

ALSO BY THE SAME AUTHORS : = = =
~ THE ART OF PROGRAMMING

- THE 16K ZX81 '
BP109 The Art of Programming the 1K ZX81 = -

' by
M. JAMES & S. M. GEE

BERNARD BABANI (publishing) LTD
~ THE GRAMPIANS
SHEPHERDS BUSH ROAD
LONDON W6 7NF
ENGLAND

Although every care has been taken with the preparation of
this book, the publishers or author will not be held responsible
in any way for any errors that might occur.

© 1982 BERNARD BABANI (publishing) LTD

First Published — November 1982
Reprinted — November 1983

British Library Cataloguing in Publication Data
James, M.
The art of programming the 16K ZX81. — (BP114)
1. Sinclair ZX81 (computer) — Programming
I. Title II. Gee, S. M.
001.64°2 QA76.8.562/

ISBN 0 85934 089 9

Printed and bound in Great Britain by Cox & Wyman Ltd, Reading

PREFACE

This book is the sequel to our book about the 1K ZX81, “The
Art of Programming the 1K ZX81”. While that book laid the
foundations for a good understanding of programming to
allow you to make the most of your ZX81, this one sets out
to help you use your 16K RAM pack and your ZX printer to
the full. It concentrates on good programming style and intro-
duces some interesting programs — that are both fun and
useful.

Chapter One introduces the 16 RAM pack and the printer.
Chapter Two explains how the extra storage space is used and
presents a memory test program to check that your new 16K
is operational. Some utilities that you’ll find useful in writing
longer programs are given in Chapter Three. Chapter Four is
an interlude from serious applications, presenting five games
programs that make the most of the extended graphics
capabilities now available to you. The next four chapters deal
with writing and debugging large programs, storing them on
cassettes and printing out both the programs themselves and
their results. They also introduce programs for editing data-
bases and statistical analysis and for financial management and
cover text and graphics printing. Chapter Nine takes a further
look at randomness, a topic that was introduced in the first
book. The final chapter introduces machine code and explains
why you might want to use it.

With this book to guide you, we hope that you’ll be able to
discover just how versatile and powerful your ZX81 is and that
you’ll realise just how rewarding programming with it can be.

If you would like to be able to run the programs contained
in this book without having to type them in yourself from the
listings given, you will be pleased to know that they are
available on two cassette tapes from Ramsoft, P.O. Box 6,
Richmond, North Yorkshire DL10 4HL. Improved versions of
programs in our first book, revised to take advantage of the

16K RAM pack are also included on these tapes. For details of

how to order them turn to the end of the book.
M. James and S.M. Gee

PLEASE NOTE

The publishers of this book are in no way responsible for the
manufacture or supply of these tapes and all enquiries and
orders must be sent directly to Ramsoft at the address given.

CONTENTS
Page
Chapter One, EXTENDING YOURZXS81 Lol
The 6K RAMpack .. . - =~ 1
New programming considerations 2
TheZXpmater -+ = . =~ = . 3
Howtousethisbook — = .- .~ 4
Chapter Two, ANEXTRAI6K 5
Memory map and system variables 5
Manipulating memory locations 7
Morememorylocations.. . . .= 0 . . = 5
A memorytestprogram . . .= ..o s o 9
Chapter Three, PROGRAMMING UTILITIES 12
Utility One — Memoryuse 12
Utility Two — Variableuse~, 13
Utility Three —Renumber =2/ 19
Chapter Four, IGKGRAPHICS 23
Full graphics — Depth chargegame 73
Squash . - - =
Sereenlayeut ..~ — = .. o - 30
Screen PEEKing and POKEing 31
Mazegame - .- - 33
Scrollinpgraphiecs . .= = .~ . = ...~ 36
Skimmnpgame .. . - == 37
Pagedgraphics« .7 ... o 41
Conclision .= .« o 43
Chapter Five, DESIGNING LARGE PROGRAMS 44
Designingaprogram - oo 44
Usingsubroutiies . = = - & o e 45
Anextended RETURN ~ =49

Collections of programs —Menus 50

Esecfriendlyprograns = ... L ao 0o,
Pebugaiiieo s s L

Chapter Six, TAPE STORAGEOF DATA
fhelapesystem . - oo . oL oo e
Patastorage - ..o a0 o
Statisticspregram . - o .. s eLo ol oL ol

A short example program
A second example — reversing the screen

Chapter Seven, NUMBER FORMATTING
Truneatingandrounding
Aligning decimalpoints
BRINLESING: = . =~ s e
Interestealaulator .o = .o e

Chapter Eight, THEPRINTER
Howtheprinterworks.oo.o0
oW resolufjenprinting oo 0
High resolutionplotting
Ploffinpasinecuve = . .- oo o a e
A lower case or special characterset
Eonclusion: — = ... oo e ai e

Chapter Nine, ADVANCED RANDOMNESS

Contipuousevents . = = .~ x v e s e
The Normal Distribution
The CHI Squared Distribution
The Exponential Distribution
The Binomial Distribution
The Poisson Distribution
Monte Carlo integration — findingPIT
Problems with randomnumbers
A busipesssimulation — . .. - o0
Schicsduangle: 0 o0 e
Conclusion- =~

Chapter Ten, MACHINE CODE PROGRAMMING
Why is BASICsoslow?
The characteristics of machinecode

ACKNOWLEDGEMENTS

We would like to thank Jane Patience for her assistance in the
preparation of this manuscript. Our thanks are also due to
Sinclair Research for the loan of equipment at very short

notice.

Chapter One
EXTENDING YOUR ZX81

Using a ZX81 with only 1K of memory may at first be a
challenge, but there is no doubt that the challenge soon
changes to frustration. As you learn to write your own
programs you discover just how powerful your ZX81 is and
the extent of its versatility but you realise just how restrictive
having so little user memory is. Many of the features of the
ZX81 — its dynamic graphics, for example — are virtually
unusable within the 1K provided. Once you’ve mastered the
fundamentals of ZX BASIC and have tried out some of your
own ideas for writing programs you’ll be itching to increase
the scope of your machine. So it’s fortunate that with the
ZX81 this is so easy to do — you simply buy a 16K RAM pack
and push it into the slot at the back of the machine.

The 16K RAM pack

Although there are now other 16K RAM packs on the market
which operate in an identical way as far as the user is
concerned, the only one that we have tried is the one
produced by Sinclair Research themselves. This is the one we
therefore recommend to any of you who have not already
made your purchase. The pack is a compact unit containing
zight 2K RAM chips which connects to the ZX81 via a double-
sided edge connector. The only problem with this arrangement
is that the connection between the ZX81 and the RAM pack
must be maintained at all times. An accidental jog or bump
that disturbs the contact will mean you lose the program in
memory. We have come across various remedies for this state
of affairs, including the extreme one of permanently soldering
the unit on. We certainly do not advise such a course of action
as it would mean you could not remove it to use some other
add-on in its place. The solution that seems to us to be the

1

simplest and best is one that requires no hardware modifica-
tions. It is simply to use some “Blu-tak” or similar adhesive
substance to make the temporary connection between the
machine and its add-on RAM pack more secure. Use a fairly
thick ‘sausage’ of the adhesive to bridge the gap between the
RAM pack and the ZX81. This should be proof against the
sort of slight bumps that are bound to occur. It will, of course,
be insufficient if you are going to subject your ZX81 to really
rough treatment — but then that’s not to be encouraged in any
case!

When using the printer as well as the RAM pack, the printer
interface plugs directly into the ZX81 and the RAM pack
plugs into the back of the printer interface. This means being
even more careful about maintaining the connection to the
RAM pack which is now positioned quite a distance away
from the ZX81 itself. However, we have discovered that as
long as we arrange the equipment on a firm, flat surface, we
have no problems at all. Before you start programming test
the security of the connection with this simple test —strike a
few keys on the keyboard as if you were typing in a program.
The junction between the printer interface and the RAM pack
should not flex. If it does your arrangement is not stable
enough. If necessary, try fixing all the equipment, the ZX81,
the printer interface and the RAM pack, to a firm base (e.g. a
piece of blockboard) with double-sided adhesive strip.

New programming considerations

Getting an extra 16K certainly makes life easier. No longer do
you need to employ crafty space-saving tricks to squeeze in
your programming ideas. No longer will you need to fret about
how to incorporate extra features into your, already over-
flowing, programs. You can now relax and concentrate on
good programming style instead.

Youwll find that having an extra 16K makes programming
your ZX81 more fun because you can tackle more difficult
programs and ones that are quite different in scope. However,
if you are going to make full use of its increased power you
need more information and new sources of ideas. After all,

2

suddenly you have sixteen times as much memory available!
Your ZX81 could do quite a lot before, so its new potential is
really very impressive. Unleashing its capabilities is all a matter
of writing programs that make use of them. That’s where this
book comes in. It aims both to provide an understanding of
programming techniques that will use 16K of memory to the
full and suggest sufficient ideas to set you off on writing the
programs that will really use the new potential of your ZX81.

The ZX printer

If you’ve not already bought one, it’s now time to consider
buying a ZX printer. You’ll find that you’ll need one, both to
enable you to write more elaborate programs and to fully
appreciate their results. Once your programs grow to a length
that fills the screen many times over it is virtually impossible
to find the bugs in them by reading them off the screen. Nor
is it advisable to write out listings by hand — you are likely to
introduce more mistakes this way. The only really practical
course is to list them out using the printer to enable you to
look at the whole program at once.

The printer also opens up a whole new range of applications
for your ZX81. It means that you can keep records —financial
statements and accounts, for example — in ‘hard copy’. With
the 16K RAM pack you can even make the ZX81 capable of
high resolution plotting. This means that you can display
statistical information of all sorts graphically. Again, once
you’ve obtained the results from such programs you’ll want to
be able to take them away in order to make full use of them.

The ZX printer has its disadvantages. Compared to conven-
tional printers it is very narrow, which tends to restrict the
range of applications to which it can be put, and it uses shiny,
grey aluminium paper, which tends to make the output look
unattractive — however, it actually photocopies very well,
giving a really sharp black image. While copying information
from the TV screen the printer makes the image on the screen
flicker and shake, and while printing out on paper it is noisy
and causes alarming “flashes”. Its great advantage however,
compared to all other printers yet available, is its price. Fora

3

reliable and effective printer it is very cheap.

How to use this book

This book is the sequal to our book about the 1K ZX81, “The
Art of Programming the 1K ZX81”. In other words, this book
goes farther along the road we set out on in that book and we
will not go over in any detail the material already covered.
Although the final chapter of the 1K book was specifically
about special devices to enable you to cram programs into tiny
amounts of memory, tricks that you will no longer need, the
rest of the book is just as valid for the machine that has been
upgraded to 16K. So if you find that this book plunges in at
the deep end in any respect try going back to its forebear.

With the addition of 16K your ZX81 is suddenly trans-
formed from a computer that you may have regarded as a toy
to one that’s in the same league as lots of “serious” micros. In
the same way, this book adopts a rather more “serious”
approach to its subject. If you find some of the explanations
of programming theory and techniques in the next couple of
chapters rather heavy going, don’t worry. You can still use the
programs to good effect and then come back to the explana-
tions after you’ve written some longer programs of your own.
If you want some fun with your new memory capability try
skipping to Chapter Four. Equally, there is nothing to stop
you going straight to Chapter Seven if you are keen to use
your ZX81 for a statistical application. Either way, you might
like to use the program suite given in Chapter Three to help
you.

Chapter Two

AN EXTRA 16K

You may already know that 1K bytes of memory can be used
1o store 1024 characters so, by simple arithmetic, you will
zasily work out that 16K bytes can store 16384 characters.
This sounds like a great deal of memory and you may be
tempted to ask, “will I ever really need all that storage?” The
answer is that although 16384 is a lot of storage it is used in so
many ways that it is possible to write a program that consumes
any amount of memory. For example, the one line program

10 DIM A(50, 100)

will give an out of memory error (report code 4)! The point is
that, while it would take you a long time to type in 16384
characters and use up all the memory, programs have ways of
claiming large areas of memory for their own uses.

Memory map and system variables

In general, any memory available to the ZX81 is used in four
different ways:

1) program storage
2) data storage

3) display storage
4) system storage

The most obvious use of memory is program storage. Every
line that you type into the ZX81 is saved in memory and
roughly speaking you can say that each line takes as many
bytes to store as it took keypresses to enter it. The second
use of memory is data storage. Every variable that you create
(by using its name) is assigned an area of memory where its
value can be stored. As a typical variable will only use 6 bytes
there may seem to be plenty of room in 16K unless you start
using arrays. Unfortunately, using large arrays of variables is

5

one of the characteristics of advanced programming!

The final two uses of memory are less obvious and less
within the control of the user. The ZX81 maintains an area of
memory that is used to generate the screen display. The way
that the memory is used differs according to the amount of
memory available. In the case of the 16K ZX81, 793 bytes are
used no matter what is displayed on the screen. This may seem
like a lot of memory to give up to a possibly blank screen but
the advantages that this brings are well worth it (see Chapter
Four). As well as needing memory for the screen, the ZX81
also needs somewhere that it can use to store ‘internal’
information such as where your program ends or the position
of the current print position on the screen. Memory locations
that are used to store such information are called ‘system
variables’. In any version of the ZX81, 124 bytes are given
over to system variables and a knowledge of what these are
can be useful.

The best way to see how the ZX81 uses its memory is via
a memory map.

address HoE

16384 System variables

16509 Program

D_FILE Display file

VARS Variables

E_LINE Line being typed and Work Space
STKBOT Calculator stack

STKEND Free RAM

Stack pointer Machine stack

6

r 2 Gosub stack
= Free RAM
32767

From this you should be able to see that some of the divisions
of the memory occur at fixed addresses and others at variable
addresses. For example, the program area always starts at
16509 but the display file starts at a variable position that
depends on how long the program is. So that the ZX81 can
find out very quickly what the addresses are, they are stored in
fixed locations in the ‘system variables’ area of memory. You
can find a complete list of these and other locations in Chapter
28 of your ZX81 manual. The use of these locations is easy
enough once you have got over the idea of a pair of memory
locations holding the ADDRESS of another memory location.
For example, the system variable called D_FILE is stored at
location 16396 and 16397 and these two locations are used to
store the address of the start of the area of memory used for
the TV display. It is important to note that BASIC does not
recognise the name D_FILE and if you want to gain access to
what is stored in D_FILE you have to use its address.

Manipulating memory locations

The two BASIC statements that allow us to manipulate
memory locations are PEEK and POKE. The function

PEEK address

returns the contents of the memory location specified by
‘address’ and

POKE address, value

stores ‘value’ in the memory location specified by address. A
single memory location can hold a number between 0 and 255
but the address of a ZX81 memory location can lie between 0
and 65534. So, to store a single address we have to use TWO

7

memory locations. The way that this works is based on the
principles of binary numbers but from the point of view of a
BASIC programmer this is an unnecessary complication and it
is best understood and easier to remember in terms of the
decimal numbers that are used in programming statements.
The largest number that a single memory location or byte can
hold is 255. So if you use a single memory location to count,
you can start at zero and count quite happily until you reach
255. If you try to add one to 255 you cannot store the answer
256 in a single memory location but you could store one in
another memory location to indicate that you have reached
756 once. You could then carry on counting in the first
memory location as if nothing had happened (starting again at
zero) until you reach 255 again. In fact, what you are doing is
to use the second memory location as a counter of the number
of times that you have reached 256. The first memory location
counts single things and is known as the ‘east significant byte’
and the second memory location counts 256s and is known as
the ‘most significant byte’.

first memory second memory
location location
units 256s

least significant most significant

It should now be obvious how to ‘reconstruct’ an address from
two memory locations. As the first counts units we can just
PEEK its value but the second counts 256s so its value must be
multiplied by 256 before it is added to the first value. Trans-
lating this into BASIC gives:

PEEK M +256+PEEK(M+1)

as the way of finding out what is stored in two memory
locations, the address of the first being stored in M. Going the
other way is just as easy. If you want to split a number up so
that it can be stored in two memory locations, first divide it
by 256 to find out how many 2565 it contains and store the

8

result in the most significant byte and then store the remainder -
in the least significant byte. That is

POKE M+1,INT(V/256)
POKE M,V -256+INT(V/256)

will store the number in V in the two memory locations M and
M+1. Both of these PEEK and POKE methods will be used
later on.

More memory locations

The digression about memory addresses interrupted our
examination of the memory map before we had considered the
final four areas. To resume, the calculator stack is an area of
memory that the ZX81 uses to store any temporary results
generated while it is doing arithmetic. The size of the
calculator stack varies while a program is running according to
what calculations are actually being done. The machine stack
is different from the other areas of memory in that there is no
way to find out where it ends. This information is stored in a
location that BASIC has no access to called the ‘machine stack
pointer’, but this doesn’t really matter because nothing of any
use to a BASIC programmer is stored in this region. The
GOSUB stack is used to save the line number that a RETURN
statement uses to return control from a subroutine. The final
clement in the memory map is ‘free RAM’, in other words,
RAM that is available for use by the programmer. The system
variable RAMTOP is normally set to the address of the highest
RAM location when the ZX81 is first switched on. However it
is possible to change the value stored in RAMTOP to reserve
some memory for special purposes, such as a machine code
subroutine (see Chapter Ten).

A memory test program

As an example of how to use system variables let’s consider
the problem of writing a program to test the ZX81’s memory.
The most obvious method of checking that a memory location
is working is to store something in it, read it back and see if it

9

is unchanged. There is a little problem about what to store in
the memory location to test it because it is possible for a
location to store some values without any trouble but fail with
others. The answer is to use the ZX81’s random number
function RND to generate a wide range of values. Thus our
memory test program will start at the beginning of the area of
free memory and store a random value in the first location and
then read it back to see if it has been stored correctly and will
repeat this for every location in the free area. The reason why
only the free area is checked is that storing anything in an area
of memory that the memory check program was using would
cause it to crash! The resulting program is:

10 PRINT “+";

20 LET E=PEEK 16386+256+PEEK 16387 —40
30 LET M=PEEK 16412+256+*PEEK 16413 +20
40 LET M=M+1

50 IF M>E THEN GOTO 10

60 LET R=INT(RND+256)

70 POKE M,R

80 IF PEEK(M)=R THEN GOTO 40

90 PRINT “ERROR AT *;M;” EXPECT “;R
100 PRINT “ACTUAL ";PEEK M

110 GOTO 40

Line 10 starts the program by printing a plus sign to show that
the program is working. Lines 20 and 30 are concerned with
finding the address of the area of free memory. The variable E
is set to the address of the end of the free area by PEEKing
the locations corresponding to ERR_SP which gives the
address of the end of the GOSUB stack, and subtracting 40 to
leave enough space for the machine stack. Notice that there is
no way to find out the exact location of the end of the
machine stack. The variable M is set to the address of the start
of the free area by PEEKing the locations corresponding to
STKEND which give the address of the end of the calculator
stack and hence the start of the free area and then adding 20.
You may think that adding 20 is unnecessary because
STKEND gives the exact address of the start of the free area,
but as the memory test program runs it carries out some

10

ithmetic and the calculator stack can increase in size so it is
portant to allow 20 locations for this growth. Lines 40 to
%0 test each location in turn. A random number is generated
2t line 60 and stored in the memory location under test by
ine 70. It is then recalled and compared to the original value
' line 80. If it is the same then the next memory location is
whecked by going back to line 40 and adding one to M. If an
=rror is found then an error message is printed by lines 90 and
200 and testing of other memory locations continues. The
@ly other point to notice is that line 50 tests to see if all the
==e memory has been checked. If it has then another plus is
wrinted and the testing starts over.

If you run the memory check program you might think
What it isn’t working because although a single plus sign appears
wa the screen nothing else happens. The reason for this is that
it takes about half an hour to test the entire memory! This
example shows that speed of operation is going to be one of
= problems of writing programs on the ZX81!

11

Chapter Three

PROGRAMMING UTILITIES

A utility is generally understood as a program that helps in the
task of writing other programs. In some senses t.h.e memory
check program described in the last chapter is a utility, in .that
it tests to see if the machine is working before you write 2
~ program. With the 16K of memory installed on the ZX8] we
can now consider writing a number of small programs that
make life a little easier when writing larger programs. For
example, during program development it is often useful to
know how much memory is free and how it is being used. It i
quite possible to use our knowledge of the memory 12'1yout and
system variables to write a program that will print out a
summary of how memory is used. However, some of the_ tech-
niques used are quite involved, so you may prgf.e%' to Sklp' the
explanations of how this and the rest of the utilities Flescnbed
in this chapter work and just use them without worrying about
their finer points until you have gained more expertise in pro-
gramming your ZX81. : :
The three utilities described below all have line numbers in
the 9000 region and each uses a different set of line num})ers
so that you can have all three of them loaded at the same time.
In Chapter Five we will see how to organise them so that they
are easier to use as a group rather than as individual programs.

Utility One — Memory use

The memory use utility is a fairly short program which can be
used in conjunction with any program you write:

9200 PRINT “PROGRAM ";PEEK 16396+256*PEEK
16397 - 16509

9210 PRINT “DISPLAY ";PEEK 16400+256+*PEEK
16401 —PEEK 16396—256+PEEK 16397

9220 PRINT “VARIABLES ";PEEK 16404 +256+*

12

PEEK 16405—-PEEK 16400-256+PEEK 16401
9230 PRINT ““SPARE “;PEEK 16386+256+PEEK
16387 —-PEEK 16412-256+PEEK 16413
9240 STOP

To use this program, load it from tape before starting to write
another program and the amount of memory left can be found
at any time by typing GOTO 9200. The amount of space
taken by a program is calculated by the difference between the
address of the beginning of the ‘program area’, 16509 and the
address of the end of the ‘program area’ stored in D_FILE
(16396 and 16397). The amount of memory used by the
variables and the display is calculated in a similar fashion.
Notice that the memory usage utility creates no extra variables
of its own so the amount of memory used to store variables is
entirely due to the program being developed. However, the
utility does take up space in the ‘program area’ so the amount
of memory used by the program includes the space taken by
the utility. The size of the memory left is calculated by finding
the difference between the address stored in STKEND and the
address stored in ERR_SP. Notice that this does not take into
account the memory used by the machine stack and so the
reported figure is too large by 5 to 10 locations.

Utility Two — Variable use

Although the previous utility let us know how much memory
was being used by the variables, it didn’t give any idea of
which variables were taking a lot of space. If you’re writing a
long program it can very often happen that you forget the
names of the variables that you have already used. This means
that when you come to creating a new variable you run the
risk of using the same name twice. The utility listed below can
help with keeping track of the variables that you are using at
any point in a program’s development. It works by looking at
the ‘variables area’ of memory and listing the name, type and
current value (if convenient) of each variable. With our current
knowledge of the memory layout, finding the start and end of
the ‘variables area’ is easy. What is more difficult isinterpreting

13

the information that we find there. To do this we need to
know a little about how the variables are stored.

The ZX81 recognises six different types of variable
although some of these look the same to the user. Each type
of variable takes a different number of memory locations to
store its value and other information about itself. The one
thing that they all share in common, however, is that in each
case the first memory location is used to identify the type of
variable. To save space, the first location is also used to store
the first (and possibly only) letter of the variable name. The
way that this is done is quite simple. As the first character ofa
variable name must be a letter, which letter it is can be repre-
sented as a code in the range 1 to 26. Then, as there are only
six variable types, we can assign each a code as follows:

code variable type

String of any length

Simple variable (i.e. single letter name)
Array of numbers

Variable with name longer than one letter
Array of characters

Index variable used in a FOR loop

b [l @ L0 [> GV 1 1O

Because both pieces of information have a restricted range
they can both be stored in a single memory location. Tech-
nically, what happens is that the most significant three bits are
used to store the type and the least significant five bits are
used to store the letter that is the variable’s name:

WMt 7 6 5 4 3 2 i 0
7 F [‘L I
type letter

The most important point to note, however, is that if VO is the
address of the first memory location of a variable then you can
separate the type and name using the following two lines:

TO=INT(PEEK(V0)/32)
C$=CHR$(PEEK(V0)-T0+32+32)

where TO contains the type and C$ the letter. This use of the
first location makes good sense because, by looking at the first

14

location, you can decide what the type and name of the
variable is and thus how to treat it. This is the strategy
adopted by the utility listed below:

9300 LET VO=PEEK 16400+256+PEEK 16401

9310 PRINT “VARIABLE";TAB(10);"TYPE";
TAB (20);”VALUE”

9320 DIM Cs$(10)

9330 |F PEEK(V0)=128 THEN STOP

9340 LET TO=INT(PEEK(V0)/32)

9350 LET 10=1

9360 LET Cs=""

9370 LET C$(10)=CHR$(PEEK(V0)-T0#*32+32)

9380 IF T0O=3 THEN GOTO 9450

9390 IF TO<>5 THEN GOTO 9480

9400 LET VO=VO+1

9410 LET TO=INT(PEEK(VO0)/64)

9420 LET 10=10+1

9430 LET C$(I0)=CHR$(PEEK(V0)—T0+*64)
9440 |F TO=0 THEN GOTO 9400

9450 PRINT C$;TAB(20);VAL C$

9460 LET VO=VO0+6

9470 GOTO 9330

9480 IF T0O<>7 THEN GOTO 9520

9490 PRINT C$;TAB(10);”INDEX";TAB(20);VAL C$
9500 LET VO=V0+18

9510 GOTO 9330

9520 IF TO<>2 THEN GOTO 9640

9530 LET 10=10+1

9540 LET TO=PEEK(V0+1)+256+PEEK(V0+2)
9550 LET C$(2)="s"

9560 PRINT C$;TAB(10);”LEN";TO;TAB(20);
9570 LET VO=V0+3

9580 IF TO=0 THEN PRINT

9590 IF TO=0 THEN GOTO 9330

15

9600 PRINT CHR$(PEEK VO0);
9610 LET VO=VO0+1

9620 LET TO=TO0-1

9630 GOTO 9580

09640 |IF TO=6 THEN LET Cs$(2)="8"

9650 LET 10=0

0660 PRINT C$;TAB(10);" DIM(";

9670 PRINT PEEK(V0+4+10+2)+256*PEEK(VO+5+
10+2) ;

9680 LET 10=10+1

9690 |F I0<>PEEK(V0+3) THEN PRINT “,”;

9700 |F 10<>PEEK(V0+3) THEN GOTO 9670

9710 LET VO=V0+3+PEEK(V0+1)+256+PEEK(VO
+2)

9720 PRINT “)"

9730 GOTO 9330

Line 9300 sets VO to the start of the ‘variables area’ and lines
9340 and 9370 separate the variable type into TO and the first
letter of the name into C$(1). What happens next depends on
the type of the variable, i.e. the value stored in TO.

If TO is equal to three then we have a simple variable. Line
9380 tests for this condition and, if it is true, control passes to
line 9450 where the name of the variable and its value are
printed. Printing the variable’s name is easy because it is stored
in C$ but printing its value depends on the use of the function
VAL. The BASIC function VAL is well worth knowing about
because it can be used to work out an arithmetic expression
stored in a string variable. Remembering that a single variable
name is a special case of an arithmetic expression, we can see
that PRINT VAL C$ will print the contents of the variable
whose name is in C$ — which is exactly what we want to do!
After printing this information the only thing that is left to_do
is to adjust VO so that it contains the address of the first
location of the next variable. Knowing that a simple variable
uses five memory locations to store its value (ZX81 manual,
page 172), you should be able to see that line 9460 leaves VO
pointing at the start of the next location.

16

If TO is equal to five we have to deal with a numerical
variable with a name longer than one letter. As we have solved
the problem of printing the value stored in a numerical
variable once we have its name, the only extra difficulty comes
from building up the full name of the variable C$. This is
what happens in lines 9400 to 9440. Each additional character
is extracted by line 9430 along with a new type value TO in
line 9410. The full name is built up by adding each character
to C$ and the last character of the name is detected by TO
being not equal to zero. After extracting the last character we
can handle the printing and adjustment of VO in exactly the
same way as a simple variable.

If TO is equal to seven then we have an index variable to
deal with. The only difference between an index variable and a
simple variable is that it takes 18 memory locations to store its
value. You should be able to understand the method employed
in lines 9490 to 9500 by comparing it to the way a simple
variable is handled.

If TO is equal to two then we have a string to deal with. As
the name of a string can only be a single letter the only thing
that we have to do to construct its full name is to add a “$>
sign to C$ in line 9550. Unfortunately, we cannot use the
VAL function to print the value of the string variable because
VAL can only evaluate arithmetic expressions. The solution to
the problem of printing the string value is to notice that the
length of the string is stored in the two memory locations
following its name.

memory location 1 2 3 4 5

length + 3
Inamellength‘ string

By PEEKing these two locations (line 9450) we can print the
length of the string in line 9560. Using this information we can
then PEEK each character of the string in turn and using the
CHRS$ function print it on the screen. We know that we have
come to the end of the string when the number of characters
printed is equal to its length (lines 9580 and 9590).

If TO is equal to four or six then we have an array of
numbers or characters to deal with. The only difference
between the way these two are handled is that a “$” is added

17

to the single letter name in the case of the string array by line
9640. There is no point in trying to print the values that the
array contains because this might produce so much informa-
tion that it would be overwhelming! What seems to be more
useful in the case of an array is to print its dimensions. To do
this requires us to look at the way arrays are stored. From
Chapter 27 of the ZX81 manual you should be able to see that
the third memory location of an array always holds the
number of dimensions of the array and the sizes of these
dimensions are stored, two locations to each, before the actual
values of the array.

memory lecation =1 23 4 5 6 7 & =

name |length [no.of|1st dim|2nd dim
dims
By PEEKing the fourth location in lines 9690 and 9700 it is
possible to decide if the sizes of all the dimensions have been
printed. The size of each dimension is obtained by line 9670
and the number of dimensions obtained is recorded in I0 by
line 9680. After all this information has been printed VO is
adjusted to the address of the next variable by adding the
contents of locations two and three which contain the total
length of the array in memory locations (line 9710).

There are only two things left to explain about the way
that the program works. Firstly, how does the program know
that it has printed all the variables? Quite simply, the last
memory location in the ‘variables area’ contains 128 and this is
checked for by line 9330. Secondly, why is C$ dimensioned?
Surely it would be easier to use a string? The reason why C$
is dimensioned is that strings can change the amount of
memory that they take up while a program is running. If this
utility used a string then the ‘variables area’ would be re-
arranged every time the length of C$ changed — this would be
disastrous for a program trying to analyse the ‘variables area’!
A string array however always occupies the same amount of
space.

You may be feeling that this utility is very difficult to
understand but if you look at each section in turn you should
be able to make sense of it. If you find you can’t, don’t let it

18

stop you from using it! Here is an example of the sort of
information it will give you:

i LEYT R=18%

2 LET dMRX=8l12g
3 LET &x="HIKE"
4 FRR IT=31 o o
S BTN P19

URRIRBLE TYPE Ut LR
8 iga
MAX 120
2% LEN=4 MIRKE
z INGEX i

= DIMI1,7F .92

Utility Three — Renumber

The third and final utility is a short renumber program. It is
almost impossible to write a program first time round with
neatly numbered lines. Something always goes wrong and you
have to add out-of-sequence lines. It would be very useful to
have a program that could renumber the finished product to
give regular line numbers. That is, however, very difficult to do
in BASIC because a good renumber program should adjust not
only the numbers at the start of each line but any line
numbers referred to by GOTO and GOSUB statements. If you
simply change all the line numbers but leave the GOTOs and
GOSUBs alone then the final program will not work. While it
is possible to think of waysin which the GOTOs and GOSUBs
could be changed from BASIC it would produce a rather large
program. As a sort of compromise, the utility given below
renumbers all the lines and gives a list of how the old line
numbers have been changed to give the new line numbers.
Using this list it is easy to change all the GOTOs and GOSUBs
to the new line numbers by using the EDIT command.

19

Before we can understand the way that the utility works it
is necessary to examine the way BASIC statements are stored
in the “program area”. Chapter 27 of the ZX81 manual
supplies the following information:

2 bytes | 2 bytes text newline
line no. length
of text
+ newline

As can be seen, the first two locations of the statement
contain the line number. The only thing to note is that, unlike
all the other two byte numbers that we have looked at, the
line number is stored with the most significant byte FIRST. So
to PEEK it we must use ’

256+PEEK VO + PEEK (VO+1)

where VO contains the address of the first location. To change
the line number all we have to do is to POKE the two
locations with the new value. This is only complicated by the
fact that we have to split the new line number up into two
smaller numbers. The easiest way to do this is

most significant byte = INT(S0/256)
and
least significant byte = SO—256+*INT(S0/256)

where SO is the new line number. After POKEing the new line
number the only problem is moving onto the next line. This
can be done by PEEKing the second and third locations for
the length of the text and adding this to V0. Putting these
ideas into a program gives:

9800 LET VO=16509
9810 PRINT “START=";
9820 INPUT SO

9830 PRINT SO

9840 PRINT “STEP=";
9850 INPUT 10

20

9860 PRINT 10

9870 PRINT

9880 PRINT “OLD";TAB(6);” NEW"

9890 LET LO=256*PEEK VO + PEEK (VO0+1)

9900 IF L0O>=9000 THEN STOP

9910 PRINT LO;TAB(6):S0

9920 POKE VO, INT(S0/256)

9930 POKE VO0+1,S0-256+INT(S0/256)

9940 LET S0=S0+I10

9950 LET VO=VO+4+PEEK(V0+2)+256*PEEK(VO
+3)

9960 GOTO 9890

Line 9800 sets VO to the start of the “program area’ and lines
9810 to 9870 get the line number that the renumbered
program should start at (in SO) and the amount that they
should go up by in I0. Line 9890 finds the current line number
in LO. This is printed along with the new line number at 9910.
The new line number is then POKEd into the correct place by
lines 9920 and 9930. The utility then proceeds to the next
program line by adding the increment I0 to the new line
number in 9940 and adjusting VO to point to the start of the
next statement line in 9950. The utility stops when an old line
number in the 9000s is detected by line 9900 — after all there
is no point in the utility renumbering itself or any of the other
utilities!

When you run a program with this utility you will have to
supply two pieces of information, the number you want the
first line to have, probably 10, and the increment between the
lines, also probably 10. Enter the first value when the prompt
“START=" appears on the screen and the second after the
prompt “STEP=".

sTART=1@
STEFR =13
SLD NEW
13 1@
i1 =
iz 33
i3 ig
id =1

21

This short renumber routine is very useful as it stands but
it could form the basis for a more advanced renumber
program. For example, you might want to modify. it to
renumber only part of the program or to tackle the difficult
problem of handling GOTOs and GOSUBs.

22

Chapter Four
16K GRAPHICS

You might think that having more memory wouldn’t alter the
way that you program graphics on your ZX81 but you would
be wrong! At the simplest level having more memory means
that you can use all of the screen area without being in danger
of running out of memory — a full screen needs approximately
700 memory locations and this leaves very little left over
from 1K. At the most advanced level the 16K machine
organises its screen display in a very different way from the 1K
machine and this fact can be used to produce some impressive
displays very easily.

Full graphics — Depth charge game

Before dealing with anything new it might be a good idea to
write a graphics game based on the techniques introduced in
the 1K book. Rather than take any of the programs found in
the 1K book and change them so that they use the whole
screen, which is left for the reader to do, a brand new program
will be used to show how easy it is to write such programs
once the 1K limit is removed.

The idea behind the game is to animate two ships — one a
surface vessel and the other a submarine — and allow the first
one to “drop” a depth charge on the other. If you followed
the discussion in the 1K book then you should be able to see
how to write this program for yourself. To animate the two
ships we could use the general method of plotting a shape at
the first position, blanking it out and replotting it moved on a
little. However as the ships are going to move horizontally in
a straight line we can use a trick to simplify the programming,
Try the following program:

10 FOR X=0 TO 30
20 PRINT AT 3,X;" =";

23

30 NEXT X

You should see an asterisk move from left to right at the top
of the screen. Notice that this program combines the re-
plotting of the asterisk with the unplotting of the previous
position by including a blank in the moving “object”. In
general; it is always possible to use this technique. All you
have to do is to ensure that whenever the “object” is printed it
includes enough blanks around it to “wipe out” the old
version. In practice, this is too difficult unless the object is
moving in a straight line. (For another example of this method
see “Squash”.)

The only other problems with the depth charge game are
deciding when the submarine is hit and producing a suitable
“explosion” to remove it from the screen. The complete
program is listed below. Note that graphics characters are
indicated by square brackets around the letter on the key that
you should press to produce it. So [A] is the graphics
character on the A key and [] is an inverse space i.e. a black
block. Whenever you see a character enclosed in square
brackets get into “GRAPHICS” mode and then press the shift
key before typing in. Note also that lines 230, 430 and 530
need 4 spaces between the double quotes.

10 LET MC=0

20 LET HC=0

SO LET E=0

40 LET H=0

50 LET XS=0

60 GOSUB 600

70 LET X=3

80 LET YS=INT(RND*5)+15

90 LET Y=2

100 GOSUB 200

110 PRINT AT 0,0;HITS=";HC;TAB(10) ;*"MISSES
=";MC

120 IF F=0 THEN LET XD=2#X

130 IF F=0 THEN LET YD=35

140 IF INKEY$="F"” AND F=0 THEN LET F=1

24

150 IF F=1 THEN GOSUB 300

160 GOSUB 400

170 IF H=0 THEN GOTO 100

180 GOSUB 500
190 GOTO 30

200 PRINT AT Y, X;” [6][1[6]1[6]";

210 LET X=X+1

220 IF X>25 THEN LET X=0
230 IF X=0 THEN PRINT AT Y,25;"”

240 RETURN

300 UNPLOT XD, YD
310 LET YD=YD-1
320 PLOT XD, YD

330 IF YD=2 THEN LET MC=MC+1
340 IF YD=2 THEN LET F=0
350 IF F=0 THEN UNPLOT XD,YD

e,

’

360 IF ABS(XD-2#XS-6)>6 THEN RETURN

370 IF YD<>43-2+YS THEN RETURN

380 LET H=1
390 RETURN

400 PRINT AT YS,XS;” [6][6][W]";

410 LET XS=XS+RND

420 IF XS>27 THEN LET XS=0
430 IF XS=0 THEN PRINT AT YS,27;"

440 RETURN

500 LET HC=HC+1
510 FOR |1=1 TO 20

520 PRINT AT YS, XS, [A][A][A][A]";

530 PRINT AT YS, XS;*

540 NEXT |
550 RETURN

600 CLS
610 FOR =0 TO 31

25

’

e,

620 PRINT AT 3,1;“[S]”;
630 PRINT AT 21,1;“[D]";
640 NEXT |

650 RETURN

The program starts by initialising variables and drawing the
sea and sea bed using subroutine 600. The depth of the sub-
marine is selected at random by line 80. Subroutine 200 plots
the surface ship at location X,Y and subroutine 400 plots the
submarine at location XS,YS. The submarine moves in the
same direction as the surface ship and the amount that it
moves is random (line 410). The depth charge is released by
pressing the “F” key and line 140 checks for this, using the
INKEY$ function. When the depth charge has been dropped
the variable F is set to one and the location of the depth
charge is then stored in XD,YD. Subroutine 300 is responsible
for keeping track of where the depth charge is and keeping it
moving. Notice that, as the depth charge is produced using the
PLOT/UNPLOT commands and the ships are produced using
PRINT AT, there is a problem with comparing co-ordinates.
PLOT works with a screen 64 by 44 and PRINT AT works
with a 32 by 22 screen. Obviously XD and YD are simply
twice the size of a similar X and Y except that YD is measured

MISSES=5

HITS=8&

from the bottom of the screen and Y is measured from the
top! All this makes starting the depth charge off and deciding
if it has hit the submarine more difficult than you might
expect. Lines 120 and 130 keep XD and YD set to the same
location as the surface ship, so that when the depth charge is
dropped it starts falling from the current position of the
surface ship. Lines 360 and 370 check to see if the depth
charge has hit the submarine. Notice that, to compare the two
X co-ordinates, it is enough to multiply by two but to com-
pare the two Y co-ordinates you have to subtract 2+YS from
43, The rest of the program is fairly straightforward but notice
the way that the submarine is “destroyed” in lines 510 to 540,
it could be useful in other games!

Squash

As another example of full screen graphics consider the squash
program given below:

10 LET BALL=0
20 LET BALL=BALL+1
30 CLS
40 LET A=10
50 LET B=10
60 LET V=1
70 LET W=1
80 LET X=10
90 LET ¥=15
100 GOSUB 500
110 PRINT BALL
120 GOSUB 200
130 GOSUB 700
140 GOSUB 300
150 IF B<>21 THEN GOTO 120
160 GOTO 20

200 LET A$=INKEY$
210 IF As$="5" THEN LET X=X-1
220 IF A$="8" THEN LET X=X+1

27

230 RETURN

300 PRINT AT B,A;" “;

310 LET A=A+V

320 LET B=B+W

330 IF A=31 OR A=0 THEN LET V=-V
340 |F B=1 THEN LET W=-W

350 IF B+1=Y THEN GOSUB 400

360 PRINT AT B,A;“[]";

370 RETURN

400 LET R=A-X

410 IF R<1 OR R>3 THEN RETURN
420 LET W=-W

430 RETURN

500 FOR 1=0 TO 31

510 PRINT AT O,1;"[1"
520 NEXT |

530 RETURN

700 PRINT AT Y, X:“ [1[I 1"
710 RETURN

This is a simple application of the moving graphics methods
introduced in the 1K book. The program starts by printing the
walls of the court using subroutine 500. Subroutine 300 plots
the ball at location A,B and keeps track of the ball’s horizontal
velocity V and vertical velocity W. If the ball hits a “wall”, i.e.
tries to go off the screen, then the correct velocity is reversed
to make it bounce. Subroutine 700 prints the bat at location
X,Y. Notice that erasing the old bat is unnecessary because of
the blank included at each end of the bat. The only two
new features are the way that the bat is moved and the way
‘the ball is made to bounce off the bat. To move the bat all
that is necessary is to change the bat’s horizontal co-ordinate
according to which key is pressed. If the left arrow key is
pressed then one is subtracted from X, moving the bat one
place to the left. If the right arrow key is pressed then one is

28

:,‘__,;-'

(The routine that blanks out the ball has been temporarily
removed in order to produce this illustration.)

=

zdded to X, moving the bat one place to the right. All this is
done by subroutine 200. No attempt is made to ensure that
the bat stays on the screen because once again we come up
against the slowness of the ZX81 and to include such a check
would slow things down even more. The ball bouncing off the
Dat is carried out by subroutine 400. If the ball is at the same

. wvertical position as the bat then line 350 calls subroutine 400

to check if it has the correct horizontal position to be
Sounced, i.e. have its vertical velocity reversed. If the ball goes
off the screen at the bottom (detected by line 150) then
control passes to line 20 and a new game is started. Notice that
the game is played by lines 120 to 140 being repeated over and
over again. Line 120 calls the move bat routine, line 130
actually moves the bat and line 140 calls the routines that look

- after the ball and its bouncing.

You should now be in a position to expand and improve
programs such as depth charge and squash and to use them as
the basis of your own games. But before we move on to some-
thing new, notice how, in the case of the 1K ZX81, program
features were left out because of the lack of program space
znd now, in the 16K machine, features are left out because of
the lack of speed!

29

Screen layout

When the ZX81 is first switched on it checks to see how much
memory it has available to it. If it has less than 3%K of
memory then a minimum screen is set up. A minimum screen
consists initially of 25 “newline” characters. The first newline
character is used to indicate the start of the screen display.
The subsequent newline characters are used to mark the end of
a display line. As you print information to the screen the
characters are inserted between the appropriate pairs of new-
line characters. When the ZX81 comes to create the screen
the information between each pair of newline characters is
displayed. As each line on the screen must be 32 characters
long, if there are less than 32 characters between newlines,
the ZX81 substitutes enough “blank’ characters to form a
full line. It is important to realise that a “blank™ is just as
much a character -as the letter “A” and takes up the same
amount of memory if you want to store it. You should now be
able to see that there are two ways that a completely blank
line can be produced on the screen. Either by storing 32 blank
characters between ‘“‘newlines” or by two “newlines” being
next to each other. In the first case the ZX81 would send 32

blanks to the screen because they are stored in memory and in §

the second case it would send enough blanks to make the line
complete. The first method requires 32 extra memory
locations and the second requires none! For example, suppose
that the first part of the display area of memory looks like
this.

INLINLIH |1 IBL|T [H |E |R |E [NLINLJ. . .[NL]|

Where NL is the code for “newline”, BL is the code for
“plank” and all other letters should be replaced by their codes
e.g. “H” is 45. Then the screen display would be constructed
as follows. The first NL simply marks the start of the screen.
The second NL marks the end of the first display line so the
7ZX81 would check to see how many characrers had been
printed. On finding the answer to be zero it then sends 32
blanks to make a full display line. Following the second NL
are eight character codes and these are displayed on the screen

30

in turn until the next NL is reached when 24 blanks are sent
to make another full line and so on to the end of the display.

This method of producing a display may seem complicated
but it does save having to use memory to store blank lines.
However, if there is sufficient memory, i.e. more than 3%K,
the ZX81 does use the simpler, if slightly more wasteful,
method of setting up a screen consisting of 24 lines of 32
blanks. The “newline” characters are still used to signal that
the display should start a new line so the screen displays of the
1K and 16K ZX81 share the same basic structure. As the
screen is used, some of the blanks are replaced by other
characters but the screen always stays the same size. There is
one exception to this rule, however, and that is the SCROLL
command. Issuing a SCROLL command makes the whole
screen display move up by one line, the top line being lost.
This is done by introducing a blank line at the bottom of the
screen consisting of a single “newline” character. So after each
SCROLL a short line is introduced to the display. After 22
SCROLLS the screen is back into its 1K form with all the extra
blanks removed. To get back to the full screen all that is
necessary is to clear the screen using CLS.

Screen PEEKing and POKEing

What we have discovered in the last section is that a 16K
screen undisturbed by SCROLL has a fixed layout in memory.
The first screen memory location’s address is in D_FILE and
it contains a “newline” character. The next 32 memory loca-
tions contain the character codes of whatever 32 characters
appear on the first line of the screen. The next location after
that contains another “newline” and so on to the last line of
the screen. What this means is that we can easily work out the
address of any location on the screen and use it either to
change what is displayed or more importantly to discover what
is being displayed.

If D is the address of the start of the display file then the
memory location that corresponds to the column number
stored in X and the row number stored in Y is:

S

D+ X +Y%33 +1

because each row is 32 characters plus one “newline” long and
the display area starts with a “newline”. Using this formula it
is possible to POKE new characters anywhere on the screen
including the bottom two lines that are normally reserved for
input. Try the following program:

10 CLS

20 LET D=PEEK 16396 + 256+PEEK 16397
30 FOR X=0 TO 31

40 FOR Y=0TO 23

50 LET A=D+X+Y*33+1

60 POKE A, 128

70 NEXT Y

80 NEXT X

You should see the screen fill with black squares including the
two forbidden lines at the bottom. In general you can replace

PRINT AT Y,X;As;
where A§ contains a single character by
POKE D+X+Y*33+1,CODE(A$)

where D is the address of the start of the display file. The
reasons why you might want to POKE characters onto the
screen are various but include wanting to use the bottom two
lines and needing faster printing.

PEEKing the screen is much more important than POKEing
because it provides the only way of finding out what is already
on the screen. To find the code of the character at screen
location XY use:

LET C-=PEEKID+X+Y*33+1)

Where D is the address of the start of the display file and C is
the code of the character. If you’re wondering why you would
ever want to know what character is at a particular position on
the screen then perhaps the next game will serve as a
demonstration.

32

Maze game

The maze game is a ZX81 version of a game found on many a
popular micro. The basic idea is that you have control over the
movements of an asterisk that starts out in the bottom right
hand corner of the screen and the object of the game is to get
it into the top left hand corner. Sounds easy doesn’t it! The
catch is that your way is blocked by a randomly changing
pattern of dark squares and the skill is to steer your way as
quickly as possible through any openings before they close.

Before looking at the completed program try to think how
you might go about writing it. The problem is obviously
knowing when your way is blocked. Do you really have to
record the X and Y co-ordinate of every dark square on the
screen?

10 CLS

20 PRINT “DIFFICULTY LEVEL 1-9 2"
30 INPUT L

40 LET L1=L/10

50 CLS

60 GOSUB 100
70 GOSUB 300
80 GOSUB 500

100 LET D=PEEK 16396+256+PEEK 16397
110 RETURN

200 LET C=PEEK(D+X+Y*33+1)
210 RETURN

300 FAST

310 GOSUB 1000

320 FOR =1 TO 20+L+40
330 LET X=RND=*29+1
340 LET Y=RND=*19+1
350 PRINT AT Y, X;“[A]l";
360 NEXT |

370 SLOW

34

380 PRINT AT 1,1;"s";
390 PRINT AT 20,30;"+*";
400 RETURN

500 LET XC=30

510 LET YC=20

520 LET M=0

530 LET X=XC

540 LET Y=YC

550 LET A$=INKEY$

560 GOSUB 900

570 IF A$="""" THEN GOTO 550

580 IF A$="5" THEN LET X=XC-1
590 IF As="8" THEN LET X=XC+1
600 IF A$="6" THEN LET Y=YC+1
610 IF A$="7" THEN LET Y=YC-1
620 GOSUB 200

630 IF C=13 THEN GOTO 800

640 |F C<>0 THEN GOTO 530

650 PRINT AT YC,XC;” “;

660 LET XC=X

670 LET YC=Y

680 PRINT AT YC,XC;"*";

690 LET M=M+1

700 GOTO 530

800 CLS

810 PRINT AT 0,2;“YOU HAVE TAKEN “;M;

“ MOVES”
820 PRINT “ANOTHER GAME Y/N"
830 INPUT A$
840 IF As(1)="Y" THEN RUN
850 IF A$(1)<>""N" THEN GOTO 820
860 STOP

900 IF RND>L1 THEN RETURN
910 LET Cs=" "
920 IF RND>.5 THEN LET Cs="[A]"

34

930 PRINT AT RND*19+1,RND*29+1;C$
940 PRINT AT 1,1;“s8";
950 RETURN

1000 FOR 1=0 TO 31

1010 PRINT AT 0,1;“[1";AT 21,1;7“[17
1020 NEXT |

1030 FOR 1=0 TO 21

1040 PRINT AT 1,0;“[]“;AT 1,31;"[|“;
1050 NEXT |

1060 RETURN

The program starts off by asking for the difficulty level, L.
This governs how many squares are used to block your way.
This information is used by subroutine 300 to construct the
initial maze. The details of this are straightforward. First a call
o subroutine 1000 draws a border around the maze. Next a
PRINT AT is used to print the graphics block [A] at random
‘points on the screen. Notice how FAST and SLOW are used to
fide the maze while it is being built and to get things done as
cuickly as possible. Before leaving the subroutine a § sign is
printed in the top left hand corner to represent the target
‘oosition for the asterisk which is printed in the bottom right

35

. Scrolling graphics

= difficult to solve — making many things move at once. In
zzneral it is not possible to make more than one or two things
move at any speed on the ZX81 using BASIC. However there
s one exception to this. Try the following program:

hand corner. The game proper begins with a call to subroutis
500. After some initialisation, the arrow keys are checked B
line 550 and the values of XC and YC, the present position ¢
the asterisk, are updated into X and Y, the intended positics

of the asterisk, according to which arrow key has been presses 10 CLS

The next problem is to decide if the intended position is lega 20 PRINT AT 21 RND#*31:“s"":
If it contains only a blank character then it is OK to move the 30 SCROLL . ! .
asterisk there. If it contains any other character then the mowe 40 GOTO 20

must be rejected. Subroutine 200 is called at line 620 to PEEKEE ,
| You can use the SCROLL commands to move the entire

the screen and find out what is at X,Y. The code of the

character is returned in C. If the code is 13 then the next movelf *reen one line vertically and the time that this takes is not

takes the asterisk onto a position that contains a “$” (the codé dependent on how many things are moved! The difficulty with

for a *“$” is 13) and as the only “$” is in the top left handl SCROLL graphics is not moving things but making them stay
* still! If you print something on the top line after each

corner the game is over and control is passed to line 300 tog * .
finish the game. Unless this condition is found, line 640 checks | SCROLL then it appears to be stationary in a stream of
moving asterisks. Add

to make sure that C is zero, the code for a blank, if it is any

thing else then the move is rejected. If it is zero, however, thes 35 PRINT AT 0,16;“V":
the old asterisk’s position is blanked at line 650 and the ne¥ :
asterisk is printed at line 680. The move count M ¥
incremented and the move logic is repeated by line 700. The
only details that we haven’t discussed are subroutine 900
that adds and removes blockages, and lines 800 to 860, tha
print the results of a game and asks if you want to play again
Both of these should be easy to understand. Notice how the
use of a PEEK to discover what is in the proposed printing

o the previous program and you have the start of a “pilot a
spaceship through the stars’ game!

Ski run game

To show how powerful SCROLL graphics can be try the ski
run program given below:

position also stops the asterisk being “driven” off the sides 0 10 RAND 0

the screen without having to use extra IF statements. Becausa 20 LET B$="<>"" (Please note that in line 20 etc., it
the maze is surrounded by a non-blank border the move logi¢ 30 CLS is important that you type a “less
will not allow you to cross it! 40 DIM C(26,2) than” symbol, followed immedi-

ately by a “‘greater than” symbol

After studying the techniques presented in this chapter,
ying q P i rather than an “inequality sign”.)

you should be able to make use of both PEEK and POKE te

50 GOSUB 5000
60 GOSUB 1000

produce animated graphics to good effect. As an exercise i 70 LET T=0
would be a good idea to change the squash program gives 80 LET P=0
earlier to use PEEK and POKE instead of PRINT AT. 90 LET X=16

100 GOSUB 2000
110 GOTO 4000

So far we have accumulated a wide range of methods fo
producing moving graphics but there is still one problem tha

36

1000 FOR I=1 TO 25

37

1010 LET C(I,1)=INT(RND*5)+5
1020 LET C(1,2)=INT(RND*25)+4
1030 NEXT |

1040 LET C(1,1)=21

1050 RETURN

2000 PRINT AT 21,C(1,2);>";
2010 LET K=1

2020 LET J=0

2030 LET L=0

2040 LET 1=2

2050 LET S=0

2060 LET S=S+1

2070 LET T=T+1

2080 SCROLL

2090 GOSUB 3000

2100 IF S<>Cf(l,1) THEN GOTO 2060
2110 PRINT AT 21,C(1,2);B$(J+1);
2120 LET J=NOT J

2130 LET I=1+1

2140 IF 1<26 THEN GOTO 2050
2150 FOR I=1 TO 23

2160 LET T=T+1

2170 SCROLL

2180 GOSUB 3000

2190 NEXT |

2200 RETURN

3000 LET A$=INKEY$

3010 IF A$="“5" THEN LET X=X-1

3020 IF A$="8" THEN LET X=X+1

3030 PRINT AT 0,X;“*";

3040 IF T<>C(L+1,1) THEN RETURN

3050 LET T=0

3060 LET L=L+1

3070 LET K=NOT K

3080 IF NOT K AND (X-C(L,2)) > 0 THEN RETUR
3090 IF K AND (X-C(L,2)) < 0 THEN RETURN

38

3100 LET P=P+1
3110 PRINT “H"
3120 RETURN

4000 PRINT

4010 PRINT “YOU HIT “;P;* GATES”
4020 PRINT “DO YOU WANT TO TRY AGAIN ?2“;
4030 INPUT A$

4040 PRINT As$

4050 IF As$(1)="N" THEN STOP

4060 IF AS<>"Y" THEN GOTO 4020
4070 PRINT "“SAME COURSE ?";

4080 INPUT As

4090 PRINT A$

4100 IF A$(1)="Y" THEN GOTO 70
4110 IF A$(1)<>"“N" THEN GOTO 4070
4120 GOTO 60

5000 CLS

5010 PRINT

5020 PRINT TAB 8;“SK | R UN"

5080 RRINEFFABS — -~ :

5040 PRINT

5050 PRINT “YOU HAVE TO SKI DOWN A COURSE”

5060 PRINT “OF 25 FLAGS."”

5070 PRINT ‘

5080 PRINT “YOU MUST PASS TO THE LEFT OF”

5090 PRINT ““< AND TO THE RIGHT OF >"

5100 PRINT

5110 PRINT “YOU CAN MOVE TO THE RIGHT AND"”

5120 PRINT “LEFT BY PRESSING THE ARROW
KEYS*

5130 PRINT “(5 AND 8)"”

5140 PRINT

5150 PRINT “PRESS ANY KEY TO START”

5160 IF INKEY$="" THEN GOTO 5160

5170 CLS

5180 RETURN

30

Although the idea that lies behind this program is simple
enough and based on the idea of SCROLL graphics, it takes
some quite tricky “book keeping” to keep track of where
everything is on the screen. First, instructions for the game
are given by subroutine 5000 and then a random course is
constructed by subroutine 1000. This is done by generating
two random numbers — the distance, in number of SCROLLs,
between each successive gate and its horizontal position. The
game starts by a call to subroutine 2000 that prints the first
gate and begins to SCROLL the screen toward the skier repres-
ented by an asterisk. The difficult part is that, after a certain
number of SCROLLs, contained in C(2,1), the next gate is
printed and after 21 SCROLLs (remember, there are 22
usable lines on the screen) the first gate reaches the skier. At

YOU HAUE TO SKI DOWN R COQURBE

YOU HUST 2RS5 TO THE LEFTYT OF

¢ RND TQ THE RIGHT OF »

YOoU CaN MOUE TO THE RIGHT AND
LEFT BY FPRESSING THE RRROU KEYS

1S RND 8
DRESS ANY KEY TO STRET

o

40

this point the position of the skier is checked to see that he is
on the correct side of the gate. You should be able to see that
following this logic it is possible to work out when each gate
passes the skier and thus keep track of the number of gates
correctly passed. The details of this are easier to program (lines
2000 to 3120) than they are to explain, so over to you!

Paged graphics

Using our knowledge of the construction of the screen area of
memory and the system variables relating to it, we can create
2 number of additional screens and switch between them using
POKE commands. This technique gives the ZX81 the ability to
keep a number of “pages” of output, any one of which can be
displayed very quickly. The only problem is that it is very easy
0 make a mistake and end up with a blank screen and an
unresponsive ZX81. The solution is to switch off and on again
and the only damage that you can do is to your program.

The method is essentially simple but the details make it
seem complicated. There are two system variables that are
used by the ZX81 to keep track of the screen details. The
first, D_FILE, notes where the screen area of memory is;
while the second, DF_CC, notes where the next character
should be printed. If you set up an area of memory in the full
screen format and then change these locations to refer to your
new area then the NEW area will be displayed instead of the
original screen. While this second screen is being displayed any
PRINTs will appear on it but not on the original screen. You
can transfer back to the original screen by restoring the
addresses that were in D_FILE and DF_CC. The only thing
that you have to remember is that when you POKE the new
addresses into the two screen variables, you must be in FAST
mode. The reason for this is that the two bytes have to be
POKEd one after the other and if the ZX81 tried to display
the screen between the POKEs then the variables would
contain rubbish and the machine would run wild! Using FAST
means that the screen isn’t displayed during the changing of
the addresses. To see this idea in action try the following
program. Before you run it make sure it is entered correctly

41

and do not break in while screen two is being displayed!
10 LET E=100+PEEK 16412+256+PEEK 16413

20 GOSUB 1000

30 LET C=E

40 LET D=E+1

50 GOSUB 3000

60 PRINT “SCREEN TWO"
70 FOR I=1 TO 100

80 NEXT |

90 LET C=A

100 LET D=B

110 GOSUB 3000

120 PRINT “SCREEN ONE"”
130 FOR =1 TO 100

140 NEXT |

150 LET C=E

160 LET D=E+1

170 GOSUB 3000

180 GOTO 70

1000 LET I=E

1010 FOR J=1 TO 24
1020 POKE 1,118
1030 LET I=1+1
1040 FOR K=1 TO 31
1050 POKE 1,0

1060 LET I=1+1
1070 NEXT K

1080 NEXT J

1090 POKE [,118
1100 RETURN

2000 LET A=PEEK 16396+256+PEEK 16397
2010 LET B=PEEK 16398+256+PEEK 16399

2020 RETURN

3000 GOSUB 2000
3010 FAST

42

3020 POKE 16396,C—INT(C/256) 256
3030 POKE 16397, INT(C/256)

3040 SLOW

3050 POKE 16398,D-INT(D/256) 256
3060 POKE 16399, INT(D/256)

3070 RETURN

Subroutine 1000 sets up a new screen starting at the address
in E. The new screen consists of 25 “newline” codes with 32
blanks in between. Subroutine 2000 saves the addresses in the
screen variables in A and B. Subroutine 3000 POKEs the
addresses in C and D into the screen variables. The main part
of the program begins by finding some free memory and
setting up a new screen (lines 10 and 20). Then lines 30 to 60
switch to the new screen and print “SCREEN TWO” on it.
After a delay lines 90 to 120 switch back to screen one and
print “SCREEN ONE” on it. The two screens are then alter-
nately displayed by lines 70 to 180 (with “SCREEN ONE”
being printed on the next line each time through the loop.)

This method of “paged graphics” opens up a wide range of
special effects and displays. However it should be used with
care as it brings with it the possibility of a program crashing
and leaving the machine unresponsive. Because of this danger
this technique should be marked “for experts only”!

Conclusion

You can use the techniques described in this chapter to
produce some very clever graphics. For example, you could
try to combine the methods of SCROLL graphics with PEEK
graphics, but beware of the alteration in screen layout! How-
ever, after any amount of trickery it is hard to avoid the
conclusion that BASIC is just not fast enough to make
“arcade” quality games possible, let alone easy. For the
solution to this problem we must wait for Chapter Ten.

43

Chapter Five
DESIGNING LARGE PROGRAMS

Writing small programs on the 16K ZX81 or any machine with
a reasonable amount of memory is fairly easy. A small
program usually does a small number of things and it is
possible to keep these in mind at the same time when writing
or examining the program. However, the way that you write a
small program will not do when you are trying to write a big
program. If you try to keep all of the details of a large
program in your head you are sure to become confused and

this will increase the likelihood of mistakes or bugs. The best |

way to tackle any programming task is to adopt an ordered
programming method and work systematically. This need not
take the “fun” out of programming and does improve your
final product to a standard that you can be proud of.

Designing a program

You may be familiar with the idea of using a flow chart or

flow diagram to describe how a program works. It is often '

suggested that before you begin to write a program you should
draw a flow diagram and that this becomes more important
the larger the program. You may even have been told that it is
the only way to go about programming and anything else is
sloppy. This is, of course, a matter of opinion. The truth is
that it is important that you have an overall grasp of the way
that your program is going to work but it doesn’t have to be in
the kind of detail that is necessary to draw a flow diagram. My
personal preference is to describe the program in a cross
between English and BASIC before beginning to work on the
computer. For example, suppose you decide that you would
like to write a program that will be useful in teaching arith-
metic. The first thing to do is to outline what you would like
the program to do in general terms. Your scheme might look
like this.

44

The program should print a question and wait for a reply

If the reply is correct then inform the user and move on to
another problem

If the reply is incorrect then inform the user and print the
same question again

Notice that this description of the program is already a little
like BASIC in the way it uses “If’* and “Print”.

You could start writing the BASIC program from this des-
cription or you could write a second more detailed description
that explained how the questions are to be constructed etc.
This method of writing programs by more and more detailed
descriptions is often called “stepwise refinement” because you
start out with a vague idea of the program and “work it over”
2 number of times, each time increasing the accuracy of the
description until you have a complete BASIC program. Once
vou have tried it you will find this a very natural way of
working. For example the second “refinement’” of the arith-
metic program might be:

Select the type of problem i.e. +,—,%,/

Generate two fairly small random numbers

Print the question on the screen and wait for a reply

If the reply is correct then inform the user and move on to
another problem

If the reply is incorrect then inform the user and print the
same question again

The point at which you feel that the program is sufficiently
defined to get out the computer and start work is up to you. It
is an advantage of this method that you can adjust it to suit
vour level of programming skill and the difficulty of the
problem. There is also a subtle psychological advantage to be
zained from having something written down on paper, no
matter how vague, because getting started on a program can
sometimes be the biggest problem!

Using subroutines
Although the stepwise refinement method gives you a way of
45

working toward an understanding of how a program should be
written, it still leaves open the question of how to deal with a
very big program. The trouble is that as the level of detail
increases you can still be confronted with a vast collection of
BASIC instructions and variables. The only sensible way to
approach such a collection is to try to break it down into
smaller “chunks”. It is nearly always possible to split a large
program down into sections that each carry out a single
identifiable job. For example in the case of the arithmetic
test program you could identify three sections:

the question construction section
the question presentation section
the answer evaluation section

Each of these sections can be treated as a little program in its
own right and developed more or less separately. From this
point of view you should be able to see that the key to the
easy production of large programs is to treat them as being
nothing more than a collection of smaller programs. These
smaller programs may still be too big to be treated in one go
and so it may be necessary to break these down into even
smaller programs!

You might have guessed that the program sections that we
identify in larger programs are closely connected with the idea
of subroutines. The BASIC commands GOSUB and RETURN
can be used to turn a list of other commands into a single
program “‘section”. In the case of the arithmetic test program
we could assume that we have already written a subroutine
starting at line 1000 which constructs a question and another
at 2000 that presents the question. The first two lines of our
description could now be replaced by pure BASIC

10 GOSUB 1000
20 GOSUB 2000

This form of the program is particularly easy to understand at
a glance. Just think how much more complicated this part of
the program would be if you replaced each of the GOSUBs
by the lines of BASIC that carried out the same task! You
might think that the third part of the program is best

46

implemented by a subroutine and it most certainly is a
possibility. However, because the result of the next section is
either to repeat subroutine 2000 if the answer is wrong, or to
repeat the whole program if the answer is right, it is easier to
write it as part of the program that uses the subroutines. In
other words a better way to proceed is:

10 GOSUB 1000

20 GOSUB 2000

30 INPUT GUESS

40 IF GUESS=ANSWER THEN GOTO 10
50 PRINT “TRY AGAIN"

60 GOTO 20

There is another advantage to using subroutines in this way —
vou can use them even if you haven’t yet written them! If
you simply suppose that subroutines 1000 and 2000 can be
written you can go ahead and use them to construct the
program and write them later on. There is an obvious connec-
tion here between the idea of stepwise refinement and this use
of subroutines. You can leave the details of the subroutines
vague until later. You might then decide that these subroutines
could be written using subroutines the details of which can be
left vague until later and so on ... until every subroutine is
completely defined.

This method of using as yet unwritten subroutines to
complete the program, and treating each of the subroutines in
the same way, is known as “modular programming”. In
practice you should find that it makes programming a more
enjoyable and fruitful occupation. Modular programs are easier
o understand and far easier to modify than the usual long list
of BASIC instructions. You can also re-use subroutines or
modules in other programs that need the same operation and
50 avoid re-inventing the wheel each time.

To finish the arithmetic program all we have to add is:

1000 LET A=INT(RND*10)

1010 LET B=INT(RND*10)

1020 LET O$="+—*/"(INT(RND=4)+1)

1030 LET ANSWER=VAL(STR$(A)+0$+STR$(B))

47

1040 RETURN

2000 CLS

2010 PRINT AT 10,5;A;" ";08;” ";B;" = "

2020 PRINT AT 14,5; “WHAT IS THE
ANSWER 2"

2030 RETURN

Notice the use of the “slicing’’ notation in line 1020 to pick an
operation at random and the use of the VAL function in line
1030 to work out the answer.

UHAT IS THE ANSUER 7

The BASIC on the ZX81 has an extra feature that can make
the use of subroutines in a program even easier to understand.
The commands GOSUB and GOTO are not restricted to their
most usual forms i.e. GOSUB “linenumber”. You can also
write things like GOSUB ‘expression” e.g. GOSUB 2x3+1
meaning the same thing as GOSUB 7. Now although this
facility is not often of any use, a single variable is also an
expression, in fact it is the simplest form of expression, so you
can write:

5 LET GENQUESTION=1000
6 LET PRINTQUESTION=2000
10 GOSUB GENQUESTION
20 GOSUB PRINTQUESTION

Using this simple idea you can give subroutines names that not
only make your programs easier to read but easier to change.

The main message of this section should be clear. It is
simply — use subroutines! The next section is a complicated
one which can be omitted if you prefer. It deals with a
technique which, like the paged graphics in Chapter Four,
should be marked “for experts only”’!

48

An extended RETURN

There are cases where it would be nice to use a subroutine but
for some reason or another it is easier not to. For example,
the third section of the arithmetic test program was not turned
into a subroutine because different lines in the main program
were to be carried out according to the outcome of the test
executed in the section. The reason why it is difficult to
branch to a different point in the main program according to
what happens in a subroutine, is that subroutines should always
end with RETURN and this always executes the instruction
following the GOSUB. In most cases you can spot where this
sort of tangle will arise before you write the subroutine and
then everything is fine. Sometimes, however, you find that
what happens in the main program depends on what happens
in a subroutine you have just written. In such a case it would
be useful if there was some way to save the work that went
into writing it without complicating things too much. What we
would really like to do is to end a subroutine with a GOTO
“linenumber” where the “linenumber” could be changed
according to what resulted in the subroutine. You can do this
without generating an error as long as you have only called one
subroutine at the time. The only unfortunate consequence is
that the GOSUB stack area of memory is larger by two
locations than it need be and if you keep on calling a sub-
routine without a RETURN you will eventually use up all the
available memory. If you GOTO a subroutine from another
subroutine then you are sure to be in trouble when you issue
the next RETURN!

What we would really like is a RETURN ‘“linenumber”
command that we could use to return from a subroutine to a
specified line number. It is important to notice that I am not
suggesting that this should be used as a regular feature of
BASIC programming, (it is better not to use a subroutine than
use a RETURN “linenumber” type of command) only that it
is sometimes useful to be able to recover from a mistake! Using
our knowledge of the memory layout it is easy to write a few
lines of BASIC that will change the address stored on the
GOSUB stack so that the next RETURN will take us wherever

49

we want to go. For example:

10 GOSUB 200

20 PRINT “HERE 20"
30 PRINT “HERE 30"
40 STOP

100 LET S=2+PEEK 16386+256+*PEEK 16387
110 POKE S,L—INT(L/256)*256

120 POKE S+1,INT(L/256)

130 RETURN

200 PRINT ““HERE 200"
210 LET L=30
220 GOTO 100

If you run this program you will see that first the message
“HERE 200" appears on the screen as subroutine 200 is
called and then the message “HERE 30”. If subroutine 200
finished with a normal RETURN you would expect to see the
messages “HERE 20” followed by “HERE 30”. What has
happened is that the four lines of program 100—130 find the
line number that will be used by the next RETURN on the
GOSUB stack and replace it by the number stored in L. So
line 210 sets L to 30 and line 220 goes to the section of
program that returns control to line 30, missing line 20
altogether. The lines of program 100—130 can be used by any
subroutine when you want to return to somewhere other than
where a normal RETURN would take you.

Collections of programs — Menus

It is very often the case that a large program can be success-
fully broken down into smaller pieces making development
easier. It is also often true that large programs can be made
up by joining existing smaller programs together. The smaller
programs may not have been conceived of as working together,
and indeed they may even have been written by different
people, but there is a very easy way of joining them together —
the menu. Providing each program occupies a different range

50

. of line numbers, you can type each one in and add a few lines
that announce the name of the program and ask what the user
wishes to do. For example, the program development utilities
described in chapter three can be turned into a single program
oy adding:

9000 CLS

9010 PRINT TAB(B);“UT I LITIES”

9020 PRINT AT 5,0

9030 PRINT “SELECT ONE OF-"

9040 PRINT AT 10,0

9050 PRINT TAB 5;(1) MEMORY USE”

9060 PRINT TAB 5;”(2) VARIABLE LIST"

9070 PRINT TAB 5;"(3) RENUMBER"

9080 PRINT TAB 5;”(4) QUIT”

9090 PRINT AT 20,0;“TYPE REQUIRED NUMBER"

9100 INPUT JO

9110 IF JO<1 OR J0>4 THEN GOTO 9090

9120 IF JO=1 THEN GOSUB 9200

9130 IF JO=2 THEN GOSUB 9300

9140 IF JO=3 THEN GOSUB 9800

9150 |IF JO=4 THEN STOP

9160 GOTO 9000

| You also have to change the “final” lines of each utility to

return control to the menu when they have finished i.e. change
STOP in line 9240 of utility one, line 9330 in utility two and
line 9900 in utility three to RETURN. The advantage of using
the menu is that you no longer have to remember the start
=ddresses of the three utilities just type GOTO 9000.

g=F £ L T T I E S

SELECT ONE QF -

{1} MEMORY USE
{2) URARIABLE LIST
{3} RENUMBER

14} QUIT

TYPE RERQUIRED NUNMBER
51

User-friendly programs

When you first start writing programs there is an excuse for
not worrying too much about the quality of your handiwork.
If the program does the job then it is a success. The trouble is
that this attitude tends to continue even when you are no
longer a beginner. The result is a large collection of programs
that no one can use except you. There is nothing more satis-
fying than finishing a program to such a level that other
people can use it and then knowing that other people ARE
using it! Programs that are finished in this sense have to be
“yser-friendly” in other words they have to be kind to even
the most inept user. When you write a program you should
always have in mind someone who knows very little about
computers/programming or even the topic that your program
deals with. It is difficult to give a complete list of the points to
pay attention to when making a program user-friendly but the
following might be helpful:

Ask clear and un-ambiguous questions, do not use jargon.

Accept all reasonable answers to each question. For example
treat “Y” and “YES” as equivalent.

Check the answer to each question for validity as it is given.
If it is not valid at the very least repeat the question.

Do not present too much information in one go and use
PAUSE together with a “Press any key to continue™
message, or a similar method, to allow the user to
control when the program should move on.

Be careful not to fill the ZX81’s screen and so stop the
program. The best way of avoiding this is to use PRINT
AT statements so that repeated printing of questions
doesn’t accidentally fill the screen. Also use PRINT AT
21,0; print list and SCROLL to print long lists of data.

Repeat the answer to any questions on the screen on the
same line as the question was asked so that the user can
see the answer later on.

Do spend time writing a good title screen including a simple
introduction to what the program will do.

It is difficult to write a perfect program but you should try!
52

For an example of a program that tries to follow all these
suggestions, you are referred to the statistics program in the
next chapter.

Debugging

One of the most difficult things to learn is the art of debugging
a program. It is comparatively easy to learn BASIC or to write
programs but how to find out what is wrong with a program
that isn’t working is something that can take years to learn.
The main problem is that debugging is something that is
learned by practice rather than by theory. While this is true, it
does help to have explained a few possible approaches to
debugging and some of the helpful features of the ZX81 in this
respect.

Some bugs are easy to find — the program misbehaves, you
list it and say “ah ha, there it is”! The real trouble starts when
something doesn’t go right and you stare at the program and
see nothing wrong. What you should do in this situation is
not to stare for too long. To find a bug you need information
on how the program is running and compare it with your
predictions of how it SHOULD be running. When you find a
divergence between what does happen and what should
happen you are at least nearer to your bug even if you haven’t
quite found it.

What sort of information on the program’s running is
relevant to debugging? You may think that there is a huge
range of information that has to be considered. In fact there
are only two points — the order in which the program lines are
carried out and the value stored in each variable. Some
versions of BASIC have a TRACE facility which, if used, will
print the line number of each line as it’s being carried out.
ZX81 BASIC doesn’t have a TRACE facility but it does have a
STOP instruction and a CONTINUE command. If you want to
know what is going on at any point in a program all you have
to do is to temporarily insert a STOP command. When the
program reaches the point in question it will stop with the
appropriate report code. The report code includes the line
number so if you have a number of STOP commands in a

53

}

program you can follow the order of execution. While the
program is stopped you can either use utility two or a PRINT
statement to discover what is stored in any variable. You can
also use a LET statement to change the contents of any
variable. In fact the only thing that you cannot doistoadda
program line. To resume execution from where it left off
simply type CONTINUE. The only problem with this method
is that PRINTing variable contents clears the screen, so
resuming execution after this can result in an incomplete
display.

Finding bugs once you know they are there is simply the
application of the method described above. The problem of
making sure that a program doesn’t have any hidden bugs is
the other side of the coin. There is no real solution to the
problem apart from using the program a lot with as wide a
range of input data as you can manage. There are systematic
ways of using different sets of data to make the program take
every possible route to the end but even this is not a guarantee
that there are no more hidden bugs. One important hint is to
get someone else to use the program before you declare it bug-
free. It is possible to test a program for days and get it working
without any obvious bugs and the first time that someone else
uses it they find a bug in the first 30 seconds! The reason for
this is that new users tend to use programs in different ways to
the programmer who produced them. They tend to test the
“easier”” parts of the program whereas the programmer tends
to test the more “interesting” parts — and bugs are just as
likely to be hidden in the straightforward bits you wrote
quickly as in the difficult bits that you slaved over.

There is only one attitude towards program bugs that will
save your sanity — there is always another bug!

54

Chapter Six
TAPE STORAGE OF DATA

The tape storage facility provided on the ZX81 is obviously
zood at SAVEing and LOADing programs but there seems to
9e no way of storing data on tape. However, although there is
no direct way of writing data to tape it is possible to write
programs that can create and maintain tape files. In this
chapter we examine the problems in doing this and wnte a
large statistics program that uses the facility.

The tape system

Probably, one of the first things that you learned to do with
vour ZX81 was to SAVE and LOAD a program. If you are
using a fairly good quality tape recorder then, once you have
set the volume and tone controls to the correct levels, you
should find that its reliability in use is quite good. Encouraged
oy this to take the ZX81’s tape system seriously it would be
natural to try to write some programs that establish data files
on tape. The trouble is that there are only two commands that
relate to the tape system:

SAVE “filename”
and
LOAD ““filename”

whereas other microcomputers have commands such as
SAVE A

where A is the name of an array that is saved on tape. This
omission has often been used as a criticism of the ZX81. How-
ever, if you look at exactly what SAVE and LOAD do, you
will discover that they are more powerful than they seem.
When you type SAVE an exact copy of all the memory
from address 16393 (in the system variable area) to the
location whose address is stored in E_LINE is transferred to

55

the cassette tape. This chunk of memory includes most of the
system variables, all of the program, the display file and all of
the program variables! You should think of this as a “snap-
shot”” of all the memory locations that matter to a running
program. If you break into a program at any point and SAVE
it, then as well as the lines of BASIC that make up the
program, the current contents of the screen and all the
variables are stored on tape. If you then LOAD the program
back into the memory then the “snapshot” can be
“re-activated” and the program can continue from where it
left off! If this is true why is it that every program that you
LOAD from tape appears to start from the beginning with no
“knowledge” of its past life? The screen is always clear, with
no sign of anything printed by an earlier RUN of the program
and all the variables are set to.zero. The reason for these
observations is two-fold. Firstly, whenever you RUN a
program the command RUN clears the screen, resets the
variable area and starts the program off from the first line. If
you want to LOAD a program from tape and restart it then
you must avoid RUN. The obvious command to use is
CONTinue. To convince yourself that this works type in the
following program:

10 FOR I=1 TO 100
20 PRINT AT 21,0;1
30 SCROLL
40 NEXT |

If you start it off by using RUN you should see it print
integers from 1 up to 100 on the screen. At some convenient
point before the program finishes press the BREAK key and
notice the last number on the screen. Next prepare your tape
recorder ready to SAVE a program and type

SAVE “TEST”

Start the tape running and press “newline’’. When the SAVE
is complete re-wind the tape and switch your ZX81 off to
ensure that the old version of the program is lost. Then type

LOAD “TEST”

56

Start the tape running and press “newline”’. When the program
has finished loading stop the tape recorder but, instead of
starting the program with RUN, use CONTinue. You should
be amazed to see the program carry on from where it left off,
printing the next number in the list! This is an important and
useful discovery because you can now SAVE and CONTinue
a program if it is taking too long to do something and you
cannot wait any longer. You can also use GOTO to restart a
program at a different place without disturbing the contents
of the variables area of memory.

When you try either of these techniques, however, you may
be disappointed to notice that although the program CONT-
inued from where it left off the screen display wasn’t restored
to what it contained when you broke into the program’s
execution. The reason for this is that any BASIC command
entered from the keyboard and carried out immediately (i.e.
one that doesn’t have a line number and isn’t part of a
program) clears the screen before it has any effect. For
example, try typing

LET A=0

When you press “newline”you will see the screen clear. This is
unfortunately what happens when you use the SAVE
command. Before the memory is stored on tape the screen is
cleared and it is this “blank” screen that is restored when you
CONTinue the program.

There is a solution to this “loss of screen’ problem. Both
SAVE and LOAD can be used as statements within a pro-
gram and when they are used in this way they do not result in
the screen being cleared before they are obeyed. There is also a
useful spin-off from using these commands as part of a
program. If you LOAD a program that was SAVEd as a result
of a SAVE statement within a program, then at the end of the
LOAD the program will continue from where it left off
without the use of a CONTinue command. To be exact, the
first statement to be executed is the one immediately
following the SAVE. This facility is immensely useful because
it allows us not only to SAVE a partially completed program
| and restart it including the screen display, but to write self-

57

running programs! To see that all this actually works type in
the following program

10 FOR 1=1 TO 100

20 PRINT AT 21,0;l

30 SCROLL

40 IF 1=20 THEN SAVE “TEST”
50 NEXT |

which does the same thing as the previous example apart from
the fact that it SAVEs itself when “I” reaches 20! If you RUN
this program you have to be ready to record the program just a
little before the integer count gets to 20. So have the tape
recorder ready and start it recording when you first see 15
appear on the screen. When “I” reaches 20 you will see the
familiar patterns that tell you that something is being recorded
appear on the screen. At the end of this the program continues
as if nothing had happened, printing 21,22, and so on.
Re-wind the tape and switch your ZX81 off to convince your-
self that all trace of the program is lost. If you LOAD the
program TEST in the usual way you will find that at the end
of the LOAD the program continues from where it left off,
inluding the screen showing the numbers previously printed.
There is one more interesting and useful feature of SAVE
and LOAD when used in programs that we haven’t yet
mentioned. You can use not only a string as the name of a
program but a string expression. So the following are all valid:

SAVE As
SAVE “PROG"+STRs(l)
LOAD A$+B$

The only restriction on using SAVE within a program is
that it must not be used from within a subroutine. The reason
for this is that the GOSUB stack area of memory is not
SAVEd on tape and so when the program is LOADed and
restarted the next RETURN command will cause the program
to stop and an error message to appear.

58

Data storage

Now that we know that SAVE stores the contents of the
variables area of memory on tape, writing a program that
builds and manipulates data files should be easy. As an
example consider the problem of writing a statistics program
that can be used to enter a list of numbers, edit and generally
change them, and then SAVE them on tape for later use.
Although this is described as a statistics program the problems
encountered and the methods used are similar to storing and
maintaining any list of information, including lists of strings.

Following the suggestions presented in the last chapter
for designing modular programs using stepwise refinement,
the first thing to do is to get an overall outline of the program.
We need a subroutine to read numbers into an array, a sub-
routine to offer the user the chance to change the list and
a section to SAVE the list on tape. If the next instruction
following the SAVE is a GOTO “the start of a program”
then when the program is re-located it will self-start at the
beginning but with the data from the previous RUN already
in memory. Notice that our file of data is in fact a mixture
of data and program. It is the case that the ZX81 can only
store data along with the program that uses it. To many
people used to other computers this is a strange idea. They
are familiar with the idea that programs and data are very
different things and should be treated separately. However,
if you think about it, the ZX81’s approach has a lot to be
said for it and it may be just a matter of time before other
machines offer such facilities. The advantages of the ZX81’s
method is that you do not have to remember two file names
(one for the program and one for the data) to process some
information. The disadvantage is that it is difficult to trans-
fer data from one program to another and even if you want
to store only a little data you have to wait while the whole
program is SAVEd. There are ways around both of these
problems involving PEEKs and POKEs and a knowledge
of the ZX81’s memory layout. For example, you can pass
data from one program to another by transferring the entire
variables area of memory into free RAM. When you LOAD

59

a new program, this area of memory is left unaffected and
it can then be transferred back into the variables area as
the first task of the new program. These are, however, very
advanced methods, and as long as we have enough memory,
it is possible to do quite a lot without resorting to such tech-
niques.

The statistics program as outlined above will work nicely
unless one of the options of the editing subroutines is the
addition of fresh data to what already exists. As this is the sort
of thing we would like to do it is important to examine what
the problem involved is and how we can solve it. Before you
can start to enter your list of numbers, the statistics program
has to set up an array to receive them. It is obviously
important that the array is just the right size to hold all those
numbers and no bigger — we don’t want to waste time storing
un-used array elements on tape. So the first question to ask
the user is “How many values do you want to enter?” and set
up an array of the correct size. Now imagine that all the num-
bers have been entered and SAVEd on tape. How do we
increase the size of the array so that some more numbers can
be added? While there are clever ways based on a direct manip-
ulation of the variables area of memory to make that array
bigger, there is a simple programming solution. If the original
number of variables was N and we want to add M extra vari-
ables we could create a new array by '

DIM E(N)

transfer all the current data from the original array, D say,
into E and then re-dimension D to the larger size, i.e.

DIM D(N+M)

This works on the ZX81 because its dimension command is
unlike most other BASIC DIM commands. If you dimension
an array that already exists, the ZX81 erases the existing array
and replaces it by a brand new version which can be a different
size from the original. After creating the larger version of D it
is simplicity itself to recopy the old data in E back into the
first N elements of D and ask the user for the values of the
extra M elements. The thing to remember is to release the

60

storage used by E by issuing the following command:
DIM E(1)

This may seem a silly way of increasing data storage, and it
has to be admitted that it can be slow and it does use a lot of
memory, but all the other methods used available on the ZX81
are complicated and have problems of their own.

Statistics program

This is the largest program in this book and it illustrates many
of the ideas that we have already met and introduces some
new ones. Apart from being an example it is also a useful
program in its own right and could easily form the basis for an
even more comprehensive statistics program.

i

£ 8 F -5 F I & 5

ENTER NEUY DATH
GENEROTE RANDOM DAaTH
EBIT DATAH

SAVE DATH

CRLCULATE STATISTICS
PLOT HISTOGRAM

TYPE REQUIRED NUMBER

Briefly, the program can be used to enter data and calculate
2 number of simple statistics, the maximum, the minimum,
the mean, the range and the standard deviation. In order to
examine the data graphically there is a facility to plot a histo-
gram of the frequencies of the data grouped into “equal
intervals. The option of editing the data is also provided and
this is organised as a second “‘edit menu” and associated sub-
routines. The editing operations available are: list all or a part
of the data; change a single value; delete a subrange of the
data; and add extra values. As part of the main menu the
edited data can be SAVEd on tape for later use. The final
option is the generation of random data. This may seem like a
strange thing to want to do but it can be used both to test the
program and demonstrate it.

61

E=f - F B &8 T R

tLEsF oqTh

SLTER DHRTHR

DELETE DRTR

/DD DRTRH

RETURN TO MRIN MEMU

LT

e

ITYPE REQUIRED NUMBER

- LIST STARTING ATT? 1

i IST ENBING ”ATT 18

DRTAR UVUALUE 1 = 2
DRTH URtUE 2 = 1
DATA URLUE 3 = §
DRTHR UBELE £ = &
DOTRA UREUE © = I
DETA URLUE & = S
DATR UBLUE 7 = 4
DATA URLIIE & = 2
DATR URLIE @ = 3
DATH VUALUE 1@ = 1

=

%
:

PRESS ANY KEY TO

ALTER WHICH URLUE?T 4
CURRENT URLUE = 2
NEU URLUE = 3

PRESS ANY KEY TQ CONTINUE

ADD HOU HMANY URLUES 718
HATT WHILE I MAKE SPRCE
MEARLY DONE

DONE - READRY FoR EXTER DaEn

DATA UALUE i3 =

To use the program after it has been typed in and SAVEd
on tape it is first necessary to create some data either by typ-
ing it in or by using the random data generation facility. From
the main menu it is then possible to choose any of the actions
described above as often as necessary. When the time comes to
SAVE the data, this should be done by selecting the appro-
priate option from the main menu. When this is finished the

62

program will not automatically stop but it is safe to switch the
machine off in the knowledge that your data has been stored
on tape. When you next want to use the same data simply
LOAD the program, using whatever file name you gave it. The
program will start automatically and will have the data ready
for further analysis. ‘

The complete program is

10 REM ZX81 STATISTICS PROGRAM

500 CLS

510 PRINT TAB5;“STATISTICS”

520 PRINT AT 6,0

530 PRINT “(1) ENTER NEW DATA"

540 PRINT “(2) GENERATE RANDOM DATA"”
550 PRINT ‘“(3) EDIT DATA"

560 PRINT *'(4) SAVE DATA"

570 PRINT “(5) CALCULATE STATISTICS"”
580 PRINT *“(6) PLOT HISTOGRAM”

590 PRINT “(7) QUIT"”

600 PRINT AT 21,0;“TYPE REQUIRED NUMBER”:
610 INPUT SEL

620 |F SEL=1 THEN GOSUB 3000

630 IF SEL=2 THEN GOSUB 1000

640 IF SEL=3 THEN GOSUB 4000

650 IF SEL=4 THEN GOTO 1500

660 IF SEL=5 THEN GOSUB 5500

670 IF SEL=6 THEN GOSUB 6000

680 IF SEL=7 THEN STOP

690 GOTO 500

1000 CLS

1010 PRINT “RANDOM DATA"

1020 PRINT “HOW MANY VALUES ?”;

1030 INPUT N

1040 PRINT N

1050 DIM D(N)

1060 PRINT AT 3,0;“FRACTIONAL OR INTEGER
DATA F/1 ;

63

1070 INPUT A$: 1650 CLS

1080 IF A$(1)<"F" AND A$(1)<>"|" THEN 1660 SAVE As$
GOTO 1060 1670 GOTO 10

1090 PRINT A$

1100 LET T=0 3 2000 LET M=0

1110 IF A$="1" THEN LET T=1 2010 LET S=0

1120 PRINT AT 4,0;“ LOWEST VALUE "; 2020 LET L=D{(1)

1130 INPUT L 2030 LET H=L

1140 PRINT L 2040 FOR I=1 TON

1150 PRINT “HIGHEST VALUE "; 2050 LET M=M+D(l)

1160 INPUT H : 2060 IF L>D(1) THEN LET L=D{l)

1170 PRINT H 2070 IF H<D(1) THEN LET H=D{l)

1180 IF H>L THEN GOTO 1210 2080 NEXT |

1190 PRINT “HIGHEST<LOWEST" 2090 LET M=M/N

1200 GOTO 1120 - 2100 FOR I=1 TO N

1210 FOR I1=1 TO N 2110 LET S=S+(D(l)=M)=(D{1)=M)

1220 LET D(I)=RND*(H—L+T)+L 2120 NEXT |

1230 IF T=1 THEN LET D(I)=INT D{) 2130 LET S=S/(N-1)

1240 PRINT AT 20,0;“DATA VALUE ";I:* = ":D(I 2140 RETURN

1250 SCROLL

1260 NEXT | 2500 CLS

1270 GOTO 8900 2510 PRINT “NUMBER OF VALUES= "N

2520 PRINT “MAXIMUM= "":H

1500 CLS : 2530 PRINT “MINIMUM= ";L

1510 PRINT “PLACE A BLANK TAPE INTO"” 2540 PRINT “RANGE= “;H-L

1520 PRINT ““THE RECORDER” 2550 PRINT “MEAN= ":M

1530 PRINT 2560 PRINT “VARIANCE= ":S

1540 PRINT “WHAT DO YOU WANT TO CALL"” 2570 PRINT “STANDARD DEV.= ";SQR(S)

1550 PRINT “THE PROGRAM ?2”; 2580 GOTO 8900

1560 INPUT A$

1570 PRINT A$ 3000 CLS

1580 PAUSE 25 3010 PRINT “DATA INPUT"

1590 PRINT “PRESS PLAY AND RECORD” 3020 PRINT “HOW MANY VALUES ?";

1600 PRINT ‘“AND THEN PRESS ANY KEY” 3030 INPUT N

1610 PRINT “ON THE KEYBOARD"” 3040 PRINT N

1620 IF INKEY$="" THEN GOTO 1620 3050 DIM D(N)

1630 PRINT “BYE"” 3060 FOR I1=1 TO N

1640 PAUSE 50 3070 PRINT AT 21,0;“VALUE “;|:* = ",

64 — 65

3080 INPUT D(l)

3090 PRINT D(l)

3100 SCROLL

3110 NEXT |

3120 PRINT “DATA INPUT COMPLETE"”
3130 SCROLL

3140 GOTO 8900

4000 CLS :
4010 PRINT TAB5;“"EDIT DATA"
4020 PRINT AT 5,0

4030 PRINT “(1) LIST DATA"

4040 PRINT “(2) ALTER DATA"

4050 PRINT “(3) DELETE DATA”

4060 PRINT “(4) ADD DATA"

4070 PRINT “(5) RETURN TO MAIN MENU" ‘
4080 PRINT AT 21,0;“TYPE REQUIRED NUMBER

4090 INPUT ED

4100 IF ED=1 THEN GOSUB 4200
4110 IF ED=2 THEN GOSUB 4500
4120 IF ED=3 THEN GOSUB 4600
4130 IF ED=4 THEN GOSUB 4800
4140 |IF ED=5 THEN RETURN
4150 GOTO 4000

4200 CLS

4210 PRINT “LIST STARTING AT ?";
4220 INPUT L

4230 PRINT L

4240 PRINT “LIST ENDING AT (-1 WILL LIST TO

END) ?;
4250 INPUT H
4260 |IF H<O0 THEN LET H=N
4270 PRINT H
4280 IF L>H THEN GOTO 4200

4290 IF L>N OR H>N OR L<1 OR H<1 THEN

GOTO 4200
4300 FOR I=L TO H

66

4310 PRINT AT 20,0;DATA VALUE ";I;* = ";D{l)

4320 SCROLL

4330 IF INT((I-L+1)/20)#20=(I-L+1) THEN GOSUB
8900

4340 NEXT |

4350 GOTO 8900

4500 CLS
4510 PRINT “ALTER WHICH VALUE ?"; :
4520 INPUT |

4530 IF 1<1 OR I>N THEN GOTO 4500
4540 PRINT |

4550 PRINT “CURRENT VALUE = “:D(l)
4560 PRINT “NEW VALUE = ;

4570 INPUT D(I)

4580 PRINT D{l)

4590 GOTO 8900

4600 CLS |

4610 PRINT “DELETE STARTING FROM ';

4620 INPUT L

4630 PRINT L

4640 PRINT “ENDING AT ”'; g;

4650 INPUT H

4660 PRINT H

4670 IF H<L THEN GOTO 4600

4680 IF H>N OR H<1 OR L>N OR L<1 THEN
GOTO 4600

4690 PRINT -

4700 PRINT “DELETE FROM “;L;" TO ";H

4710 PRINT “IS THIS OK 2"';

4720 INPUT A$

4730 PRINT A$

4740 IF A$(1)<"Y"” THEN RETURN :

4750 FOR I=H+1 TO N :r_

4760 LET D(L+I-H-1)=D(1l)

4770 NEXT | ‘

4780 LET N=N-H+L-1 |

67

4790 RETURN

4800 CLS

4810 PRINT “HOW MANY EXTRA VALUES ?";
4820 INPUT M

4830 PRINT M

4840 DIM E(N)

4850 PRINT “WAIT WHILE | MAKE SPACE"
4860 FOR I1=1 TO N

4870 LET E(1)=D(l)

4880 NEXT |

4890 PRINT “NEARLY DONE"”

4900 DIM D(N+M)

4910 FOR 1=1 TO N

4920 LET D{l)=E(l)

4930 NEXT |

4940 PRINT “DONE — READY FOR EXTRA DATA

4950 DIM E(1)
4960 FOR 1=N+1 TO N+M

4970 PRINT AT 21,0:“DATA VALUE ";1;* = ";

4980 INPUT D(l)

4990 PRINT D(l)

5000 SCROLL

5010 NEXT |

5020 PRINT “DATA INPUT COMPLETE"
5030 SCROLL

5040 LET N=N+M

5060 GOTO 8900

5500 CLS

5510 PRINT “CALCULATING"
5520 GOSUB 2000

5530 GOTO 2500

6000 CLS

6010 PRINT “HOW MANY BINS ? “;
6020 INPUT M

6030 PRINT M

68

6040 PRINT “MAXIMUM VALUE= “;
6050 INPUT H

6060 PRINT H

6070 PRINT “MINIMUM VALUE= ";
6080 INPUT L

6090 PRINT L

6100 IF H<L THEN GOTO 6000
6110 LET D=(H-L)/M

6120 GOSUB 7000

6130 FOR I1=1 TO M

6140 PRINT AT 21,0;INT(L*100)/100;TAB 6;
6150 IF H(1)=0 THEN GOTO 6190
6160 FOR J=1 TO H(l)/F*25

6170 PRINT “[|

6180 NEXT J

6190 SCROLL

6200 LET L=L+D

6210 NEXT |

6220 SCROLL

6230 GOTO 8900

7000 DIM H(M)

7010 FOR I=1 TON

7020 LET J=(D()-L)}/(H-L)*M+1
7030 LET J=INTJ

7040 IF J<1 OR J>M THEN GOTO 7060
7050 LET H(J)=HJ)+1

7060 NEXT |

7070 LET F=0

7080 FOR (=1 TO M

7090 IF F<H(I) THEN LET F=H()
7100 NEXT |

7110 RETURN

8900 PRINT AT 21,0;"PRESS ANY KEY TO
CONTINUE"

8910 IF INKEY$="" THEN GOTO 8910

8920 RETURN

69

Here are some samples to show you what to expect when
you run this program. It is very long so it is impossible to
describe its operation in as much detail as usual.

NUMBER OF URLUES=18
HARXINUM=18

HINIHUM=1

RAENGE=9

HMERN=B
USRIANCE=-18.851382
STRANDERD DEU.=4._24568

PRESS ANY KEY TO CONTINUE

HOWU MANY BINS 1@
MAXIMUM URLUE= 11
HINIMNUM URLUE= 1

(NB uses different data set to previous example.)

FLRCE BL ANK THPE INTOD

THE RECORDER

UHAT DO YOU U8NT Ta C8bb
THE PROGRAM 7
TEST

PRESS PLAY /ND RECORD
AND THEN PRESS RANY RKREY
ON THE KEYBOSRRD

70

As the program has been constructed using subroutines the
following table will help you to find your way around:

line number description
10 The name of the program

500— 690 The main menu routine
1000—-1270 Generate random data
1500—1670 SAVE program and data
2000—2140 Calculate statistics
2500-—2580 Print statistics
3000—3140 Manual data input
4000—4150 Secondary edit menu
4200—4350 Edit option (1) — list data
4500—4590 Edit option (2) — alter data value
4600—4790 Edit option (3) — delete data
4800-5060 Edit option (4) — add data
5500-5530 Calculate and print statistics
6000—6230 Plot histogram
7000-7110 Construct frequency count
8900-—-8920 Press any key to continue routine

Most of these subroutines are easy enough to understand
and those that are less than obvious should be easy to under-
stand in the light of the discussion so far. However there are a
few points that are worth noticing. In subroutine 1000 notice
the random values are generated using the method described in
the 1K book. In the case of fractional data a slightly different
formula is used. The lines 1500—1670 SAVE the data on tape.
They are not used as a subroutine but entered by a GOTO in
tine 650. The reason for this is that the auto run following
SAVE wouldn’t work if the program was SAVEd from within
2 subroutine, (see previous section). In subroutine 4200 line
4330 causes the listing to pause after every 20 lines scrolled
onto the screen. Subroutine 4800 adds new data to the
=xisting data using the method discussed earlier, but notice the
use of messages to stop users thinking that the machine has
forgotten them!

The subroutines 6000 and 7000 are new in the sense that
we haven’t discussed the topic of plotting histograms before.
Subroutine 7000 counts the number of data values that fall

71

into each interval using the equation in line 7020. If you
imagine the intervals numbered from left to right starting at
one, then the equation gives the number of the interval that
any value falls into. This interval number is then used to select
the element of H that has one added to it. In this way H(I)
keeps count of the number of values falling in interval I. Sub-
routine 6000 prints the correct number of solid blocks to
represent the number stored in H(I) for each value of I. The
largest column of blocks that can be printed on the screen is
25. If we make this the length of the longest column of the
histogram we print 25/F blocks for each count in H where F is
the largest frequency, i.e. for a count of 1 we print 25/F
blocks. So for each element of H we should print H(I)*25/F
blocks and this is what lines 6160—6180 ensure. ‘

Since this is such a long program, there are many
programming details that haven’t been mentioned and the best
way to become aware of how things work is to try to change
or improve the program. Because of its modular design adding
extra features is straightforward. Some suggestion for
extensions are: add a print out of the frequency table H used
in subroutines 6000 and 7000; change the program to handle
more than one column of numbers and let the user choose
which column to plot or calculate statistics on; and, when you
feel confident of the techniques we have discussed in this
book, add to this more-than-one-column program routines that
will calculate the correlation co-efficient and plot a scatter
diagram.

2

Chapter Seven

NUMBER FORMATTING

Although it cannot be called a serious deficiency, the ZX81
does lack any facility to control the way that numbers are
printed out. If you use PRINT A then you cannot predict or
control the number of digits before or after the decimal point
and you certainly cannot control the position of the decimal
point on the screen. The most you can do is to specify the
screen location where the first digit of the number is to appear
oy using a PRINT TAB or PRINT AT statement. You may be
wondering why you might want to go to the trouble of
controlling the format that numbers are printed in. The answer
is simply to make your print out and screen displays easier to
read and less misleading. For example, if you print a number
with too many digits after the decimal point you might lead an
innocent user into the trap of believing that the calculation is
really accurate to that degree. The ZX81 doesn’t have the
formatting commands that are available in other BASICs but
it is possible to write subroutines to provide almost identical
features.

Truncating and rounding

The danger of printing too many digits after the decimal point
was mentioned in the previous section. It is surprising how
often a calculation is carried out on numbers that are INPUT
o only a few decimal places and the result then PRINTed to
the maximum number of decimal places that the machine can
handle. It is a sad fact, however, that calculations performed
by a digital computer are not carried out with perfect
precision and the final result is always less accurate than the
data used in the calculation. The task of deciding how many
digits should be printed after the decimal point is a difficult
one to give any exact rules for. The best approach to adopt is
to print only digits that you feel will be meaningful to the user

73

of the program. For example, if you are trying to calculate the -

amount of fuel oil to order to run a heating system for six
months then there is little point in arriving at the answer:

NUMBER OF GALLONS OF FUEL NEEDED = 102.34983723

You would be lucky to find anyone who would sell you .3 of a
Gallon, let alone .34983723 of a Gallon. It’s true that no
sensible person would order the exact figure printed by the
computer but then again why have the computer print an
answer that has to be further processed by a human. More
seriously, if a column of fuel amounts was printed out in this
way it would be quite difficult to compare figures because
of all the spurious digits after the decimal point.

It is fairly easy to limit the number of digits printed after
the decimal point using the INT function. Try the following
program:

10 FOR N=1TO 10

20 LET V=RND

30 PRINT “DIGITS= “;N;TAB 15;
40 GOSUB 1000

50 PRINT

60 NEXT N

70 STOP

1000 LET DIG=10*#N
1010 PRINT INT (V*DIG)/DIG;
1020 RETURN

You should find that the number of digits printed after the
decimal increases from 1 to 9. Subroutine 1000, which is
responsible for “chopping” off any excess digits can be used
by any program. V contains the number to be printed and N is
the maximum number of digits to follow the decimal point.
The way that the subroutine works is very simple and is best
understood via an example. If V is .123 and N is 2 then DIG is
10%%2 i.e. ten squared or 100. Multiplying V by 100 gives
12.3, INT chops off the fractional part giving 12 and dividing
by DIG restores the number to its correct magnitude (ie. 128
Notice that N only governs the maximum number of digits

74

DIGITS=1 2.5
DIGITS=2 B.71
DIGITS=S 8.364
DIGITS=4 2.380897
SIGITS=5 3.232258
DIGITE= S.42323
CIGITS=7 8 .56664581
DIGITS=5 8.85474131
DIGITS=9 8.555585088
DIGITS=18 8. 1758552

that follow the decimal point and it is perfectly feasible that
fewer will be printed.

There is an objection to using subroutine 1000 as it stands
znd that is that is “chops off” the excess digits. This is usually
called “truncating” the number, and humans are usually
happier with the idea of “rounding’ a number. If you want to
sound a number to a fixed number of decimal places you look
at the first digit that would be lost if you truncated the
sumber and add one to the next digit if it is S or greater. Thus
0.126 truncated to two decimal places is 0.12 and rounded to
two decimal places is 0.13. You can convert subroutine 1000
0 round numbers by changing line 1010 to read:

1010 PRINT INT (V+DIG+.5)/DIG;

17 you follow through the calculation using .126 as V and 100
2s the value for DIG you should see how it succeeds in
rounding the number.

Aligning decimal points

L you were lucky you might have got a neat triangular shaped
st of numbers from the example in the previous section but it
s more likely that the print out looked more like this —

DIGITS= 1 S.4
DIGITSs =2 8.25
DIGITS= 3 @.3127
DISITS= 4 - 3RS
DIGITS=E & . @257
DIGITS= © S.2334858
DIGITS= 7 . 8877434
DIGITE= &8 &.35184858
DIGITS= 9 . AES214123
DIGITS= 1@ @.12482941

To overcome this untidy problem we need a subroutine that
will allow us to specify the position of the decimal point as
well as the number of digits following. Columns of figures look
much better when the decimal point is aligned and this is fairly
easy to achieve on the ZX81. Try the following program:

10 LET M=7

20 INPUT V

30 PRINT TAB 10:

40 GOSUB 3000

50 LET V=V*100*RND

60 GOTO 30
3000 PRINT “ “(1 TO M—(V>1)*INT(LN

V/LN 10)+ (V<.1));V
3010 RETURN

221
- BISAREEE3
2. 5245888
231.5724986
i28l1.5527
685283, 728
4238575.5

This program may look a little complicated, especially line 3000,
but its action is easy to understand if you break it down. Lini
10 to 60 simply provide test numbers for subroutine 3000 te
format. The variable M sets the “field width’’ i.e. the number
printing positions before the decimal point and V is the numb
to be formatted. To make sure that the decimal point is alwa
printed in the same place you have to add a variable number of
blanks to the front of the number before it is printed. Fo
example, if the field width is 5 and you are printing a numbe
with 2 digits in front of the decimal point then you have te
print three blanks then the number — so to print 22.12 yo
~ would print blank|blank|blank|2|2].|1]2|. Obviously if there
are N digits in front of the decimal point and the field width is
M you have to print M—N blanks to “‘pad” the number out te
M printing positions. This can be done by slicing a string o
blanks thus

76

PRINT “ “ (1 TO M=N)

The only thing left to do is to find a way of calculating N, the
number of digits before the decimal point. Try the following
program for a range of inputs from 1.0 to 100000.0

10 INPUT V
20 PRINT V,INT(LN V/LN 10)
30 GOTO 10

You should see that this prints out one less than the number
of digits before the decimal point. The way that this works is
that LOG V is the power that you have to raise 10 to get V i.e.
V=10#%(LOG V). If you chop off the fractional part of LOG
V you have one less than the number of digits in front of the
decimal point. The only trouble is that the ZX81 doesn’t have
a LOG (log to the base 10) function, only a LN (log to the
base e) function. However using the relationship LOG V=LN
V/LN 10 solves this problem. We can now write the formatting
line as:

PRINT “ “(1 TO M=INT(LN V/LN 10));V

This is almost the same as line 3000 apart from the terms
(V>1) and (V<.1). These are conditional expressions that
evaluate to O if they are false and 1 if true, and are used to
adjust the number of blanks printed to take account of the
different way that the ZX81 prints numbers smaller than 1
and smaller than .1.

PRINT USING

Most print formatting problems can be solved using a combina-
tion of truncating, rounding or aligning the decimal point.
However other versions of BASIC have a very powerful state-
ment PRINT USING that allows a wide range of number
formats to be specified. It is possible to write a subroutine that
provides some of the capabilities of the PRINT USING
command and this would be useful both for converting
programs and for new writing new programs.

The format of a number produced by a PRINT USING
statement is specified by the use of a “‘picture” of the number

7l

stored in a string. For example, in most BASICs “###. ##”
would specify a format of three spaces or digits in front of the
decimal point and two digits following i.e. 3.123 printed using
this format would be |blank|blank|3|.|1|2|. There are many
other formatting symbols that can be combined with # to
form a “picture” of the number but perhaps the most useful
is the “floating” money sign. If you write either a dollar or a
pound sign in front of the formatting “picture” the money
sign will be printed to the immediate left of the formatted
number. For example, “###. ###” would format 3.1234 as
|blank|blank|3|.11|2{3|. This method of drawing a “picture” of
the number is a very easy to use and powerful formatting
method. For example, if you don’t want a decimal point
printed then all you have to do is leave it out of the “picture”
ie. “###" If the number to be printed is too big for the space
allocated to it by the “picture” then it is printed unformatted.

A general PRINT USING subroutine for the ZX81 would

2050 LET F=0

2060 LET M=0

2070 LET N=0

2080 FOR I=1 TO LEN Us

2090 IF Us(l)="." THEN LET F=1

2100 IF Us({l)="*" AND F=0 THEN LET M=M+1
2110 IF Us(l)="+" AND F=1 THEN LET N=N+1
2120 NEXT |

2130 IF M=0 AND H$="0" THEN LET H$=""
2140 LET H$=S$+H$

2150 IF LEN H$>M THEN GOTO 2170

2160 LET H$=" (1 TO M—LEN Hs$)+Hs$
2170 IF F<>0 THEN LET H$=Hs$+"."

2180 LET L$=L$+" 0000000000000"

2190 IF N<>0 THEN LET H$=Hs$+L$(1 TO N)
2200 PRINT Hs;

2210 RETURN

be rather long but we can produce a subroutine that will
accept a “picture” involving digit positions marked by #, the
decimal point and floating money signs. The only change that
we have to make to the usual PRINT USING is to change the
to = because the ZX81 doesn’t have a # character. The

print using subroutine and a small test program is: :

10 LET U$=""$xxxxes xx"
20 PRINT TAB 9;Us$

30 INPUT V

40 GOSUB 2000

50 LET V=V*100*RND
60 PRINT

70 GOTO 20

The “picture” format is stored in the string US at line 10.
Lines 20—70 simply send test values in V for subroutine 2000
to format. Before any formatting begins the number contained
in V is converted into a string by STR$ and then split into
two parts. The digits in front of the decimal point are stored in
HS by line 2000 and the digits following the decimal point are
stored in L$ by lines 2010—2020. Notice the use of IF ...
THEN, IF ... THEN construction in line 2020. This has the
same effect as IF ... AND ... THEN but it is needed because
in this case the second condition, i.e. L§ (1)=., can only be
worked out if the first condition is true i.e. if L§<>* . The
Lexpression IF L$<>“ ” AND L$ (1) THEN ... will give an
error message if L$ is null because in this case L$ (1) doesn’t
=xist. The variable S$ is used to hold any floating money sign
in the formatting string US$, if there is no such sign then S$ is
st to the null string (Lines 2030—-2040). Lines 2050—2120
count the number of digits before the decimal point (M) and
the number of digits after the decimal point (N) in the format-
ting string US. The variable S is zero if no decimal point is
“5und. Line 2020 removes the leading zero if the number is
less than one and there is no digit position specified by the

79

2000 LET H$=STR$ INT V

2010 LET L$=(STR$(V)) (LEN H$+1 TO)

2020 IF L$<"" THEN IF L$(1)="." THEN LET L
=1L$(2.TO)

2030 LET S$=Us$(1)

2040 IF U$(1)<>"£" AND U$(1)<>"s" THEN LET
Sg=1

78

format. Line 2030 adds the money sign, if any to the front of
the number. The “padding” blanks are then added to the
number in much the same way as described for aligning the
decimal point in the last section by lines 2150 and 2160. Ifa
decimal point is required it is added in line 2170 and then the
fractional part stored in L$ is padded with trailing zeros (line
2180) before being truncated to fit into the correct number
of digits by line 2190. Finally, line 2200 prints the fully form-
atted number.

Three samples illustrating different formats:

23518.9732
S45665.81350
I57F9173. 18806
52566000 . 00006

59285.7480
30236083 . 1288

e S e
£8. 81

€6 .43

£18.18
Eoo. =9
£086@A2.67
£OITOET1. 30

Interest calculator

As an example of how the formatting subroutine given in the
last section can be used, consider the problem of printing a
table of the amount of money accumulated by a regular
savings plan over a number of years with fixed interest rates.

80

Apart from being a good example of formatting, this could
also serve as a rough guide to comparing saving plans. For sim-
plicity an approximate but straightforward calculation has
been used. If you save A pounds per month then you will have
Ax12 pounds more at the end of each year. If the interest rate
is R% per annum then you will earn T*R/100 pounds of inter-
sst every year where T is the total amount due to saving and
interest at the end of the year. :
This program uses subroutine 2000 given in the last section
| so don’t forget to type it in at the end of the new section
listed below before you try to run it.

10PRINTTABS;” INTEREST"”
20 PRINT

30 PRINT “HOW MUCH DO YOU WANT TO SAVE"

40 PRINT “PER MONTH ? “;

50 INPUT A

60 PRINT A

70 PRINT “HOW MANY YEARS ? “;
80 INPUT Y

90 PRINT Y

100 PRINT “ANNUAL INTEREST RATE"
110 PRINT “IN PERCENT ? “;

120 INPUT R

130 PRINT R

140 LET B=12+A

1560 PRINT

160 PRINT “YEARLY SAVINGS = “;B
170 LET T=0

180 FOR K=1TO Y

190 LET T=T+B

200 LET E=T*R/100

210 LET T=T+E

220 PRINT AT 20,0;“SAVINGS AT L
230 LET Us="#+"

240 LET V=K

250 GOSUB 2000

260 PRINT “ YEARS"”;TAB 20;

270 LET U$=""Lrrexnxnx xx'

81

280 LET V=T
290 GOSUB 2000
300 SCROLL
310 NEXT K

320 STOP

Lines 10 to 110 ask for the relevant details of the saving plan.
After converting monthly saving to yearly saving (lines 140—
160) the program calculates and prints the amount accumulated
at the end of each year. Line 190 adds the yearly savings te
the total. Line 200 calculates the interest due on this amount
and line 210 adds it to the total. This calculation is repeated
for each year that the savings plan has to run by the FOR
statement at line 180. The formatting subroutine is used te
print two numbers — the year number in lines 230—250 an
the total amount in lines 270—290. You should be able to see
that this provides a much neater set of results than simpl
printing.

T N T E R E S5 F

HOUW MUCH DO YO USNT TO S8yt

FER MONTH 758
HO HANY YEARS T 2@

ANNURL INTEREST RATE

IN PERCENT TF1i@
YERRLY S8AUINGS =538
SAUINGES 837 1 YERRS £553 .89
SRUINGS 8T 22 YE&RS £1386.80
SRAUINGS AT 3 YEIRS £21i84 .50
SAUINGS 3T 4 g £3as3 .88
SQUINGSE 27 £ 4822 . 385
SAUINGES AT 8 £5aaT . S
SAUINGS AT = et il. 53
SAUINGS AT 8 EFE47.68
SRUINGSS BT =2 £8962 .45
SHAUINSS 87 i@ £12515.78
SRUINGS 87 11 £I3238.57
S eSS i2 £14113.582
132 £15384 .99
14 £I84632 .45
is £=8969 .53
ig FIRTES B2
i7 £SavES.568
i E3(RV5 .45
ig E£33764 .80
=& £37581.58

Try running this program with savings of say fifty pounds
a month for periods of 25—30 years. You might be surprised
at the size of the sum that you have accumulated at the end!

83

Chapter Eight

THE PRINTER

The ZX81 printer is a remarkable piece of hardware. Not only
can it deliver printed copies of whatever is on the screen and
your program and data listings, but it can also be used to
increase the size and resolution of the graphics screen. Adding
a printer to your ZX81, therefore, opens up a whole range of
applications.

How the printer works

It may be useful to consider how the printer functions before
going on to see what sort of things we can do with it. The
ZX81 printer works by evaporating the aluminium coating
from the surface of a roll of black paper. Where the aluminium
is removed the black shows through and it is this, rather than
_ink of any sort, that makes the printing stand out black on a
silvery background. If you want to test this, take a scrap of
printer paper and scrape it with something. As the aluminium
comes off you will see the black paper beneath. The ZX81
printer evaporates the aluminium with an electric spark. If you

operate it in a slightly darkened room you can see blue

flashing sparks just under the tear bar. These are created by a
pair of styli (sharp metal points) that are mounted on a motor
driven belt. The belt and the paper feed roller are driven
continuously while printing and as a result the styli pass over
the paper in a series of horizontal lines which move down the
paper.At any time during the “scanning” of the paper a high
voltage (but safe) pulse of electricity can be applied to the one
of the styli to burn a black dot. Thus to build up the shape of
a letter the ZX81 has to send pulses at the right time to burn
the correct pattern of dots. As we shall see it is possible to
not only print the dot pattern for a letter but the dot pattern
for any shape. This extra freedom can be used to produce high
resolution plots and even a lower case character set using only
BASIC. 84

Low resolution printing

There are three printer commands in BASIC — LLIST,
LLPRINT and COPY. The LLIST command can be used in the
same way as the LIST command except of course that the
listing is produced on the printer instead of the screen. The
two most interesting printer commands are LPRINT and
COPY.

LPRINT can be used in the same way as the PRINT state-
ment. You can use both TAB and AT to control where the
output will be placed on the paper. However, because the
printer cannot feed paper backwards, any line information
in AT is ignored. For example:

10 LPRINT AT 20,10;“X"

will print an X at the tenth position on the current printing
line. This means that you can easily control the horizontal
position of anything printed but the only way of controlling
the vertical position is by the order in which things are printed
out. This means that changing programs that use PRINT AT
to create a screen display might not work very well if you
simply change all the PRINTs to LPRINTs. There is a way
around this problem by using the COPY command but more
of this later. When using LPRINT the printer should be treated
as if you were printing on the bottom line of the screen and
then SCROLLing. If you think about it this is more or less
what the printer does — it prints a line and then automatically
SCROLLs. This means that any programs that produce their
screen displays by printing a line and then SCROLLing can be
converted to produce printer listings by changing the PRINT
to LPRINT and taking out the scroll. For example the list of
numbers produced by INTEREST or STATISTICS can be
iransferred to the printer in this way. As another example
consider the following program that plots a sine wave on the
screen —

10 FOR X=0 TO 8+P| STEP .3
20 LET Y=(SIN{X)+1)*15
30 PRINT AT 21,Y;“+"

85

40 SCROLL
50 NEXT X

V can be changed to produce the same sine wave on the printer
by removing line 40 and changing PRINT to LPRINT.

=

W

i

i

H A

i

=

LPRINT can be used to print any of the ZX81’s characters
on the printer including the graphics characters and should
‘behave exactly like PRINT. However there is a small bug that
occurs when printing numbers in the range .00001 te
10099999999. The leading zeros after the first are printed as
non-numeric characters instead of zero! To overcome this
problem when using LPRINT it is better to convert all
numbers to strings using the STRS function. For example

~instead of
' 86

10 LPRINT A
use >
10 LPRINT STRs$(A)

Although LPRINT is a very useful command and is not to
e overlooked, especially when you are writing programs that
use the printer from scratch, the easiest and most powerful
printer command is COPY. COPY will “dump” to the printer
an entire screen no matter what it contains. The advantage of
this is that you can use PRINT AT or PLOT/UNPLOT to
construct a screen as you would normally and then before
moving on to the next part of the program save it on the
printer. In this sense you can write programs forgetting about
the printer’s existence until the very moment that you need
the print out!

There are two ways of using the COPY command. If at any
time during a program you see a screen full of information
that you feel would be better printed out, you can stop the
orogram by pressing the BREAK key and enter the COPY
command. After the screen has been printed you can restart
the program by pressing CONTinue. The only thing that you
have to be careful of is that you must not enter any other
commands by accident because this would not only make
restarting the program difficult, if not impossible, it would
clear the screen and make any further attempt at using COPY
futile. A much better way of using COPY is to build it intoa
orogram and allow the user the option of copying the screen
Sefore the next one is produced. A fact that is often
overlooked is that the COPY command can be used as a state-
ment in a program. For example, try the following

10 FOR 1=1 TO 20
20 PRINT RND

30 NEXT |

40 COPY

50 CLS

60 GOTO 10

Lines 10 to 30 print 20 random numbers on the screen and
then line 40 COPYs them to the printer. The screen is then

87

cleared and another 20 numbers printed. Notice that the
action of the COPY command is entirely automatic and no
user intervention is required.

Using this idea it should be possible to convert programs to
use the printer very quickly. Once you have identified the
points at which a whole screen is produced simply insert a
question “DO YOU WANT TO PRINT THE SCREEN?” and if
the answer is “yes” do a COPY. This will provide printer
versions of standard output without the need to worry about
the LPRINT bug mentioned earlier and is the only way of
printing graphics produced using PLOT/UNPLOT.

High resolution plotting

Using a few simple subroutines it is possible to produce high
resolution (256 by 256 points) graphs and as many user-
defined characters as you want. The basic ideas outlined in the
following sections are derived from the demonstration
programs in the printer manual. However you should be able
to use the subroutines presented here to produce your own
programs, not just demonstrations.

To use the printer in high resolution mode it is necessary
to modify part of the machine code stored in the ROM.
Machine code is treated in more detail in Chapter Ten but for
the purposes of this chapter all you need to know is that it is
possible to copy the definition of LPRINT from ROM to an
area of RAM and then modify it. Before you can do thisitis
important to reserve an area of memory that BASIC will not
try to use. This can be done by altering the address stored i
RAMTOP using the following commands:

POKE 16389,124
NEW

To see high resolution plotting working try the following pro-
gram which plots random points. (You might find that
changing to FAST mode speeds this program up quite a lot.)

10 GOSUB 1000
20 GOSUB 3000

88

30 GOSUB 2000
40 GOTO 20

1000 IF PEEK 16388+256+PEEK 16389=31744
THEN GOTO 1030

1010 PRINT “MEMORY NOT RESERVED"

1020 STOP

1030 FOR 1=0 TO 112

1040 POKE 31744+|,PEEK (2161+1)

1050 NEXT |

1060 POKE 31800,63

1070 POKE 31857,201

1080 RETURN

2000 FOR H=0 TO 31
2010 POKE 16444+H,H
2020 NEXT H_

2030 LET H=USR 31744
2040 RETURN

3000 FOR 1=1 TO 32+8

3010 POKE 32255+1,255*RND
3020 NEXT |

3030 RETURN

High resolution pattern (compare with low resolution equivalent
on p. 31 of 1K book). :

89

Subroutine 1000 transfers the machine code that defines the
way LPRINT works, into the RAM reserved for it. Before this
is done lines 1000-1020 check to make sure that RAMTOP ha
been altered and the memory reserved. The FOR loop (line
1030—1050) transfers 113 bytes of machine code from 216
(ROM area) to 31744 (reserved RAM area). Lines 1060 and
1070 POKE the required two changes to the machine cods
These two changes make it print the contents of the 238
memory locations from 32256 onwards. Subroutine 2000 &
responsible for initiating the printing. Lines 2000 to 2028
set up a character count in the printer buffer starting 2
16444. Line 2030 is the line that actually starts the printiz
by calling the machine code set up by subroutine 1000. This#
done via the ‘

USR “address”

function which transfers control to a machine code subroutin
starting at “address” in much the same way as GOS
transfers control to a BASIC subroutine at the stated li
number. The only complication is that USR is a function (li
SIN or COS) and therefore has to be used in an expressios
This is the only reason that line 2030 starts with LET H=. W
are not interested in the value stored in H as a result of th#
assignment, just in getting to the machine code starting &
31744. Subroutine 3000 changes the contents of the area ¢
memory that is printed by subroutine 2000 by POKEin
random numbers. (Remember that a memory location ca
only store numbers between 0 and 255.)

The operation of the program should now be easy to undes
stand. First line 10 calls subroutine 1000 to set up
machine code. Then line 20 calls subroutine 3000 to rando
alter the area of memory to be printed and line 30 calls su®
routine 2000 to print it. This is then repeated over and ove
until you get bored and press “break”! These three stages, s
up machine code, set up area of memory to be printed ant
print it, are the three fundamentals of high resolution printing
Subroutines 1000 and 2000 will be used as they are in all tk
subsequent programs in this chapter. The only thing that
change is the way the memory is set up before printing.

90

Plotting a sine curve

The previous example served to introduce the fundamental
subroutines 1000 and 2000 but the output could hardly be
called useful. To be able to use the high resolution printing
facility we must obviously find out how the information
POKEd into the memory area by subroutine 3000 controls the
pattern of dots produced by the printer. Unfortunately this is
where most of the difficulties of high resolution graphics lie.
Each time subroutine 2000 is used the equivalent of a whole
row of characters is printed out. As each character is formed in
a square of eight by eight dots, a whole row is 32x8x8 dots or
2048 dots. This is obviously a lot more than the 256 memory
locations that are used to define the pattern of dots that are
printed by subroutine 2000. The answer is that each memory
location controls the state, i.e. black or white, of eight
individual dots. Thus each memory location controls a row of
eight dots. You may think that the most obvious arrangement
would be for the first 32 memory locations to control the
pattern of dots of the first row of the printout. This is not so,
the first eight memory locations control the eight rows that
make up the first character position, the next eight control the
second character position etc.

Ist
character

2nd
character

nth
character

Row memory 1

location 2

memory 9
location 10
11
12
13
14
15
16

00O W A WM
0~ W

The way that each memory loation controls eight bits is
slightly more difficult to describe. Depending on which of the

91

_ eight points that you want to turn on (i.e. print as black) then
you have to POKE one of the following numbers

Point 1 2 S 4 5 6 7 8

coce " 3-64 32 16 8 4 2 1

So if you wanted to make the point in the top left hand corner
black you would POKE 128 into the first memory location. If
you wanted to make the third point in the 2nd row of the 2nd
character position black then you would POKE 32 into the
tenth memory location. If you want to turn on more than one
point then you simply POKE the sum of the appropriate codes
into the correct memory location. For example, if you wanted
to turn on the fifth and second point in the first row of the
first character location then you would POKE 64+8, i.e. 72,
into the first memory location.

This may seem very complicated but you should be able to
see that it is possible to find which memory location and what
to POKE into it to turn on any pattern of points. We can
summarise the rules given above into a few lines of BASIC. If
you imagine the 32 character locations and number the 256
points starting at the left and eight rows starting at the top,
then the X(horizontal), Y(vertical) point can be turned on

by
100 LET C=INT(X/8)
110 LET B=7-X+C+*8
120 POKE 32255+C*8+X,2#+B

Line 100 calculates the character position and line 110
calculates the bit position within the character position.

We can now make use of all this information to plot a sine
curve (or any other equation or data for that matter). Try the
following program. Once again it is worth running it in FAST
mode:

10 LET L=0
20 GOSUB 1000

02

30 FOR X=0 TO 8+P| STEP .03
40 LET Y=(SIN(X)+1)*127

50 GOSUB 3000

60 NEXT X

70 STOP

3000 LET Y=INT Y

3010 LET K=INT(Y/8)

3020 LET R=7-Y+K=8

3030 FOR =0 TO 31

3040 POKE 32256+1%8+L,0
3050 IF K=1 THEN POKE 32256+|#8+L,2**R
3060 NEXT |

3070 LET L=L+1

3080 IF L=8 THEN GOSUB 2000
3090 |F L=8 THEN LET L=0
3100 RETURN

93

The first line (10) sets L, the row counter to zero. When L
reaches eight we have plotted eight rows of dots and it is time
to call subroutine 2000 to print the section of the graph out
(line 3070). Line 20 sets up the machine code subroutine.
Lines 20—50 calculate the sine curve from O to 8«PI. The
curve is plotted running down the paper so in this case Y, the
value of sine, runs across the paper. Y is scaled so that at the
lowest value of sine it is O and at the largest it is 254. The

scaling of the X value is unimportant in this case because each

value of Y that is produced is plotted on the next row of dots.
Once again it is subroutine 3000 that is responsible for altering
the memory to produce the required pattern of dots. For each
Y value the character position and dot position within the
character position are’ calculated. The entire row is zeroed
(lines 3030 to 3060), to clear the last plotting information,
and the new point is POKEd at the correct place (line 3050).
The row count is incremented at line 3070. If the row count
(L) is not eight then there is no need to print the memory area
as there is still space for more of the sine curve.

Using this basic idea it is possible to produce very high
quality graphs. You should try to plot some different
functions and add axes and labels. However it has to be
admitted that it is not the easiest high resolution plotting
facility and it is a little on the slow side!

A lower case or special character set

Using the same techniques as used to plot high resolution’
graphs it is also possible to produce an extended character set.’
Perhaps the most important extended character set that can be
used in conjunction with a printer is lower case letters. The
program listed below could form the basis of a text processos
working with a full character set.

10 GOSUB 1000

20 GOSUB 4000

30 LET As="ABCD"

40 GOSUB 3000

50 FOR P=1 TO LEN As$

94

60 LET C=CODE As$(P)-37
70 GOSUB 5000

80 NEXT P

90 GOSUB 2000
100 STOP

1000 IF PEEK 16388+256+PEEK 16389=31744
THEN GOTO 1030

1010 PRINT “MEMORY NOT RESERVED"

1020 STOP

1030 FOR 1=0 TO 112

1040 POKE 31744 +,PEEK (2161+1)

1050 NEXT |

1060 POKE 31800,63

1070 POKE 31857,201

1080 RETURN

2000 FOR H=0 TO 31

2010 POKE 16444+H,H

2020 NEXT H

2030 LET H=USR 31744

2040 LET L=0

2050 RETURN

3000 FOR 1=0 TO 31+8

3010 POKE 32255+1,0

3020 NEXT |

3030 RETURN

4000 DIM L$(26,8)

4010 LET L$(1)=" S[4]W"”+CHRS (68)+“W "

4020 LET L$(2)=" RNDRND"+CHR$ (120)+CHR$
(68)+CHR$(68)+CHR$ (120)+* “

4030 LET L3$(3)="" SRNDRNDRNDS “

4040 LET L$(4)=" [4][4]W"+CHRS$ (68)+CHR$
(68)+CHRs$ (120)

4999 RETURN

5000 FOR I1=1TO 8

5010 POKE 32255+1+P+8,CODE L$(C,I)

5020 NEXT |

5030 RETURN

95

dhcdabcdabcda3becdabcdabocdabod
Ahcda3bcdabcdabcdabcdabocdakegd
abcdabcdabocdabcdabcdabhcdabod
Apcdabodakbcdabocdabocdabedabed
abcdabcdabecdabocdabecdabedabed
2hcdabcdabecdabecdabecdabedabhed
Ahcda3bhcdabecdabecdabecdabedabed
&bcda3kcdabcdabecdabecdabecdabed
ahed3bodabcd3bedabecda3bodibed
abcda3bcdabcdabcdabocdabkedabea
dhcda3bhcdabcdabc dabe dabodabed

akcd3bc da3bcd3bcdabecda8bocdabed
2hcd3bhcdabcdabcd3bocdabodabed
abcd3bcdabkcd3bcdabocdabocdabod
2hcdakhcdabecdabcdabhocdabodabe s
ahcdabcdabrcdadbrdabcdabed8be g
2hcdabcda3bcdabecdabecdabecdabed

Subroutine 1000 and 2000 are used in the normal way to set
up the machine code subroutine and print the memory arez
Subroutine 4000 sets up the dot pattern of any new characters &
that you want to use. The dot pattern for the Ith character is
stored in L$(I) as a string of eight characters. To code a det
pattern all you have to do is to draw the shape of the characte
on an eight by eight grid. Take each row at a time and write
down the number corresponding to each point that is bla
(see the table on page 92) and add up all the numbers. One
you’ve dealt with all eight rows you will have a list of eight
numbers between 0 and 255. Each number is the code of th
character that must be stored in the string to produce that row
of dots. To store this list of numbers in the form of a string &
is necessary to convert each to its corresponding charactes
using the CHR$ function. To save space (and typing effort}
however, it is preferable to enter these characters directly from
the keyboard. So, rather than type CHR$(0) for example, yor
would simply type a space.

This procedure is easier to understand from an example
Consider a lower case letter ““a”. The grid and its corresponding
set of numbers could be as follows

= — 0
SE R oE .. 32+16+8=56
. . . ° . * . 4

32+16+8+4=60

96

: 64+4=68
32+16+8+4=60
. s . 0 o ° . 0

These numbers are then converted to the following characters
in the string L$(1):

L$(1)=" S[4]W"+CHR$(68)+" W "

Notice that where there is no symbol corresponding to the
character code we have no choice but to use the CHRS
function. If you need to use a keyword such as LET within
the string you can either use CHRS or enter the keyword
directly by pressing “THEN”, to obtain the “K” cursor, then
“LET” and then using the edit keys to erase the “THEN”.
After the dot patterns have been set up in L$ you can store
a string of characters in A$ (line 30) and lines 40—90 will print
their new shapes on the printer on a single line. The way the
standard character set corresponds to the new shapes is
determined by line 60. In this case “A” corresponds to the
pattern stored in L§(1). Line 70 calls subroutine 5000 which
will load the dot pattern in L$(C) into the character location
specified by P. After all the dot patterns have been loaded a
call to subroutine 2000 (line 90) prints the contents of the
memory.

Conclusion

The high resolution capabilities of the ZX81 and its printer
have barely been explored by this chapter and there is much
more that you can do. For example, the lower case character
set program could be turned into a full text processor with
both upper and lower case characters. The text could be first
edited on the screen with inverse characters representing upper
case letters and normal characters representing lower case.
When the screen was printed out the program would convert
all the letters to upper or lower case and produce a normal
looking document. Another project would be to produce a
small graphics package for the ZX81 to make the high
resolution even easier to use. The possibilities are endless —
over to you! 97

Chapter Nine
ADVANCED RANDOMNESS

Randomness is a fundamental component of playing games on
a computer and we examined some of the ideas involved in
“The Art of Programming the 1K ZX81”. You may think
that after such a full coverage there would be little left to say
about the topic of randomness and its uses. In fact, we have
hardly scratched the surface of one of the most important
areas of computer applications. In the first part of this chapter
we will extend some of the ideas introduced in the 1K book
and in the second part look at some more uses, both serious
and lighthearted, of randomness in computing.

Continuous events

We considered how to generate a random number of discrete
events with any given probability in the 1K book but there are

situations when we need to select a point along a continuum at -

random. For example, in a simulation to do with the weather
we might want to select temperature at random. Of course this
could be done using the methods outlined in the 1K book —
divide the range of possible temperatures up into sections,
assign each to a value and then pick one of the values at
random. However, this is an unnecessary step because the
random number generator actually produces numbers that lie
on a continuum in the first place. RND is a function that
returns a number that is greater than or equal to O and less
than 1 at random and there are an infinity of such numbers —
or would be if the ZX81 did not truncate them in order to
display them. So, if we want to predict a continuous event at
random then we can use the RND function to do so.

The next point to note is that RND is just one of a whole
range of probability generators that we could use. Each one
produces numbers over a given range with some probability.
The way the probability varies over the range can be plotted

98

on a graph and such a graph in known as a probability distri-
bution. For example, the probability generator RND produces
numbers over the range 0 to 1 and the probability of any
number in this interval being produced is constant. A graph of

the distribution corresponding to RND would look something
like this:

prob.

L
0 05 1.0

It is not unreasonably called the uniform distribution. Other
generators would be associated with different distributions.
For example

I
0 0.5 1.0

is a distribution where the probability of producing any
number increases as it gets closer to 0.5. This type of distribu-
tion may be useful in simulations where a “central” outcome
should happen more often than anything else but where there
ought to be a chance of something extreme happening
occasionally. Consider as an example a game where “sales” of
lemonade depend on the temperature. The game’s instructions
tell you to make your decisions as if it was July in England.
On the basis of our typical summer weather you know that
the weather is likely to be fairly warm but there is an outside
chance of either a heat wave or a really cold snap. The triangle
distribution is an appropriate one to use in such a program.
The equation to use to produce a random temperature is
2#M=*TRI where M is the mean temperature for July and TRI
is a new function that generates numbers according to the
triangle distribution. (You multiply by 2 as the mid-point of

99

the distribution is 0.5) There is an obvious problem in that no
BASIC has a function called TRI so the best that we can do is
to write subroutines that return numbers with the specified
distribution. For example, the triangle distribution can be
produced by adding together two numbers from a uniform
distribution. In other words LET T=(RND+RND)/2 produces
a number in T that has the triangle distribution.

There are many distributions that are important in serious
applications that are not as easy to generate as the triangle
distribution. The following table lists the most common and
their typical uses:

Distribution Typical Use

Normal simulating “naturally” occurring distribu-
tions involving measurement error

Chi Squared in statistical sampling experiments

Exponential in economics, simulating time between
customer arrivals or waiting periods

Binomial simulating number of equipment failures

Poisson simulating the number of customers arriving
during a time period.

Knowing how or when to use any of the distributions is a
matter of understanding the particular problem that you are
faced with. An example of when to use the poisson distribu-
tion is given later but just in case you need to generate any of
the other distributions the following collection of subroutines
will prove useful. Don’t worry about understanding how they
work unless you know something about probability theory.
If you would like to look at the “shape” of the distribution
associated with any of the following subroutines then you
could use it to replace the random data generator in the statis-
tics program and then plot a number of histograms. Remember
to substitute appropriate values for the parameters.

The Normal Distribution

As this is such an important distribution two methods are
given. The first is based on the Central Limit Theorem. Itisan

approximation but is good for most purposes.

100

1000 LET Z=0

1010 FOR I=1 TO N

1020 LET z=2+RND

1030 NEXT |

1040 LET Z=SQR(3/N)*(2*Z-N)
1050 RETURN

The accuracy of the approximation improves as N gets bigger.
Suitable values for N are between 20 and 50. The next sub-
routine is based on the Box-Muller method and should be used
only when the highest accuracy is required

1000 LET Z=SQR(-2+LN(RND))*COS(PI*RND)
1010 RETURN

Both subroutines return Z which has a normal distribution
with a mean of zero and a standard deviation of one.

The CHI Squared Distribution
For a distribution with two degrees of freedom use
1000 LET X=-2+LOG(RND)

for a distribution with an even number of degrees of freedom,
D = 2N say, use

1000 LET U=1

1010 FOR I=1 TO D
1020 LET U=U*RND
1030 NEXT |

1040 LET X=-2+LOG(U)

to generate intermediate degrees of freedom 2N+1 use
1000 LET Y=X+2+Z

where X is CHI squared with 2N degrees of freedom and Z is
normal with mean zero and standard deviation one.

The Exponential Distribution
The subroutine to substitute is:
101

1000 LET X=-(1/L)*LN(RND)
1010 RETURN

where X has the distribution 1—EXP(—L#X).

The Binomial Distribution

In the following subroutine X has the binomial distribution.
N is the total number of trials and P is the probability of
SUCCess.

1000 LET X=0

1010 FOR I=1 TO N

1020 IF RND>P THEN GOTO 1040
1030 LET X=X+1

1040 NEXT |

1050 RETURN

The Poisson Distribution

You will find this subroutine used in the simulation program
presented later in this chapter:

1000 LET X=0
1010 LET E=EXP —M

1020 LET P=1

1030 LET P=P*RND

1040 IF P<E THEN RETURN
1050 LET X=X+1

1060 GOTO 1030

X is an integer between 0 and infinity and has the distribution
M#*xX+=EXP(—M)/X!.

Monte Carlo integration — finding PI

No example of a “serious” use of random numbers has been
included so far. The major application of random numbers is
in the simulation of what happens or what might happen in
the real world. An example of this sort of application is given

102

later but first let’s look at a more unusual application. It is
possible to avoid a wide range of mathematical calculations by
using random methods. Such methods are often called Monte
Carlo methods after the famous casino.

Finding the area under a curve specified by an equation is
usually done by using integration. Sometimes however it is
very difficult to solve this sort of problem using classical
mathematics and some other approach has to be found. Inte-
gration is based on some very advanced mathematics but if
you think about the problem as finding the area under a curve
then you can use some very simple methods based on common
sense. Consider the problem of integrating x squared between
0 and 1. In other words finding the area below the graph of x
squared between zero and one. We could use the usual
methods of calculus or numerical integration (i.e. Simpsons
rule) but, for the sake of an easy example, let’s suppose that
these methods are unavailable. If you generate two random
numbers, X and Y say, then these can be thought of as
defining a point in the unit square, (i.e. X and Y are both
positive and less than one). This point will lie either above or
below the curve. Now obviously the probability that the point
is below the curve depends on the area under the curve and
this is the key to Monte Carlo integration. If we generate a
sequence of pairs of random numbers and count the propor-
tion of them that fall below the curve this can be taken as an
estimate of the area. Notice that it is only an estimate of the
area, you cannot guarantee that it is equal to the area. How-
ever the estimate improves as you increase the number of
random points that you use.

To see Monte Carlo Integration in action try the following
program which estimates the area under the curve X squared.

10 LET H=0

20 LET N=0

30 LET X=RND

40 LET Y=RND

50 IF Y<X*X THEN LET H=H+1

60 LET N=N+1

70 PRINT AT 21,0;" AREA=":H/N,"N=";N

103

80 SCROLL
90 GOTO 30

The variable H is used to count the number of points that fall
below the curve and N counts the number of points that have
been generated. Lines 30 and 40 generate the two random
numbers in question and line 50 checks to see if the point is
below the curve or not. If it is then one is added to H. The
estimate of the area so far is printed at line 70.

ARER=1
SREA=0.56886867
ARER=V.5
AREA=8.4
SREA=-B.3333I333=
AREA=0.42857143
AREAR=B.375S
SREAR=8.33333333
AREA=8.3
QREA=B.2 7272727
SREA=8G.25
AREA=0.23876923
ARER=8.21428S71 N=14
ARER=8.2 N=15
AREA=8. 1875 N=16
AREA=8.17847858 N=17
AREA=8.16666667F N=1O
ARER=0. 21052632 N=19

Py s

[LURL 1 L T

o 4 14 10 0
104 65

U R LM

P g A A

ot
L]

If you run this program for any length of time you will see
that slowly the estimate of the area settles down to an
increasingly accurate number. By using traditional integration
the area under the curve is known to be exactly 1/3 or 333
recurring and this can be used to see how well the Monte
Carlo Method is doing. You may be a little disappointed to
discover how slowly the method works its way to the correct
answer. When we ran it for example, at N=100 the estimate
was .352 and the second decimal place was still changing. This
would seem to make Monte Carlo Integration of little use and
this is true for simple problems such as the above example.
However when you change the problem to one involving more
than two dimensions, for example, trying to find the volume

104

under a curved surface, Monte Carlo Integration is one of the
best methods we have!

As a final example of Monte Carlo Integration it is interest-
ing to consider finding the area under the curve 1/(X#X+1)
between O and 1. By standard integration this can be shown to
be PI/4, so if we use Monte Carlo Integration to find the area
we have a technique involving random numbers to calculate
PI. To calculate PI change the following lines in the area
program above:

50 IF Y<1/(X*X+1) THEN LET H=H+1
70 PRINT AT 21,0;“PI=";4*H/N," " N=";N

PT=0.1594934 N=E533
PI=3.191@112 N=534
PI=3.1858467 N=835
PI=3.1888872 N=E386
PI=]R. 18888195 N=837
PI=3.18218581 N=533
PI=3, 1338735 N=539
PI=3.185i88=2 N=54@&a
PI=3.17929786 N=541
PFI=3.1734317 N=542
PI=3.174554 N=543
PYI=2.1764788 MN=544
PI=R,17F79317 N=545
PI=3.1794872 N=545
PI=3. IS8a&7=2 N=547
DI=3.18324818 N=548
PI=3. 1839378 N=54S
£I=3.1354545 N=502
PI=03. 1863329 N=551
B2I=32. 185425838 N=552
PTI=0.183928734 N=55Z
BI=3, 1913357 N=554

Problems with random numbers

Many of the serious applications of random numbers depend
for their success on the *“quality” of the random numbers
used. This problem hardly arises when playing games, all that
we demand of the sequence of numbers in this case is that a
human player can treat them as random. However for tech-
niques like Monte Carlo integration the accuracy of the results

105

depends on the quality of the random number generator. If,
for example, the random number generator tended to give
numbers close to one more often than numbers close to zero
it is easy to see that the estimate of the area would be biased.
The subject of testing random number generators is quite a
complicated one. Essentially it involves running the random
number generator and using statistics to see if the sequence of
numbers satisfies the conditions of randomness. For example,
the condition that each number should occur with the same
probability can be examined by plotting a histogram of a large
sample from the generator.

There is a very simple method of improving the output
from any random number generator — ‘‘shuffling”. The
following is a typical shuffling procedure:

1 Fill an array A of size N with random numbers from the
“suspect” generator.

2) Generate an integer random number R say in the range
1 to N and swap the contents of A(1) with A(R).

3) Repeat (2) for each element of the array.

4) Use the N random numbers in the array as the next N in
the sequence.

The following subroutine allows you to use this method in
a program:

10 DIM A(N)

5000 FOR I=1 TO N

5010 LET A(l)=RND

5020 NEXT |

5030 FOR I=1 TO N

5040 LET T=A(l)

5050 LET R=INT(RND=*N})+11
5060 LET A(l)=A(R)

5070 LET A(R)=T

5080 NEXT |

5090 RETURN

The general rule is that the more you shuffle the better the
random numbers! Of course the trouble is that shuffling takes

106

a lot of time and if you need a lot of random numbers then it’s
better to work on the quality of the random number generator
instead. Even so, shuffling can make a poor generator very
good — so if in doubt shuffle!

A business simulation

As an example of a non-mathematical use of random numbers
and distributions consider the following problem. A bread
shop that bakes its own bread needs to know how many loaves
to bake so that the wastage is kept to a minimum but also that
the smallest possible number of customers are disappointed.
If we assume that customers come into the shop at the same
rate all day we can use the Poisson distribution to simulate the
number of potential customers per day. If any event has a
constant probability of happening per unit time then you can
model it with the Poisson distribution. For example, if you
assume that an accident is likely to happen at any time, the
number that you see in any given time will have the Poisson
distribution.

Returning to the bread shop problem we can suppose that
we know the average number of customers per day that come
into the shop. This can be found by counting the number of
customers (including those turned away after the shop ran out
of bread) over a period of time and dividing by the number of
days. If the average number of customers is M then the actual
number of customers coming into the shop will have a Poisson
distribution with mean rate M i.e. the probability of getting X
customers in any one day is given by

M* EXP(-M)
X!
To discover the effect of baking S loaves of bread all we have
to do is to generate random numbers with a Poisson distribu-
tion with mean rate M and see how often the number of

customers is more or less than S. This is the method used by
the following program:

107

10 LET L=0

20 LET W=0

30 PRINT TAB8;"SERVICE"

40 PRINT AT 5,0

50 PRINT "“AVERAGE NUMBER OF CUSTOMERS"
60 PRINT “PER DAY “;

70 INPUT M

80 PRINT M

90 PRINT “HOW MANY CUSTOMERS CAN YOU"
100 PRINT “SERVE IN ONE DAY ? “;

110 INPUT S '

120 PRINT S

130 FOR 1=1 TO 30

140 GOSUB 1000

160 IF X>S THEN LET L=L+X-S

160 IF X<S THEN LET W=W+S-X

170 PRINT AT 21,0;”DAY ";I;“CUSTOMERS= ;X
180 SCROLL

190 NEXT |
200 PRINT
210 SCROLL

220 PRINT “CUSTOMERS LOST=";L
230 SCROLL

240 PRINT “WASTAGE=";W

250 STOP

1000 LET X=0

1010 LET E=EXP-M

1020 LET P=1

1030 LET P=P*RND

1040 IF P<E THEN RETURN
1050 LET X=X+1

1060 GOTO 1030

Lines 30 to 120 collect the information necessary to start the
simulation off. The average number of customers is stored in
M and the number of customers that can be served, i.e. the
number of loaves of bread baked (assuming one loaf per
customer) is stored in S. Lines 130 to 190 simulate the num-

108

ber of customers coming to the bread shop over a 30 (work-
ing) day period. For each day a number of customers is gener-
ated by a call to subroutine 1000. You should recognise sub-
routine 1000 as a Poisson number generator. This number of
customers is compared with the number of customers that can
be served. If it is greater then the number of customers lost is
calculated (line 150) and if it is smaller then the number of
wasted loaves is calculated (line 160). At the end of the thirty-
day period the total number of customers lost and loaves
wasted is printed.

Using this simulation it is possible for the manager of the
bread shop to see the effect of baking more or less loaves. Of
course, if the profit on a sale is very much larger than the cost
of throwing bread away it would be worth baking more bread
than you would expect to sell. If you want to you could
change the program to ask for the costs associated with both
creating waste and having to refuse custom and print out the
adjusted profit for any number of loaves baked! However the
program as it stands can be used to simulate the behaviour of

-any business where a fixed number of customers can be served,

i.e. a newsagent’s.
S ER Y I € E

AUVERAGE NUMBER OF CUSTOMERS
PER DAY 58

HOU HANY CUSTOMERS CHN YOU
SERUVE IN ONE DRAY 7 568

DaY CUSTOMERS =48
oey CUSTOMERS =57
DRY CUSTOMERS =41
DAY CUSTOMERS =58

CUSTOMERS =56
CUSTOMERS =48
CUSTOHERS =44
CUSTOMERS=53
CLUSTONERS =54
8 CUSTOMERS=52
DAY 11 CUSTONERS=49
DAY 1o CUSTOMERS=48
DAY 13 CUSTOMERS =88
DAY 14 CUSTOMERS=51
DRY 15 CUSTOMERS=S51
DAY 185 CUSTOMERS=4o
DAY 17 CUSTOMERS=57
DY 18 CUSTOMERS=45
DRY 19 CUSTOMERS=40

109

3
“
=00 0 sl N P ()10 1

DAY 2@ CUSTOMERS=57
DAY =21 CUSTOMERS=5=
DAY 22 CUSTOHERS=52
DRY =23 CUSTOMERS=44
DRY 24 CUSTOMERS=51
DAY 2% CUSTORERS=39
DRY 26 CUSTOPERS=45
DAY 27 CUSTOMERS=37
DRY 28 CUSTOMERS=41
DAY 29 CUSTOMERS=46
DAY 38 CUSTOMERS =53

CUSTOMERS LOST =31
HWASTRGE=33&

This example is simple enough for you to be able to see
what is going on. In general, business simulations are
complicated because they have to take account of the
behaviour of human beings. They need to allow for the
reactions of the consumers. For example, if on one occasion a
person cannot buy a loaf of bread at your shop it is possible
that they will take their custom elsewhere on a permanent
basis!

Sinclair’s Triangle

Although this chapter on randomness is mainly concerned
with serious applications it ends on a lighter note! Sinclair’s
triangle is an entertaining example of a “‘random walk”. An
object is said to take a random walk if its movement is in some
way governed by probability. One example would be to plot
a point at X,Y and then move it by adding a random number
to both co-ordinates. The path that many natural phenomena
take is a random walk of one sort or another. Examples
include gas particles and pollen grains in air. Sinclair’s triangle
is based on the path that a lightning flash might take.

10 LET X=156

20 LET 1=0

30 FOR Y=1 TO 21

40 IF RND>.5 THEN GOTO 80
50 LET I=1+1

60 PRINT AT Y, X+1;“[T]"”

70 GOTO 100

110

80 PRINT AT Y, X+I;“[Y]"”
90 LET I=1-1 >

100 NEXT Y

110 GOTO 10

Line 10 fixes the Point that the bolt of lightning starts from.
Lines 20 to 100 plot points on a random walk from the top of
the screen to the bottom. Line 40 decides if the next step
should move to the right or the left. Line 50 and 60 move the
“lightning” to the right and lines 80 and 90 move it to the left.

If you run the program for a short time you will see a few ‘

irregular zig zag lines but if you leave it to run for longer a
checkered pattern will slowly be built up. This is triangle-
shaped as all the lightning bolts start off from the same fixed
point. This routine could be used to produce a laser beam for
a “‘zap-the-alien” type game.

Conclusion

There is a great deal more to randomness than can possibly be
covered in a chapter or even two. Even so, we hope that we
have included enough to enable you to decide whether simula-
tion is an area of computer application that could be useful to
you. If so then look out for “Computer Simulation Models™
by Emshoff and Sisson published by Macmillan (1970) or any
of the many other books on computer simulation.

112

- Chapter Ten

MACHINE CODE PROGRAMMING

As you have probably found out, the ZX81 with its 16K RAM
pack is capable of running some very large programs but it
doesn’t really have the speed necessary to tackle some quite
simple tasks such as moving more than one thing about the
screen at a time or even to test its own memory. Most of the
speed problems can be tolerated by simply waiting a little
longer for the answer. After all, a ZX81 costs only a fraction
of a large mainframe computer and if it can carry out some of
the same jobs you can forgive it for taking a little longer!
However sometimes the slowness of the machine, even when in

FAST mode, is more than can be tolerated. If it takes minutes
0 process the answer to a question before the next question is
asked the user is likely to have gone away for a cup of coffee
before the program is ready! Another example is that,
though it is possible to program a space invaders type game
in BASIC easily, the result would be the slowest game ever
ritten — and slow motion invaders is no fun. Whatever you
are using your ZX81 for, at some point you will run up against
e speed barrier.

The surprising thing is that the answer to the problem isn’t
'o go out and buy another more powerful and more expensive
micro. The reason for this is that all micro computers, perhaps
computers whatever their size, eventually prove too slow
‘or some task that they are given! A lot can be done to
increase the speed of the ZX81 to a point where it is capable
f nearly everything that a larger micro would be. The cost of
is speed increase is, however, quite high in that you have to
bandon BASIC and learn Z80 MACHINE CODE. Despite any
guments to convince you otherwise, machine code is more
fifficult than BASIC (why else would anyone use BASIC!) and
takes a certain amount of dedication to come to terms with
.. Now this may sound like advice to avoid machine code like
e plague but in fact the rest of this chapter should encourage

113

you to learn machine code for yourself. The point is that
machine code isn’t something that you can pick up in an after-
noon but it is a rewarding thing to learn.

Why is BASIC so slow?

BASIC is one of the many so-called “‘high level’’ languages that
you can use to program a computer. Any given computer can
often be programmed in a range of such languages e.g. BASIC,
FORTRAN, ALGOL etc. Even the ZX81 in theory could be
used with other high level languages, it’s just that its BASIC
is so convenient to use that it’s unusual to find anyone
wanting to use anything else. The way that one computer can
run so many different languages is that each one is translated
to a more fundamental language before the program is run.
This more fundamental language is usually called machine
code and it is the only language that a computer can obey
directly. Fach different machine has its own machine code
language and each machine translates the high level languages
available for it into its own personal code. This means that you
cannot learn machine code in general but only a specifie
computer’s machine code. The ZX81 has a Z80 microprocessor
inside it so the machine code that it uses is Z80 machine code.
This is a very good choice for a first machine code to learn

because- the Z80 is a very popular microprocessor and is used’
inside many other machines but you should be aware that’

many well known computers such as APPLE and PET do not
use a Z80.

So your ZX81 has to convert your BASIC statements te
machine code before they can be carried out. In fact the
process is rather more subtle than a direct translation te
machine code. There are machines that translate a whole
BASIC program to machine code before carrying it out by the
use of a program called a “compiler”’. However these machines
are in general more difficult to use than the ZX81 which uses

a different technique. What happens inside the ZX81 when

you run a program is that each line of BASIC is examined at
the moment that it is to be carried out. The keyword is then
used to “look up” what is to be done in a list of actions. For

114

example if the line of BASIC was GOTO 10 then the ZX81
determines that the keyword is GOTO and uses this to look up
what to do in a table. The entry in the table for GOTO would
contain the machine code equivalent of:

“work out the expression following the GOTO, find the
line of BASIC with the same line number and make this
the next instruction to be obeyed”.

This method of running a BASIC program is known as “inter-
preting” and the program that carries it out is called an
“interpreter”’. Thus the ZX81 interprets every line of BASIC
that you write and this is why BASIC is so slow. Before the
action that your BASIC command specifies can happen, the
ZX81 has to spend a lot of time working out what your line
of BASIC actually means! By contrast, a machine code
program is executed immediately without any interpreter and
can therefore often run over ten times faster.

The characteristics of machine code

If machine code is so much faster than BASIC why don’t we
use it more often? The answer to this question has already
been briefly mentioned in the introduction to this chapter — it
is more difficult to program in machine code than in BASIC.
The reason why machine code is more difficult than BASIC is
that it is a much simpler language! In BASIC you might write
something like LET A=B+C%2—Z and rightly expect the
answer to be stored in A, but in machine code the only arith-
metic operations that you can use are addition and subtraction
and these can only be carried out one at a time and on single
memory locations! To do “difficult’ things like multiplication
you have to write subroutines that will split them down into
simpler operations. For example, to multiply two numbers
together you have to resort to repeated addition.

It is not within the scope of this book to teach you
machine code but the rest of this chapter will attempt to give
you the “flavour” of machine code programming and an intro-
duction to some of the fundamental ideas involved. The best
way to achieve this is via a couple of simple examples. First it

115

is necessary to examine some of the details of the Z80 micro-
processor used in the ZX81.

The Z80

The Z80 microprocessor is one of the fastest and most
powerful available today but it is still only capable of very
simple operations. It can access any of the memory locations
that we have discussed in earlier chapters but it cannot alter
them directly. Any operations have to be carried out in special
memory locations inside the microprocessor itself. These
special memory locations are called “registers” and because
there are so few of them they are referred to by names rather
than addresses. The Z80 has a number of registers but for the
sake of simplicity we will examine and use only four:

the A register (also known as the accumulator)
the B register

the H register and

the L register

The A register is the most useful register that the Z80 has and
is used for most arithmetic operations. It is exactly like an
ordinary memory location in that it can only hold numbers
between O and 255. The B register is a general purpose register
that can be used to hold temporary results without having to
use external memory. There are fewer operations that can be
applied to data stored in the B register and it too is limited to
numbers in the range 0 to 255. The H and the L register are
also general purpose registers like B but they are most often
used in combination — the HL pair. By using two registers
together in this way the range of numbers that can be held is
considerably increased. In fact the range is large enough to
hold the address of any memory location in the ZX81; and
this is the main use of the HL pair — as an address register.
Many Z80 operations employ the number stored in the HL
pair as the address of the memory location that will be used.
All this talk of registers and what they are used for is easier
to understand after one or two examples of Z80 instructions.

116

The instructions LD and ADD

Machine code is recognised by the Z80 in terms of numbers.
That is, a machine code program is nothing more than a long
list of numbers stored in the computer’s memory. (After all
what else but a number can you store in a computer’s
memory!) The trouble is that humans are very poor at reading
through and understanding long lists of numbers. So to make
machine code easier to use we use convenient symbols instead
of the numbers that the computer recognises to represent
operations. For example if you want to load the A register
from memory location 123 you would use a version of the LD
instruction:

LD A,(123)

which you can read as “Load the A register from memory
location 123”. (It is a Z80 machine code convention that
anything in brackets is taken to be an address.) However, a
Z80 cannot read this type of code so the instruction has to
be coded into numbers. If you look up LD A in a list of Z80
instructions (or by searching appendix A of the ZX81
manual), you will find that its code is 58. This is referred to as
the “operation code” or “op code” for LD A from a memory
location. The complete coded instruction also requires the
address of the memory location to be loaded into A to be

written after the op code. So the complete coded instruction is

58,123,0. If you’re wondering why there is an additional zero
tagged on to the end of the instruction the reason is that two
memory locations are used to store the address. Thus a single,
very simple Z80 instruction takes three memory locations to
store. Other Z80 instructions may take less memory, others
take more. .

As another example of a Z80 machine code instruction
consider the

ADD A,n

instruction where n is a number in the range O to 255. This
simply adds n to the contents of the A register. That is, if A
was already loaded with 3 then after ADD A5 it would

117

contain 8. This instruction has an op code of 198 and the
number to be added [n] is stored in the next memory
location. Notice that as n is restricted to the range 0 to 255
ohly one memory location is required. Thus the complete
coding for ADD A5 is 198,5 and this only uses two memory
locations.

The usual way of writing a machine code program is to use
the symbols such as LD and ADD A, to write the entire pro-
gram and then go through and convert it to a list of numbers.
The conversion of the symbols to numbers is such a routine
job that you can get a program to do it for you. Such a
program is known as an “‘assembler’” and it certainly makes
machine code programming easier. Unfortunately the ZX81
doesn’t have an assembler as a standard extra although it is
possible to write or even buy one.

A short example program

There is no suggestion that after the last two sections you’ll
know enough about machine code to be able to write a
program but you should be able to understand the outline of
one. There is a machine code subroutine in the BASIC ROM
that starts at memory location 2056 that will print the
character whose code is stored in the A register at the current
position on the screen. We can use this knowledge to write a
very simple program that will fill the screen with any character
of our choice.

START LD A,21
CALL 2056
JP START

The first instruction in this program loads the A register with
21, the character code for “+”. The second instruction is like a
machine code equivalent of GOSUB in that it transfers control
to a machine code subroutine starting at 2056. As we already
know, the subroutine at 2056 prints the character whose code
is stored in the A register. You should be able to see that the
result of this CALL is a “+” printed on the screen. The final
instruction is a machine code equivalent of GOTO in that it

118

transfers control to the “START” of the program. (JP is short
for JumP so you can read the last instruction as “JUMP to
START”.) The workings of this program are not difficult to
understand — it will simply print “+” on the screen until it is
full and an error code is reported. Normally we have to worry .
about stopping machine code subroutines after they have
finished what they are doing but in this case, for simplicity,
we can allow the program to stop itself by causing an error.

We now have a fully specified machine code program. The
only things that remain to be done are coding and testing.
Coding, if you recall, is simply changing the symbols that
humans use to write machine code into the number codes that
computers understand. The first two lines of the program can
be coded easily.

instruction code
START LD A,21 62, 21
CALL 2056 205, 8, 8

The code for LD A with a number is 62 and the number to be
loaded - follows the op code i.e. 21. The op code for CALL is
205 and the address of the subroutine follows in the next two
memory locations. (i.e. 2056=8+8%256.) The last instruction
presents a problem however, The op code for JP is 195 and the
address that it transfers control to is stored in the next two
memory locations — the trouble is we don’t know the address
of the start of the program!

To know the address of the start of the program we have to
decide where it is going to be stored in memory. There are a
number of places that machine code can be stored in the ZX81
and each has advantages and disadvantages. We have already
seen one method in Chapter Eight where machine code was
stored in reserved memory above RAMTOP. However in this
chapter we will use a slightly more useful method of storing
machine code in a REM statement at the beginning of the
program. If we want to store a list of numbers in a REM state-
ment all we have to do is type the character corresponding to
sach number. For example, the first five numbers of our
machine code program are 62,21,205,8,8 and these are the
character codes of the following characters Y,+,LN,[A],[A].

119

So we can write a REM statement that holds this machine ! Before giving the full BASIC program that uses the machine

code as:
10 REM Y+LN[A][A]

(note that the “LN” is a single character corresponding to the
LN function and is entered by pressing the function key and
then Z.) We can now code the last line of the program because
we can work out the address of the beginning of the program.
All BASIC programs start at 16509. There are two bytes for
the line number, two bytes for the length of the line plus one
byte for the keyword REM, so the code of the first character
in the REM is stored at 16514. The last line of the program
can now be written as JP 16514 and coded as

JP 16514
195,130,64

The characters corresponding to 130 and 64 are [W] and
RND, however, there is no ZX81 character with a code of 195
so you cannot enter it directly in a REM statement. The solu-
tion to this problem is to leave a space in the REM statement
and POKE the code into it before the machine code is used.
The final REM statement can now be written into a program
but we still have to find out how to use it. In Chapter Fight on
using the printer the USR function was introduced as a way of
calling a machine code subroutine. To recap,

USR address

will transfer control to a machine code subroutine starting at
“address”. As USR is a function and not a command it has to
be used in an assignment statement such as

LET A=USR address

but for the examples in this chapter we are not worred about
the value that is stored in A as a result of the USR function.
As we have already worked out the address of the start of the
machine code stored in the REM as 16514, the full USR
function is

LET A=USR 16514

120

code it is worth listing exactly what is stored where:

address code character
16514 62 Y

16515 21 -

16516 205 LN
16517 8 [A]
16518 8 [A]
16519 195 none
16520 130 [w]
16521 64 RND

From this table you should be able to see that the op code
that doesn’t correspond to any character has to be POKEd
into address 16519. The complete program is

10 REM Y+LN[A][A] [W]RND
20 POKE 16519, 195
30 LET A=USR 16514

Note that the REM statement has to be entered exactly as
written, i.e. the characters such as LN and RND must be
entered with one keystroke and the only space in the REM is
between [A] and [W].

When you run this program you should see the screen fill
very rapidly with plus signs. To compare the speed of this
machine code with BASIC add the following lines and then
enter GOTO 40:

40 PRINT “+";
50 GOTO 40

If you would like to check that the machine code is entered
correctly you can also add the following which will print the
contents of each memory location in the REM:

60 FOR 1=16514 TO 16521
70 PRINT |,PEEK |
80 NEXT |

To use this program type GOTO 60.
Although this example has been very simple, consisting of

121

only three machine operations, it has taken a long time to
produce and a long time to explain! However, you should be
able to judge the advantages of machine code from the speed
difference between this example and the BASIC equivalent.

A second example — reversing the screen

In this example we will write a machine code subroutine that
will change all of the characters displayed on the screen to
their inverse form (i.e. white will be changed to black and
black to white). Although this is a useful subroutine, it could
be used to “flash” the screen during a game for example, its
primary purpose is to show how a slightly larger machine code
program is written. However the program is so much longer
that there just isn’t the space to go into as much detail as with
the first example. All that can be done is to explain the
method used and how each instruction works. The details
of coding are given but not explained.

The method used is to add 128 to the character code stored
at every screen location. If you look at appendix A in the
7ZX81 manual you will see that characters and their inverses
differ by 128. So adding 128 changes a character to its inverse
form. What is less obvious is that adding 128 for a second time
will restore the original character code. The reason for this is
that if we use the A register to hold the character code and
ADD A,128 to add 128 to it then the largest number that the
A register can hold is 255. If you add one to 255 stored in the
A register is “resets” or “rolls over” to zero and then carries
on as normal i.e. no error is generated. This means that if the
result of adding 128 is larger than 255 the value stored in A
will be the correct answer — 256. For example, if you add 128
to 38 (the code for A) the answer is 166 (the code for inverse
A). If you then add 128 to 166 the answer should be 294 but
this is larger than 255 so the result stored in the A register is
294256, namely 38, the number we first started with. In
short, adding 128 will change any character to its inverse form
and adding it a second time will restore it.

The rest of the method is straightforward. We have to load
the address of the start of the screen area and then use this to

122

load each screen memory location into A, add 128 and store it
back into the same location. The only things that we have to
be careful about are to avoid adding 128 to the “newline”’
characters at the end of each screen line and to make sure that
we stop after reversing 21 lines of characters. The easiest way
to achieve both of these aimsis to check the contents of the A
register and if it is a “‘newline” avoid adding 128 to it but alter
a record of the number of lines that have been reversed so far.
This count of the number of lines is best kept in the B register.
If the B register is loaded with 21 at the start of the program
and has one subtracted from it each time a ‘“‘newline” is
encountered then after 21 lines it will be zero. So testing for a
zero in the B register is all that we have to do to decide when
the program is finished! The only other detail is that all
machine code programs should return to BASIC by using a
RET instruction.
The complete program including details of its coding is:

address instruction code comments

16514 LD HL,(16396) 42,12,64 Load HL with the
address of the
start of the
display file.

16517 LD B,21 06,21 Load 21 into B to
count the number
of lines.

16519 INC HL 35 Increment HL, i.e.
add one to HIL.

16520 LD A, (HL) 126 LOAD A from the

address in HL.
Compare A to 118

which is the code

for “newline”.
202,148,64 If A equals 118 then

16521 CP 118 254,118

16523 JP Z,16532

GOTO 16532.
16526 ADD A,128 198,128 Add 128 to A.
16528 LD (HL), A 119 Store A back in

same address.
16529 JP 16519 195,135,64 GOTO 16519.
16632 DECB 05 Decrease B by one.
16533 JP NZ,16519 194,135,64 If B isNot Zero (NZ)

GOTO 16519.

16536 RET 201 RETURN to BASIC.

123

Tuming each of the codes into characters gives the following
memory layout:

address code character
16514 42 =

16515 12 £

16516 64 RND
16517 06 [T]
16518 21 +

16519 35 7/

16520 126 none
16521 254 RETURN
16522 118 none
16523 202 ASN
16524 148 inverse =
16525 64 RND
16526 198 LEN
16527 128 1
16528 119 none
16529 195 none
16530 1356 [3]
16531 64 RND
165632 05 [5]
16533 194 TAB
16534 135 [3]
16535 64 RND
16536 201 TAN

This machine code can be incorporated into a BASIC program
in a REM statement using four POKEs for the codes that do
not correspond to characters. To see how the routine works
try the following program. Remember Chapter 8, page 96
explains how to enter keywords such as RETURN.

10 REM E£RND[T]+7 RETURN ASN [=] RNDLEN
[] [3]RND[5]TAB[3]RNDTAN

20 POKE 16520,126

30 POKE 16522,118

40 POKE 16528,119

50 POKE 16529, 195

124

60 PRINT “*%#s%nxxsxxxnnnnnxxnenrrxe’’
70 LET A=USR 16514
80 GOTO 70

500 FOR 1=16514 TO 16536
510 PRINT |,PEEK |
520 NEXT |

Once again you can check to see what codes are stored where
by using lines 500 to 520 by GOTO 500.

Although this is a long example you should be able to
understand most of it if you study it carefully.

Next steps

If you have managed to understand some of this chapter and
have entered the examples and seen how much faster they are
than BASIC then machine code will be the next area of
computing that you will want to study. There are a number of
books specifically about machine code for the ZX81 and
others which deal with Z80 machine code more generally are
also relevant.

Whether or not you decide to pursue machine code pro-
gramming, we hope that this book will enable you to go
further with programming your ZX81. With the 16K RAM
pack it is capable of quite a remarkable range of applications
and is also great fun to use.

125

ALSO RECOMMENDED

BP109: THE ART OF PROGRAMMING THE 1K ZX81

M. James & S. M. Gee ‘
This book shows you how to use the features of the ZX81 in
programs that fit into the 1K machine and are still fun to use.
In Chapter Two we explain its random number generator and
use it to simulate coin tossing and dice throwing and to play
pontoon. There is a great deal of fun to be had in Chapter
Three, from the patterns you can display using the ZX81’s
graphics. Its animated graphics capabilities, explored in Chap-
ter Four, have lots of potential for use in games of skill, such
as Lunar Lander and Cannon-ball which are given as complete
programs. Chapter Five explains PEEK and POKE and uses
them to display large characters. The ZX81’s timer is explained
in Chapter Six and used for a digital clock and a reaction time
game. Chapter Seven is about handling character strings and
includes three more ready-to-run programs — Hangman, Coded
Messages and a number guessing game. In Chapter Eight there
are extra programming hints to help you get even more out of
your 1K ZX81.

We hope that you’ll find that this book rises to the chal-
lenge of the ZX81 and that it teaches you enough artful pro-
gramming for you to be able to go on to develop programs of
your very own.

96 pages 1982
0 85934 084 & £1.95

BP119: THE ART OF PROGRAMMING THE ZX SPECTRUM
M. James

This book will help you to enjoy all the features of the Sinclair
Spectrum. It explains techniques that you can use to write
your own programs to use its colour, high-res graphics and
sound facilities to the full. The emphasis is on gaining practical
experience through programs that are fun to try out. Lots of
games programs are included.

Chapter One — Getting to Know Your Spectrum: The Spec-
trum’s special features; Prospects for programming.

Chapter Two — Low-res Colour Graphics: PRINT command,
TAB and AT; Graphics characters; User-defined graphics
characters; PAPER and INK commands; Using colour; FLASH,
BRIGHT, OVER, INVERSE.

Chapter Three — Fun at Random: Pseudo randomness;
RND and RANDOMISE; Random events; Random integers;
Unequal probabilities; Random graphics.

Chapter Four — High-res Graphics: PLOT and DRAW;
CIRCLE.

Chapter Five — Sound: BEEP command; Making music;
Sound effects; OUT; Amplifying the sound.

Chapter Six — Moving Graphics: From flashes to moving;
Moving balls and velocity; Free flight and gravity.

Chapter Seven — PEEK and POKE: When to use PEEK and
POKE; Large screen displays.

Chapter Eight — A Sense of Time: Delay loops; The timer;
Clock programs; Reaction time games.

Chapter Nine — Strings: String slicing; Word games; Codes
and cyphers.

Chapter Ten — Advanced Graphics: Scrolling and rolling
graphics; SCREENS graphics; ATTRibute and POINT.

144 pages 1983
0 85934 094 5 . £2.95

CASSETTE TAPES

Ramsoft

P.O. Box 6
Richmond
North Yorkshire
DL104HL
England

If your are tired of typing in programs, there is an alternative!
The above company can supply, at very reasonable cost, a
selection of complete programs taken from this book, on cas-
sette tapes.

TAPE 1 (16K) contains:

Utility Suite and Menu Driver, Machine Code Demo, Depth
Charge, Ski Run, Squash and two improved versions of pro-
grams that appeared in the 1K book, Pontoon and Random
Symmetry.

TAPE 2 (16K) contains:

Statistics, Interest Calculator, Arithmetic Test, Customer
Servicing (Poisson distribution) and another two improved
programs that appeared in the 1K book, Chess Clock and
Hangman.

Also available is
TAPE 3 (1K) which contains twenty programs from 7he
Art of Programming the 1K ZX81.

Write directly to the address given above for further details
and an order form.

PLEASE NOTE: The Publishers of this book are in no way
responsible for the manufacture or supply of these tapes and
all enquiries must be sent directly to Ramsoft.

The contents of the tapes may be subject to change without
further notice.

Please note overleaf is a list of other titles that are available in
our range of Radio, Electronics and Computer Books.

These should be available from all good Booksellers, Radio
Component Dealers and Mail Order Companies.

However, should you experience difficulty in obtaining any
title in your area, then please write directly to the publisher
enclosing payment to cover the cost of the book plus adequate
postage.

If you would like a complete catalogue of our entire range
of Radio, Electronics and Computer Books then please send a
Stamped Addressed Envelope to:

BERNARD BABANI (publishing) LTD
THE GRAMPIANS
SHEPHERDS BUSH ROAD
LONDON W6 7NF
ENGLAND

The Art of
Programming
the 16K ZX81

This book is the sequel to BP109, The Art of Programming
the 1K ZX&81, and it sets out to help you use your 16K RAM
pack and ZX printer to the full. It concentrates on good pro-
gramming style and introduces some interesting programs that
are both fun and useful.

Chapter One introduces the 16K RAM pack and the printer.
Chapter Two explains how the extra storage space is used and
presents a memory test program to check that your new 16K is
operational. Chapter Three covers some utilities that you will

find useful in writing longer programs. Chapter Four is an inter-
lude from serious applications, presenting four games programs
that make the most of the extended graphics capabilities now
available to you. Chapters Five to Eight deal with writing and
debugging large programs, storing them on cassettes and printing
out both programs themselves and their results. These chapters
also introduce programs for editing data bases and statistical
analysis for financial management and covers text and graphics
printing. Chapter Nine takes a look at randomness. Chapter Ten
introduces machine code and explains why you might like to
use it.

With this book to guide you, it is hoped that you will be able
to discover just how versatile and powerful your ZX81 is and
that you will realise just how rewarding programming with it
can be.

