEDL ZED

JOEF
A o

FOFZ

7OFZ
TOF4
7OFS
70F4
7OF8
TOF9
7OFD
FOFR
FOFE
JOFF
7100
7101
7102
710X
7104
7107
7109
7108
710E

5
2
5
E.
15}

[VLY I

bt

GLl1OC00
EDBO
SEO2
F2704F
£e

0
foll|
i
m

[|

Ny e

[By Son BE ol W
SDOLN O e

~ m
[T] =

- A7

CaA771

rageneration of TRAFFIC

HL=-DHE FAIRS

HL
RANDNO

7

&

NG, RAND1
BC,5921H
HL ; 59204
L Y.
Z,RTRAF
L, ODFH
C,0DEH
ALA

E. A

A, (BCY
A, (HL?

A
Z,L0ADDR
HL

D, A

HL , DRINDEX
HL . DE

£, (HL)

HL

D, (HL)

DE, HL

A, 2
{(GENFLB) ; A

MOVTRF kXX XEkx

MOVE TRAFFIC ROUTINE

) z
0 3
0 3 INFPLITE
0 H
) y REGEN FLISH
O RAND1 CALL
G AND
(9] CF
O JR
G LD
¢ to
G BIT
OT400 JR
OZ410C LD
03420 LD
OF4E0 RTRAF ADD
0Z440 LD
OZ450 LD
OZ460 ADD
D3IE4T70 ARND
DE420 JR
Q2450 POF
03500 RET
O3ES510 LOADDE LD
G3I520 LD
ADD
0Z540 Lo
OI550 INC
GESLD LD
OZ570 EX
03580 FOF
OIS0 LD
GEAH00 LDIR
03610 LD
GZ4L20 LD
03630 RET
03640 3
0R650 ;5
O3&LA0 s KXEKKXKKK
QZLT70 g
03680 ;
Q3670 3
O3700 MOVTRF EXX
03710 LD
03720 LD
03730 LD
0X740 MTRFLF PLUSH
O3750 EXX
03760 FOF
QR7T70 LD
G3780 AND
JP
O3B00 INC
03310 DELC
03820 JF
Q3830 INC

HL, OR1EXT
DE, 12

B, b

HL

HL
A, (HL)

A

Z, NXTHMOV
HL

(HL)

NZ , NXTHMOV
HL

s RANDOM NUMBER ROUTINE
1 GENERATE RANDOM NUMBER
sFROM O TO 5

; TWO CHAR TEST

: TEST JamM

:0DD NUMBER IS LEFT
sRIGHT TRAFFIC

;GET DBRINDEX FTR IN DE
sTEST 2 CHAR AHEAD

s ZERD PAFER, ZERD INK

;IF O, INITIALISE NEW ORJ
:IF JAM, RETURN

1 A=0
:GET DB

:GET CORR DATABASE

1 SOURCE
s DESTINATION

:5ET REGENRATION FLAG
;SKIFP FOR 2 CYCLES

sEXISTENCE
: SKIF WHEN NO EXIST

sCYCLE COUNT
:DECR CYCLE COUNT

sDIRECTION

7126
7127
7128
7129
712C
712D
7F12E
712F
7130
7131
7133
713

7135
7139
713A
713D
713E
713F
7142
7143
7144
7147
7148
7149
7144
714B
714C
714E
714F
7150
7152
7154
7156
7157
7139
715B
715C
715E
7160
71462
7164
71646
7167
716A
714B
716E
7171
7172
7173
7175
7177
7179
717B
717D
7180
7182

TE
23
23
226E6F
SE
23
56
iCcC

EDS36C6F
o8
010500
0%

7E
32606F
23

7€
325F6F
3D

aF

0B

A7

EE
2008
0%

7D
FE40
3046
1805
7D
FECO
383F
7C
E618
CB2F
CB2F
CB2F
cesa
67
012000
AF
32716F
IAL0LF
08

7E
ESO7
280E
FEO4
2007
3EO1
I27C6F
1803
I2716F

03840
Q3850
O3ZIRL0
a3B70
03880
03890
03900
03910
03920
03230
0F240
039350
03960
03970
NIF[0
03990
04000
Q4010
04020
Q4030
04040
G4050
04060
04070
04080
04090
04100
04110
04120
04130
04140
04150
041460
04170
04180
04190
04200
04210
Q4220
Q4230
04240
04250
04260
Q4270
04280
Q4290
04300
4310
04320
04330
04340
04=50
G4360
Q4370
04380
04320

LDPOS

RTOL

TESTAH

TAHLOP

JAM1

LD
INC
INC

EX

AND
JR
CP
JR
LD
LD
JR
LD

a, (HL)
HL

HL
(FOSPTR) , HL
E, (HL)

HL

D, (HL)

E

A

Z,LDFOS

E

E
(NEWPOS) , DE
AF, AF 7
BC,S

HL, RC

A, (HL)
(ROW) , A

HL

A, (HL)
(COLUMN) , A
fa

c,A

AF, AF*

A

DE, HL
NZ,RTOL
HL, RC

AL

40H

NC . MOVEOK
TESTAH

AL

OCOH

., MOVEDK
AH

(JAMFLG) . A
A, (ROW)
aF, arF’

A, (HL)

7

Z. TFROG1

4

NZ,JAM1
ALl
(CRHFLG) ., A
TFROG1
(JAMFLE) , A

;O L TOR, 1 R TO L

;POS PTR
:RESTORE FOS

sMOVE RIGHT

sMOVE LEFT
sMOVE LEFT

:RESTORE OBJ LENGHT

s ROW

s COLUMN

;TEST DIRECTION

sRIGHT TO LEFT

sFIND HEAD OF TRUCK
:LOR

: TEST RIGHT EDGE

:SKIP TEST AHEAD IF OFF
s TEST AHEAD

sNEW POS, AHEAD AS WELL
s TEST LEFT EDGE

+:SKIP TEST AHEAD
sCOVERT TD ATTR

:INITIALISE JAM FLAG

iRETRIEVE ATTR

JUMP IF BLACK INK
TEST FOR GREEN,FROG
JaM IF NOT A FROG
sMOVE IF IT IS FROG
:SET FROG CRASH

e AR

1SET JA&FLG NON ZERO

7185 &7 04400 TFROG1 AND A

7184 ED4Z 04410 SkC HL , BC
7188 o8 04420 EX AF, AR
7189 3D 04430 DEC A sUPDATE ROW
718A 20ES 04440 IR MZ, TAHLOF
718C IA714F 04450 LD A, (JAMFLG) s TEST TRAFFIC JAM
718F A7 04460 AND A
7190 2808 04470 JR 7, MOVEDK sMOVE IF NG JAM
7192 D9 04480 EXX :ELSE STOP MOVE ONE CYCLE
7193 23 04490 INC HL
7194 34 04500 INC (HL) sL0AD 2 TO CYCLE COUNT
7195 X4 4510 INC (HL)
7196 2 04520 DEC HL
7197 D9 04530 EXX
7198 180D 04540 JR NXTHOV
719A 2Z2ALELF 04550 MOVEMC LD HL , (POSFTR) sRETRIEVE FPTR TO POS
717D EDSB&CAHF 04560 LD DE, (NEWFPOS)
71a1 73 04570 LD (HL) L E ; STORE NEWFOS IN DB
71A2 23 04580 INC HL
71AZ 72 24590 LD (HL)Y D
7144 CDAF71 044600 catLL MVCTRL ;s MOVEMENT CONTROL
71A7 D9 04610 NXTMOV EXX
71AB 19 Q4620 ADD HL . DE
7149 05 044630 DEC E
71/8A C21871 04640 JP NZ,MTRFLF
71AD D9 044650 EXX
71AE C9 04660 RET
GA6T70 ;3
04680 ;xkE¥xx%xx MYCTRL IXXkxkx%
QA490 3
Q4700 3 Traftfic movement control routine
Q4710 3
71AF 2B 04720 MVCTRL DEC HL
71RO 2R 04730 DEC HL :DE=>NEWFOS5, HL=>DR FPTR
71B1 7B 04740 LD A,E ;LORBR FOS
71B2 EAIF 047350 AND 1FH s TEST EDGE
71B4 2005 047460 JR NZ, CHGRAF ;CHANGE REAL ABS FLAG
71B&6 7E Q4770 LD A, (HL)
71B7 3C Q4780 INC A
71B8 E&O1 04720 AND 1
71BA 77 04800 LD (HL) . A
71BR 2 04810 CHGRAF DEC HL ;PT DIR
71BC 7E 04820 LD A, (HL)
71BD A7 04830 AND [a}
71BE Z200F 04840 JR NZ, TOLEFT sRIGHT TO LEFT
71C0O 7B 04850 LD A E
71C1 E&IF 04840 AND 1FH :IF 7O RIGHT AND ABS
71C3 201B 04870 JR NZ . DRWOBJ
71Cs 23 04880 INC HL sGET RAF
71C6 7E 04830 LD A, (HL)
7iC7 2 04200 DEC HL ;FT TO DIR
71C8B A7 04910 AND A : IF ABSTRACT, DIES
71C? 2015 04920 JR NZ, DRWOBJ
71CB D9 G4930 EXX
Z71CC: 77 04240 LD (HL) ,A sS5ET NON EXISTENCE

7iCD D9 04950 EXX

71CE
Z1EF
71D2
FAD3
71D4
7105
71D&6
71Dp2
71D%
71DR
71DC
71DE
71DF
71EO
71E1
71EZ
71E3
71E4
71ES
71EA
71E7
71E8
J1E9
71EA
71ER
71EC
71ED
Z1EE
71EF
7Z1FO
7iFt
71F2
7iF&
TIiF7
71F8
71FR
71FC
71FD
7200
7201
7202
7205
7208

Cce
ZASF&F
aF

ER

0%

7D
FECO
ERB
2005
D
2600
D?

ce

D9

7E

23

77

2R

D9

23

ES

23

23

23

SE

23

56

23

4E

25

46
EDAZ6ALF
23

7E
ZI2606F
235

7E
Z25F&F
E1l

7E
ZALCHF
cCDO972
[l

4940
04970
049320
049320
05000
5010
05020
05030
05040
a5050
050460
Q5070
05080
G090
05100
035110
05120
05130
05140
05150
051460
05170
05180
05190
05200
05210
05220
05230
05240
05250
05260
05270
05280
05290
05Z00
05310
05320
05330
G5340
05350
05360
Q5370
05380
05390
05400
05410
05420
05430
05440
05450
OS460
Q5470
05480
05490
05500
Q5510

RET

TOLEFT LD

LD
EX
ADD
LD
CF
EX
JR
EXX

EXX
RET

DRWOBJ EXX

WBE WE EE AN RN R AR AT WR AR WE @B ‘as

XEXXXXXXx DRAW

INPUT

VAR

a. (COLLUMN)
C.A
DE, HL : TEST END DOF OBJECT
HL . BC : TOUCHES LEFT EDGE
AL
OCOH
DE, HL
NZ . DRWOEJ

sORJECT NONEXIST AS
(HL) , 0 ;1T MOVES OFF SCREEN

A, (HL}
HL
(HL) . A tREFILL CYCLE COUNT
HL

HL

HL iPT TO RAF
HL

HL

HL

E, (HL) s RETRIEVE SHAPE FTR
HL

D, (HL)

HL

C, (HL) ;RETRIEVE ATTR PTR
HL

B, (HL)

(ATTPTR) ., BC

HL

A, HL)

(ROW) , A

HL

A, (HL)

(COLUMN) , A

HL

A, (HL) ; RAFLAG
HL, (NEWPDS)

DRAW

KXXERRXR

HL=>5TART OF DISPLAY POS
DE=>PTR TO SHAPE DB

A =>POSITION REAL/ABSTRACT FLAG
C =>ND. OF COL TO BE DISPLAY
COL FASS AS VAR

COLUMN, ROW, ATTR, DRWPOS
SKIP, FILL

05520

05530
05540 3 REG : A,BC,DE,HL.A"
05550 3
7209 CD9&72 05560 DRAW CALL RSHAFE sRETURN ROW/COL ATTFTR
720C ZAL06F 05570 LD A, (ROW)
720F 08 05580 EX AF ,AF®
7210 DS 05590 LPO FLSH DE
7211 ES 05600 FUSH HL sSTORE LINE FTR
7212 3AL614F 054610 LD A, (SKIP)
7215 4F 0S&20 I c,A
7216 04&00 05430 LD B,O
7218 09 05640 ADD HL . BC :S5KIF POS PTR
7219 87 054650 ADD A.A sMULTIPLE OF B8 BYTES
7214 87 05660 ADD A A
721B R7 05670 ADD AA
721C 4F 05680 LD C.A s SKIF SHAPE FPTR
721D EB 05490 EX DE,.HL
721E 09 05700 ADD HL . BC
721F ER 05710 EX DE, HL
7220 CRBA4 05720 BIT O,H sCROSS SCREEN SECTION?
7222 2804 05730 JR Z.NOSKIFP
7224 3IEOQO7 05740 LD A, 7 s IF YES., MOVE UP
7226 84 05750 ADD a,.H
7227 &7 05740 LD H,A
7228 FAL26F 03770 NOSKIFP LD A, (FILL)
722B A7 05780 AND A
722C 2811 05790 JR Z,NXT
722E 4F 05800 LD C.A sCOLUMN TO BE FILLED
722F ES 05810 LP1 PUSH HL sFILL CHARACTER
7230 04608 05820 LD B,B
7232 1A 05830 LP2 LD a, (DE? sFILL CHARACTER BYTES
T233 77 05840 LD {(HL)Y . A
724 13 05850 INC DE
7235 24 05840 INC H
7236 10FA 05870 DJINZ LP2
7238 E1 05880 FOR Hi_
7239 OD 05890 DEC C
72ZA 2803 05700 JR 7. MNXT
F23C 23 05910 INC HL sNEXT CHARACTER
723D 18F0 05920 JR LF1
723IF o8 NSFT0 NXT EX AF, AF*
7240 E1 059240 POP HL sRESTORE LINE FTR
7241 D1 05950 FOF DE s SHAFE DR PTR
7242 3D D540 DEC A s UPDATE ROW COUNT
7243 2814 05970 JR Z,LDATTR
7245 08 05980 EX AF, AF°
72446 A7 05920 AND a :CLEAR CARRY
7247 QEZO 06000 LD C,Z20H
7249 ED4Z 046010 SEBC HL, BC :ONE LINE UP
724B CRB44 04020 BIT O,H :CROSS SCREEN SECTIONT
724D 2804 04030 JR Z.MODDRE
724F 7C 06040 LD A, H
7250 D607 06050 SUR 7
7252 67 O&AO&0 LD H,A
7253 ZASFAF 06070 MODDE LD A, (COLLIMN}

72546 37 DAOR0D ADD A A
7257 87 06090 aDD a,4a
7258 87 0D&A100 ADD AA ;: UFDATE SHAFE DB
TIEY 4F 046110 (5] c.A
7254 EBR Q6120 X PE, HL
725RB 09 04130 ADD Hi , BC
7250 ED 06140 EX DE.HL
725D 18BR1 Q6150 IR LPO
725F 2ALTLF 04150 LDATTR LD HL , (ATTFOS)
7242 EDSBLALF O&6170 LD DE, (ATTFTR}
72646 ZALK0OEF 04H180 LD A. (ROW)
7269 02 QL1990 ATROW EX AF . AF*
7264 DS Q&2 PUSH DE
726B ES Q4210 FUSH HL
726C ZAL16F 05220 LD A, (SKIF)
T24F 4F QA2Z0 LD C.A
T270 0600 QL2240 LD B.O
7272 Q9 QL2250 ADD HL , BC :SEIFP ATTRIBUTE FILE
7273 ER D&A250 EX DE, HL
7274 Q9 QL2270 ADD Hi_ . BC 1SKIP ATTRIBUTE DATABASE
7275 ER Q6280 EX DE, HL
T27&6 FALKZAF D&290 LD A, (FILL?
7279 a7 QLZ0O0 AND A
7274 2BQO7 04%10 IR Z.8KIPAT :SKIFP ATTRIBUTE
727C 47 DLIZ20 LD B.A sFILL ATTRIBUTES
727D 14 043350 ATTR2 Lp A, (DE)
727 77 OLZ40 LD tHLY . A
I27F 23 046350 INC HL
7280 13 0LZLO INC DE
7281 10FA GAZT70 DJINZ ATTRZ
728% EY 06380 SEIPAT FOP HL
7284 D1 OALHER0 FOF DE
7285 IASFAF 06400 LD A, (COLUMN)
7288 47 06410 AND a s CLEAR CARRY
7289 OEZ20 6420 LD C,20H
728R ED4Z GAL4Z0 SRC HL,BC sNEXT ATTRIBUTE LINE UFP
728D 4F 06440 LD C.hA
728E EBR CGLA50 EX DE, HL
72BF 09 QLAAD ADD HL , BC s LIPDATE ATTRIBUTE DR
72790 ER 04470 EX DE; HL
7291 OB 04480 EX AF , AF°
7292 ID QL4990 DEC A
729X 20D4 06500 IR NZ, ATROW
7298 E9 Q6510 RET
06520 3
06530 ;
OAS4C s KXKEXEkXK RSHAPE KX kkEK kXK
04550 3
04560 3 INPUT: HL=>POSITION
06570 3 =>*REAL /ABRSTRACT FLAG
04580 ; DE=>SHAPE FTR
OL590 3 COi_UMN
OLHEO0 3
0A610 QUTPUT: SKIP, FILL, ATTFOS
QLEL20 ;3
7294 ES O646Z0 RSHAPE PUSH HL

7297 08 065640 EX AF , AF* s REAL SHAFE

7298 261F 064650 LD H, 1FH
7294 7C 06640 LD A H
729B AS 06670 AND L : TRAP LOWER S BITS
729C &F 06680 LD L,A
729D 7C 06690 LD A.H
729E 95 06700 SUR L s SUBRTRACT FROM 1FH
729F 3C 06710 INC A
72A0 A4 04720 AND H :ADJUST FOR ZERO DIFE
7261 &F 06730 LD L,A
72A2 08 06740 EX AF, AF*
7243 A7 06750 AND A $0=>ABSTRACT, 1=3>REAL
72A4 IASFGF 0&760 LD A, (COLUMN)
72A7 2004 06770 JR NZ , REAL
72A9 95 06780 SUB L
72AA 32626F 04790 LD (FILL),.A
72AD 7D 06800 LD A,L ;RELOAD ABS DIFF
72AE 32616F 06810 LD (SKIP),A
72R1 1811 06820 JR CALATT
72B3X BD 06830 REAL CF L s TAKE MIN OF COL/FILL
72R4 3807 06840 JR C, TODRIG :FILL MORE THAN COL
72B&6 7D 06850 LD AL
72R7 A7 06860 AND A
72B8 2003 06870 JR NZ, TOORIG
72BA IASFAF 06880 LD A, (COLUMND
72BD 3I2626F 06890 TOOBIG LD (FILL) . A
72C0 AF 04900 XOR A
72C1 32616F 04910 LD (SKIP), A
72C4 El 06920 CALATT POF HL :CALCULATE ATT PTR
72C5 ES 049T0 PUSH HL
72C6 7C 06940 LD AH
72C7 E618B 06950 AND 18H
72C9 CB2F 06960 SRA A
72CB CB2F 06970 SRA a
72CD CB2F 06980 SRA A
72CF C&58 06990 ADD A, 58H
72D1 &7 07000 LD H.A
72D2 22636F 07010 LD (ATTPOS) . HL
72D5 Et 07020 FOP HL
72D&6 C9 07030 RET
07040 3
07050 ;
72D7 210040 07060 CLRSCR LD HL , 4000H ;HL=>START OF SCREEN
72DA 110140 07070 LD DE, 4001H
72DD O1FF17 07080 LD BC, 6143 sSIZE OF SCREEN 17FFH
72E0 AF 07090 XOR A ; BLANK ACREEN
72E1 77 07100 LD (HL) . A
72E2 EDBO 07110 LDIR
72E4 210058 07120 LD HL . SB0OOH 1SET FIRST LINE FOR SCORE
72E7 110158 a7130 LD DE, S801H ;0F ATTRIBUTE FILE
72EA 011F00 07140 LD BC. 31
72ED 3607 07150 LD (HL) , 7 ; INK SEVEN
72EF EDBO 07160 LDIR
72F1 212058 Q7170 LD HL, 5820H $SET ATTRIBUTE
72F4 112158 07180 LD DE.S821H : START FROM SECOND LINE

72F7 O1DFO2 07190 LD BC, 735

72FA 77
72FBR EDRO
72FD 21A0358
7300 116059
7IOE 01205A
73046 IE3Z8
7z 08 D9

F09 0620
730B D°?
7I0C 77
7IOD 12
F7I0E 02
7ROF 23
7310 13
7311 O3
7312 D9
7312 10F4
73135 D9
73146 C9

7317 ES
7318 ZA7B6LE
731R B7
73I1C Z21AF4L7
731F 14600
7321 oF
7322 19
732X 5E
7324 23
7325756
7E246 E1
7327 C9

7328 C5
7329 DS

732D 24600
TI2F 29
TIZO 29
7331 29

ER
210030

Q7200
07210
07220
Q7230
07240
07250
07260
Q7270
07280
Q7290
07300
07310
07320
07330
07340
07350
07340
07370
07380
Q7390
Q7400
07410
07420
O743F0
07440
07450
Q7440
07470
07480
07490
07500
07510
O7520
07520
G7540
07550
7540
07570
a7580
07590
Q7600
07610
07620
07630
07640
07650
Q7660
DTLHTO
07680
Q7650
07700
Q7710
Q7720
07730
07740
07750

LD (HL)Y , A s (PAPER 0)%XB + (INK 0)
LDIR
LD HL , SBA0H s SET HIGHWAY
LD DE, S52460H sHIGH, MIDDLE, BOTTOM
LD BC . SAZ0H
LD A, 54 s (PAPER 7)%8B + (INK O)
EXX
LD B, 32 sFILL ONE LINE
HWYATT EXX
LD (HL) ., A
LD (DE) ., A
LD (BC),. A
INC HL
INC DE
INC BC
EXX
DJINZ HWYATT
EXX
RET
i
SHAPE PUSH HL sSAVE HL PTR
LD A, (FRGDIR)
ADD A A
LD HL , FRGSHF
LD D,O
LD E.A
ADD HL , DE sPTR TO POS OF SHAPE
LD E, (HL) s DE RETURN SHAFE PTR
INC HL
LD D, (HL)
POP HL
RET
sRXREXXXEXE DISASC ARAREKEX
- display ASCII value from character set
H NB: ———— store DE, the message pointer
3 HL stays the same atter display
5 used BC register as well
DISASC PUSH BC
PLISH DE
PUSH HL
LD A, (DE) ;LOAD ASCIT CHAR
LD L.A
LD H, 0
ADD HL L HL tMULTIFLE OF 8 BYTES
ADD HL . HL
aDhD HL ,HL
EX DE. HL
LD HL .CHRSET ;START OF CHARACTER SET
ADD HL ., DE
EX DE.HL

El
0608
ES
1A
77
13
24
10FA
El
D1
23
13
C1
10DF

ce

D9
216DAE
7E

ES

D%

A7
2023
D1
CDCC77
E&GIF
FE1F
co
ZEO1
32726F°
21F5S6E
CDCC77
E&01
2803
21DD&E
010CG0
EDBO
Do

ES

D?

El

23

23

7E

47

23

23
226E4LF
5E

23

56

iC

A7
2802
1D

Q7760
Q7770
Q7780
07790
Q7800
Q7810
Q7820
07830
Q7840
07850
a7860
Q7870
a78so
Q7890
Q7200
07910
07920
Q7930
07940
Q7950
Q7940
Q7270
Q7980
07930
Q8000
0a010
08020
Q803E0
08040
QOS50
080A0
Q8070
08080
Q8090
08100
agiio
08120
08130
08140
08150
08140
08170
08180
08190
08200
08210
08220
08230
08240
08250
Q8240
08270
0g2e0
08290
08300
0831¢

DRWCHR

CHARLF

H
POLICE

RHTPC

MOVPC

POF
LD
PUSH
LD
LD
INC
INC
DJINZ
POF
POF
INC
INC
POFP
DINZ
RET

CALL
AND
JR
LD
LD
LDIR
EXX
PUSH
EXX
FOF
INC
INC
LD
LD
INC
INC
LD
LD
INC
LD
INC
AND
JR
DEC

HL
B.8

HL

A. (DE)
(HLi, A
DE

H
CHARLF
HL

DE

HL

DE

EC
DISASC

HL, PCAREXT
A, (HL)
HL

a
NZ ., MOVPC
DE

RANDND
1FH

1FH

NZ

a,1
(CHASE) , A
HL , RFCDE
RANDNO

1

Z,RHTPC
HL.LFCDR
BC,17

HL

HL

HL

HL

A, (HL)
B, A

HL

HL
(POSPTR) , HL
E, (HL)
HL

D, (HL)

E

A
Z,FCMRHT
E

: DRAW CHARACTER

POS PTR
:MESSAGE PTR

sTEST POLICE CAR EXIST

:MOVE POLICE CAR

;DR EXT FPTR

s MOVE WHEN MULTIPLE OF
131

sSET CHASE FLAG

sRIGHT PC

sEXISTENCE FTR
:DIRECTION
:STORE DIR

; POSPTR

:ASSUME MOVE RIGHT

sFOLICE CAR MOVE RIGHT

08320 DEC E

08IEZC PCMRHT LD (NEWFOS) , DE
083240 LD a,.2 : TWO ROW
ORZS0 LD (ROW: . A
GREAO LD A5
OBZE70 LD (COLLUMN) . A
ORZER0 PLISH BC sDPIRECTION
D8ZF0 LD A, (PCARRAP) s REAL/ABS FLAG
08400 EX DE, HL
CDRA72 48410 CALL RSHAFE sRET SKIP/FILL,ATTR
2ALZALHF 08420 LD HL, (ATTFOS)
v i 08430 FOFP AF
a7 08440 AND [a} s IF 1,0K
2004 08450 IR NZ,PCTAH :POLICE CAR TEST AHEAD
A7 010500 084460 LD BL.,S
7I0A 09 0OB470 ADD HL.RC
IAR TE 08480 PCTAH LD Ay (HL)
7EAC E&D7 02420 AND 7
7IAE 012000 08500 LD BC,32
TIR1 A7 08510 AND £
7IB2 EDA4Z2 O/520 SRE HL ., RC
73B4 FEQC4 OB530 CF 4
TIRA 2807 08540 JR Z,185FRGZ2
7Zp3 TE 0gs50c LD A, (HL)
7IRY ELKQT 08540 AND 7
7IBB FEO4 08570 CP 4
7IRD 2009 08580 JR NZ ,NFROGZ2
73BF ZEO1L 08590 ISFRGZ LD A, 1l
7IC1 327CAF 084600 LD (CRHFLG), A $S5ET CRASH FLAG
73IC4 3D 08610 DEC A ;s BLANK COLOUR
730577 a84a20 LD (HL)Y . A : BLANK. FRONT OF PC
FICH 09 DBLEC ADD HL ,RC
7ICT TV OBA40 LD (HL) . A tkx SHOULD BLANK FRONTX
73C8B CDDF73 08450 NFROGZ2 CALL STRFC :STORE NEW UNDERNEATH
73CH Z2ALEALF OBLLO LD HL . (POSPTR)
7ICE EDSR&CAF OBAT7O LD DE, (NEWFOS)
ToD2 73 0O8LBG LD (HL) . E
73D3 23 O84F0 INC HL
73D4a 72 OB700 LD (HLy, D
7ZDS CDAF71 OB710 CALL MYCTRL
73p8 D9 0B720 EXX s IF NON-EXIST
7ED? 7E OB7Z0 LD AL (HL)
FIDA I2724F OB740 LD (CHASE) . A
7ZDD DT 08750 ExXX
73DE C9 08740 RET
08770
08780 :
08790 :XXXXkXX¥ STRPC XAREkXkX
0BROO 3
08810 3 STORE UNDERNEATH POLICE CAR
OBB20 3
7EIDF 2ALCAEF CE83Z0 STRFPC LD HL , {(NEWFOS) s FOS PTR
73EZ2 11ADAD 08840 LD DE,PCSTR :STORAGE LOC
7ZES ER 08850 EX DE, HL
JIEL T3 08840 Lo {(HLY ,E s STORE POSITION

FIET7 23 08870 INC HL

73IEB
72E9
7IEAR
73EB
73EE
73EF

FF2
7IF4
73FS5
73FR
73F9
73FC
73FD
73FE
7800
7402
740X
7405
7406
7409
7400
740C
740D
740E
7410
7411
7412
7413
7414
7416
7417
7418
7419
741B
741C
741D
741E
7420
7421
7423
7425
7427
7429
7420
742C
742D
742F
7432
743X5
7434
7437
743A
743ZR
743C
74ZF
7440

72

23

EE
216046F
7E
010500
EDBO
os
2ALCLF
ES
3A616F
4F

o9
CB44
2804
7C
c607
&7
ZALZ6F
A7
280F
aF

ES
0608
7E

12

13

24
10FA
E1

a3

oD
ZOF2
El

o8

3D
280F
o8
OEZC
ED4Z
CR44
28CF
7C
D&OT
67
18C9
20636F
ZAL0LF
o8

ES
3A616F
aF

a9
IA62EF
a7
2803

Qeisi=isle]
OR8T0
08900
o810
08920
08230
08940
08950
087460
08970
089B8G
0790
0000
09010
o9G20
09030
09040
0050
Q0460
09070
09680
0090
09100
09110
9120
09130
09140
09150
09160
09170
09180
09190
a9200
09210
Q220
G230
09240
09250
092460
09270
09280
03290
Q9300
09310
09320
09340
09350
Q9340
09370
093180
Q9390
0400
09410
G420
0430

SPCLF1

NSSFPS

SPCLF2

SPCLFZ

NXTSPC

SPCATR

SPCATI

SBC
BIT
JR
LD
Siip

JR
LD

EX
PUSH
LD
LD
ADD
LD
AND
JR

(HL),D
HL

DE, HL

HL . RDW
A, (HL)
EBC.S

AF, AF’
HL . (NEWFOS)
HL

A, (SKIP)
C,h

I

~ D~

SFCLPS
HL

HL

G
NZ,SPCLP2
HL

AF, AF°

A

7,8PCATR
AF, AF”

G, 52

HI_. BC

O,H
Z,SPCLF1
A, H

7

H. A

SPCLP1

HL, (ATTPOS)
A, (ROW)
AF,AF°

HL

A, (SKIP)
C,A

HL, BC

A, (FILL)

A

7,NXTSFA

;LOAD S5 BYTEES OF INFO

sRESTORE CHAR

s STORE SCREEN FIRST

sNEXT CHAR

s UPD ROW COUNT

sRESTORE FPOLICE ATTR

sUP ONE | INE
sCROSS SCREEN SECTIONT

:ATTRIBUTE START POS

7447
7843
7445
7444
7447
7448
7447
744A
744C
7a4g

7450
745Z
7454
7455
74358
745R
745E
74450
7841
7444
7847
7448
7847
7a4T
746D
7a5E
7470
7472
74743
7875
74746
7479
7474
747
747D
747E
7480
7481
7482
748%
7484
7484
7487
7488
7489
7488
748C
748D
7A8E
7490
7491
7493
7495
7497

4F
EDBO
3
o8
D
ce
08
0E20
ED4Z
18E6

3ALDALE
A7

ce
11606F
21AF&D
010500
EDRO
ER
2AADAD
IAL0&F
08

ES
3AL1AF
arF

o9
CR44
2804
IEO07
24

&7
ZALZEF
A7
280F
4F

ES
04808
1A

77

y 959

24
10FA
El

23

oD
20F2
El

o8

3D
280F
08
OE20
ED4Z2
CRr44
28CF

Q440
0450
Q9440
0470
Q9480
02490
02500
09510
09520
09530
09540
09350
QOP560
QFS70
09580
09590
QF600
02610
OFAZ0
QL3I0
Q9640
QLS
09660
QPETO
09580
09490
09700
09710
09720
09730
09740
Q9750
Q97460
a9770
09780
09790
09800
o810
09820
Q9830
09840
098350
09860
09870
09880
09890
09900
Q9910
09920
09930
09940
09950
099460
09970
09980
09990

NXTSFA

“n

RFCLF1

NSRFPS

RPCLP2

RPCLP3

NXTRPC

LD
LDIR
FOF
EX
DEC
RET
EX
LD
SBC
JR

LD
AND
RET
LD
LD
LD
LDIR
EX
LD
LD
X
FUSH
LD
LD
ADD
EBIT
JR
LD
ADD
LD
LD
AND
JR
LD
PLISH
LD
£ B
LD
INC
INC
DJINZ
POF
INC
DEC
JR
POP
EX
DEC
JR
EX
LD
SBC
BIT

CsA
HL
AF , AF
A

z

AF, AF*
[
HL , BC
SPCAT1

A, (PCAREXT?

A

z

DE, ROW
HL,PCSTR+2
EC,S

DE, HL

HL. (PCSTR)
A, (ROW)
AF , AF®

HL

A, (SKIF)

3

H
RPCLP3

HL

HL

b
NZ,RPCLPZ
HL

aF, aF?’

A
Z,RPCATR
AF, aF’
G732

HL, BC

O.H
Z.RPCLP1

s TEST PC EXIST

sRETRIEVE S INFO
:DE STORAGE PTR
:LOAD POS

1 SAVE POS

s RESTORE CHAR

;s UPD ROW COUNT
s RETORE POLICE CAR

iMOVE UFP ONE LINE

7499 7C 10600 L Ay H
£

7498 DAOT 10010 SUB ;s CROSS RBOUNDARY
749C &7 10020 LD Hy A
749D 1BCY 10030 JR RFPCLF1
749F ZALILF 10040 RPCATR LD HL, (ATTPOS) sATTR START LOADING FPOS
74AZ ZALO6F 1Q050 L A, (ROW)
74A% 08 10040 EX AF . AF”
7405 ES 10070 RPCAT1 PUSH HL
74A7 FAL1LF 10080 LD A, (SKIP)
74048 4F 10090 LD C.A
74A8B OF 10100 ADD HL . BC
74AC FALZALF 10110 LD A, (FILL}
74A/F A7 10120 AND A
74RO 2B0S5 10130 JR I . NXTRPA
74EZ ER 10140 EX DE, HL
74RZ 4F 10150 LD C.A
74B4 EDRO 10160 LDIR
74B46 EB 10170 EX DE, HL
7487 E1 1018C NXTRFA FOP HL
7482 08 10190 EX AF ; AF”
7489 D 10200 DEC A
74BA CB 10210 RET Z
74BE 08 10220 1 ¢ AF,AF°
74BC OE20 10230 LD o)
74BE EDA42 10240 SEC HL . BC
74C0 18E4 10250 JR RPCAT1
10260 3
10270 3
74C2 IAT7CEF 10280 FROG LD A, (CRHFLG) 1 CRASH FLAG
74CH A7 10290 AMND 4]
74CL 2017 106300 JR NZ . FRGCRH s FROG CRASH
74C8 ZZ2SE6F 10310 LD (UFDWNY ; A :SET NO SCORE
74CR CDEZX74 10320 CALL REGFRG s REGENERATE FROG
74CE Z217A6GE 10330 LD HL , FRGCYC s TEST MOVE
74D1 35 10340 DEC (HL.)
74D CO 10350 RET NZ
7403 2B 10340 DEC HL
74D4 TE 10370 LD A, (HL) sRESET CYCLE COUNT
74D5 23 10380 INC HL
7an& 77 10390 LD {HL) . A
74D7 CD10o75 13400 CALL MOVFRG
74DAa FAR7CAHF 10410 LD A, (CRHFLG)
74DD A7 10420 AND A
74DE C8 10430 RET z
74DF CD917& 10440 FRGCRH CALL CRaSH
74EZ2 C9 10450 RET
10440 3
10470 zXXxXxx%x% REGFRG KEXXRXKX
10480 3
10490 3 Regenerate frog 14 any left
10500 3 Set GAMFLG to O if none left
10510
74EE FATIEE 10520 REGFRG LD A, (FRGEXT)
T4ESL AT 1033506 AND A
74E7 CO 10540 RET N7 sRETURN IF EXIST

74ER 21615E 10550 LD HL , FRGDE

74ER
7AEE
74F 1
74F3
T4F &
TAF7
74FQ2
74F9
74FC
74FF
7502
7505
7508
750R
730D
7S0F

7510
7511
7514
7515
7916
7518
751aA
7918
751E
751F
ToZ22
7524
75246
7528
7524
752C
792D
7530
7532
7534
7536
7538
7534
753R
753C
753D
753E
753F
79540
7543
7545
7547
7549
7548
754D

11796E
010800
EDEO
218446E
35

33

35
2A7C6E
22786F
227A6F
218946D
118A6D
012300
Z600
EDEO
ce

AF
2120E0
aF

o8
ZEDF
DEFE
E&O1
20046
oc
11D769
04601
IEDF
DRFE
E&04
2006
oD
11176A
0603
ZEFD
DBRFE
EAD1
200B
79

85

4F

08

3D

o8B
11F7469
0602
3EF7
DBFE
E&O1
Z00B
79

10560
10570
10580
10590
104600
104610
104620
10630
10440
104650
1046460
10470
104680
10490
10750
10720
10730
10740
10750
107460
10770
10780
10790
10800
10810
10820
10830
10840
10850
108460
10870
10880
10890
10900
10910
10920
10930
10240
10950
10960
10970
10980
10990
11000
11010
11020
11030
11040
11050
110460
11070
11080
11090
11100
11110

LD
LD
LDIR
LD
DEC
DEC
DEC
LD
LD
LD
LD
LD
LD
LD
LDIR
RET

DE.FRGEXT
BC,8

HL.FRGSTN
(HL}

(HL)

(HL)

HL . (FRGPOS)
(OLDFRG) ,HL
(NEWFRG) , HL
HL, FRGSTR
DE,FRGSTR+1
BC, 35
(HL) , 0

;EXXXXNRE MOUFRG AXEEERER

;
;
MOVFRG

LEF-T

DOWN

ur

Move frog. store and

XOR
LD
LD
EX

LD

AND
JR
LD
ADD
LD
EX
DEC

LD
LD
LD
IN
AND
JR
LD

A

HL , OEO20H
(o
AF.AF”

A, ODFH

A, (OFEH)
i

NZ,LEFT
C

DE, FROGZ2
B'l

A, ODFH
A, (OFEH)
4
NZ . DOWN
C
DE,FROG4
B, 3

A, OFDH
A, (OFEH)
1

NZ,UP
A,C

A,L

C.A

AF, AF?

A

AF, aF°
DE, FROG3
B,2

A, OF7H
A, (OFEH)
1
NZ,VALID
A,C

s UFDATE FROG STATION
tMOVE 3 CHARACTER LEFT

:INIT FRG STR FOR RES
:BLANK FROG STORE

restore

tH=-32, L=32
1 C=>ABS MOVEMENT

s TEST RIGHT

: TEST LEFT

s TEST DOWN

;ADD 32

:DEC UP/DWN FLGE

: TEST UP

7556
7558

7559 32

755C
7540
7061
7ob2
yasT
TS84
7548
7oh9
754B
754D
754E
7570
7571
7373
P A ¥ e
7a7s
7877

e e
ommeE

08
11B7&%9
QLG
789
7D.‘1F
_Ai:
Be
=]
ZATBAF
CR79
47
1EQ7
2803
05
1EFY
(8154
Cra4a
2803%
7C

7378 22

757

737C 3IE

797E
757F
73580
7582

7584 382

7584 E

7588

758A

758C
S8F
7390

7992 3821

7594
7597
7599
7598
7596
759E
7S59F
75AZ
75A4
7566
TSHAT
75A9
/SARA

SAC
7SEO

217ESC
EDS2
F011
7B
E&1F
&7
FABJALHE
FEAD
TROE
s 2
E4&LF
24
FO09
EDSE7ALF
08

11120
11170
11140
11150
11160
11170
11180
11190
11200
11210
11220

11310
11320
11330

11340
11350
113460
11370
11380
11320
11400
11410
11420
11430
11440
114460
11470
11480
11490
1150¢
11510
1152G
11530

11540

11400
11610
11620
11430
114640
11650¢
114660

val 1D

NETDWN

VAL IDY

vaL1Dp2

YVALID

BRIT

AL H

Eaf

AF . AF’

a

aF , AF

DE, FROGH
E,O

A,k
(TEMDIR) , A
(TEMSHF) , DE
a

i

z

HL . (OLDFRG)

r-‘l

HPDQN S HL

h"

D H

-

DEDE - II)D N w IMmw~NMmMm T

Nul

NZ ,VALIDZ
20H
C.NVALID
1FH

1FH
Z,NVALID
HL , SOBEH
A

HL.DE
C,NVALID
HL . S07EH
HL,DE

NC. YVAL ID
a,E

1FH

H, A

A, (FRESTN)
OADH
C.YVALID
a

1FH

H

NC, NVAL ID
(NEWFRG) , DE
AF , AF”

:STORE TEMF DIR

:STORE TEMF SHAPE

:IF NO MOVE GO BACK
: TEST —VE

s FOR BOUNDARY ADJ

sNET MOVE RHT, DWN

;NO CROSS BOUNDARY

:ADJ HOB

: TEST UPSCR

s TEST RIGHT BOUNDARY

s TEST BOT ROUNDARY

s TEST FROG STATION

s TEST WITHIN BOX

s TEST LAST FROG
:NO MORE FROG STATION
sWHEN NO FROG LEFT

75R1 F2S5EAF 11680 LD {UFPDWN) , A

75B4 B 11690 EX AF . AF 7
7S5BS ZAT78AF 11700 NVALID LD HL , (OLDFRG) s TEST OLDFRG=NEWFRG
75B8 A7 11710 AND A
7589 EDS2 11720 SBC HL , DE
75BR 7D 11730 LD AL
75BC B4 11740 arR H
7SBD CB 11750 RET z sRETURN IF SAME
75BE CDD&75 11760 cAaLL RESFRG tRESTORE FROG
7SC1 2ZA7A6F 11770 LD HL ., (NEWFRG) sUPDATE OLD FROG POS
75C4 22786F 11780 LD (CLDFRG) , HL
7SC7 217D&F 11790 LD HL. TEMDIR
75CA 117B&E 1180C LD DE, FRGDIR
73CD 010500 11810 LD BC.S
75D0O EDEO 11820 LDIR
75D2 CD28B74 11820 cCaLL S5TRFRG
75D5 C9 11840 RET
11850 3
11B&0 3
73D46 11894D 11870 RESFRG LD DE.FRGBSTR sSTORAGE FPTR
75D9 ZA7B&F 11880 LD HL , (OLDFRG) sRESTORE FROM OLDPOS
75DC ES 11820 PUSH HL
75DD 3IEOZ 11900 LD A2 :ROW COUNTER
7SDF 08 11910 EX AF . AF”
172E0 ES 11920 RFRLF1 FLUSH HL
75E1 OEOZ 11930 LD) :COLUMN COUNTER
75EX ES 119240 RFRLFZ PUSH HL
75E4 0408 11950 LD B, 8
75E6 1A 11960 RFRLPE LD A, (DE) sRESTORE FROM DR
ToETl 77 13970 LD {HL}) A :ONTO SCREEN
75ER 13 11980 INC DE
75E9 24 11990 INC H tNEXT CHAR BYTE
75EA 10OFA 12000 DJINZ RFRLPZ
72EC E1 12010 POP HL
73ED 23 12020 INC HL
7SEE OD 12030 DEC C sCOLUMN COUNT
75EF 20F2 12040 JR NZ RFRLPZ
75F1 Et 12050 FPOP HL
75F2 0B 12060 EX AF; AF7
73F3 3D 12670 DELC A tROW COUNT
75F4 2B10O 12080 JR Z,RFRATR
75F& 08 12090 EX aF AF?
75F7 a7 12100 AND £
7oFE8 OEZ20 12110 LD C,32 sUFP ONE LINE
75FA ED4AZ2 12120 SRC HL . BC
79FC CBR4a 12130 BIT O.H
7SFE 2BEOQ 12140 JR Z,.RFRLF1
7600 7C 12150 LD AH
746501 D&OT 121460 SUR 7
7603 47 12170 LD H. A
7604 18DA 12180 JR RFRLF1
7606 EI 12190 RFRATR POF Hi_
7607 7C 12200 LD A.H
7408 E&18 12210 AND 1i8H
76508 CR2ZF 12226 S5RA a

760C CHZF 12230 SRA A

760E CRBR2F 2240 SRA A
7610 658 2250 ADD A, S58H
7612 &7 12260 LD H. A
7613% 3EO2 12270 LD A2 :ROW COUNTER
7615 08 12280 EX AF, AF”
7616 ES 12290 RFRATI1 PUSH HL
7617 EBR 12300 EX DE.HL
7618 OEO2 12310 LD C,2 :RESTORE ATTR
761A EDBRO 12320 LDIR
761C EB 12330 EX DE, HL
761D E1 12340 FOP HL
761E R 12350 EX AF . AF”
7481F 30 12360 DEC A s UPDATE ROW COUNTER
7620 CB 12370 RET Zz
7621 0B 12380 EX AF , AF”
TL2Z2 OEZ20 12390 LD C,32
7424 ED42 12400 SRC HL , BC
7626 18BEE 12410 JR RFRAT1
12420 3
12430 3
7628 1189&4D 12440 STRFRG LD DEFRGSTR
TLZR ZA7ALF 12450 LD HL , (NEWFRG) : STORE BASE ON NEWPOS
742E DY 12440 EXX
762F ZATEGE 12470 LD HL , (FROGSH) :LOAD SHAFPE AS WELL
7632 DY 12480 EXX
763XE ES 12490 PLISH HL
7634 ZIEOZ 12500 LD A2
7636 08 12510 EX AF . AF°
7637 ES 12520 SFRLF1 PUSH HL |
7638 OEOZ 12530 LD (B
763A ES 12540 SFRLFZ2 PUSH HL
7638 04A0B 12550 LD BE.B :STORE AND LOAD A CHAR
763D 7E 12560 SFRLPZ LD A, (HL)
763E 12 12570 LD (DE) . A
763F D9 12580 EXX
764G 7E 12590 LD A, (HL)
7641 27 12600 INC HL
7642 D9 12610 EXX
7HA4Z 77 12620 LD (HL) ;A
7644 1= 12630 INC DE
7645 24 12640 INC H
7646 10FS 12650 DJINZ SFRLF3
7648 E1 126460 POF HL
7649 23 12670 INC HL :NEXT CHAR
754/ 0D 12680 DEC g
744B 20ED 12670 JR NZ,SFRLP2
744D E1 12700 POP HL
764E 08 12710 EX AF.AF7
744F ZED 12720 DEC a
74650 2810 12730 JR Z.8FRATR
7652 08 12740 EX AF . AF°
7h53 A7 12750 AND A
74654 OEZ0 12760 LD 52
7656 EDAZ 12770 SBEC HL ; BC sNEXT ROW
7458 CB4a4 12780 BIT O.H

7654 ZBDE 2720 JR Z,S5FRLF1

765C
765D
765F
7660
7662
7663
7664
76646
7668
7656A
766C
7a6E
7646F
74671
7672
7674
7675
7676
7677
7679
7676A
7678
767D
7&67F
74681
74684
7686
74687
74688
7689
768A
7&48R
768D
768F

7691
7492
7695
7698
7698
7&9E
76A1
76A2
76A3
76A6

7667
7687
T6ARD
76AE
76B1
76B2
76R3
76E4

7C
D&O7

18DS
E1l
7C
E618
CB2F
CB2F
CB2F
C&58
&7
IEOQ2
o8
0602

7E

o
F s

Z6H04
23

-
5

E&07
2805
3EO01
I27CeF
10EF
E1l
o8
ZD
cs8
08
OE20
ED42
18E1

AF
Z27C6F
F2796E
CBA776
CDD&7S
218246F
CO
32776F
ce

2A786F
010240
De
21396F
D%

7C

BB
2016

12800
12810
12820
12830
12840
12850
12860
12870
12880
12890
12900
12910
12920
12930
12940
12950
12946G
12970
12980
12990
13000
17010
13020
13030
13040

2050
13060
13070
13080
13090
13100
13110
13120
13130
13140
13150
131460
13170
15180
13190
13200
13210
13220
13230
13240
13250
13260
13270
12280
13290
13300
13310
13320
13330
13240
13350

SFRATR

SFRATI1

SFRATLF

NFRDG3

rTat

CRASH

o

T e a

RGDIE

LD
suUB

JR
FOP
LD
AND
SRA
SRA
SRA
ADD
LD
LD
EX
LD
PLUSH
LD
LD
LD
INC
INC
AND
JR
LD
LD
DINZ
POP
EX
DEC
RET
EX
LD
SBC
JR

LD
Lp
EXX
LD
EXX
LD
Cr
JR

[l ERE
IDp T
-
=
-

m -
e o

m %TD?:D POTD=DINMIND
N D
el @
T ok

| B

o
=

A, (HL)
(DE) , A
(HL), 4

HL

DE

7

7 .NFROGS
a,1
(CRHFLG) . A
SFRATLP

HL

aF, AF*

A

z

AF , AF’
.52

HL , BC
SFRAT1

A
(CRHFLG) . A
(FRGEXT), A
FRGDIE
RESFRG

HL . NLIMFRG
(HL)

NZ
(GAMFLG) , A

HL , (OLDFRG)
BC, 4002H

HL ., DIETON
A H

R
NZ , NOTEND

sCALCULATE ATTR FOE

sFILL FROG ATTR

: TEST CRASH

sRESET CRASH FLAG

:SET FROG

NONEXIST

1FROG DYING ROUTINE

;: DECREASE

FROG NUMBER

s ZEROISE GAME FLAG
s WHEN NO FROG LEFT

;0LD POS OF FRG
:RED COLOUR

sSET

: TEST END

DIE TONE

OF JOURNEY

74BE
76RB7
76R8
76BA
75HBD
76BE
74LBF
76C2
76CS
7LC7
76C8
74CB
7LCTC
7HCD
7456D0
76DZE
76D7
7&6DA
76DD
74DE
76DF
THE2
76E3
7HES
7HEA
T6&ET7
7HER
76E9
76EA
76ER
76ED
76EE
76EF
76F0O
7HF3
74HF 48
7HFS
T74F&
76F7
76F8
7HFT
76FA
74FC
76FD
7&FE
76FF
7700
7703
F704
7705
7707

7708
7709
770A

7D

Bg
3012
11466F
ER

z4
2147 4F
CDAR77
QEOSL
n9
21156F
De

¥ i
Z26546F
2A7846F
EDSR7EGE
CD7A70
112000
19

(85}
ZAL5LF
o8
0405
5"

ES

AF

77

23

77
EDS2
77

2B

77
cpog77
Et

ES

0B

¥ 774

23

T7

A7
EDS2
77

2B

77

oR
cDoa77
E3

G
10ODE
ce

De
ES
CDB377

13450
134460
13470
13480
13490
13500
13510
13520
13530
13540
13550

3540

3570
13580
13590
13600
13410
134620
136E0
13640
13450
136460
134670
13680
13490
13700
13710
13720
13730
13740
137350
137460
13770
13780
13790
13800
13810
13820
13830
13840
13850
13860
13870
13880
13890
13900
13910

NOTEND

FLASLF

T} e

RETON

LD

R
JR
(R
EX
INC
LG
caLL
LD
EXX
LD
EXX
LD
Lp
LD
LD
CAaLL
LD
abnp
EX
Lp
EX

LD
PLISH
FPUSH
XOR
|55
INC
LD
SBEC

DEC
LD
CALL
FOF
PUSH
EX
LD
INC
LD
AND
SBEC
LD
DEC

EX
CALL
POF
FOF
DJINZ
RET

EXX
PLISH
cCAaLL

D

NC, NOTEND

DE, SCORE+X ;100 PTS EBONUS
DE, HL

(HL)

HL, SCORE+4

DISSCR

C: 6 3 VELL Ol

HL , HOMTON

F
(ATTR) . A

HL, (OLDFRB)

DE, (FROGSH)

DRUWFRE

DE, 32 :LINE ADJUST

HL, DE

aF,aF?

&, (ATTR)

aF. aF*

B, S

BC

HL sATTRIBUTE FPTR

a sBLACK IMK BLACK PAPER
(HL) . A

HL

(HL) . A

HL . DE

(HL)Y . A

HL

(HLY, A

FRGTON : GENERATE FROG TONE
HL

HL

aF, AF*

(HL) . A :BLACK PAPER, RED OR
HL :YELLOW INK

(HL) A

A

HL, DE

(HLY . A

HL

(HL)Y, A

AF , AF7

FRETON

HL

EC

FLAGLF

HL
TONEL

776D
770E
7711
7752
7714
7716
7719
771A
771R
771C

771D
7720
7721
7722
ZFED
7724
7727
772A
FF2e
F7Z2E
772F
7731
7734
7734
7738
773B
773D
T73E
TISE
7741
774%
7744
7747
7742
774A
774R
774D
774E
7750

7I52

7754
7735
77546
7757
FEi=Y4
7754
775R
775D
7740
7763
77646
7769
774B
776E

El
310400
g
FEOS&
2803
O1FCFF
(el

De

o8

ce

IATLE
A7

ca
IASELF
A7

ce
21474F
CB7F
2003
=4
1814
3A7I6F
FEA4OD
2009
3AT78AF
FECO
DB

4
1804
FESO
Co
IA7846F
FEZO

£ 18]

4
0604
7E
FEZA
z8a7
D&OA
2B

34

|

18FS5
77

2B
10F0
214446F
CD&F77
2104640
115946F
D&LHOS
CD2873
ce

13920
13930
13940
13950
139460
13970
13980
139290
14000
14010
14020
14030
14040
14050
14040
14070
14080
14100
14110
14120
141730
14140
14150
14140
14170
14180
14190
14200
14210
14226
14230
14240
14250
14260
14270
14280
14290
14300
14Z10
14320
14=30
14340
14=50
14360
14Z70
14380
14390
14400
14410
14420
14430
14440
14450
14440
14470

HOME

[e an

AL SCR

DWNSCR

TLHWY

DISSCR
ADDLCF
CRYLOP

UFPDDIG

POF
LD
EX
CpP
JR
LD
ADD

EXX
EX

RET

SUR
DEC
INC
INC
JR
LD
DEC
DJINZ
LD
CALL
LD
LD
LD
CaLt
RET

HL
BC.4
AF, AF”

Z, HOME
BC,—4
HL, BC

AF, AF

A, (FREEXT)
a

y4

A, (LIFDWN)
a

z

HL , SCORE+4
7,6

NZ . DWNSCR
(HL)
DISSCR

A, (DLDFRG+1}

40H

NZ, TLHWY
A, (DLDFRG)
OCOH

G

(HL)
DISSCR
S0H

NZ

A, (OLDFRG)
20H

NC

(HL.}

B.4

A, (HL)
IAH
C.UPDDIG
10

HL

{HL)

HL
CRYLOF
{HL).A
HL
ADDLOF
HL , SCORE+1
SCRIMG
HL . 4004H
DE, IMAGE
E,S
DISASC

s MOVE DOWN DATABASE

:MOVE UP DATABASE

; TEST EXISTENCE
:NO UPDATE DF SCORE
s TEST UP/DOWN MOVEMENT
s TEST ANY SCORE
;ADD 10 TO SCORE

s TEST MOVE DOWN

; DOWN SCORE

;DIS SCORE

s TEST HOB

s TEST FIRST BLOCK

: TEST LOW HIGHWAY

sNOT EVEN STEFP ON HWY

s TEST IN LOW Hwy

iNO SCORE IF STEP HWY
sHL => TENTH’S POS

s CARRY LOOGFP
iUFDATE DIGIT

: CARRY

: SCORE IMAGE

14480

14490
776F 11S94F 14500 SCRIMG LD DE. IMAGE
7772 010500 14510 LD BC,S
7775 EDBO 14520 LDIR
7777 21596F 14530 LD HL, IMAGE
7774 013004 14540 LD BC, 0430H
777D 79 14550 PREZER LD a,c
777E BE 14560 CP (HL) s TEST 3ZOH
777F 2005 14570 JR NZ, PREZEX
7781 2620 14580 LD (HL) , 20H $SPACE FILL
7783 23 14590 INC HL
7784 10F7 14600 DJINZ PREZER
7786 ©9 18610 PREZEX RET
14620 ;
184630 ;
7787 3EBF 14640 SIREN LD A, OBFH
7789 DBFE 184650 IN a, (OFEH)
778B E601 18660 AND 1
778D 2009 14670 JR NZ , NSOUND
778F 3IA736F 14480 LD A, (SOUNDF) :RESET SOUND CONDITION
7792 3C 144690 INC a
7793 E6O1 14700 AND 1
7795 3I2736F 14710 LD (SOUNDF) , &
7798 3IA73I&F 14720 NSOUND LD A, (SOLNDF)
7798 A7 14730 AND a
779C 2825 14740 JR Z,DELAY
779E 3A726F 14750 LD A, (CHASE} : IS POLICE CAR ON
771 A7 14740 AND a
7762 281F 14770 JR Z,DELAY
77684 IATAGF 14780 LD a, (TONFLG)
7787 3IC 14790 INC a
77A8 E&01 14800 AND 1
776A 32746F 14810 LD (TONFLB) . A
778D 210D&F 14820 LD HL.PCTON1
77B0 2803 14830 JR 7, TONE1
77B2 21116F 14840 LD HL.PCTONZ
77B5 SE 14850 TONE1 LD E, (HL) : DE=DLRAT IONXFREQUENCY
77B& 23 14860 INC HL
77B7 S6 14870 LD D, (HL)
77B8 23 14880 ING HL
7789 4E 14890 LD C. (HL)
77BA 23 14900 INC HL
77BR 46 14910 LD B, (HL)
77BC CS 14920 PLISH BC
77BD E1 14930 FOP HL s HL=437500/FREQ-30. 125
77BE CDBSO3 14940 caLL 0ZRSH
77C1 F3 14950 131 $O3BSH ENABLE INTERRUPT
77C2 C9 14960 RET
77C€3 010018 14970 DELAY LD EC, 4144
77Cé OB 14980 WAIT DEC BC
77C7 78 149%0 LD AR
77C8 B1 15000 OR i
77C9 20FB 15010 JR N7, WAIT
77CR C9 15020 RET

15030

15040 3

77CC ES 15050 RANDNO FPUSH HE
77CD CS 150460 FLISH BC
77CE 2A756F 15070 LD Hi; {RND)
77D1 46 15080 L B, (HL)
77D2 23 15090 INC HL
77DX 3E3F 19100 LD AL ZFH s BOUND FPOINTER WITHIN ROM
77DS A4 15110 AND H
77D6 &7 15120 LD H; A
77D7 78 15130 LD A,B
77D8 Z2754F 15140 LD {RND} , HL
77DEB C1 15150 FOP BC
77DC E1 15160 POF HL
770D C? 15170 RET
15180 g
15190 ;
77DE 21446F 15200 OVER LD AL, SCORE+1 ;HIGH SCORE MANAGE
77E1 11546F 15210 LD DE,HISCR
77E4 04605 152206 LD B,S
77E6 1A 15230 SORTLF LD A, (DE)
77E7 BE 15240 CP (HL)
77E8 2803 15250 JR Z, 5AMSCR s TEST 15T NE DIGIT
77EA DO 15260 RET NC
77EB 1805 15270 JR SCRGT s UPDATE HIGH SCORE
77ED 13 15280 SAMSCR INC DE
77EE 23 15290 INC HL
77EF 10F35 15Z00 DJINZ SORTLF
77F1 C9 15310 RET
77F2 214446F 15Z20 SCRGT LD HL , SCORE+1
77FS 11546F 15330 LD DE,HISCR
77FB 010500 15340 L BC,;S
77FB EDBCG 15350 LDIR
77FD C% 15360 RET
5370 3
15380 3
77FE ZE38 15390 FINAL LD A, 56 :5ET WHITE BORDER
7800 32485C 15400 LD (23624) ,A
7803 210040 15410 LD HL , 4000H sSTART OF SCREEN
7804 110140 15420 LD DE, 4001H
7809 O1FF17 15430 LD BC, 61432 sSIZE OF SCREEN
780C Z600 15440 LD (HL) , O
780 EDBO 15450 LDIR
7810 210058 15460 LD HL , SBGOH :START OF ATTRIBUTE FILE
7813 110158 15470 LD DE, S801H
78146 O1FFOZ 15480 LD BC, 767
7819 =430 15490 LD (HL) . 56 sWHITE PAPER BLACK INK
7818 EDRO 153500 LDIR
781D C? 185510 RET
15520 :
15530 3
&LFPT78 5540 END START

GOO00 Total errors

sfemTe s1 s31els JeEWIOUS

ysrys

93 FOVdS/Mvayg dea3s
*£9> poa1sop 103 MO] 03 39S X(J 3IS3L *II11

(H340) ‘V NI

*HA40 3aod 3ndur woxj yo313g
moy wo3ljog:! HiL0 ‘V Q1

19sh9)‘z
*319s sT1 £33 usyl
T ANV

ar

‘OI8Z JI AT

o=
el

*mo1 Butpuodsaiiod a3yl 3o INTVA ININI Y3ITA V PBOT T

A9y e deal o] :gN

l Z 14 8 9l 3K
A A ' 3 A A
30VdS 1d4IHS W N g H 4.0
Av3HE WAS
H31N3 a A r H H 480
d 0] | n A H 400
0 6 8 L 9 H 430
L Z € v S H 449D
D M 3 H L H 840
v S a E| 3] H adp
14IHS 4 X o] A H 340
dvd
na ia ca €£€4a va H 340 104
W ul anjep
induj

378V.1 LNdNI A3) WNYLD3dS

Vv XIAON3ddV

227

44vS 4408 £c 03vs 0305
4avs 440S (A4 00VvS 0005
48VS 4809 L ovVvSs 0vos
16VS 4608 0c 08vS 0805
4LVS 4408 6l 09vSs 0905
4G6vS 4509 8l (0)74-4°] ov0S
dEVS 4€09 Ll 07AA° 0c0s
d1LvS 4108 9l 00VvS 0005
4465 448% Sl 036S 038Y
40695 408y 14 0065 008t
4865 188v €l oves ov 8y
4665 468t cl 086S 0881
4265 448% LL 0965 0987
4665 4687 ol 0¥6S (012514
4€6S 4€8¥ 6 026S 0z8y
4165 418% 8 0065 008y
4489 440¥ L 0385 030t
40d8S 400¥ 9 008§ 000¥
498§ 490 S 0v8S ovov
4685 4160¥ 14 0889 080v
4485 4.0V € 098S 090t
488G 450v (4 0¥8S ovrov
4€8S 4€0v L 0Z8S ocov
4189 410v 0 008S (00]0) 4
X3H NI X3H NI X3H NI X3H NI
JLNgIHLIY AHOW3IW - T, JLNgIYLllVY AHOW3IW

8 XIaON3ddVv

228

"pasn 1ON = NN 8N

3719V .LNIHd —3f¢ 379VINIHd NON —)
® o — 0 é / NN NN LLLL 4
s u J N ¢ . NN Jaquinu oLLlL 3
m w [N = A NN H3LIN3 oLl a
m | e 1 >) NN 3137130 0oLl 0
} 3] M : + AN dn 10sind LLOl g9
z [Z r ’ NN UMOP 10SIN2 oLol v
A _ A I 6 { NN 1ybu 10s1nd 10Ol 6
x y X H 8) AN 13| 1084nd 0001 8
M 6 M) £ ; 1410 gV 1 11a3 LLLO L
A } A 4 9 B 1419 1V LNIHd 0LL0 9
n a n 3 g % 1432 HIAO NN LOLO S
1 p i ! a v $ 14319 3SHIANI NN 001L0 1
s 2 S 2 £ # 1412 1HDIHE NN L1100 €
1 q H g z P 1419 HSY 14 NN 0100 Zz
b e 0 v l i 1419 43dVd NN 1000 /
d 3 d ® 0 30VdS 1439 NI NN 0000 0
LLt oLl Lol 00l 110 0L0 100 000 siig g01
L 9 S 14 £ z L 0 g90H X3H

378Vv1 13S H310VHVYHD WNH1D3dS
J XI1ON3ddV

229

ov¥l9 | OVBE | 9GS vSCZ €S€ dST LSZ 0SZ 6¥Z 8¥Z (L¥Z 9vZ SYZ PvT EPC ZTPT LPT OPT -
PPELS | ¥BSE | 6EC B8EZ LEC 9EC GEZ pEZT €ET ZECZ lET 0EC 6ZZ 8ZT LTZ 9TT ST veT)
8vZES | 8ZEE | €€ TZZ 1ZZ o0ZZ 6l 8IZ LIz 9lZ SIE vie gl <z Lz 0lZ 60 80Z a
ZSl6v | ¢L0E | LOCZ 90 S0CZ POC €0C <ZOZ LOZ O0OZ 661 86L L6L 96L S6L v6lL €61 T6l 0]
9505y | 9182 | 161 O6L 68L 88L (BL 98L S8L ¥8L E€BL Z8L 18l 08L 6LL 8LL LLL 9LL g
0960y | 099Z | S£L wLL €L TLL LLL OLL 691 891 L9L 991 S91L 9L €9l 29l 191 09l v
¥989¢ | ¥0EZ | 6L 8SL LSL 951 SSL #SL £SL ZSL LSL 0SL eyl 8wl L¥lL 9vL Skl pbl 6
89/¢¢ | 8¥0C | e¥lL Zvl L¥L OPL 6EL BEL LEL 9€L SEL PEL EEL ZE£lL lel ogL 6ZL 8Zl 8
cL98Z | Z6LL | LZL 9CL SEL wZL EZL TZL lZL OZL 6LL 8LL LML 9Ll SLL wLE €LL ZLL 1
9/GvZ | 9¢SL | LLL OLL 60L 8OL (fOL 90L SOL vOL €EOL ¢ZOL LOL OOL 66 86 L6 96 8
08v0Z | 08CL | S6 6 £6 4] L6 06 68 88 L8 98 58 ve €8 8 L8 08 S
¥8E9L | P2OL | 6L 8L LL 9L SL 124 €L cL I7 4 0L 69 89 L9 99 S9 9 14
88¢Z1 | 89L £8 z9 19 09 6S 85 LS 95 g9 14°] €S A LS 0S 6 8t B
Z618 Zls Ly 9t St 144 £ 4 A4 (4 ov 6 8¢ LE 9t SE 14 £E (A4 4
960t 9592 LE o€ 62 8¢ Lz 9c SZ vZ £C (A4 ¥4 (074 6l 8l Ll gl l
0 0 Sl 14" €l cl LL (o]} 6 8 L 9 S v £ [4 l 0 0
00XX | XX00| 4 3 a 2 g v 6 8 L 9 S v € [4 l 0 X3H

S3T78V.L NOISHIANOD TVIWIOIAVX3IH TYIWIO3Aa

a XiaN3ddVv

230

Appendix D

We can demonstrate using this table by working through an example.

Let's find the Hexadecimal equivalent of the decimal number 6200.
We have to determine the 16-bit binary number;
ie bbbbbbbb bbbbbbbb
HOB LOB

i. From the leftmost column of the table under the heading xx00,
we find that 6200 is between 4096 and 8192. So we choose the lower
value 4096 and from the row value, we take the most significant
four bits of the HOB (High Order Byte) to be 1 ie 01.
0001bbbb bbbbbbbb
HOB LOB
ii. The second step is to determine the less significant four bits
of the HOB. We find the difference of 6200 and 4096 to be 2104.
Since the difference is still greater than 255, we refer to the
second leftmost column of the table under the column heading OOxx
and find that 2104 is between 2048 .and 2304. Again we take the
lower value 2048 and arrive from the row value that the less
significant four bytes of HOB is 8 ie 1000.
00011000 bbbbbbbb
HOB LOB
iii.The third step is to determine the LOB (Low Order Byte) for the
number. We find the difference between 2104 and 2048 as 56. From
the large middle big sub-table we find that 56 is at the
intersection of row 3 and column 8. So we take the LOB as 38H.
00011000 00111000
HOB LOB

So the HEX-value of the number 6200 is 1838H.

231

it = & — € = ¥ = § = @9 = [= 8§ = 8= 0l—- = 2lL= ¢€L— % — G — 9= d
00— 81— 6L— 02— &— ¢&&— €&€— ¥2—- S — 9 - LlT— 8- 6BZ— 08— 1E— TE — 3
EE — PE— GE— 98— ([E— BE— BE— OP— Ib— Cr— Ep— vb— GPb— O — (b — 8b— a
6 — 05— 1§ — ¢ — € — P55 — G5~ 95— [G— 8 — 65— 09— 19— 29— g9 — +9—-| o
€9 — 99— [9—- 89— 69— O - L— TU-—- €& — v.— G- 9 — tL— 8 — 6L-— 08-— g
I8 - 28— €B— ¥8—- S8 — 98— (B —- 8B —- 6B — 06— L6— Z6— €6 — ¥6— G6 — 96 — v
L6 — 86 — 66 — 00L— 1O0L— ¢Z0L— €0L— #$OL— SOL— 90L— (OL— 80L— 60L— OLl— LLl— ZLl— 6
Ell— ¥ll— SL1— 9Ll— LLl— 8LL— 6il— 0ZL— gl — TZL— ¢€Zl— +vZl— SZl— 9Zl— ([ZL— 8Zl— 8

= = a o) 8 v 6 8 /& 9 S 4 € A L 0 X3H

378VL NOISHIANOD TVWIIIAVYX3IH TVINIOZA LNIWITJNOD 5,2

-

3 XIaGN3ddv

232

E) at o I gl vi 61 81 Ll 9l Sl 14 €l Zl Ll ol 4
ai J1 al vi 61 81 Ll 9l Sl rL €l cl Ll ol - 3
Ol al Yi 6L 8l Ll 91 Sl pL gl cl Ll oL = 3 d
gl vl 6l 8L Ll 9l g1 14 £l cl Ll oL d 3 a 9]
Yi 6l 8l Ll 91 Sl i £l cl Ll oL d 3 a 2 g
6l 81 Ll gl Sl 14 £l cl L oL o =) a 2 g v
81 Ll 9l =1 14} €l cl Ll ol d 3 a 6] g v 6
Ll 91 St 143 €l Zl Ll ol d g a o) g v 6 8
9l Sl 4 €l Zl Ll oL 4 3 a 0] g v 6 8 L
Sl vl gl cl Ll ol E| 3 a o] g v 6 8 L 9
14 £l Zl Ll oL d 3 a J g v 6 8 L 9 5
£l Zl L oL d 3 a 0] g v 6 8 £ 2 S 14
cl Ll oL d 3 a o) g v 6 8 L 9 S 14 £
Ll oL E| 3 a o] g v 6 8 L 9 S 14 £ [4
oL d 3 a J g v 6 8 L 9 S L4 € [4 L
= 3 a 9] g A4 6 8 L B g 14 £ [l 0
= 3 a 2 g . v 6 8 L 9 S 14 £ 4 L 0

378v.1 NOILIAAV TYWIOIAVXIH

4 XIaON3ddV

N M T 0w O~ 0 o0 o 0 0w W

233

APPENDIX G

FLAG OPERATION SUMMARY TABLE

INSTRUCTION C| Z|P/V] S N | H| COMMENTS

ADC HL, SS #| #| V| # @ | X| 16-bit add with carry

ADX s; ADD s # | #| V| # @ | # |8-bit add or add with carry

ADD DD, SS # - - - 1) X | 16-bit add

AND s Q| # P | # 1} 1 | Logical operations

BITb,s — | #]| X | X | @| 1] State of bit b of locations is
copied into the Z flag

CCF #| —| = | - @ | X|Complement carry

CPD; CPDR; CPI; CPIR — | # # | X 1 X | Block search instruction
Z=1if A=(HL), else Z=0
P/V=1 if BC#@, otherwise
P/V=0

CPs #| #| V| # 1 # | Compare accumulator

CPL - =1 =1 - 1 1 | Complement accumulator

DAA # | #| P # — | # | Decimal adjust accumulator

DECs — | # V| # 1 # | 8-bit decrement

INr, (C) — | #| P | # | 0| @] Inputregister indirect

INC s — | # V| # Q # | 8-bit increment

IND; INI — # X X 1 X | Block input Z=0@ if B#Q'
else Z=1

INDR:INIR - 1 X X 1 X | Block input Z=0 if B+0
else Z=1

LD A, ;LD AR — | #| IFF| # | @ | @ | Content of interrupt enable
Flip-Flop is copied into the
P/V flag

LDD; LDI — | X| & | X ® | @ | Block transfer instructions

LDDR; LDIR —| X|] @ X| O @ | P/V=1 if BC#0, otherwise
P/V=0

NEG # | #| V| # 1 # | Negate accumulator

ORs 0| #| P #| @ | Q| Logical OR accumulator

OTDR; OTIR 1 X | X 1 X | Block output; Z=0 if B#0
otherwise Z=1

QuUTD; OUTI — | #| X | X 1 X | Block output; Z=0 if B#0
otherwise Z=1

RLA; RLCA:RRA;RRCA| #| —| — | —| @ | 0| Rotateaccumulator

RLD; RRD - # P #H (v} / | Rotate digit left and right

RLS; RLCs;:RRs;RRCs | # | #| P | #| 0 @ | Rotate and shift location s

SLAs; SRAs; SRLs

SBC HL, SS # #V # 1 X | 16-bit subtract with carry

SCF 1 - =1 =1 0 @ | Set carry

SBCs; SUBs V 1 8-bit subtract with carry

XO0R x 1] P @ | @] Exclusive OR accumulator

234

Appendix G

P/V

S

< > = C |

av

S8

nn

OPERATION
Carry flag. C=1 if the operation produced a
carry from the most significant bit of the operand
or result.
Zero flag. Z=1 if the result of the operation is
zero.
Sign flag. S=1 if the most significant bit of the
result is one, ie a negative number.
Parity or overflow flag. Parity (P) and overflow
(0) share the same flag. Logical operations affect
this flag with the parity of the result while
arithmetic operations affect this flag with the
overflow of the result.
1f P/V holds parity, P/V=1 if the result of the
operation is even, P/V=0 if result is odd.
I1f P/V holds overflow, P/V=1 if the result of the
operation produced an overflow.
Half-carry flag. H=1 if the add or subtract
operation produced a carry into or borrow from bit
4 of the accumulator.
Add/Subtract flag. N=1 if the previous operations
was a subtract.

H and N flags are used in conjunction with the
decimal adjust instruction (DAA) to properly
correct the result into packed BCD format following
addition or subtractionusing operands with packed
BCD format.

The flag is affected according to the result of the
operation.

The flag is unchanged by the operation.

The flag is reset (=0) by the operation.

The flag is set (=1) by the operation.

The flag result is unknown.

The P/V flag is affected according to the overflow
result of the operation.

P/V flag is affected according to the parity result
of the operation.

Any one of the CPU registers A,B,C,D,E,H,L.

Any 8-bit location for all the addressing modes
allowed for the particular instructions.

Any 16-bit location for all the addressing modes
allowed for that instruction.

Refresh register

8-bit value in range 0-255.

l6-bit value in range 0-65535.

235

APPENDIX H
Z80—CPU INSTRUCTIONS SORTED BY OP-CODE

HEXADECIMAL MNEMONIC | HEXADECIMAL MNEMONIC | HEXADECIMAL MNEMONIC
00 NOP 49 LD C.E 92 SUB D

01 XXXX LD BC,NN 4A LbCDD 93 SUBE

02 LD (BC),A 48 LDC,E 94 SUB H

03 INC BC 4C LD CH 95 SUB L

04 INC B 4D LDC,) 96 SUB (HL)
05 DEC B 4E LD C,(HL) 97 SUB A
06X X LD B,N 4F LD C,A 98 SBC A,B
07 RLCA 50 LD D,B 99 SBC A,C
08 EX AF, AF’ 51 LD D,C 9A SBC A,D
09 ADD HL,BC | 52 LD D,D 9B SBC AE
0A LD A, (BC) 53 LD D.E acC SBC AH
0B DEC BC 54 LD D,H 9D SBC A,L
ocC INC C 55 LDD,L 9E SBC A,(HL)
oD DEC C 56 LD D,(HL) 9F SBC A,A
0EX X LDC,N 57 LDD,A AD AND B
OF RRCA 58 LDE,B A1 AND C
10X X DJNZ DIS 59 LDE,C A2 AND D
11XXXX LD DE,NN 5A LD E,D A3 AND E

12 LD (DE),A 5B LD E,E Ad ANDH
13 INC DE 5C LD EH A5 AND L

14 INC D 5D LDE,L A6 AND (HL)
15 DECD 5E LD E,(HL) A7 AND A
16X X LD D,N 5F LD E,A A8 XOR B

17 RLA 60 LDH,B A9 XOR C
18X X JR DIS 61 LD H,C AA XORD

19 ADD HL,DE | 62 LD H,D AB XORE

1A LD A,(DE) 63 LD H,E AC XORH

1B DEC DE 64 LD H,H AD XOR L

1C INCE 65 LD H,L AE XOR (HL)
1D DECE 66 LD H,(HL) AF XOR A
1EXX LDE,N 67 LD H,A B0 OR B
20XX JRNZDDIS 69 LDL,C B2 OR D
21XXXX LD HL,NN 6A LD LD B3 ORE
22XX XX LD (NN),HL | 6B LD L,E B4 ORH

23 INC HL 6C LDLH B5 OR L

24 INC H 6D LDL,L B6 OR (HL)
25 DEC H 6E LD L,(HL) B7 OR A

26X X LD H,N 6F LD L,A B8 CPB

27 DAA 70 LD (HL),B B9 CPC
28XX JR Z,DIS n LD (HL).C BA CP D

29 ADDHL,HL | 72 LD (HL).D BB CPE

2AX XXX LD HL,(NN) | 73 LD (HL),E BC CPH

2B DEC HL 74 LD (HL) H BD CPL

2C INC L 75 LD (HL),L BE CP (HL)
2D DEC L 76 HALT BF CPA
2EXX LD L,N 77 LD (HL).A Cco RET NZ
2F CPL 78 LD AB C1 POP BC
30X X JRNC,DIS 79 LD AC C2XXXX JP NZ,NN
FIXXXX LD SP,NN 7A LD AD C3XXXX JP NN
2XXXX LD (NN),A 7B LD AE CAXXXX CALL NZ,NN
33 INC SP 7€ LD AH C5 PUSH BC
34 INC (HL) 7D LD AL CEXX ADD AN
35 DEC (HL) 7E LD A,(HL) c7 RSTO
36XX LD (HL),N 7F LD AA c8 RET Z

37 SCF 80 ADD A,B c9 RET
38XX JR C,DIS 81 ADD AC CAXXXX JP Z.NN
39 ADD HL,SP 82 ADD A,D CCX XXX CALL Z,NN
ZAXXXX LD A,(NN) 83 ADD AE CDXXXX CALL NN
3B DEC SP 84 ADD A H CEXX ADC AN
3C INC A 85 ADD A,L CF RST 8

3D DEC A 86 ADD A,(HL) DO RET NC
3EXX LD AN 87 ADD A.A D1 POP DE
3F CCF 88 ADC A,B D2X XXX JP NC,NN
40 LDB,B 89 ADC A.C D3X X OUT (N},A
41 LDB,C 8A ADC AD D4XX XX CALL NC,NN
42 LD B,D 8B ADC AE D5 PUSH DE
43 LD B.,E 8C ADC A H DBEX X SUB N

44 LD B,H, 8D ADC AL D7 RST 10H
45 LD B,L 8E ADC A,(HL) | D8 RET C

46 LD B,(HL) 8F ADC AA D9 EXX

47 LD B,A 90 SUB B DAX XXX JP C,NN
48 LDC,B 91 SUB C DBXX IN A,(N)

236

HEXADECIMAL MNEMONIC | HEXADECIMAL MNEMONIC | HEXADECIMAL MNEMONIC
DCXXXX CALL C,NN cB28 SRA B CB79 BIT 7,C
DEXX SBC A,N CB29 SRA C CB7A BIT 7,.D
DF RST 18H CB2A SRA D CB7B BIT 7,E
EO RET PO CB2B SRA E cB7C BIT7H
E1l POP HL CB2C SRA H CB7D BIT7,L
E2X XXX JP PO,NN CB2D SRA L CB7E BIT 7,(HL)
E3 EX (SP) HL CB2E SRA (HL) CB7F BIT 7,A
E4X XXX CALL PONNN | cB2F SRA A CB80 RES0,B
ES PUSH HL CB38 SRL B CB81 RESO0,C
E6XX AND N CB39 SRL C CB82 RES0,D
E7 RST 20 H CB3A SRL D CB83 RESO,E
=:] RET PE CB3B SRL E cB84 RESQ,H
EQ JP (HL) CB3C SRL H CB85 RESO,L
EAXXXX JE PE NN CB3D SAL L CB86 RES 0,(HL)
E8 EX G CB3E SRL (HL) el i
ECXXXX CALLPENN | cgaF SRL A cB88 RES 1,8
EEXX XOR N CB40 BIT 0B CB89 RES 1,C
EF RST 28H CBa1 BITOC CBBA RES 1,0
FO RET P gl BITOD CB8B RES 1,E
F1 POP AF cBa3 BITOE CB8C RES 1,H
F2XXXX JR P,NN cB44 bit 0.4 CB8D RES 1,L
F3 . DI cbds BITOL CBSE RES 1.(HL)
FAXXXX CALL P,NN b4 BIT 0.(HL) CB8F RES 1,A
F5 PUSH AF CBAT BITOA CB90 RES 2,B
F620XX OR N CBas Bit 1.8 CB91 RES 2,C
F7 RST 30H P BITI.C CB92 RES 2,D
F8 RETM CB4A BIT1D CB93 RES 2,E
F9 LD,SP,HL CB4B BIT1E CB94 RES 2,H
FAXXXX JPMNN CRAC i CB95 RES 2,L
FB El e 2B CB96 RES 2,(HL)
FCXXXX CALL M,NN CBAE St 1"(-HU CB97 RES 2,A
FE20XX CPN CBAF =B L CB98 RES 3,8
FF RST 38H CaEn i CB99 RES 3,C
CBOD RLC B P BIT 21 CB9A RES 3,D
CBO1 RLCC el L CB9B RES 3,E
CB02 RLC D s <G CB9C RES e, H
CBO3 RLCE cBE4 il CB9D RES 3,L
CB04 RLC H eBBE —EE CB9E RES 3,(HL)
CBO05 RLC L CB56 BIT 2 (HL) CB9F RES 3,A
CB06 RLC (HL) cRB7 BIT 2 A CBAD RES 4B
CBO7 RLC A CB58 BIT 3'8 CBA1 RES4,.C
Chog RAC B CB59 BIT3.C e RES&D
CB09 RRC C CBSA BIT3D CBA3 RES e E
CBOB RRC E CBSC BIT3H CBAS RES4,L
CBOC RRC H CBSD BIT 3L CBAS RES 4,(HL)
CBOD RRC L CBSE BIT 3,(HL) CBA7 RES 4,A
CBOE RRC (HL) CBSF BIT3 A CBA8 RES5,B
CBOF RRC A CB60 BIT4B CBA9 RESS5.C
CB10 RL B CB61 BIT4.C Zaon RES 5D
CcB11 RLC CB62 BIT 4.0 GEAE RESS.E
CB12 RL D CB63 BIT 4.E it it
CB13 RLE CB64 BIT 4.H e £6 3k
cB14 RL H CB65 BIT4,L CBAF RES oA
CB15 RL L CB66 BIT4.(HL) | caBo Lo
CB16 RL (HL) CB67 BIT4,A CBB1 EES g,B
CB17 RLA CcB68 BIT5.B OBB2 Selee
CB18 RR B CB69 BIT 5.C Pt gl
CB19 RR C CB6A BIT5,D CBB4 ;
CB1A RR D CB6B BIT5.E i RES 6,H
CB1B RR E CB6C BIT 5.H CEBa HeadL
CB1D RR L CB6E BIT 5,(HL) CBBS8 < Kl
CB1E RR (HL) CB6F BIT5 A chpo RES 7.8
CB1F RR A CB70 BIT 6.8 CBBA i
CB20 SLA B CB71 BIT 6.C i RES 7,D
CB21 SLAC CB72 BIT 6D RES 7E
CB22 SLA D CB73 BT EE CBBC RES 7,H
CB23 SLAE CB74 BIT6 H 88D RES 7.L
CcB24 SLAH CB75 BIT6 L CBBE RES 7,(HL)
CB25 SLA L CB76 BIT 6,(HL) 28 D
CB26 SLA (HL) CB77 BIT 6.A G o
CB27 SLA A CB78 BIT7.B CBG?2 SETOD

237

HEXADECIMAL MNEMONIC | HEXADECIMAL MNEMONIC | HEXADECIMAL MNEMONIC
CBC3 SETO0,E DD4EX X LD C,(1X+d) EDS53XXXX LD(NN),DE
CBC4 SETO,H DD56XX LD D,(I1X+d) ED56 IN 1
CBC5 SETO,L DDSEX X LD E,(1X+d) ED57 LD A1
CBC6 SET0,(HL) DD66XX LD H,{IX+d) ED58 IN E,(C)
CBC7 SETO0,A DDBEXX LD L,(1X+d) ED59 OUT (C),E
CBCS SET 1.,B DD70XX LD (1X+d),B ED5A ADC HL,DE
CBC9 SET1,C DD71XX LD (1X+d).C EDSBX XXX LD DE,(NN)
CBCA SET 1,.D DD72XX LD (I1X+d).D EDSE IM 2
CBCB SET 1,E DD73XX LD (I1X+d).E EDSF LD AR
CBCC SET 1,H DD74XX LD (1X+d) H ED&0 IN H,{C)
CBCD SET1,L DD75XX LD (1X+d),L ED61 OUTIC),H
CBCE SET 1.{HL) DD77XX LD (IX+d),A | ED62 SBC HL.HL
CBCF SET 1.A DD7EXX LD A,{IX+d) EDB3XXXX LD (NN),HL
CBDO SET 2.8 DD86XX ADD A,(IX+d) | ED67 RRD
CBD1 SET2.C DDSEXX ADC A,{1X+d] | ED68 IN L,(C)
CBD2 SET 2.D DD96X X SUB(IX+d) ED69 ouT(C),L
CBD3 SET 2.E DD9EXX SBC A, (IX+d} | EDBA ADC HL,HL
CBD4 SET 2.H DDABXX ANDI(IX+d) EDBBXXXX LDHL, (ADDR)
CBD5 SET 2.L DDAEXX XOR(1X+d) EDGF RLD
CBD6 SET Z.(HL) DDBEXX OR(1X+d) ED72 SBC HL,SP
CBD7 SET 2.A DDBEXX CP(IX+d) ED73XXXX LD(NN),SP
CBD8 SET 3.8 DDE1 POP 1X ED78 IN A,(C)
CBD9 SET 3.C DDE3 EX(SP),IX ED79 ouTI(C),A
CBDA SET 3.D DDES PUSH IX ED7A ADC HL,SP
ggBB SET 3,E DDE9 JP(1X) ED7BX XXX LD SP,(NN)
c SET 3H DDF9 LD SP,IX EDAO LDI
CBDD SET 3,L DDCBXX06 RLC(1X +d) EDA1 CcPI
CBDE SET 3,(HL) DDCBX XOE RRC(1X+d) EDA2 INI
CBDF SET 3,A DDCBXX16 RL(1X+d) EDA3 OUTI
CBEO SET 4,B DDCBXX1E RR(IX+d) EDA8 LDD
CBE1 SET4,C DDCBXX26 SLA(IX+d) EDA9 CPD
gggg SET 4,D DDCBXXZ2E SRA{IX+d) EDAA IND
SET4.E DDCBXX3E SRL{I1X+d) EDAB ouTD
CBE4 SET 4,H DDCBXX46 BIT 0,(I1X+d) EDBO LDIR
CBES SET4.L DDCBXX4E BIT 1,(1X+d) EDB1 CPIR
CBEG SET 4,(HL) DDCBXX56 BIT 2,{1X+d) EDB2 INIR
CBE7 SET 4.A DDCBXX5E BIT 3,(1X+d) EDB3 OTIR
CBE8 SET5,B DDCBX X66 BIT 4,(1X+d) EDBS LDDR
CBE9 SET5,C DDCBXX6E BIT 5,(1X+d} ECB9 CPDR
CBEA SET5,D DDCBXX76 BIT 6,(1X+d) ECBA INDR
CBEB SETS5,E DDCBXX7E BIT 7,{1X+d) ECBB OTDR
CBEC SET 5,H DDCBX X86 RESO,{IX+d) | EDOQ9 ADDIY,BC
CBED SETS5,L DDCBXX8E RES 1,(IX+d) | ED19 ADD IY,DE
8SEE SE¥ 5.(HL) DDCBX X96 RES 2,{IX+d) | ED21XXXX LD IY.NN
CBFO el DDCBX X9E RES3.(IX+d) | FD22XXXX LD(NN).IY
=8 g DDCBXXAB RES4,(Ix+d) | FD23 INC 1Y
CBED ToL DDCBXXAE RES 5,(IX+d) | FD29 ADD IY,IY
CBF3 SETEE DDCBXXB6 RES 6,(1X+d) | FD2AXXXX LD IY,(NN)
CBEA SET 6 H DDCBXXBE RES 7,(IX+d) | FD2B DEC 1Y
CBEE SET B L DDCBXXC6 SET0,(1X+d] | FD34XX INC{IY +d)
CBES SET R (L] DDCBXXCE SET 1,(1X+dl | FD35xX DEC(IY+d)
CBEY oy DDCBXXD6 SET 2,{IX+d] | FD36XX20 LD(1Y+d),N
eBER SETTR DDCBXXDE SET 3,{1X+d) FD39 ADD IY,SP
CBF9 SET7.C DDCBXXE6 SET 4,(1X+d) FD46X X LD B,(1Y+d)
BEA et DDCBXXEE SET 5,{1X+d) FD3EXX LD C,{1Y+d)
CBFB SET 7, DDCBXXF6 SET6,(1X+d) | FD5BXX LD D,{IY+d)
c SET7.E DDCBXXFE SET 7,(1X+d) FDSEXX LD E,(1Y+d)
CBFC SET 7,H ED40 IN B,(C) FDEBX X LD H,(1Y+d)
CBFD SET7.L EDA41 ouTI(C),B FDBEXX LD L,(1Y+d)
CBFE SET 7.{HL) ED42 SBC HL,BC FD70XX LD (I'Y+d),B
CBFF SET 7,A EDA43X XXX LD{NN),BC FD71XX LD {1Y+d).C
DDO9 ADD IX,BC ED44 NEG FD72XX LD {I¥+d),D
DD19 ADD IX,DE ED45 RETN FD73XX LD (IY+d),E
DD21XXXX LD IX,NN ED46 IM O FD74XX LD (1Y+d).H
DD22XXX X LD(NN),IX ED47 LD LA FD75XX LD (IY+d),L
DD23 INC I1X ED48 IN C,(C) FD77XX LD (IY+d).A
DD29 ADD IX,1X ED49 ouTI(C) ,C FD7EXX LD A,{1Y+d)
DD2AXXXX LD IX,(NN) ED4A ADC HL,BC FD86X X ADD A,[1Y+d)
DD2B DEC IX ED4BX XXX LD BC,(NN) FD8EXX ADC A,(1Y+d)
DD34XX INC(IX+d) ED4D RET | FDY6X X SUB(1Y+d)
DD35XX DEC(IX+d) ED4F LDRA FDYEXX SBC A, (1Y +d)
DD36XX20 LD(IX+d)N | EDs0 IN D,(C) FDABX X AND (1Y+d)
DD39 ADD IX,5P ED51 ouTI(C),D FDAEXX XOR (1Y +d)
DD46XX LD B,(IX+d) | EDS2 SBC HL,DE FDBBX X OR (1Y+d)

238

HEXADECIMAL MNEMONIC | HEXADECIMAL MNEMONIC | HEXADECIMAL MNEMONIC
FDBEXX CP (I'Y+d)
FDE1 POP 1Y
FDE3 EX (SP), IY
FDES PUSH 1Y
FDE9 JP (1Y)
FDF9 LD SP,IY
FDCBX X06 RLC(IY+d)
FDCBXXOE RRC{lY+d)
FDCBXX16 RL(IY+d)
FDCBXX1E RR(1Y+d)
FDCBXX26 SLA(1Y+d)
FDCBXX2E SRA(1Y+d)
FDCBXX3E SRL{I1Y+d)
FDCBX X46 BIT 0,(1Y+d)
FDCBXX4E BIT 1,(1Y+d)
FDCBXX56 BIT 2,(1Y+d)
FDCBXXS5E BIT 3,(1Y+d)
FDCBXX66 BIT 4,(1Y+d)
FDCBXX6E BIT 5,(IT+d)
FDCBXX76 BIT 6,(1Y+d)
FDCBXX7E BIT 7,(1Y+d)
FDCBXX86+ RES 0,(1Y+d)
FDCBXX8E RES 1,(1Y+d}
FDCBXX96 RES 2,(1Y+d)
FDCBXX9E RES 3,(1Y+d)
FDCBXXA6 RES 4,(1Y+d)
FDCBXXAE RES 5,(1Y+d)
FDCBXXB6 RES 6,(1Y+d)
FDCBXXBE RES 7,(1Y+d)
FDCBXXC6 SET 0,(1Y+d)
FDCBXXCE SET 1,(1Y+d)
FDCBXXD6 SET 2,(1Y+d)
FDCBXXDE SET 3,(1Y+d)
FDCBXXE6 SET 4,(1Y+d)
FDCBXXEE SET 5,(1Y+d)
FDCBXXF®6 SET 6,(1Y+d)
FDCBXXFE SET 7.(1Y+d)

239

APPENDIX |
Z80—CPU INSTRUCTIONS SORTED BY MNEMONIC

MNEMONIC HEXADECIMAL | MNEMONIC HEXADECIMAL | MNEMONIC HEXADECIMAL
ADC A, (HL) 8E BIT 2,B CB 50 CPn FE XX
ADC A, (IX+dis) DD BE XX BIT 2,C CB 51 CPE BB
ADC A,(IY+dis) FD 8E xx BIT 2,D CB 52 CPH BC
ADC A A 8F BIT 2,E CB 53 CPL BD
ADC A,B 88 BIT 2,H CB 54 CPD ED A9
ADC A,C 89 BIT 2,L CB 55 CPDR ED B9
ADC A,D 8A BIT 3,(HL) CB5E CPI ED A1
ADC A n CE XX BIT 3,(1X+dis) DD CB XX 5E | cPIR ED B1
ADC AE 8B BIT 3,(1Y+dis} FD CB XX 5E CPL 2F
ADC A H 8c BIT 3,A CB 5F DAA 27
ADC A,L 8D BIT 3,B CB 58 DEC (HL) 35
ADC HL,BC ED 4A BIT 3.C CB 59 DEC {I1X+dis) DD 35 XX
ADC HL,DE ED 5A BIT 3.D CB5A DEC {1Y+dis) FD 35 XX
ADC HL,HL ED BA BIT 3,E CB 5B DEC A 3D
ADC HL,SP ED7A BIT 3,H CB5C DEC B 05
ADD A, (HL) 86 BIT 3,L CB5D DEC BC 0B
ADD A,(IX+dis) DD 86XX BIT 4,(HL) CB 66 DECC oD
ADD A,(IY+dis) FD 86XX BIT 4,(1X+dis) DDCB XX 66 | pecD 15
ADD A,A 87 BIT 4,(1Y +dis) FD CB XX 66 DEC DE 1B
ADD A,B 80 BIT 4, A CB 67 DECE 1D

| ADDA,C 81 BIT 4B CB 60 DEC H 25
ADD A,D 82 BIT 4C CB 61 DEC HL 2B
ADD A,n C6 XX BIT 4D CB 62 DEC IX DD 2B
ADD A,E 83 BIT 4,E CB 63 DEC IY FD 2B
ADD A H 24 BIT 4,H CB 64 DEC L 2D
ADD A,L 85 BIT4,L CB 65 DEC SP 3B
ADD HL,BC 09 BIT 5,(HL) CB 6E DI F3
ADD HL,DE 19 BIT 5,(1X+dis) DD CB XX 6E DJNZ dis 10 XX
ADD HL,HL 29 BIT 5,(1Y+dis) FDCB XX 6E | E FB
ADD HL,SP 39 BIT 5,A CB 6F EX (SP) HL E3
ADD IX,BC DD 09 BIT 5,B CB 68 EX (SP) ,IX DD E3
ADD IX,DE DD 19 BIT 5,C CB 69 EX (SP) 1Y FD E3
ADD IX,IX DD 29 BIT 5,D CB 6A EX AF,AF 08
ADD IX,SP DD 39 BIT 5,E cBeB EX DE,HL EB
ADD IY,BC FD 09 BIT5,H cB6C EXX D9
ADD IY,DE FD 19 BIT5,L CB 6D HALT 76
ADD IY,IY FD 29 BIT 6,(HL) CB 76 IMO ED 46
ADD IY,SP FD 39 BIT 6,(1X+dis) DDCB XX 76 | IM1 ED 56
AND (HL) AB BIT 6,(I'Y+dis) FDCBXX76 | IM2 EDSE
AND (1X+dis) DD A6 XX BIT6.A CB 77 IN A, (C) ED 78
AND (1Y +dis) FD AB XX BIT 6,B CB 70 IN A port DB XX
AND A A7 BIT6,C cB 71 IN B, (C) ED 40
AND B AQ BIT 6.D CB 72 IN C, (C) ED 48
AND C A1 BIT 6,E CB 73 IN D, (C) ED 50
AND D A2 BIT 6,H CB 74 IN E, (C) ED 58
AND n E6 XX BIT6,L CB 75 IN H, (C) ED 60
AND E A3 BIT 7,(HL) CB 7E INL, (C) ED 68
AND H A4 BIT 7,(1X+dis) DD CB XX 7E | INC {HL) 34
AND L A5 BIT 7,(1'Y+dis) FD CB XX 7E | INC (I1X+dis) DD 34 XX
BIT 0,(HL) CB 46 BIT 7.A CB 7F INC (1Y +dis) FD 34 XX
BIT O,(1X+dis) DDCB XX 46 | B|IT7,B CB 78 INC A 3C
BIT O,(1Y+dis) FDCB XX 46 BIT 7.C CB 79 INC B 04
BITO,A CB 47 BIT 7.D CB 7A INC BC 03
BIT o,B CB 40 BIT 7.E CB 7B INC C 0oC
BITOC CB 41 BIT 7.H CB 7C INC D 14
BIT 0,D CB 42 BIT7.L CB 7D INC DE 13
BITO,E CB 43 CALL ADDR CD XX XX INC E 1c
BITOH CB 44 CALLC,ADDR DC XX XX INC H 24
BITO,L CB 45 CALLM,ADDR FC XX XX INC HL 23
BIT 1,(HL) CB 4E CALL NC,ADDR D4 XX XX INC IX DD 23
BIT 1,(1X+dis) DD CB XX 4E | CALL NZ,ADDR C4 XX XX INC 1Y FD 23
BIT 1,(1Y+dis) FDCB XX4E | CALLP,ADDR Fa4 XX XX INC L 2c
BIT 1,A CB 4F CALL PE,ADDR EC XX XX INC sP 33
BIT 1,B CB 48 CALLPO,ADDR E4 XX XX IND ED AA
BIT1,C CB 49 CALL Z,ADDR CC XX XX INDR ED BA
BIT1,D CB 4A CCF 3F INI ED A2
BIT1,E CB 4B CP (HL) BE INIR ED B2
BIT 1,H CB 4C CP (1X+dis) DD BE XX JP (HL) E9
BIT1,L CB 4D CP (1Y +dis) FD BE XX 9P (IX) DD E9
BIT 2,{HL) CB 56 CP A BF JP (1Y) FD E9
BIT 2,(1X+dis) DDCBXX56 | cpB BS JP ADDR C3 XX XX
BIT 2,(iY+dis) FDCBXX56 | cpcC B9 JP C,ADDR DA XX XX
BIT 2,A CB&57 CPD BA JP M,ADDR FA XX XX

240

MNEMONIC HEXADECIMAL | MNEMONIC HEXADECIMAL | MNEMONIC HEXADECIMAL

JP NC,ADDR D2 XX XX LD BC,nn 01 XX XX LDDR ED B8

JP NZ,ADDR C2 XX %X LD C, (HL) 4AE LDI ED AO

JP P,ADDR F2 XX XX LD C, (IX+dis) DD 4E xx LDIR ED BO

JP PE,ADDR EA XX XX LD C, (1Y+dis) FD4E XX NEG ED 44

JP PO,ADDR E2 XX XX LDC.A 4F NOP 00

JP Z,ADDR CA XX XX LDC,B 48 OR (HL) B6

JR Cdis 38 XX LDcC.C 49 OR (IX+dis) DD BB XX

JR dis 18 XX LD C.,D 4 OR (1Y +dis) FD B6 xx

JR NC dis 30 XX LD Cn 0E XX OR A B7

JR NZ dis 20 XX LD C,E 4B OR B BO

JR Z dis 28 X X LD C,H 4C ORC B1

LD (ADDR) ,A 32 XX XX (D C.E 4D OR D B2

LD(ADDR) ,BC ED43 XX XX | LD D, (HL) 56 OR n FB6 XX

LD (ADDR) ,DE EDS53 XX XX | LD D, (1X+dis) DD 56 XX ORE B3

LD(ADDR) ,HL ED 63 XX XX LD D, (1Y +dis) FD 56 XX ORH B4

LD (ADDR) ,HL 22 XX XX LD D,A 57 OR L B5

LD (ADDR) ,IX DD 22 XX XX | LDD.B 50 OTDR ED BB

LD (ADDR) , IY FD22 XX XX | LDD,C 51 OTIR ED B3

LD (ADDR) ,SP ED73XX XX | LDD.D 52 ouT (C) ,A ED 79

LD (BC) ,A 02 LD D,n 16 XX OuT (C) B ED 41

LD (DE) ,A 12 LD D.,E 53 ouT (C) ,C ED 49

LD (HL*,A 77 LD D.H 54 ouT (C) ,D ED 51

LD (HL) ,B 70 LD D,L 55 ouT (C) ,E ED 59

LD (HL), C 71 LD DE, (ADDR}) EDS5B XX XX | ouT (c) .H ED 61

LD (HL) ,D 72 LD DE,nn 11 XX XX ouT (C) ,L ED 69

LD (HL) ,n 36 XX LD E, (HL) 5E OUT part,A D3 port

LD (HL) ,E 73 LD E, (I1X+dis) DD 5E XX OUTD ED AB

LD (HL) H 74 LD E, (1Y+dis) FD5E XX OUTI ED A3

LD (HL) ,L 75 LD E,A SF POP AF F1

LD (1X+dis) ,A DD 77 XX LDE,B 58 POP BC €1

LD (IX+dis) ,B DD 70 XX LD E,C 59 POP DE D1

LD (1X+dis) ,C DD 71 XX LD E,D 5A POP HL E1

LD (1X+dis) ,.D DD 72 XX LD E,n 1E XX POP IX DD E1

LD {1X+dis) ,n DD36 XX XX | LDEE 5B POP |Y ED E1

LD (iX+dis) ,E DD 73 XX LD E.H 5C PUSH AF F5

LD (1X+dis) ,H DD 74 XX LDE,L 5D PUSH BC C5

LD (1X+dis) L DD 75 XX LD H, (HL) 66 PUSH DE D5

LD (1Y+dis) ,A FD 77 XX LD H, (IX+dis) DD 66 XX PUSH HL E5

LD (1Y+dis) ,B FD 70 XX LD H, (1'Y+dis) FD 66 XX PUSH 1X DD E5

LD (1Y+dis) ,C FD 71 XX LD H,A 67 PUSH Y FD E5

LD (1Y+dis) ,D FD 72 XX LDH,B 60 RESO, (HL) CB 86

LD (1Y+dis) ,n FD36XX XX | LDHC 61 RESO, (IX+dis) DD CB XX 86

LD (1Y+dis) ,E FD 73 XX LD H,D 62 RESO, (IY+dis) FDCB XX 86

LD (1'Y+dis) ,H FD 74 XX LD H,n 26 XX RESO.A CB 87

LD (1'Y+dis} ,L FD 75 X X LD H,E 63 RESO0,B CB 80

LD A, (ADDR) 3A XX XX LD H.H 64 RESO0,C CB 81

LD A, (BC) 0A LD H,L 65 RESO0,D CB 82

LD A, (DE) 1A LD HL, (ADDR} ED®6B XX XX | RESO,E CB 83

LD A, (HL) 7E LD HL,(ADDR) 2A XX XX RESO,H CB 84

LD A, (1X+dis) DD 7E XX LD HL.nn 21 XX XX RESO,L CB 85

LD A, (1Y +dis) FD 7E XX LD I,A ED 47 RES 1, (HL) CB 8E

LD A A 7F LD IX, (ADDR) DD 2A XX XX | RES 1, (1X+dis) DD CB XX 8E

LD AB 78 LD IX,nn DD 21 XX XX | RES 1, (1Y +dis} FD CB XX 8E

LDAC 79 LD 1Y (ADDR) FD2A XX XX | RES1,A CB 8F

LDAD 7A LD IY,nn FD21 XX xx | RES1,B CB 88

LD A,n 3E XX LD LA 6F RES1,C CB 89

LD AE 7B LD L,B 68 RES 1,D CB 8A

LD AH 7C LDL,C 69 RES 1,E CB 8B

LD A, ED 57 LD LD 6A RES 1,H CB8C

LD AL 7D LD L,n 2E XX RES 1,L CB 8D

LD AR ED 5F LD L,E 6B RES 2, (HL) CB 96

LD B, (HL) 46 LD L, {HL) 6E RES 2, (IX+dis) DD CB XX 96

LD B, (IX+dis) DD 46 XX LD L,{1X+dis) DD 6E XX RES 2, (IY+dis) FD CB XX 96

LD B, (1'Y+dis) FD 46 XX LD L, (1Y+dis) FD 6E XX RES 2,A CB 97

LDBA 47 LD LH 6C RES2,B CB 90

LD B,B 40 LD L,L 6D RES 2.C CB 91

LD B,C 41 LD R,A ED 4F RES2.,D CB 92

LD B,D 42 LD SP, (ADDR) ED 7B XX XX | RES 2,E CB 93

LD B,n 06 XX LD SP,nn 31 XX XX RES 2,H CB 94

LD B,E 43 LD SP,HL F9 RES 2,L CB 95

LD B,H 44 LD SP,1X DD F9 RES 3, (HL) CB 9E

LD B,L 45 LD SPIY FD F9 RES 3, (IX+dis) DD CB XX 9E

LD BC, (ADDR) ED 4B XX XX | LDD ED A8 RES 3, (1Y +dis) FD CB XX 9E
RES 3,A CB9F

241

MNEMONIC HEXADECIMAL | MNEMONIC HEXADECIMAL | MNEMONIC HEXADECIMAL
RES 3,B CB 98 RLCC CB 01 SET1,L CBCD

RES 3,C CB 99 RLC D CB 02 SET 2, (HL) CB D6

RES 3,D CB9A RLCE CB 03 SET 2, {IX+dis) DD CB XX D6
RES 3,E CcB 9B RLC H CB 04 SET 2, {I'Y+dis) FD CB XX D6
RES 3,H CB9C RLC L CB 05 SET2.A CB D7

RES 3,L CB 9D RLCA 07 SET 2,B CB DO

RES 4, (HL) CB A6 RLD ED 6F SET2.C CB D1

RES 4, (1X+dis) DDCB XX A6 | RR (HL) CB1E SET 2.D CB D2

RES 4, (1Y +dis) FDCB XX A6 | RR (IX+dis) DD CB XX 1E SET 2.E CB D3

RES 4,A CB A7 RR (1'Y+dis) FDCB XX 1E SET 2.H CB D4

RES 4,B CB A0 RR A CB 1F SET2.L CB D5

RES 4,C CB A1 RR B CB 18 SET 3, (HL) CB DE

RES 4,D CB A2 RR C CB 19 SET 3, (1X+dis) DD CB XX DE
RES 4,E CB A3 RR D CB1A SET 3, (1Y+dis) FD CB XX DE
RES 4,H CB A4 RR E CB 1B SET 3,A CB DF

RES 4,L CB A5 RR H CB1C SET 3,B CB D8

RES 5 (HL) CB AE RR L CB1D SET 3,C CB D9

RES 5, (IX+dis) DD CB XX AE | RRA 1F SET 3,D CB DA

RES 5, (1Y+dis) FDCB XX AE | RRC (HL) CB OE SET 3,E CB DB

RES 5,A CB AF RRC (1X+dis) DD CB XX OE SET 3,H CB DC

RES 5,B CB A8 RRC (1Y+dis) FD CB XX OE SET 3,L CB DD

RES 5,C CB A9 RRC A CB OF SET 4, (HL) CBEB

RES 5,D CB AA RRC B CB 08 SET 4, (IX+dis) DD CB XX E6
RES 5,E CB AB RRC C CB 09 SET 4, (IY+dis) FD CB XX E6
RES 5,H CB AC RRC D CB 0A SET 4,.A CB E7

RES 5,L CB AD RRC E CH 0B SET 4,B CB EO

RES 6, (HL) CB B6 RRC H CcBoOC SET 4,C CB E1

RES 6, (1X+dis) DDCB XX B6 | RRCL CBOD SET4,D CB E2

RES 6, (1Y +dis) FDCB XX B6 | RRCA OF SET 4,E CB E3

RES 6,A CB B7 RRD ED 67 SET 4,H CB E4

RES 6,B CB BO RST 00 c7 SET 4,L CB E5

RES 6,C CB B1 RST 08 CF SET 5, (HL) CB EE

RES 6,D CB B2 RST 10 D7 SET 5, (I1X+dis) DD CB XX EE
RES 6,E CB B3 RST 18 DF SET 5, (1Y +dis) FD CB XX EE
RES 6,H CB B4 RST 20 E7 SET5,A CB EF

RES 6,L CB BS RST 28 EF SET5,B CB EB

RES 7, (HL) CB BE RST 30 F7 SETS5,C CB E9

RES 7, (1X+dis) DD CB XX BE | RST 38 Fi SET5,D CB EA

RES 7, (1Y +dis) FDCB XX BE | SBC A, (HL) 9E SET5,E CBEB

RES 7.A CB BF SBC A, (IX+dis) DD9E XX SET5,H CB EC

RES 7,B CB B8 SBC A, (1Y+dis) FD 9E XX SETS5,.L CB ED
RES7.,C CB B9 SBC A,A 9F SET 6, (HL) CB F6

RES 7.0 CB BA SBC A,B 98 SET 6, (IX+dis) DD CB XX F6
RES 7,E CB BB SBC A,C 99 SET 6, (1Y +dis) FDCB XX F6
RES 7,H CB BC SBC A,D 9A SET 6,A CB F7
RES7,L CB BD SBC A,n DE XX SET6,B CB FO

RET c9 SBC A E 9B SET6,C CB F1

RETC D8 SBC AH ac SET6,D CB F2

RET M F8 SBCA,L 9D SET 6,E CB F3

RET NC DO SBC HL,BC ED 42 SET 6,H CB F4

RET NZ co SBC HL,DE ED 52 SET6,L CB F5

RET P FO SBC HL,HL ED 62 SET 7, (HL) CB FE

RET PE E8 SBC HL,SP ED 72 SET 7, (1X+dis) DD CB XX FE
RET PO EO SCF 37 SET 7,(1Y +dis) FD CB XX FE
RET Z c8 SET 0, {HL) CB C6 SET 7.A CB FF

RETI ED 4D SET 0, (I1X+dis) DD CB XX C6 SET 7.B CB F8

RETN ED 45 SET 0, (1Y +dis) FD CB XX C6 SET7.C CBF9

RL (HL) CB 16 SETO0,A CB C7 SET 7,D CB FA

RL (IX+dis) DDCB XX 16 | SETO,B CB CO SET 7,E CB FB

RL (1Y+dis) FDCB XX 16 SETO.C CB C1 SET 7,H CB FC

RL A CB17 SETO,D CB C2 SET 7,L CB FD

RL B CB 10 SETO.E CBC3 SLA (HL) CB 26

RLC CB 11 SETOH CB C4 SLA (IX+dis) DD CB XX 26
RL D CB 12 SETO,L CBC5 SLA (IY+dis) FD CB XX 26
RL E CB 13 SET 1, (HL) CB CE SLA A CB 27

RLH CB 14 SET 1, (IX+dis) DD CB XX CE SLA B CB 20

RL L CB 15 SET 1, (1Y +dis) FD CB XX CE SLAC CB 21

RLA 17 SET 1,A CBCF SLAD CB 22

RLC (HL) CBO0O6 . SET 1,8 CB C8 SLAE cB 23

RLC (IX+dis) DD CB XX 06 SET 1,C CBC9 SLA H CB 24

RLC (1Y+dis) FD CB XX 06 SET1,D CB CA SLA L CB 25

RLC A CB 07 SET1,E CB CB SRA (HL) CB 2E

RLC B CB 00 SET 1 ,H CB CC SRA (IX+dis) DD CB XX 2E

242

MNEMONIC

HEXADECIMAL

MNEMONIC

HEXADECIMAL

MNEMONIC

HEXADECIMAL

SRA (1Y +dis)
SRA A

SRA B
SRAC
SRAD
SRAE
SRAH

SRA L

SRL (HL)
SRL (IX+dis)
SRL (1Y +dis)
SRL A
SRLB
SRLC

SRL D
SRLE
SRLH

SRL L

SUB (HL)
SUB (1X+dis)
SUB (1Y +dis)
SUB A

sSuB B
SUBC

SUB D
SUBE
SUBn

SUB H

SUB L

XOR (HL)
XOR (1X+dis)
XOR (1Y +dis)
XOR A
XOR B
XORC
XOR D
XORn
XORE
XSOR H
XOR L

FD CB XX 2E
CB 2F

CB 28

CB 29

CB 2A

CB 2B

cB2C

CB 2D

CB 3E

DD CB XX 3E
FD CB XX 3E
CB 3F

CB 38

CB 39

CB 3A

CB 3B

CB 3C

CB3D

96

DD 96 XX
FD 96 XX

a7

90

91

92

93

243

SEsnw
Dr. lan Logan is the acknowledged ---.- -.- --

leading autherity an Sinclair computers. o ™

In this book, he gives a complete Over the Spectrum is the book where you LT -
overview of the way the Spectrum will find your dreams really do come

operates, both for BASIC and machine true. If you want to know how to use

language programming. A special the complete facility of the Spectrum,

section on the ROM operating system as well as have the full listing for over This title speaks for itself, it's everything
will give you insight into this computer 30 Spectrum programs, this is the book you need to understand about Spectrum
as well as provide you with infermation for you. Fantastic programs such as the Machine lLanguage when you're just

on how to use many of the routines incredible 3D-Mazeman, Alien Invaders, starting off. A must for all new Spectrum
present in the ROM. This book is a must just to mention two. Games, utilities, owners. Only £6 95

if you are serious about programming educational and business programs

the Spectrum Only £7.95 are all in Over the Spectrum. Only £6 95

After leading the way in Sinclair ZX81 software, we've
produced the highest quality, most exciting Spectrum Cassette of all
sohyuure available. From f‘he three excellent books programs from

depicted above to fast-action games on cassette,
we're providing the best choice in Sinclair Spectrum Sp ectrum Machine
software today.

Language book

Whether it's for your new Spectrum or ZX81 . %
Melbourne House has books and programs perfectly is available from

suited to your needs.
i Melbourne House.
Send for your Spectrum or ZX81 catalogue today.

['« Melbourne Hous (Pul shers) 1
MELBOURNE Glebe Cotta , Glebe House, Station Road,
Cheddington, Leighton Buzzard, BEDS LU7 7NA
HOUSE Australia New Zealand:
Me lbourne Hous (Australia) Pty Ltd,
PUBLISHERS ‘~l|‘.: te G751 !h‘?n.‘r‘h‘c on Crescent,

.
—
.

INDEX

A
Absolute address 36,47
Absolutejump s, 101
ACCUMBIALOr ™ - vimis & wsnn © o = v & 34,135
ADD 68, 69
Add WD CaNY s s 5590 = 6509m = memy - own 96
"> s o [1 7o [NMPRRTRIC SR 12,15,31,126
Addresses30,45-47, 54,69, 83, 106, 135
Alphanumeric 24,28
Alternateregister 35, 36
AND, 75,76,78, 136
Arithmetic calculations 7,58
Arithmetic logicunit 31
Arithmetic operations 62, 68, 95, 126
ALTEY 5« oo & paimn & 950k & 8 Qe 5 eSS ¥ wicds 106
BSHIN o o snovmm a1 o veodh s i s issedhs o siressd i g pns 28
Assembly language 8,9, 60
Attributefile 57,65, 132, 142
B
=] [5-8, 10, 13, 23, 39, 130
BEER I T NSNS e 144
Binaey e v oo s 2 spiie s s amp s e 18,24, 25
Binary codeddecimal 62, 63, 126
BIHISEH . s = o e 8 DB R o) e 8 A 117
|1 19-21, 23, 24, 32, 34, 75
BIOCK .icv v s o simaie o miaieie o 0 109, 123, 134
Booleanoperators 75,77
BOEGRE =it o aeem o o o o waals st & o 124
BUSRQ 124
BYle wami s st = canp 2 sana s 24,29, 34, 45,135
Cc
CalcUlationg suae e oams & g e & s s - 11,14, 15
CalGUIAtOr . « s » s = v mem v ¢ s o s 4 31
A L e e S, 106
CAIMY i . aeen s e s aemn © o & 70,119,126
Carryarithmetic 97
Carryflag60,63, 70,77, 96,99, 105, 106
Cassefe . . s s weis b i = siems = s 4 122
Characters 24,28
Characterposition 142
CHECKSUM cwns v o i b 5 smomse o wtscaa s 162-163
Clockspeedcoiiiiiin.. 30
COBOL .« vsaw s = veoms & sieon 4 Gae & s & Lue s 6
815 7o | T S R 131,132
Colours 57,124,144
COMDAIG v 5 v 5ty & 7605 3 a0 2 o Gl s 3 uaK s 72
Conditional jump 61
Controlunit i 31
& R TN S e (e e e 72
CPD . ipmee s omm e it o s + armes o it 110
] S B = PR ol e ot s A v Al e R 110
C P i 2 o s 2 sy s s 7 amis & davess 5 0% 109
GPIR . lns tn o St B0 T it 110
G R et e re W e 5,11-15, 30
D
DAR: =5 vioa = vy b e w8 B ts Sis s 126
[abiig; s NN S e e 7
BIEG o gl o ry o et Sl o 66
Decimal . . voun e voms ens 18-20, 22, 23,70 126
DEGIaase ... ocis - v o vime o s o o 66, 67
DBlAY 100D .nf s it St e B i s o e 104
i o s e s e e e SR s 124,127
Displacement 47,54
DIVISION & aiee Ssrata Com i s 121
DIINZ o v i s 1 S i S e s = 104
[DURNIPD! ociosiacs o s 2 & cmla o it = wloess = Sonetis o = 56

E
EBGCDICE ... s sune s o s e siain 28
Electricalsignals 5.6
.............................. 124,127

3 s e S 115
Exchangeregister 36, 115
External addressing 52, 80, 81
EXBOUHONT . . oo o o vt v mins & & a6 6,10
F
EIMIWETE: 25 2 ¢ st 75 W08y o i 5 g9 ¥ gan 10
FlIags wai « = iesi = o i « o 32, 58, 66, 72, 96, 99
Flagregister 34,58
Freeway frog ... v oem es amen s s s 161-163
FreqUency . : v o « & s s seas wsm 125, 144
H
Halfcarryflag 62,63, 66,77, 126
HAILT ™, . . e it e gt cveporetn s) e 10
Hardware o s sews s veon o s o s ¢ sem s s 34
Hexadecimal 19-23, 70
HEXLOAD "¢ caes s ot i & 2850 0 ba 155-160
High levellanguage 130
Highorderbyte 140
Highestbit «::conesimme s mms v i s 25,33
HETOGISIEr .o wusimas ¢ o mna s o wvon s o s oo 34
|
Immediate addressing 44, 79
Immediate extended

AddreSsing: «u = & newn s - s e s 55,79, 81
Immediate indexed addressing 55
|2 I e e 8, 64
INCrEASE sww =« v v 5 uni 6 6w o & e i 64,67
Indexiregisters« o v o e 79, 97
Indexedaddressing 47
INAICAION &« v oeis = 5 mmu s 5 simer « mies v 2 wowss 58
Nk 57
Instructionregister 31
INSLRUGHON SBL ..o » . covs = o s s o v 5 @ smae s 52
Instructions 10, 58
INTT v o o aoanmmn sl sota 0 o 8654 & 5 s o 127
Integer 25,29
IEITUBY o 5 o v e - ¢ vt da el @ & (5 14,127
Interrupt vector register 37
J
N e o 61, 63, 99
Jumps ... 99, 102
K
Keyboard 5,122,135
L
Labels 131
LB csaisa s it s 2 mvesia 05 o 43, 70,86, 111
Logicaloperators 75,117
Logical operations 62,63
T o 99
Loudspeaker 125, 144
LOWIDYIE 1. Lo bk g b s B 2 85, 89
Loworder s mea s v ana & e sl 136, 140
M
o e L e T s 135
Megahertz 30
Memory 6,10, 14,17, 29,86, 87, 144
PAMBIMONIES. < =« waaii ih a6 & wteals 8,9, 13,43

Modes 55,79

N

Nanosecond 52
Negativenumbersovevuiiis 25,29
NMI 127
Numbers 8,24
(o)

OpErands: i s s aen b s S b She 71
OE‘erating system 5-7,39, 41,135
R L L e e s 2 corren ehes 75,76,78
OVEIOW. o o< e vae de e s | e 96
P

PARER " one s asss o 2w o b qie s s & Ss 57
Parity/overflow ... 62, 63, 66, 77,97, 105, 106
PEEK . S s L o et P Ca, 7
PINS! & - o s sieny » Goist ¢ @ wesds 5 w5 s 6, 30
POIMIOE . oo v & s 0 et oot o shais 46,47, 79
POP. . Ren s 14,15,17,37,81,91,98
POt s ossom 5 2 e 5 0 sme w s we s & ae 135, 144
Processor iiiiiiia.. 30
Program counter 31,100, 101,127
PUSH o it & mus 14,15,17,37,81,91,98
R

R register s = - sl o e % e 37
RAM .. 31
Random NUmber o o« vess s dees & s 5 aie 37
Registers 12,17,32, 54, 69, 83
Register addressing 45, 48, 51, 80, 81
Register indirect addressing 46, 54, 80
Relativejump 101
Raelocatable ™ w: v v aian 2 vovs 5 woms & v om0 47
BET . ot o s v dlhress ol aidaboe e st . 325 98, 106
BETl 127
BLA s s o o gem s 2 smmn & 5505 3 5 5608 5 #65 119
B A e i e = s 120
ROM 7,10, 31,39, 124, 128, 135
Rotate e A S SN 4 § DR ¥ 119
RS T s r eSS . eyt 1 .. 128
S

SRR J—_ 77
Sl o ce i T o o e s B W d & 119
Signflag -....... 59, 63, 66, 77,97, 105, 106
SIGNEGMBHOF .o 5 v s 100x w wimim = 2w+ + 25,29
SIlICON TP s v s ¥ s = o s £ 0 o o 8 & 30
Sound ..., 124,125,144
BB o o i s e esa R A rAva e o e 71
SUBE | oan 2 s o vhmo 5 5 wom 5 € 00 5 8 2en b 54 71
Subroutines 106, 131
Subtracting 12,15, 31,126
Subtraction flag (negate) 62, 63, 66, 77
o = e e 121
Stack 14,15,17,91,127
Stack pointer 36, 92, 96, 97
STKEND. ciici e = moms & siamsin v s 4 sssoais & 5 97
SYITEX W s b e et s e = - 130
T

TORIOWIT S & 2 ol RIS Sl 5 et s et & & 130
Translation’ - el 8 = am ol sn e e 79
Two'scomplement 27,29
U

LILAR LG - e S s e bz n 124, 144
Userregister . uoi.:oenbt s ovmiy cans 31,32,38
1213 DO e S S 39, 41,56, 88, 93, 98
v

Variable 8,13,14,55

Videoscreen 138

w
WA om0 om0 s <0 et o s e st st 124
X
XOR : catues o v ietis i & st = 250 75;.76,78
P4
Zeroflag .. 58, 59, 63,66, 77,97, 99, 105, 106
ZErOPAGE . ..ot 127
ZBOAZBO s imnn s v g iema - wee s s 5,:6,:30

SPECTRUM
MACHINE LANGUAGE FOR THE
ABSOLUTE BEGINNER

Please fill out this page and return it promptly in order
that we may keep you informed of new software and special
offers that arise. Simply cut along the dotted line and
return it to the correct address selected from those
overleaf.

Where did you learn of this product?

[:] Through a friend
[:] Saw it in a Retail Store
[:] Other. Plcase specify.scevecesssssessnssencnsnosascans

Which Magazines do you purchase?

Occass tomal Ly s s bl s s o mishel o & 5o 5 4508 s 5308 & 59 ¥ 3 Wians 3 Woals shuan

What Age are you?

[1 10-15 [J16-19 [_]20-24 [_] over 25

We are continually writing new material and would appreciate
receiving your comments on our product.

How would you rate this book?

[] Excellent E] Value for money
[] Good [] Priced right
[] Poor E] Overpriced

Please tell us what software you would like to seec produced
for your computer.

Name « wvaie s & s & & el o siais & & 5 S i b 8 RLE S 4 RIeE & SR s BIRTE e GIAEE & SURe ¥ 8 e

Address. s sese s o B ool oo O A R R S P pe——,

'G0CE 'BUOIJIA 'auinogisiy yinog
lU89sSa17) UojSIaW(eY G/ ‘¥ alNS “pi ‘Ald (BljelSNy) 8SnoH suinogiay
:0} abed uinjai puejeaz MaN % eBljel}SNY U|

NS €2dH ‘@41yspioa ‘buliy
‘PIBA Yoiny) ‘@SnoH auinoqiay “'Pi11 (siaysiignd) 8sSnoH auinoqgiapy
:0}) abed uinjas wopbuy pajiun ayj uj

LL2LE N1 3ll'AyseN

‘aALQ POOMpPaaY /pE ‘"OU| BIBMHOS 3SNOH 3uinog|ay
:01 abed uinjal eolIdWY JO S3EIS PAYIUN Y] U|
-‘OLdN3S ANV 3dOT3ANI A3dANVLIS V NI SIHL LNnd

‘Your best course is to work through a book such as William Tang's
Spectrum Machine Language For The Absolute Beginner.

‘This book is one of the best | have seen on the subject — foronce
the title is right on the nose! | can recommend this to anyone just
getting interested.’ — Popular Computing Weekily.

If you are are frustrated by the limitations of BASIC and want to
write faster, more powerful, space-saving programs or
subroutines, then Spectrum Machine Language

For The Absolute Beginner is the book for you.

Even with no previous experience of computer languages, you will
be able to discover the ease and power of the Spectrum’s own
language. Each chapter includes specific examples of machine
language applications which can be demonstrated and used on
your Spectrum, as well as a self-test questionnaire.

At the end of the book, all this is brought together into an entire
machine language program — from design right through to the
complete listing of an exciting, original arcade game.

Melbour ISBN 0-8blbl-110-1
Publis MR IR
Publishers 7808611611102

	Cover page
	Contents
	Finding Your way around Machine Language
	The Beginning
	BASIC Machine Language Concepts
	The Way Computer Count
	How Information is Represented
	A Look into the CPU
	This is all very well...
	How the CPU uses its Limbs
	Counting off Numbers on One Hand
	Flags and Their Uses
	Counting Up and Down
	One Handed Arithmetic
	Logical Operators
	Coping with Two Handed Numbers
	Manipulating Numbers with Two Hands
	Manipulating the Stack
	Two Fisted Arithmetic
	Loops and Jumps
	Use of Subroutines
	Block Operations

	Instructions that are less frequently used
	Register Exchanges
	Bit, Set and Reset
	Rotates and Shifts
	In and Out
	BCD Representation
	Interrupts
	Restarts

	Programming Your Spectrum
	Planning Your Program
	Features of the Spectrum

	Monitor Programs
	EZ-Code Machine Language Editor
	Hexload Machine Code Monitor

	The Freeway Frog Program
	Program Design
	Stage 1 - DataBase
	Stage 2 - Initialisation
	Stage 3 - Regular Traffic
	Stage 4 - Police Car
	Stage 5 - The Frog
	Stage 6 - Control

	Appendices
	Spectrum Key Input Table
	Screen Display Map
	Spectrum Character Set Table
	Dec-Hex Conversion Tables
	Flag Operation Summary Table
	Z80-CPU Instructions Sorted by OpCode
	Z80-CPU Instructions Sorted by Mnemonic

	Index
	Back page

