
30 Programs
for the

ZX81

RICHARD FRANCIS

Copyright Richard Francis

Published by Richard Francis
22 Fox Hollow,

Bar Hill
Cambridge CBS SEP.

ISBN 0 9507658 1 3

The programs in this book are also available on a quality
cassette for automatic loading. Please send cheque or Postal
Order for £4.95 (inclusive of post and packing), with your

order to the Publisher.

Printed in England by :

Sindall Printing Limited,
347 Cherry Hinton Road, Cambridge CB1 4DJ.

Telephone : (0223)248091.

30 Programs
for the

ZX81

RICHARD FRANCIS

Contents
TITLE PAGE 1
CONTENTS 2
INTRODUCTION 3
LUNAR LANDING 4
MASTERCODE 6

ODD MAN OUT 8
STEERING 10

BUTTERFLY 12

TEN PINS 14
FORTRESS 16

BALLOON 18
SPELL 20
TRUTH TABLE 22
MOMENTUM 24

LETTERS 26

SPHERES 28

MONITOR 30
CHASE 32
VOLS 34

TEMP 36

PASSENGERS 38
SNAP 40
BREAK IN 42
MESSAGE 44

DUCKSHOOT 46
CALENDAR 48

BIORHYTHM 50
BASES 52
SOLITAIRE 54

MINICALC 56
CONNECTION 58

ORBITAL INVADERS 60
MINE FIELD 62
AUTHORS ADVICE 64

2

Introduction

As you have bothered to read this part of the book you are
probably expecting some fascinating new insight into computing,
so in order not to disappoint you here it is : IT IS POSSIBLE
TO DO LOTS OF INTERESTING THINGS WITH ONLY 1K OF

RAM. At this stage of the book it is only a hypothesis but I hope
that by the time you reach the end you will take it as proven.
The motivation behind this book has been the challenge of cram-
ming a programme into 1K (in fact by the time the system
variables and machine stack have been subtracted there are less
than 900 bytes for program, variables and display). This has
involved taking a program idea and stripping it down to its bare
essentials whilst maintaining the original purpose, so don't be
surprised if you don't see too many remarks in the programs. I
owe thanks to computer tradition for some of the program ideas,
Lunar Landing and Orbital Invaders are prime examples. Many of

the program ideas and all of the programs themselves, however,
are entirely original.

In order to discourage readers from the uncritical habit of
blindly accepting other peoples programs as perfect (I don't
believe there is such a program), I have included Technical Notes
with each example to help the enquring mind to understand

just what exactly is going on in each part of the program. Whilst
I don't expect everyone to read every technical note, I shall be
disappointed if nobody writes to tell me that a certain program

could be improved by altering certain lines.

3

Lunar Landing

Lunar Landing programs must be so common by now that
their aim needs only the briefest explanation. You, the astronaut,
must control the descent of your craft by use of the throttle jets
so that you neither crash nor run out of fuel. In this particular
version a safe landing is defined as arriving at a point 10 metres
or less from the moon's surface with a speed of less than or equal
to 10 metres per second.

The display shows the throttle jet setting, the fuel level, the
speed and the height. The craft starts falling from 1500 metres
above the moon's surface and you must hold down keys 0 to 9
to alter the throttle setting. (They need to be held down as they
don't react immediately.) You wiil soon learn that a throttle
setting of 3 causes the speed of descent to drop gradually. Only
use the high throttle settings in an emergency or you may find
yourself shooting out into space again wasting valuable fuel. A
space craft moves from right to left across the screen as an addit-
ional graphical indication of position, the extreme left represents
the moon's surface.

TECHNICAL NOTES

Lines 10 to 50 initialise the variables and clear the screen.
Lines 60 and 70 print the display information.
Line 80 detects an end game and jumps to 170.
Line 110 draws the spacecraft.
Lines 120 to 150 adjust the throttle, fuel, speed and height
depending on the keys pressed.
Lines 170 and 210 deal with the end game.

4

10 LETV = 0
20 LET S-1500
30 LETTH = 0
40 LET F=1000
50 CLS
60 PRINT "THROTTLE FUEL SPEED HEIGHT"
70 PRINT AT 1,0;TH;TAB8;F;" ";TAB 16;V; " ";TAB

24;S;" "„„
80 IF S<10 OR F<0 THEN GOTO 170
90 LETA$ = INKEY$

100 PRINT AT 5,(S-V)/100,
110 PRINT AT5,S/100;"$"
120 IF A$> = "0" AND A$< = "9" THEN LET TH = CODE

A$-28
130 LET V = V + 20*TH-50
140 LETS = S + V
150 LET F = F+10*TH
160 GOTO 70
170 IFV> = -10 AND S< = 10 THEN PRINT"SAFE"
180 IF V<-10 THEN PRINT "CRASH"
190 PRINT,,"N/L TO START AGAIN"
200 INPUT A$
210 RUN

5

Mastercode

The computer generates a random number with 4 digits,

no digit repeated and you have to guess it. Every time you enter

a guess the computer gives you two scores labelled X and Y.

For every digit that you have correct the computer gives you a

point in the X column and for every instance that you have the

correct digit in the wrong column (or position) the computer

will give you a point in the Y column. You will see that the

scores in both columns added together cannot exceed 4. Some

examples of scoring are given.

Number 5 6 7 8

Guess 1 1 6 2 3

Guess 2 0 1 5 7

Guess 3 5 6 7 8

When you have the correct answer press newline to start

again.

TECHNICAL NOTES

Lines 30 to 150 A subroutine to evaluate the scores for each

guess.

Lines 160 to 240 Generation of a 4 digit (non-repeating) number.

Lines 260 to 300 Main program loop.

Variables: X,Y, Scores.

A$, Guessed number.

B$, Number to be guessed.

M,N, Dummy FOR-NEXT variables.

6

10 CLS

20 GOTO 160
30 LET Y = 0

40 LET X = 0

50 FOR N = 1 TO 4
60 IF A$[N] = B$[N] THEN GOTO 130

70 FOR M = 1 TO 4

80 IF MoN AND A$[N] = B$[M] THEN GOTO 110

90 NEXT M

100 GOTO 140

110 LET Y=Y+1

120 GOTO 140

130 LETX = X+1

140 NEXT N

150 RETURN

160 RAND

170 DIM B$[4]

180 DIM A$[4]

190 FOR N = 1 TO 4

200 LET B$[N] = STR$[INT[10*RND]]

210 FOR M = 1 TO 4

220 IF B$[M] = B$[N] AND NoM THEN GOTO 200

230 NEXT M

240 NEXT N

250 CLS

260 PRINT "**** X Y"

270 INPUT A$

280 GOSUB 30

290 PRINT A$," ";X;" ";Y

300 IF X<>4 THEN GOTO 270

310 PRINT "CORRECT"

320 PRINT "N/L TO START AGAIN"

330 INPUT A$

340 RUN

7

Scores X Y

1 0

0 2

4 0

Odd Man Out
This is a pattern recognition puzzle for the discerning eye.

The computer generates a three-character-position by three-
character-position square pattern by randomly combining 9

graphics symbols. This pattern is printed in the top left corner

of the screen. The pattern is then jumbled up three times to

produce three additional patterns using the same graphics sym-

bols but in different orders. One of these patterns is then corr-

upted by exchanging one of the graphics symbols (randomly

selected) for another randomly selected character. Your problem

is to decide, by close scrutiny, which symbol in which pattern

is the odd man out. The symbols are numbered as follows:

0 1 2 9 1 0 1 1

3 4 5 1 2 1 3 1 4

6 7 8 1 5 1 6 1 7

18 19 20 27 28 29

21 22 23 30 31 32

24 25 26 33 34 35

Enter the number that you think is the odd man out and the

program will stop with report 0/190 if correct, otherwise you

get another go. On some rare occasions there won't be an odd

man out so beware. If it proves too difficult try it with letters,

change lines 100 & 120 to:

100 IF A = 1 AND B = 1 THEN LET B$ (A,B,C,D) = CHRf

(38 + 25*RND)

120 IF 18*A + 9*B + 3*C + D = G + 31 THEN LET B$

(A,B,C,D) = CHR$ (38 + 25* RND)

TECHNICAL NOTES

Line 30 G is the number of the odd man out.

Lines 40 to 170 nested FOR loops generate the patterns printed

by line 140.

E & F are the random offsets added to the 3rd and 4th subscripts

(modulo 2) of array B$ to give the jumbled patterns.

8

20 DIM B$[2,2,3,3]

30 LET G = 9+INT[27*RND]

40 FOR A=1 TO 2
50 FOR B = 1 TO 2
60 LET E = INT[3*RND]
70 LET F=INT[3*RND]

80FORC-1 TO 3

S0 FOR D=1 TO 3
100 IF A=1 AND B = 1 THEN LET B$ [A,B,C,D]=CHR$ [11

*RND+128 * INT [RND*2]]

110 IF A<>1 OR B<>1 THEN LET B$[A,B,C,D] = B$

[1,1,C + E-3*INT[[C + E]/3.5],D + F-3*INT[[D + F]/3.5]]

120 IF 18*A+9*B + 3*C + D-31=G THEN LET

B$[A,B,C,D] = CHR$[11*RND]

130 NEXT D

140 PRINT AT 4*A-4+C,4*B-4;B$[A,B,C]

150 NEXTC

160 NEXT B

170 NEXT A

180 INPUT A

190 IF AoG THEN GOTO 180

9

Steering

An opportunity to try your hand and nerve at the ambition

of your dreams, driving a racing car. All you have to do is steer

between the edge markers to avoid a crash.

When starting the game enter a number for the desired

width of the road, 8 is a good one to start with. A bigger number

will give a wider road and hence make the game easier. You have

to be ready to steer as soon as you have pressed newline after

entering the roadwidth. Press key 5 to move to the left and 8

to move to the right. See if you can stay the course for a minute
without crashing, when you have achieved that, start again with

a narrower road. You cannot win this game outright as the road

can always be made narrower still but with a little practice you

should be able to beat your friends.

TECHNICAL NOTES.

Variables: N, width of track.

A, position of left of track.

B, position of car.

A$, key pressed.

Lines 40 to 150 are the main program loop. Notice that line 120

peeks into the display file area of RAM to see if the position

towards which the car is heading is the edge of the race track

or not.
Line 50 generates each new position of the track by randomly

incrementing or decrementing the old position.

10 INPUT N
20 LET'A=10

30 LET B=A + N/2
40 PRINT AT 12,A;""";TAB[A+N];"B"

50 LET A=A+INT[3*RND]-1
60 IF A<0 THEN LET A=0

70 IF A + N>31 THEN LET A=31 -N
80 LET A$=INKEY$
90 IF A$=" " THEN GOTO 110

100 LET B = INT[[CODE A$-34]/1.5] + B

110 SCROLL

120 IF CHR$[PEEK[PEEK16396+256*PEEK 16397+1 + B]]<>

"•" THEN GOTO 140

130 PRINT AT 0,0;"CRASH"

140 PRINT AT 0,B;"V"

150 GOTO 40

Use an inverse video V in line 140.

Ensure that the same graphic symbol (GRAPHIC SHIFT H)

is used on both occasions in line 40 and in line 120.

10 11

Butterfly

In this game a butterfly flits around the screen in a random
fashion, totally unawarethat a bird is trying to catch it. You have

to control the movement of the bird, by the cursor movement
keys (5 to 8) so that the bird catches the right hand wing of the
butterfly in its beak . The bird opens and closes its mouthi all
the time attempting to catch its prey.. When it is successful the
amount of time taken is displayed and you are invited to press
newline to have a go at another butterfly.

TECHNICAL NOTES.

Lines 10 to 50 initialise variables.
Lines 60 to 170 form the main program loop.
Lines 60 & 70 and 110 & 120 draw the bird and butterfly.
Line 130 tests for a successful catch. Subroutines at 180 and
230 calculate the new positions of the butterfly and bird. Notice
that subroutine 180 is called twice in the program loop allowing
the butterfly to move faster than the bird.

Notice lines 230 & 240, the expressions inside brackets are
logical and can be true (equal to 1) or false (zero), hence the
J,K co-ordinates of the bird are altered by the cursor movement

keys.

12

10 LET C = 0
20 LET J = 3
30 LET K=15
40 LET X = 0
50 LET Y = 0
60 PRINT AT Y,X,"KB"
70 PRINT AT J,K; "-H/"

80 GOSUB 180
90 IF INKEY$<>" " THEN GOSUB 230

100 CLS
110 PRINT AT Y,X; "SB"
120 PRINT AT J,K;"-H/"
130 IF INT[X + .5] = K-1 AND INT[Y + .5] = J THEN GOTO 260

140 GOSUB 180

150 CLS
160 LETOC+1
170 GOTO 60
180 LET X = ABS[X + 4*RND-2]
190 LET Y = ABS[Y + 2*RND-1]
200 IF ABS X>20 THEN LET X = 20
210 IF ABS Y>8 THEN LET Y = 8

220 RETURN
230 LET K = K+[INKEY$="8" AND K<20]-[INKEY$ = "5"

AND K>0]
240 LET J = J + [INKEY$= "6" AND J<8]- [INKEY$= "7" AND

J>0]
250 RETURN
260 PRINT AT 13,0;C;" SECONDS"

270 INPUT U$
°°0 RUN

13

Ten Pins

Ten skittles are arranged on the left of the screen and a ball
on the right. You have to roll the ball to try to knock down
as many skittles as you can. First line up the ball by using cursor
movement keys 6 (down) and 7 (up), when you are ready press
0 to let the ball roll. When a skittle is hit it will disappear and
the ball may change its course. In each round you have 5 balls
numbered 5,4,3,2,1 in inverse video and you have to try to
knock down all ten skittles. At the end of each round press
newline to start again. This game can be played by two or more
people taking turns or by one player just for practice.

TECHNICAL NOTES.

Lines 10 to 30 fix the size of the display file.
Line 49 sets up the skittles.
Lines 90 to 130 form the first program loop that allows the ball
to be lined up.

Lines 200 to 260 from the second program loop that rolls the
ball. Notice line 220 where each new position is peeked to see
if it will hit a skittle and a random offset added if it does.
Lines 270 & 280 decrement the ball counter.

14

The ten graphic characters in line 40 and the one in line 220
must all be the same (GRAPHICS SHIFT H)
The "5" in line 50 and the "0" in line 280 can both be inverse
video characters.

10FORN = 0TO7
20PRINTATN,21;" "
30 NEXT N
40 PRINT AT 0,0;

// _ •" " • •" " • •" " • •" " •" " •"
• ,, • ; / • • / / • ' • » » • • > « • II •

50LETA$="5"
60LETX = 0
70LETY = 21
80 PRINT AT X,Y;" "
90 IF INKEY$= "6" AND X<7 THEN LET X = X+1

100 IF INKEY$= "7" AND X>0 THEN LET X = X-1
110 IF INKEY$= "0" THEN GOTO 200
120 PRINT AT X,Y;A$
130 GOTO 80
200FORY = 21 TO 0 STEP-1
210LETN = X
220 IF CHR$ [PEEK [1 +23 *X + Y + PEEK

16396 + 256*PEEK16397]] = "B" THEN LET
N = ABS[X-1.5 + 3*RND]
230 PRINT AT X,Y;A$
240 PRINT AT X,Y;" "
250LETX = N
260 NEXT Y
270 LET A$ = CHR$[CODE A$-1]
280 IF A$<>"0" THEN GOTO 60
290 INPUT A$
300 RUN

15

Fortress

You are a medieval lord defending your fortress when an

enemy (marked "*" on the screen) creeps up to the base of your

look out tower. Unknown to the invader, he is standing next to

your secret protection mechanism, which when fired can fling

the invader back into the moat. You must drop a large weight

over the side of the tower to activate the mechanism. Choose

the weight of your choice by pressing keys 1 to 9 then press 0

to release it. If you choose the wrong weight then you will

repel the enemy but he won't end up in the moat. Press newline

after each go to move onto another tower whose distance from

the moat will probably be different from the last one.

Keep a score of your success rate in drowning the enemy.

TECHNICAL NOTES.

Line 40 and the subroutine at 200 draw the out look tower,

protection mechanism and moat.

Lines 60 to 90 allow the appropriate weight to be selected.

Lines 100 to 140 allow the weight to drop.

Lines 150 to 180 roll the invader backward and possibly into

the moat.

16

10LETB$="0"

20 CIS
30LETA$=" "

40 PRINT,,"! •"„"•••"„"••"„"•"

50GOSUB210

60IFINKEY$o""THENLETA$=INKEY$

70 IF A$> = " 1" AND A$< = "9" THEN LET B$=CHR$[CODE

A$+128]

80 PRINT AT 0,2; B$

90 IF A$<>"0" THEN GOTO 60

100 PRINT AT 0,2;" ";B$

120FORB-0TO9

130 PRINT AT B,3;" " ;ATB + 1,3;B$

140 NEXT B

150 FOR B = 6 TO INT[RND*2]+CODE B$-148

160 PRINT AT 11,B;" "; TAB [B+1];"*"
170 NEXTB

180 IF B=A THEN PRINT AT 11,A;" ";AT12,A;"*"

190 INPUT A$

200 RUN

210 PRINT AT 10,3;"BHB"; AT 11,5;"tl*"

220 PRINT AT 12,7,"HHH»HHHB"

230 LET A= 11 + INT[9*RND]

240 PRINT AT 12,A;" "

250 RETURN

N. B. The string in line 220 consists of 15 GRAPHIC SHIFT/H

characters.

The "0" in line 10 should be inverse video.

17

Balloon

This is a game requiring skill and accurate judgement and needs
to be played a few times before you can hope to achieve a safe
landing. You are controlling the flight of a hot air balloon which
you must raise into the air and land again at a specified destinat-
ion. The screen displays five flight parameters, the mass is the
number of sandbags that you have on board, these can be discar-
ded one at a time by holding down the "M" key. The "Heat" is
the burner setting and controls the upward thrust, this can be set
from 0 - 9 by holding down the appropriate key. Whenever the
heat is turned on fuel is used up, and the remaining fuel is dis-

played. The altitude and distance from the specified destination
are also shown. As you rise you will catch faster breezes and
your speed will increase.

A safe landing is defined as hitting the ground within 20
metres of the destination (the distance is displayed in units of
ten metres). Common errors are trying to carry too many sand-
bags and not being able to get high enough (or even off the
ground) without running out of fuel or alternatively travelling
too high and overshooting the target. A balloon travels from right
to left across the screen as an added indication of position, the

left edge representing the target. The keys don't react immediate-
ly as they are scanned every second (approx.) so hold them down

until the screen registers a reaction. After landing press any key

to play again.

TECHNICAL NOTES

Lines 10 to 70 initialise the screen and variables.
Lines 80 to 190 form the main program loop, continuously
monitoring the keyboard and updating flight parameters.

Lines 200 to 250 analyse the landing.

18

10 CIS
20 LET D= 1500
30 LET M = 10
40LETF = 300
50LETA=0
60LETH = 0
70 PRINT

"MASS HEAT FUEL ALT DIST"
80PRINTAT1,0;M;" "; TAB 7 ;H; TAB 14 ; F;" ";AT

1,21;A;" ";AT1,28;D;" "
90 IF A-0 AND D<1500 THEN GOTO 200

100LETA$=INKEY$

110IFA$ = "M"THENLETM = M-1
120 IF M< = 0 THEN LET M = 0

130IFA$> = "0" ANDA$< = "9"THENLETH=VALA$
140LETF = F-H

150LETA=INT[A+20*H/[10 + M]-5-M/5]
160 IF A< = 0 THEN LET A=0

170LETD = D-A

180 PRINT AT 3,ABS[D/50];"B "
190 GOTO 80

200 IF ABS D> = 2 THEN GOTO 240
210 PRINT "SAFE LANDING"

220 PAUSE 9999
230 RUN
240 PRINT "CRASH"
250 GOTO 220

N.B. The character "B" in line 180 and the text in lines 210 and
240 will benefit from being inverse video.

19

Spell

This simple little game will provide both an amusing competit-
ion to play against opponents and also a fascinating insight into
the way the human mind remembers things. The program gener-
ates a string of up to 15 letters selected at random, the string
length being a random variable also. The string (or word) is dis-
played for a few moments, longer for longer words, and when it
disappears you have to enter it into the computer as best you can
remember it. Your answer is checked by the computer and a
score is given. Press newline for another go. It will be instructive
to keep score noting what lengths of words you can most easily
remember. The equation in line 80 determines the length of time
that each word is displayed for, the variable A is the word length.
Try altering this equation until you get a consistent pass/fail rate
independent of word length.

TECHNICAL NOTES

Variables A, length of string. (How long is it . . .)
A$, String.
Bf, Your guess.

N, Dummy FOR NEXT variable
Lines 10 to 50 generate the string

Lines 70 to 90 print it for a calculated amount of time.
Lines 110 to 160 analyse results.

20

10LETA=INT[15*RND+1]
20LETA$=" "
30FORN = 1TOA
40 LET A$=A$+CHR$[38 + 25*RND]
50 NEXT N
60 CIS
70 PRINT A$
80FORN = 1 TO2*A+0.5*A**3
90 NEXT N

100CLS
110 INPUT B$
120 IF AoB THEN PRINT B$, "WRONG"
130 PRINT A$,"CORRECT"
140 INPUT B$
150CLS
160 GOTO 10

Use inverse video text in lines 120 and 130.

21

Truth Table

This is a real brain teasing puzzle that tests your powers of
logical analysis. The computer generates a logical expression
equating Z to a function of P, Q&R and you have to work out
the truth table for that function.
A typical equation might be :

Z=P AND (Q AND R OR P AND Q) OR Q
in which case the truth table would be :

P Q R Z Boolean algebraic expressions such as
0 0 0 0 the one above are often written using
0 0 1 0 the following notation :
0 1 0 1
0 1 1 1
1 0 0 0 A.B means A AND B
1 0 1 0 A+B means A OR B
1 1 0 1 A" means NOT A
1 1 1 1 .

In analysing such expressions the follow-^^
ing theorems are useful :
1 A+B.C=(A+B).(A+C)
2 A.(B+C) = A.B + A.C
3 A + A.B = A

4 A + A.B = A + B
5 A.B + A.B = A

6 A.B + A.C-.(A + C MA+_B)
7 A.B + B.C + A.C = A.B +A.C

Considering the example expression above we can see that
P. (Q.R+P.Q) + Q can be reduced to P.Q.(R + P) + Q using
theorem 2, and again to simply Q using theorem 3.

When you have written down your guess at the truth table on
paper, press newline and the computer will give its version for
you to check against.

22

TECHINCAL NOTES

Lines 10 to 80 generate the random logical expression as a string
contained in Bf, this is augmented by bracketed subexpressions
formed by the routine at lines 200 to 379.

Lines 90 to 190 print the truth tables, evaluating B$ by use of
the VAL function.

10 RAND
20LETB$="P"
30FORN = 1TO5
40 LET B$=B$+CHR$[217 + RND]
50 IF RND<.3 THEN LET B$ = B$+CHR$215
60 IF RND<.6 THEN GOTO 200
70 LET B$=B$+CHR$[53 + 2*RND]
80 NEXT N
90 PRINT "Z= ";B$

100 PRINT "RQPZ"
110 INPUT A$
120FORR = 0TO1
130FORQ=0TO1
140FORP=0TO1
150 PRINT R;Q;P;" ";VALB$
160 NEXT P
170 NEXT Q
180 NEXT R
190 STOP

200LETB$=B$+"["
210 LET B$ = B$ + CHR$[53 + 2*RND]

220FORM = NTO5*RND
230 LET B$ = B$+CHR$[217 + RND]
240 IF RND<.3 THEN LET B$ = B$+CHR$215
250 LET B$=B$+CHR$[53 + 2*RND]

260 NEXT M

270LETB$=B$+"]"
280LETN = M
370 GOTO 80

23

Momentum

This program (and SPHERES) will test your skill at mental
arithmetic. You may choose a level of difficluty from 1 to 3
when prompted. The computer draws two trains, one stationary
the other approaching it from the left. When the two collide
the momentum of the first is transferred entirely to the second

without any loss. Given the speed and mass of the first train and
the mass of the second, you must calculate the resultant speed
of the second train. Your answer is marked and you are given

the chance to have another go by pressing newline. Keep a
score of your results and use this program to improve your

mental arithmetic.

TECHNICAL NOTES

Lines 50 to 100 generate the random masses and speeds. Notice
how the level of difficulty, A, is included in the equations in

Lines 50, 60 and 70.
Lines 130 to 200 draw the trains in motion.
Lines 220 and 240 analyse your answer and mark it correct if
it is within 0.01 of the correct value.

24

10CLS
20 RAND

30 PRINT "LEVEL 1-3"
40 INPUT A

50 LET M1 =INT[RND*10**A]
60 LET M2 = INT[RND*10**A]
70LETV1=INT[RND*10**A]

80LETV2 = M1*V1/M2
90 PRINT "1ST

TRAIN ";M1;" TONS AT ";V1;" MPH"
100 PRINT "2ND TRAIN ";M2;" TONS"
110 PRINT "PRESS N/L"
120 INPUT A$

130 FOR N = 0 TO 15
140LETA=SINA

150 PRINT AT 12,N; " aHB";AT12,19;"!IHH";AT

13,N;" BBB";AT13,19;"HBB"
160 NEXTN

170FORN-19TO28

180LETA=SINA

190 PRINT AT12,N;" BHB";AT13,N;" HBH"
200 NEXT N

210 PRINT "ENTER SPEED OF 2ND TRAIN"

220 INPUT A

230IFABS[A-V2]> = 0.01 THEN PRINT A;" WRONG"
240 PRINT V2; "CORRECT"

250 INPUT A$
260 RUN

25

Letters
Have you ever wanted to tell someone something but not

known quite how to put it? Well here's your chance say it

with letters and with letters this big they are bound to get

the point.
This program allows you to enter a sentence, or any string

of characters, and displays it in characters that are either four

or eight times as high as usual. First enter the letter L (large)

or S (small) to select the size. Next enter your message, using

up to 50 characters with codes in the range 0 to 63. Refer to

pages 181 /182 of the manual if in doubt, but in short this incl-

udes all the letters, numbers and punctuation marks, but not

inverse video characters or keywords. The message will then

scroll up the left hand side of the screen.

This program must have a lot of practical joke potential,

imagine someone coming home, switching on the T.V. (unaware

that a ZX81 with this program running is hidden somewhere

behind it) and seeing a personal message on the screen in two

inch high letters.

TECHNICAL NOTES

This program relies on the ZX81 character set being stored in

ROM starting at location 7,680. Eight bytes are used to repres-

ent a character so that for example the letter "P" is stored

something like this : 00000000

Hold this at a distance and you 01111100

should be able to make out the 01000010

letter. 01000010

Notice the FOR NEXT loop 01111100

from lines 50 to 100 where 01000000

each bit from left to right 01000000

of a byte is analysed. The 00000000

larger loop from 20 to 110

prints a whole character.

26

Line 40 is of particular interest as it scrolls up on every line for
large characters or alternate lines for small letters. Notice also

the second co-ordinate in the PLOT statement of line 90. This is

a logical expression, and so takes the value 1 or 0, alternately as

C is odd or even.
Lines 130 to 220 are the main program that accepts the message.

Lines 20 to 120 form the powerful subroutine that prints out a

character.

10 GOTO 130
20FORC = ATOA+7

30LETB = PEEKC
40 IF B$= "L" OR B$= "S" AND C/2 = INT[C/2] THEN

SCROLL
50FORN = 1 TO 8
60 LET B = 2* [B-256*INT[B/256]]
70 IF B> = 256 AND B$="L" THEN PRINT "•";
80 IF B<256 AND B$="L" THEN PRINT "H";
90 IF B> = 256 AND B$="S" THEN PLOT

N-1,C/2=INT[C/2]
100 NEXTN
110 NEXTC
120 RETURN
130 PRINT "L OR S"
140 INPUT B$
150CLS
160 PRINT "MESSAGE"
170 INPUT A$
180FORM = 1 TOLENAS
190 LET A-7680 + 8*CODE A$[M]
200GOSUB20
210 NEXT M
220 GOTO 180

27

Spheres

Like the momentum program this one tests your powers of
arithmetic. The computer draws a sphere and gives you its dia-
meter from which you have to calculate its volume. Your ans-
wer is marked as correct if it is within 0.5 of the computers'
answer. At the beginning you can select your level of difficulty
and at the end you can press newline to be set another problem.

TECHNICAL NOTES

Lines 10 to 105 draw the sphere and give its' diameter. Notice
the use of SIN and COS in the coordinates of the PLOT state-
ment in line 80.
Lines 150 to 210 analyse your results.

28

10 RAND
20CLS
30 PRINT "ENTER LEVEL 1 OR 2"
40 INPUT A
50 SCROLL
60 PRINT AT 0,0; "LEVEL ";A
70 FOR N = 0 TO 20
80PLOT5+4*SIN[N*PI/10],10+4*COS[N*PI/10]

90 NEXT N
100 PRINT AT21,0;"<—> DIAMETER IS ";

110 LET B = INT[RND*10**A]

120 PRINTS
130 SCROLL
140 PRINT "ENTER VOLUME"

150 INPUT C
160 SCROLL
170 SCROLL
180 IF ABS[C-PI*B**3/6]> = .5 THEN PRINT C,"WRONG'

190 SCROLL
200 SCROLL
210 PRINT INT[PI*B**3/6+.5],"CORRECT"

220 INPUT A$

230 RUN

29

Monitor

This program allows you to look at parts of memory and poke
bytes into memory. This will be very useful if you wish to look at
the ROM routines, or write your own machine code programs and
poke them into RAM. When you run the program you will first be
invited to enter an address in decimal. The computer will then
print out this address in hexadecimal followed by its contents
(also in hex) and the character representation of its contents. The

screen will then start scrolling up displaying each successive byte
in the memory. You can stop this process by holding down the
newline key. If you press the "X" key you can enter another dec-
imal address and examine a different area of the memory. Pressing
the "I" key will allow you to change the last byte by entering a
new value in hex. n-essing "R" followed by entering the letters
"R-U-N" will execute a machine code subroutine starting at the
last address displayed on the screen.

TECHNICAL NOTES

Lines 30 to 100 form the routine that displays the hex value
of A (lines 40 to 80) the hex value of itscontents (lines 90 to

100) and also the character representation of those contents. The
FOR NEXT loop in lines 50 to 80 is not the neatest way to decode
a decimal number to a 4 digit hex one, but it is certainly one of
the quickest, avoiding lengthy operations such as exponentiating.
Lines 220 to 280 check to see if any keys have been pressed..
Lines 300 to 320 enter a byte into memory.
Lines 400 to 420 execute a USR subroutine.

30

10 REM XXXXXXX- -64 times- =XXXXXXX
20 GOTO 200
30 PRINT AT 6,0
40LETB = 65536
50FORM = 1 TO 4
60 PRINT CHR$[28 + INT[16*[A-B*INT[A/B]]/B]];

70LETB = B/16
80 NEXT M
90LETB = PEEKA

100 PRINT TAB 6;
CHR$[28 + INT[B/16]];CHR$[28 + B-16*INT[B/16]];TAB9

;CHR$ B
110 SCROLL
120 GOTO 220
200 INPUT A
210 GOTO 30
220LETA$=INKEY$
230LETA=A + [A$=" "]
240IFA$=" "THEN GOTO 210
250 IF A$= "X" THEN GOTO 200
260 IF A$="l" THEN GOTO 300
270 IF A$="R" THEN GOTO 400

280 GOTO 220
300 INPUT A$
310 POKE A,16*[CODEA$[1]-28] + CODEA$[2]-28

320 GOTO 210
400 INPUT A$
410 IF A$="RUN" THEN PRINT USR A
420 GOTO 210

31

Chase

This is a mad panic chase to catch an alien who is emitting
hazardous radiation. Many people have died already and it is now
up to you to stop him in his tracks. Fortunately you have your
radiation level (Geiger-Muller) detector with you so you can see
when you are getting close. You start from the top left corner and
the inverse video character (0 to 9 followed by A to Z) indicates
your distance, Z meaning a long way off. You can move up, down
left and right by pressing the cursor movement keys. When you
catch him you are told how many moves you took and you are
invited to press newline to have another go.

TECHNICAL NOTES

Lines 10 to 70 initialise the variables and clear the screen.
Lines 70 to 150 form the main program loop.
X,Y are your coordinates, whilst A,B are those of the alien.
Notice how lines 110 to 140 alter these coordinates by using logic-
al expressions such as (INKEYs ="8").
The PRINT AT statement in line 50 has built in safeguards to
ensure that it doesn't try to print off the screen.

10 RAND
20LETA=INT[20*RND]
30LETB = INT[30*RND]
40LETX-0
50LETN = 0
60LETY=0
70CLS
80 PRINT AT ABS[Y-20*INT[Y/20]],

ABS[X-31*INT[X/31]];
CHR$[156 + ABS[Y-A]+ABS[B-X]]

90LETN = N + 1

100 IF A=Y AND X = B THEN GOTO 160
110LETX = X+[INKEY$="8"]-[INKEY$="5"]
120 LET Y=Y+ [INKEY$= "6"] - [INKEY$= "7"]
130LETA=A+[RND<.2]-[RND<.2]
140LETB = B + [RND<.2]-[RND<.2]
150 GOTO 70
160 PRINT AT 0,0; "CAUGHT IN ";N;" MOVES"
170 INPUT l$
180 RUN

i »

32 33

Vols

This is a useful conversion program that will tell you how many

glasses of beer you can drink after we go metric, and still drive

home. It converts from imperial measure, Gallons, Pints and Fluid

Ounces to metric litres. First enter IMP or MET and then the

volume that you want converted. The program will immediately

give you the equivalents. Press newline for another go.

TECHNICAL NOTES

Conversion from Imperial to Metric can be done in one line,

line 200, but the reverse takes 4 lines (lines 90 to 120). Having

done the calculations line 220 prints the results.

10 PRINT "ENTER IMP OR MET"
20 INPUT l$
30 IF |$= "IMP" THEN GOTO 140
40PRINT,,"ENTERVOL"
50 INPUT M
60 PRINT "ENTER UNIT LTR OR ML"
70 INPUT l$
80 IF I$="ML" THEN LET M = M/1000
90 LET F=M*160/4.545960

100LETG = INT[F/160]

110LETP = INT[F/20]-8*G
120LETF = F-20*P-160*G
130 GOTO 210

140 PRINT,,"ENTER GALS"
150 INPUT G
160 PRINT,,"ENTER PINTS"
170 INPUT P
180PRINT,,"ENTERFLOZS"
190 INPUT F

200 LET M = 4.54960*[G + P/8 + F/160]
210 CIS
220 PRINT M,"LITRES",,," EQUALS",,G,"

GALLONS AND ,,,P,"PINTS AND",,,F,"FLUID OUNCES"
230 INPUT l$
240 CLS
250 RUN

34 35

Temp

This program converts between the three temperature scales
currently in use. Centigrade (or Celsius), Fahrenheit and Kelvins.
Zero degrees centigrade or thirty two fahrenheit is the melting
point of ice, whilst zero Kelvins is absolute zero, the lowest

temperature that any material can reach. That which appears
on the macroscopic scale as the property we all understand as
temperature, appears on the sub-microscopic scale as the rate of
movement (oscillation) or excitation of molecular particles. Ab-

solute zero is the temperature at which they all come to rest —
so now you see why it is "absolute".

TECHNICAL NOTES

The key to this program is line 50 where the temp in degrees
Fahrenheit is evaluted from the input data. This is then converted
to the two other scales (lines 60 and 70) and printed out (lines
80 and 90).

This program could probably just be written in three lines,
by entering the temp T following by the units As and combining
lines 50 to 90 into one enormous print statement.

You may wish to try it as an exercise.

36

10 PRINT AT 0,0;"ENTER TEMP"
20 INPUT T
30 PRINT T,,,,"ENTER F,C OR K"
40 INPUT A$

50LETF=[A$="F"]*T+[A$="C"]*[32 + 9*T/5]
+ [A$="K"]*[32 + 9/5*[T-273]]

60LETC = 5/9*[F-32]
70LETK-C + 273
80 PRINT,,F; TAB 13;"FAHRENHEIT"

90 PRINT,,C; TAB 13;"CENTIGRADE"',,,K; TAB
13;"KELVIN"

37

Passengers
In this game, you are a train driver taking an early morning

commuter train into a major city, stopping at five stations along
the route. There are a number of trains at about this hour in the
morning and so if the passengers on the platform can't see a place
to sit, they usually wait for the next train. The cumulative effect
of this behaviour is that the number of passengers that get on at
each station is directly proportional to the number of carriages
that you can line up against the platform. So if you stop short
or overshoot then you lose passengers and create more congestion
for later commuters. In total if you can pick up 400 passengers by
the time you reach the city you will have been successful in
preventing the build up of congestion later. You can control the
acceleration by pressing keys 5 to 9 and the braking by keys 1
to 4. 1 is maximum braking and 9 is maximum acceleration. The

display shows the number of the station that you are heading
towards, the number of passengers on board, your acceleration
(braking is negative acceleration) your velocity and the distance
from the next station. If you stop more than 100 metres from the
station then you won't pick anyone up whereas if you stop in

exactly the right place you could take on a hundred passengers.

TECHNICAL NOTES

Lines 10 to 40 initialise the variables and the display.
P = no. of passengers, N = no. of next station, A =acceleration,
V = velocity, and D = distance from next station.
For each station you continue around the loop 80 to 160 until

the train stops.
Line 170 adds to the number of passengers according to the
distance from the station.

10LETP = 0
20LETA=0
30LETV = 0
40 PRINT "STAT PASS ACEL VEL DIST"
50FORN = 1 TO 5
60 LET D1 = 1000*INT[RND*5+1]
70LETD = D1
80LETA$=INKEY$
90 IF A$= " " THEN GOTO 120

100LETA=CODEA$-33
110 IF A$= "0" THEN LET A=0
120LETV=V+A*400/[P + 400]
130IFV< = 0THENLETV = 0
140LETD = D-V*3
150 PRINT AT 1,0;N;TAB6;P;TAB12;A;" ";AT

1,18;INTV;" ";AT 1,24; INTO;" "
160IFV<>0ORD> = D1 THEN GOTO 80
170 LET P = P+50-5*ABS[D/10] +ABS[50-5*ABS[D/10]]
180 NEXT N
190 IF P>=400 THEN PRINT "SUCCESSFULTRIP"
200 INPUT A$
210RUN

38 39

Snap

This game tests your skill at recognising sequences of letters
quickly. You have to enter a word of between 5 and 15 characters
in length. It is better to enter a well known word or one that you
will easily recognise, but it will be cheating to enter a word with
letters repeated. The letters of this word will then flash onto the
screen in a jumbled up fashion for less than a second. This will
happen twenty times at random intervals. During each display you
have to match the word on the screen with the one originally
entered and estimate how many letters correspond. If you think
it is a lot then press the "0" key quickly before the word diss-

appears again. Once you have pressed "0" then no more words
will be displayed, but the word that you have chosen will be

compared with the original and the number of letters correspond-
ing will be given as your score. If you have more than 50% of
the letters correct then you are considered a winner. Press newline
for another go.

TECHNICAL NOTES

Lines 70 to 230 form the main program loop in which the inner
loop 100 to 170 generates and prints, a character at a time, a

jumbled up version of the word entered. A$ contains the original

word, and the letters are taken from this at random and put into
the string B$. In order not to take the same letter twice, as each

letter is taken it is replaced by an inverse video letter in A$. When
the next jumped up word is formed they are turned back from
inverse video to normal letters. This process alternates.
Line 220 switches C from +1 to - 1 alternately.

Lines 240 to 310 analyse your results.

10 FAST
20 CIS
30 INPUT A$
40LETB = LENA$
50 IF B<5 OR B>15 THEN GOTO 30
60 LET C = 1
70 FOR M = 1 TO 20
80LETB$ = " "
90 PRINT AT 0,0;

100FORN = 1 TOB
110LETA=INT[RND*B + 1]

120LETD = CODEA$[A]
130 IF C*D>C*160 THEN GOTO 110
140LETA$[A]=CHR$[CODEA$[A]+C*128]

150LETB$=B$+A$[A]

160 PRINT A$[A];
170 NEXT N
180PRINT,M
190 PAUSE 20+B
200 POKE 16437, 255

210 IF INKEY$="0" THEN GOTO 240

220LETC=C-2*SGNC

230 NEXT M
240LETM=0

250 SLOW

260 FOR N = 1 TOB
270 IF A$[N] = B$[N] THEN LET M = M + 1

280 NEXT N
290 PRINT A$,M;" OUT OF ";B
300 PRINT 100*M/B;" PER-CENT"
310 IF M/B>.5 THEN PRINT "WINNER"

320 INPUT A$
330 RUN

40 41

Break In

This is a poor mans version of a popular game of a similar
name (poor in the sense that he only has 1K to play with). A wall
of bricks, precariously placed, has to be destroyed by bouncing a
ball against it. As each brick is hit it disappears out of the wall,
and the ball rebounds. The ball has 10 lives and one is lost each
time it hits the bottom edge of the court. To stop such collisions,
a paddle can be moved from left to right across the screen, to hit
the ball. Use the cursor movement keys 5 & 8 to control it.

TECHNICAL NOTES

Lines 10 to 50 draw the board.
LinesGO to 110 initialise the variables.
A & B are the ball co-ordinates, X is the paddle position. A1 & B1
represent the direction of motion of the ball.
Lines 110 and 120 PEEK the next ball position to see if it is going
to hit anything, if it does, then its vertical direction is reversed

(line 160).

10FORA=1TO3
20 FOR B = 0 TO 14 STEP 2
30PRINTATB/2,16;" ";ATA,B + [A/2 = INT[A/2]];"B";
40 NEXT B
50 NEXT A
60 LET L= 165
70LETX=8
80LETB = 9
90LETA1--1

100LETB1 = 1

110 LET D = PEEK 16396+256*PEEK 16397
120LETD=PEEK[D+B+18*A+1]
130LETL=L-[A+D=7]

140 PRINT AT A,B;CHR$L;AT7,X;" mm "

150LETX=X-[INKEY$="5"] + [INKEY$="8"]
160LETA1=A1-2*A1*[D=128]+2*[A=0]-2*[A=7]
170LETB1=B1+2*[B = 0]-2*[B = 16]
180 PRINT AT A,B;" "
190LETA=A+A1
200LETB=B+B1
210 IF L0155THEN GOTO 110

42 43

Message
This program and the next rely upon a couple of machine code

subroutines which must first be poked into a REM statement
before the rest of the program can be written. First enter the
program (line 10 to 70) at the top of the page, run the program
and enter the 71 bytes of machine code that are listed. Next

delete lines 20 to 70 and make a recording of the REM program
with just the REM statement as this will be useful for the next
program. Now continue entering lines 20 to 160 from the program
at the bottom of the page.

When run, the program invites you to enter a message of up to

70 characters, (with codes in the range 0 to 63) but not inverse
video characters or keywords. After pressing newline,the message
will move across the top of the screen from right to left in very
large letters. At the end your message will be repeated so don't
forget to leave some space at the end of the message.

You may wish to alter the foreground or background shades
of the characters. 16579 is the foreground address and 16536 is
for the background. POKE 16536,136 for example, will cause
a grey background to be generated.

TECHNICAL NOTES

As with the letters program earlier in the book, this program
relies upon the character set being stored in ROM. For each
character to be displayed the Basic program pokes eight bytes
from the character set into an area of RAM in the REM statement
(lines 70 to 110). Most of the rest of the work is done by the two
machine code subroutines.

The one at 16558 displays a column of eight character
positions at the extreme right of the screen and the routine at
16514 moves the top lines of the display one position to the
left.

Lines 20 to 40 are used to pad out the display file.

44

10 REM XXXXXX-75 times--XXXXX
20 FOR N = 16514 TO 16584
30 INPUT l$
40 SCROLL
50 PRINT l$

60POKEN,16*[CODEI$[1]-28]+CODEI$[2]-28
70 NEXT N

Insert the following bytes of hexadecimal:

00 2A 0C 40 ED 5B 0C 40 3E 08 32 82 40 13 23
23 01 1F 00 ED B0 3E 00 12 13 3A 82 40 3D 20
EB 32 82 40 C9 80 80 80 80 80 80 80 80 80 11
A6 40 2A 0C 40 06 08 0E 20 23 0D 20 FC 1A CB
07 12 30 02 36 80 23 13 10 EE C9

Delete lines 20to 70, do NOT touch line 10.

10 REM machine code routines —-
20FORN = 0TO7
30PRINTATN,31;" "
40 NEXT N
50 INPUT l$
60FORN = 1TOLENI$
70 LET A=7680 + 8*CODE I$[N]
80FORC = 0TO7
90 POKE 16550 + C,PEEK[A + C]

100 NEXT C
110FORC = 0TO7
120 LET L=USR 16558
130 LET L=USR 16514
140 NEXTC
150 NEXT N
160 GOTO 60

45

Duckshoot
This program uses the machine code subroutines stored in

the REM statement of the previous program (Message), so if you

havn't already done so, turn back and enter the machine code

before you try to write the rest of the program. You will also

need to poke eight bytes of data into the REM statement as

detailed at the bottom of the program. When the program is
run, a continous row of ducks move across the top of the

screen. Unlike common fairground ducks these are bionic (just

look at the size of them) and they can only be knocked out

effectively by being struck on the beak. Your missiles start at

the bottom left of the screen and you must judge your moment

to press "0" to fire the missile towards the sitting targets. If you

miss you automatically get another go, if you hit, then the

screen will clear.

If you wish to stop the program then press "Q" rather than

BREAK as the latter will mean that you have to re-poke the

data into RAM.

TECHNICAL NOTES

Lines 20 to 50 fix the size of the display file. Line 80 pokes

different characters into the foreground display address, as the

ducks move across the screen.

The duck is made up as follows :-

C= 01234567

POKE 16550,0 00000000

POKE 16551,0 00000000

POKE 16552,98 OMOOO/0

POKE 16553,252 MMMOO

POKE 16554,60 OOMNOO

POKE 16555,24 OOOMOOO

POKE 16556,0 00000000

POKE 16557,0 00000000

10 REM machine code routines —-

20CLS
30FORN = 0TO7

40PRINTATN,31;" "
50 NEXT N
60LETN = 21
70 FOR O0 TO 7

80POKE16579,128-108*[C = 0]-104*[C = 6]
90PRINTATN,0;"0"

100 LET L= USR 16558
110 LET L-USR 16514
120 PRINT AT N,0;" "
130LETN = N-[N<21] + 22*[N = 0]
140LETN = N-[INKEY$="0"]
150 NEXT C
160 IF INKEY$ = "Q" THEN STOP
170 IF N = 3 THEN RUN
180 GOTO 70

The following data should also be poked into RAM.

POKE
POKE

POKE

POKE

POKE
POKE

POKE
POKE

16550,0

16551,0

16552,98

16553,252

16554,60

16555,24

16556,0

16557,0

46 47

Calendar

In the mid 1st century B.C. Julius Caesar invited an Alex-
andrian astronomer, Sosigenes to advise him about reforming
the Lunar calendar. Sosigenes suggested that the old system
should be abandoned, and a new "Julian Calendar" was started
based around a 365% day year. This was achieved by adding an
extra day to February in every fourth year and calling it a leap
year. By the mid 16th century, however, the vernal equinox
had moved by ten days from its proper position because the
Julian basis of 365% days was 11 mins and 14 seconds longer
than the true tropical year. Pope Gregory XIII was elected in
1572 and sought the advice of a Jesuit astronomer Christopher
Clavius to correct the errors. This resulted in losing ten days
in October 1572 (the 15th followed immediately after the 4th)
and a new system, the "Gregorian" calendar, in which 3 out of
4 centenery years are not leap years.

This program uses the Gregorian calendar to display the
days of any month since October 1572. Simply enter the year
and the month as pompted and the computer will display a
calendar. Unfortunately (I will blame lack of RAM) every
month is shown as having 31 days, so don't get caught out.

TECHNICAL NOTES

Df contains the first 3 letters of the days of the week. M$
contains 12 numbers, being the accumulated errors, modulo
7, for each month, that arise by assuming that each month
has 28 days. For example, if you assume that January has
28 days (it has 31) then when you reach February you will
be 3 days out of step, so the 2nd entry is 3.

48

Line 70 adds extra leap year days.
In line 150 the complex expression starting (M0< 3)* determines
if the year is a leap year and if the month is Jan. or Feb. .
Line 170 prints out the days of the week.

10 PRINT "YEAR"
20 INPUT Y
30 PRINT "MONTH 1-12"
40 LET M$= "033614625035"
50LETD$="SUNMONTUEWEDTHUFRISAT"
60LETN = Y
70 LET M = N + INT[N/4]-INT[N/100] + INT[N/400]
80 INPUT MO
90CLS

100 FOR A=0 TO 6
110FORB = 0TO4
120LETC = 7*B + A+1

130 IF C< = 31 THEN PRINT AT A,B*3;C
140 NEXT B

150LETC = M+A+CODEM$[MO]-28-[MO<3]*
[[N/4=INT[N/4]]-[N/100 = INT[N/100]] +
[N/400 = INT[N/400]j]

160LETC = C-7*INT[C/7]
170 PRINT AT A,15;D$[3*C+1 TO3*C + 3]
180 NEXT A

190PRINT,,MO;"-";Y

49

Biorhythm

According to biorhythm theory, our intellect, emotions and
vitality rise and fall in cycles of 33, 28, and 23 days respectively.
These cycles start at birth and continue until the day we die. It
is interesting therefore to find out which day of each cycle we
are in at any time. It is also interesting to do this for famous
people such as politicians on election day and so on.

The program starts by asking you to enter 3 numbers (press-
ing newline after each) for the day month and year of birth
(use e.g. 1947 not just 47 for year). The computer will then
prove how smart it is by telling you which day of the week that
was, and ask you for today's date (or the date of the analysis).
The computer will then print out the day of each cycle in the
form INTELLECT 17 meaning day 17 of the 33 day intell-
ectual cycle.

TECHNICAL NOTES

This program only just fits into 1 K, so don't be tempted
to add your own frills, and if it won't work this may be due to
having a non-empty gosub stack. This may be cleared by exe-
cuting RETURN as a command until the error 7/0 appears,
showing it is empty.

The key to this program is the subroutine at 110 which
accepts the Day (1 -31), Month (1 - 12) and Year, prints out the
day of the week and returns in N the number of days since 1st
Jan. 0000. This makes the false assumption that the Gregorian
calendar was in use then, but the error from this is removed

when the N value for birth is removed from the N value for
today (line 60). For further explanation see the previous

program, Calendar.

10 PRINT "BORN D-M-Y"
20 GOSUB 110
30LETN1=N
40PRINT,,"TODAY"
50 GOSUB 110
60LETN = N-N1

70 PRINT "INTELLECT ";N-33*INT[N/33]
80 PRINT "EMOTION ";N-28*INT[N/28]
90 PRINT "VITALITY ";N-23*INT[N/23]

100 STOP
110 INPUT D
120 INPUT M
130 INPUT Y

140 LET N=Y*365 + INT[Y/4] + INT[Y/400]-INT[Y/100]-[M<3
AND Y/4=INT[Y/4] AND [Y/100 = INT[Y/100] OR Y/400 =
INT[Y/400]]]

150 LET M$= "231223345566"

160 LET N = N+CODE M$[M]+30*[M-2] + D
170LETP=N-7*INT[N/7] + 1
180 LET M$="SASUMOTUWETHFR"

190 PRINT M$[2*P-1 TO 2*P];" ";D;"-";M;"-";Y
200 RETURN

50 51

This program will accept a number to any base and convert

it to any other base in the range 2 - 36. The limit 36 has been

used because there are 36 symbols in the range 0 - 9 followed by

A - Z. These symbols are used in this order so that the numerals

have their normal weighting and A = 10, B = 11 up to Z = 35.

When entry and result bases have been selected, the symbol

range is printed and you are invited to enter a number using

those symbols. The program (which takes about a minute to

work this one out) then prints out its conversion.

The accuracy and range are limited only by the way in which

the computer stores floating point numbers. That is up to 10 to

the power of 38 to 9 decimal places. Fractional and negative

numbers should not be entered.

TECHNICAL NOTES

Lines 10 to 70 enter the numbers and print out the symbol
range.

The FOR-NEXT loop 90 - 110 evaluates D, the decimal equiv-

alent of the number entered in D$ to the base A.

The FOR-NEXT loop 130 to 170 evaluates B$ as the base B

representation of the decimal number D.

Line 150 removes leading zeros.

The complicated expression in line 140 is to provide greater

accuracy. Sometimes D/B**0 is evaluated as marginally less

than D and so INT (D/B**0) gives an error in the last digit

of the number B$.

52

10 PRINT "ENTRY BASE 2-36 ";
20 INPUT A
30 PRINT ">»";A,,,"RESULT BASE 2-36";
40 INPUT B
50 PRINT ">»";B,,,"SYMBOL RANGE 0

TO ";CHR$[A + 27]

60 INPUT D$
70PRINT,,"BASE ";A;"»";D$
80LETD=0

90 FOR N = LEN D$ TO 1 STEP -1

100 LET D = D + [CODE D$[N]-28]*A**[LEN D$-N]
110 NEXTN

120LETB$=" "

130FORN = 20+10*[B< = 10]T00STEP-1

140 LET B$=B$+CHR$[[N<>0]*INT[D/B**N] + [N=0]*D+28]
150IFB$[1] = "0"THENLETB$=" "

160 LET D=D-B**N*INT[D/B**N]

170 NEXT N

180 PRINT AT 10,0; "BASE ";B;">»";B$

53

Bases

Solitaire

This is a game for one player (surprise, surprise !). The object
is to remove each peg from the board (represented here as "0"
characters) leaving one peg in the centre. Pegs may be moved in
any direction except diagonally. On each move a peg must jump
over an adjacent peg into a vacant hole beyond, the peg passed
over is then removed from the board. Play continues until a
solution has been reached with just one peg left in the centre,
or a stalemate situation is reached.

Use the cursor key (5 - 8) to move the flashing cursor to the
piece to that you wish to move. Press "0" and the cursor "X"
will stop flashing. Now press another cursor key to indicate
the direction in which you wish to move. If this is legal the jump
will be made, otherwise the cursor will resume flashing.

I dedicate this program to a young lady who, when shown
a solution to this puzzle, said that she could do it in less moves.

TECHNICAL NOTES

Lines 10 to 50 draw the board.
Lines 70 to 80 peek the board and store in B$ the character at
the cursor position on the board. The main loop 70 to 130
allows the cursor to be moved around the board.

Lines 160 to 220 detect the legality (line 200) of a proposed
move, and make the move (line 210).

10FORX = 2TO4
20FORY=0TO6

30PRINTATX,Y;"0";ATY,X;"0";AT3,3;"B";AT
Y,7;" "

40 NEXT Y
50 NEXT X
60LETY=0

70 LETC=1+X + 9*Y+PEEK16396 + 256*PEEK 16397
80LETB$=CHR$PEEKC
90PRINTATY,X;"X"

100 PRINT AT Y,X;B$

110 LET X = X + [INKEY$= "8" AND X<6] - [INKEY$= "5" AND
X>0]

120 LET Y-Y+ [INKEY$= "6" AND Y<6]- [INKEY$= "7" AND
Y>0]

130 IF INKEY$<>"0" THEN GOTO 70
140 PRINT AT Y,X;"X"
150 IF INKEY$<>" " THEN GOTO 150
160 PAUSE 40000
170LETA=VALINKEY$
180LETX1 = [A=8]-[A=5]
190LETY1=[A=6]--[A=7]
200 IF B$0"O" OR PEEK [C+X1 +9*Y1]<>52 OR PEEK

[C+2*X1 + 18*Y1]<>136 THEN GOTO 100
210PRINTATY,X;"H";ATY+Y1,X + X1;"H";AT

Y+2*Y1,X + 2*X1;"0"
220 GOTO 70

Use GRAPHICS SHIFT/H for all graphics characters in lines 30

and 210.

54 55

Minicalc

Minicalc is a very small version of the famous Visicalc pro-

gram. Being only small, it will probably be more use in engineer-

ing and scientific calculations than in business forecasts. The

principle behind the program is simple. You have ten formulae

to calculate ten variables, A - J. Each formula may be a constant

or a function of itself or other variables. Any of the following
are permissible.

1.234; A + B ** SIIM(G); H + 1;

When the program is run the message "1 - 2 - 3 A - J" appears.

The options are :
1: Enter an equation.

2: Display a value

and an equation

3: Calculate new values.

So if, for instance, you wished to enter an equation for variable

C you would select "1C" and then enter the equation. After

this you may wish to display the current value of C and its

equation, so in response to "1 - 2 - 3 A - J" you would select

"2C". Equations can only be 10 characters long, but the ZX81

keyword system means that functions such as SUM,COS which

are entered as one keystroke in function mode, only count as

one character. If you select "3" then the computer calculates

all the new values of the variables starting with equation A. So

if, for instance, equation B refers to variable C, the old value

of C will be taken. Because this program uses up RAM to store

the equation and values, the displayed information is minimal,

and there are no checks for valid inputs, so run the program a

few times to become familiar with it.

56

TECHNICAL NOTES

A (10) stores the values, where A means A (1)

B means A (2)

C means A (3) etc.
A$ (10,10) stores the equations.

The heart of the program lies in lines 110 to 190 where the new

values of each equation are calculated.

For each equation, the string B$ is built up from the approp-

iate equation in A$, but references to variables, such as B,C

etc are translated to A(2), A(3) etc (line 160). When B$ is

complete, the VAL function is applied (line 180) and the new
value of the variable is found.

10DIMA[10]

20DIMA$[10,10]

30 PRINT "1-2-3 A-J"

40 INPUT B$

50 CIS
60 IF B$[1] = "3" THEN GOTO 110

70LETN = CODEB$[2]-37

80 IF B$[1] = "2" THEN PRINT A[N],,A$[N]

90 IF B$[1] = "1" THEN INPUT A$[N]
100 GOTO 30

110FORN = 1TO10

120LETB$=" "

130 FOR M = 1 TO 10

140LETC$=A$[N,M]

150LETB$=B$+C$

160 IF C$> = "A" AND C$< = "J" THEN LET B$= B$[1 TO
[LEN B$ -1]] + "A[" + STR$[CODE C$ -37]'+"]"

170 NEXT M

180 IF B$[1]<>" " THEN LET A[N] =VAL B$
190 NEXT N

200 GOTO 30

57

This is a game about chasing words around the screen and
connecting them together. First you must think of two words,
which when added together give a totally new word, (this isn't
strictly necessary but it makes the game more fun). Examples
are: KNOW/LEDGE SAIL/OR PHOTO/GRAPH DON/

ALDDUCK.
When the program is run, enter the first word (followed by new-
line), then the second word. You will then see the two words
appear at different places on the screen. Your task now is to
move the first word until it joins up with the second one. To do
this you must enter a string composed of the following move
characters R = Right, L = Left; U = Up; D = Down. So if, for
instance, you wished to move down 3 places and right 5 places
then you could enter "DDDRRRRR". If you try to move a
word off the screen, the program will crash. If you don't manage
to get the two words together in the first attempt the second
word will take up a different position and you will have to
enter a new string of moving instructions. When you succeed,
your score, the number of attempts that you needed, will be
displayed. Try to make the connection in the fewest attempts.

TECHNICAL NOTES

X,Y, are the co-ordinates of the first word.

X1,Y1 are the new co-ordinates.
J,K, are the co-ordinates of the second word.
A$ = first word
D$ = second word
B$ = String of move characters
Lines 140 & 150 generate X1 & Y1 from the old co-ordinates.

The FOR - NEXT loop lines 160 to 220 can either run
forwards or, if the word is to be moved to the right, the loop
runs backwards, moving to the last letter first.

10LETW=0
20LETX = 0
30LETY-0
40 INPUT A$
50 INPUT D$
60 CIS
70LETJ = INT[15*RND]

80 LET K = INT[[21 -LEN[A$+D$]]*RND] + LEN A$
90 PRINT AT Y,X; A$; AT J,K; D$

100 INPUT B$
110LETW=W+1
120FORN = 1TOLENB$
130LETC$=B$[N]

140LETX1=X + [C$="R"]-[C$="L"]
150LETY1=Y+[C$="D"]-[C$="U"]
160 IF C$o"R" THEN FOR M = 1 TO LEN A$
170 IFC$="R" THEN FOR M=LEN A$TO 1 STEP -1

180 PRINT AT Y.X+M-1;" ";AT Y1,X1 + M-1;A$[M]
190 NEXT M
200LETX=X1
210LETY=Y1
220 NEXT N

230 IF X+LEN A$=K AND Y=J THEN GOTO 250
240 GOTO 60

250 PRINT "CONNECTED IN ";W;" ATTEMPTS"

58 59
<

Orbital Invaders

The main bulk of this program is written in machine code
and entering it will be a very tedious business. There are over
350 bytes of hexidecimal, so I suggest that you lock yourself
away where you will not be disturbed for at least an hour.
There are four steps to entering the program and they may be
summarised in this way :-

1. Set up the REM statements in lines 10 to 16.
2. Enter the code insertion program lines 100 to 150

and perform the checks given.
3. Run the program four times with different values

in line 100 entering the four blocks of hex code
given below. When you run the program it will
ask for a string input, enter the first byte of hex
(2 characters in the range 0 to F) followed by
newline, this byte will then be poked into memory
and also displayed on the screen. As you enter
more bytes the display will scroll up.

4. Delete lines 100 to 150 and enter lines 18 to 60.
When you run the program, you will see the invaders moving
from side to side across the screen (in the traditional way) firing
all the time as they move. You, the defender, are just out of
reach at the extreme right of the screen. You can move left by
pressing "8", move right by pressing "9" and fire by pressing
"0". You cannot move and fire at the same time. If you get
directly underneath one of the invaders it will shoot you down
and the game will automatically start again. If after a while you
find the game too easy, execute the command POKE 16790,
255 this will make the invaders invincible, and as you can no
longer shoot them down your task is simply to get to the left
hand edge of the screen. May the force be with you ! !

First enter the following program into the computer :

10 REM WWWWWWW --177 times-WWWWWWW
12 REM XXXXXXX --96 times- XXXXXXX
14 REM YYYYYYY -71 times- YYYYYYY
16REMZZZZZZ

Now check that you have entered the correct no. of
W,X,Y,Z characters in the following way.
The Command PRINT CHR$ PEEK 16690 gives "W"

16697 "X"
16792 "X"
16799 "Y"
16869 "Y"
16876 "Z"

If any of these checks give the wrong character then check
your REM statements.
Now add the following lines.

100 FOR N=16514TO 16690
110 INPUT l$

120 SCROLL
130 PRINT l$

140 POKE N,[CODE I$[1]-28]*16+CODE l$[2]-28
150 NEXT N

Run this and enter the following bytes of Hex.

FF FF FF FF FF FF FF FF FF FF FF FF 01 00 06 0C
21 82 40 36 FF 23 10 FB C9 C5 06 FF 10 FE C1 C9
3E 15 E1 BE 20 06 36 16 19 19 18 F7 3E BB 01 3C
00 BE 20 01 0E 00 C9 16 01 21 82 40 ED 5B 8F 40
16 00 19 13 7B 32 8F 40 3E 00 BE C8 2A 0C 40 01
05 00 3E 04 1D 28 0C 09 3D 20 F9 D5 11 2E 00 19
D1 18 EF ED 5B 8E 40 16 00 19 E5 3A 8F 40 D6 0D
FA 1A 41 3E 00 32 8F 40 21 8E 40 46 3A BA 40 80
32 8E 40 06 01 21 BA 40 B8 20 02 36 01 06 0D B8
20 02 36 FF E1 C3 BB 40 ED 5B BA 40 16 00 1C 1B
E1 19 36 16 23 36 07 23 36 8A 22 36 40 23 C3 EC

'••X

41

6160

Orbital Invaders Continued

Change line 100 to 100 FOR N= 16697 TO 16792 and run it
again entering the following codes.
2A 0E 40 11 DF FF 19 36 17 06 03 19 36 17 3E 16
19 BE 36 17 20 04 10 F3 18 0E 2B 2B 0E 04 36 16
23 0D 20 FA 36 16 2B 2B CD 9B 40 3E BB 11 21 00
36 16 19 BE 20 FA 04 05 28 57 05 CB 20 CB 20 ED
5B 8E 40 16 00 ED 52 3E 76 0E 05 BE 28 07 2B 0D
20 F9 04 18 F4 21 82 40 58 16 00 19 36 00 18 31
Change line 100 to 100 FOR N = 16799 TO 16869 run the
program once more entering these next codes.
01 FE EF ED 78 CB 3F 00 D2 39 41 00 2A 0E 40 36
16 CB 3F 30 0A CB 3F 38 0D 2B 3E 76 BE 20 07 23
3E 76 BE 20 01 2B 36 BB 22 0E 40 CD BB 40 11 21
00 2A 36 40 19 E5 3E 16 BE 20 06 36 15 19 19 18
F7 CD 9B 40 C3 A2 40
Now change line 100to 100 FOR N= 16876 TO 16881 and
run the program for the last time, entering 6 more codes.
36 84 23 36 16 C9
Now delete lines 100 to 150 and enter the following new
lines.

18CLS
20 FOR N = 1 TO 32
30 PRINT" ";
40 NEXT N
50 PRINT AT 7,31 +0*USR 16528;
60 GOTO USR 16799

At this point I suggest you SAVE a few copies of the
program, and then you are ready to run.

Mine Field
The object of this game is to traverse the minefield without

being blown up. There are 10 mines planted randomly in the
field and you must negotiate your way from the top left corner
to the bottom right without treading on one. Fortunately you
have a mine detector with you which will start registering a

62

mine when it is less than five moves away. The number appear-
ing in the top left corner of the screen indicates the proximity
of a mine the higher the number the nearer you are. You can
move in one of four directions by pressing the cursor movement
keys 5 to 8.

To make the game more difficult you can add the constraint
that you must call in at the top right and bottom left corners
before heading for home.

10DIMA(10]
20 DIM B[10]
30FORN = 1 TO 10
40 LET A[N] = INT[32*RND]
50LETB[N] = INT[21*RND]
60 NEXT N
70LETX=0
80LETY=1
90 PRINT AT Y,X;"*"

100LETM=0
110FORN-1TO10

120 IF ABS[X-A[N]]<5 AND ABS[Y-B[N]]<5 THEN LET
M = M+ 10/ABS[X-A[N] + .1] + 10/ABS[Y-B[N] + .1]

130 IF X=A[N] AND Y=B[N] THEN GOTO 220
140 NEXT N
150 PRINT AT 0,0;M
160 PAUSE 40000
170 LET X=X+[INKEY$= "8" AND X<31]- [INKEY$= "5"

AND X>0]

180 LET Y=Y+ [INKEY$"6" AND Y<20]-[INKEY$= "7" AND
Y>0]

190CLS
200 IF X=31 AND Y=20 THEN GOTO 230
210 GOTO 90
220 PRINT"BANG YOU ARE DEAD"
230 PRINT "THE END"
240 INPUT l$
250 RUN

63

each position.

Lines 170 and 180 scan the keyboard.

At the end of the game you can press newline to start again.

.

Authors Advice
This section contains a few tips for people wishing to write

their own programs for the 1K ZX81.

1. Before you start programming have a fairly clear idea of what

you wish to achieve and do a few rough calculations to see

whether there is any chance of squeezing it into 1 K.
>

2. If you wish to move just a few objects around the screen,

clear the screen between each move redrawing the objects as you

go. This will save on display file memory.

3. When debugging programs using subroutines beware of leaving

old return addresses on thegosub stack by stopping the program

from within a subroutine. Executing RETURN as a command

(no linenumber) will clear off one address.

4. Re-use variables wherever possible.

5. If you wish to store numerical data, rather than declaring a lot

of numerical variables, and using up program space assigning

values to them, try putting the data into a string array. See

CALENDAR.

6. If all else fails admit defeat and buy a RAM PACK.

64

The loop 110 to 140 evaluates M the mine detector readirtg^^K
X and Y are the coords of daring soldier.
The loop 30 to 60 positions the mines

coords, respectively, of the mines.
A(N) and B(N) are the arrays that store the horizontal andypertica^

Minefield Continued

TECHNICAL NOTES

